IMO Shortlist

From 2003 To 2013

Problems with Solutions

International
 Mathematics
 Olympiad 2015

Olympiad Training Materials
For IMO 2015

Cover Design by Keo Serey
www.highschoolcam.wordpress.com

44t斤 International Mathematical Olympiad

Short-listed Problems and

Tokyo Japan July 2003

44th International Mathematical Olympiad

Short-listed Problems and Solutions

Tokyo Japan
July 2003

The Problem Selection Committee and the Organising Committee of IMO 2003 thank the following thirty-eight countries for contributing problem proposals.

Armenia	Greece	New Zealand
Australia	Hong Kong	Poland
Austria	India	Puerto Rico
Brazil	Iran	Romania
Bulgaria	Ireland	Russia
Canada	Israel	South Africa
Colombia	Korea	Sweden
Croatia	Lithuania	Taiwan
Czech Republic	Luxembourg	Thailand
Estonia	Mexico	Ukraine
Finland	Mongolia	United Kingdom
France	Morocco	United States
Georgia	Netherlands	

The problems are grouped into four categories: algebra (A), combinatorics (C), geometry (G), and number theory (N). Within each category, the problems are arranged in ascending order of estimated difficulty, although of course it is very hard to judge this accurately.

Members of the Problem Selection Committee:

Titu Andreescu	Sachiko Nakajima
Mircea Becheanu	Chikara Nakayama
Ryo Ishida	Shingo Saito
Atsushi Ito	Svetoslav Savchev
Ryuichi Ito, chair	Masaki Tezuka
Eiji Iwase	Yoshio Togawa
Hiroki Kodama	Shunsuke Tsuchioka
Marcin Kuczma	Ryuji Tsushima
Kentaro Nagao	Atsuo Yamauchi

Contents

I Problems 1
Algebra 3
Combinatorics 5
Geometry 7
Number Theory 9
II Solutions 11
Algebra 13
A1 13
A2 15
A3 16
A4 17
A5 18
A6 20
Combinatorics 21
C1 21
C2 22
C3 24
C4 26
C5 27
C6 29
Geometry 31
G1 31
G2 33
G3 35
G4 36
G5 42
G6 44
G7 47
Number Theory 51
N1 51
N2 52
N3 54
N4 56
N5 58
N6 59
N7 60
N8 62

Part I

Problems

Algebra

A1. Let $a_{i j}, i=1,2,3 ; j=1,2,3$ be real numbers such that $a_{i j}$ is positive for $i=j$ and negative for $i \neq j$.

Prove that there exist positive real numbers c_{1}, c_{2}, c_{3} such that the numbers

$$
a_{11} c_{1}+a_{12} c_{2}+a_{13} c_{3}, \quad a_{21} c_{1}+a_{22} c_{2}+a_{23} c_{3}, \quad a_{31} c_{1}+a_{32} c_{2}+a_{33} c_{3}
$$

are all negative, all positive, or all zero.

A2. Find all nondecreasing functions $f: \mathbb{R} \longrightarrow \mathbb{R}$ such that
(i) $f(0)=0, f(1)=1$;
(ii) $f(a)+f(b)=f(a) f(b)+f(a+b-a b)$ for all real numbers a, b such that $a<1<b$.

A3. Consider pairs of sequences of positive real numbers

$$
a_{1} \geq a_{2} \geq a_{3} \geq \cdots, \quad b_{1} \geq b_{2} \geq b_{3} \geq \cdots
$$

and the sums

$$
A_{n}=a_{1}+\cdots+a_{n}, \quad B_{n}=b_{1}+\cdots+b_{n} ; \quad n=1,2, \ldots
$$

For any pair define $c_{i}=\min \left\{a_{i}, b_{i}\right\}$ and $C_{n}=c_{1}+\cdots+c_{n}, n=1,2, \ldots$
(1) Does there exist a pair $\left(a_{i}\right)_{i \geq 1},\left(b_{i}\right)_{i \geq 1}$ such that the sequences $\left(A_{n}\right)_{n \geq 1}$ and $\left(B_{n}\right)_{n \geq 1}$ are unbounded while the sequence $\left(C_{n}\right)_{n \geq 1}$ is bounded?
(2) Does the answer to question (1) change by assuming additionally that $b_{i}=1 / i, i=$ $1,2, \ldots$?

Justify your answer.

A4. Let n be a positive integer and let $x_{1} \leq x_{2} \leq \cdots \leq x_{n}$ be real numbers.
(1) Prove that

$$
\left(\sum_{i, j=1}^{n}\left|x_{i}-x_{j}\right|\right)^{2} \leq \frac{2\left(n^{2}-1\right)}{3} \sum_{i, j=1}^{n}\left(x_{i}-x_{j}\right)^{2} .
$$

(2) Show that the equality holds if and only if x_{1}, \ldots, x_{n} is an arithmetic sequence.

A5. Let \mathbb{R}^{+}be the set of all positive real numbers. Find all functions $f: \mathbb{R}^{+} \longrightarrow \mathbb{R}^{+}$that satisfy the following conditions:
(i) $f(x y z)+f(x)+f(y)+f(z)=f(\sqrt{x y}) f(\sqrt{y z}) f(\sqrt{z x})$ for all $x, y, z \in \mathbb{R}^{+}$;
(ii) $f(x)<f(y)$ for all $1 \leq x<y$.

A6. Let n be a positive integer and let $\left(x_{1}, \ldots, x_{n}\right),\left(y_{1}, \ldots, y_{n}\right)$ be two sequences of positive real numbers. Suppose $\left(z_{2}, \ldots, z_{2 n}\right)$ is a sequence of positive real numbers such that

$$
z_{i+j}^{2} \geq x_{i} y_{j} \quad \text { for all } 1 \leq i, j \leq n
$$

Let $M=\max \left\{z_{2}, \ldots, z_{2 n}\right\}$. Prove that

$$
\left(\frac{M+z_{2}+\cdots+z_{2 n}}{2 n}\right)^{2} \geq\left(\frac{x_{1}+\cdots+x_{n}}{n}\right)\left(\frac{y_{1}+\cdots+y_{n}}{n}\right) .
$$

Combinatorics

C1. Let A be a 101 -element subset of the set $S=\{1,2, \ldots, 1000000\}$. Prove that there exist numbers $t_{1}, t_{2}, \ldots, t_{100}$ in S such that the sets

$$
A_{j}=\left\{x+t_{j} \mid x \in A\right\}, \quad j=1,2, \ldots, 100
$$

are pairwise disjoint.

C2. Let D_{1}, \ldots, D_{n} be closed discs in the plane. (A closed disc is the region limited by a circle, taken jointly with this circle.) Suppose that every point in the plane is contained in at most 2003 discs D_{i}. Prove that there exists a disc D_{k} which intersects at most 7.2003-1 other discs D_{i}.

C3. Let $n \geq 5$ be a given integer. Determine the greatest integer k for which there exists a polygon with n vertices (convex or not, with non-selfintersecting boundary) having k internal right angles.

C4. Let x_{1}, \ldots, x_{n} and y_{1}, \ldots, y_{n} be real numbers. Let $A=\left(a_{i j}\right)_{1 \leq i, j \leq n}$ be the matrix with entries

$$
a_{i j}= \begin{cases}1, & \text { if } x_{i}+y_{j} \geq 0 \\ 0, & \text { if } x_{i}+y_{j}<0\end{cases}
$$

Suppose that B is an $n \times n$ matrix with entries 0,1 such that the sum of the elements in each row and each column of B is equal to the corresponding sum for the matrix A. Prove that $A=B$.

C5. Every point with integer coordinates in the plane is the centre of a disc with radius $1 / 1000$.
(1) Prove that there exists an equilateral triangle whose vertices lie in different discs.
(2) Prove that every equilateral triangle with vertices in different discs has side-length greater than 96.

C6. Let $f(k)$ be the number of integers n that satisfy the following conditions:
(i) $0 \leq n<10^{k}$, so n has exactly k digits (in decimal notation), with leading zeroes allowed;
(ii) the digits of n can be permuted in such a way that they yield an integer divisible by 11.

Prove that $f(2 m)=10 f(2 m-1)$ for every positive integer m.

Geometry

G1. Let $A B C D$ be a cyclic quadrilateral. Let P, Q, R be the feet of the perpendiculars from D to the lines $B C, C A, A B$, respectively. Show that $P Q=Q R$ if and only if the bisectors of $\angle A B C$ and $\angle A D C$ are concurrent with $A C$.

G2. Three distinct points A, B, C are fixed on a line in this order. Let Γ be a circle passing through A and C whose centre does not lie on the line $A C$. Denote by P the intersection of the tangents to Γ at A and C. Suppose Γ meets the segment $P B$ at Q. Prove that the intersection of the bisector of $\angle A Q C$ and the line $A C$ does not depend on the choice of Γ.

G3. Let $A B C$ be a triangle and let P be a point in its interior. Denote by D, E, F the feet of the perpendiculars from P to the lines $B C, C A, A B$, respectively. Suppose that

$$
A P^{2}+P D^{2}=B P^{2}+P E^{2}=C P^{2}+P F^{2}
$$

Denote by I_{A}, I_{B}, I_{C} the excentres of the triangle $A B C$. Prove that P is the circumcentre of the triangle $I_{A} I_{B} I_{C}$.

G4. Let $\Gamma_{1}, \Gamma_{2}, \Gamma_{3}, \Gamma_{4}$ be distinct circles such that Γ_{1}, Γ_{3} are externally tangent at P, and Γ_{2}, Γ_{4} are externally tangent at the same point P. Suppose that Γ_{1} and $\Gamma_{2} ; \Gamma_{2}$ and $\Gamma_{3} ; \Gamma_{3}$ and $\Gamma_{4} ; \Gamma_{4}$ and Γ_{1} meet at A, B, C, D, respectively, and that all these points are different from P.

Prove that

$$
\frac{A B \cdot B C}{A D \cdot D C}=\frac{P B^{2}}{P D^{2}}
$$

G5. Let $A B C$ be an isosceles triangle with $A C=B C$, whose incentre is I. Let P be a point on the circumcircle of the triangle $A I B$ lying inside the triangle $A B C$. The lines through P parallel to $C A$ and $C B$ meet $A B$ at D and E, respectively. The line through P parallel to $A B$ meets $C A$ and $C B$ at F and G, respectively. Prove that the lines $D F$ and $E G$ intersect on the circumcircle of the triangle $A B C$.

G6. Each pair of opposite sides of a convex hexagon has the following property: the distance between their midpoints is equal to $\sqrt{3} / 2$ times the sum of their lengths.

Prove that all the angles of the hexagon are equal.

G7. Let $A B C$ be a triangle with semiperimeter s and inradius r. The semicircles with diameters $B C, C A, A B$ are drawn on the outside of the triangle $A B C$. The circle tangent to all three semicircles has radius t. Prove that

$$
\frac{s}{2}<t \leq \frac{s}{2}+\left(1-\frac{\sqrt{3}}{2}\right) r
$$

Number Theory

N1. Let m be a fixed integer greater than 1 . The sequence $x_{0}, x_{1}, x_{2}, \ldots$ is defined as follows:

$$
x_{i}= \begin{cases}2^{i}, & \text { if } 0 \leq i \leq m-1 \\ \sum_{j=1}^{m} x_{i-j}, & \text { if } i \geq m\end{cases}
$$

Find the greatest k for which the sequence contains k consecutive terms divisible by m.

N2. Each positive integer a undergoes the following procedure in order to obtain the number $d=d(a)$:
(i) move the last digit of a to the first position to obtain the number b;
(ii) square b to obtain the number c;
(iii) move the first digit of c to the end to obtain the number d.
(All the numbers in the problem are considered to be represented in base 10.) For example, for $a=2003$, we get $b=3200, c=10240000$, and $d=02400001=2400001=d(2003)$.

Find all numbers a for which $d(a)=a^{2}$.

N3. Determine all pairs of positive integers (a, b) such that

$$
\frac{a^{2}}{2 a b^{2}-b^{3}+1}
$$

is a positive integer.

N4. Let b be an integer greater than 5 . For each positive integer n, consider the number

$$
x_{n}=\underbrace{11 \cdots 1}_{n-1} \underbrace{22 \cdots 2}_{n} 5 \text {, }
$$

written in base b.
Prove that the following condition holds if and only if $b=10$:
there exists a positive integer M such that for any integer n greater than M, the number x_{n} is a perfect square.

N5. An integer n is said to be good if $|n|$ is not the square of an integer. Determine all integers m with the following property:
m can be represented, in infinitely many ways, as a sum of three distinct good integers whose product is the square of an odd integer.

N6. Let p be a prime number. Prove that there exists a prime number q such that for every integer n, the number $n^{p}-p$ is not divisible by q.

N7. The sequence $a_{0}, a_{1}, a_{2}, \ldots$ is defined as follows:

$$
a_{0}=2, \quad a_{k+1}=2 a_{k}^{2}-1 \quad \text { for } k \geq 0
$$

Prove that if an odd prime p divides a_{n}, then 2^{n+3} divides $p^{2}-1$.

N8. Let p be a prime number and let A be a set of positive integers that satisfies the following conditions:
(i) the set of prime divisors of the elements in A consists of $p-1$ elements;
(ii) for any nonempty subset of A, the product of its elements is not a perfect p-th power.

What is the largest possible number of elements in A ?

Part II

Solutions

Algebra

A1. Let $a_{i j}, i=1,2,3 ; j=1,2,3$ be real numbers such that $a_{i j}$ is positive for $i=j$ and negative for $i \neq j$.

Prove that there exist positive real numbers c_{1}, c_{2}, c_{3} such that the numbers

$$
a_{11} c_{1}+a_{12} c_{2}+a_{13} c_{3}, \quad a_{21} c_{1}+a_{22} c_{2}+a_{23} c_{3}, \quad a_{31} c_{1}+a_{32} c_{2}+a_{33} c_{3}
$$

are all negative, all positive, or all zero.

Solution. Set $O(0,0,0), P\left(a_{11}, a_{21}, a_{31}\right), Q\left(a_{12}, a_{22}, a_{32}\right), R\left(a_{13}, a_{23}, a_{33}\right)$ in the three dimensional Euclidean space. It is enough to find a point in the interior of the triangle $P Q R$ whose coordinates are all positive, all negative, or all zero.

Let $O^{\prime}, P^{\prime}, Q^{\prime}, R^{\prime}$ be the projections of O, P, Q, R onto the $x y$-plane. Recall that points P^{\prime}, Q^{\prime} and R^{\prime} lie on the fourth, second and third quadrant respectively.
Case 1: O^{\prime} is in the exterior or on the boundary of the triangle $P^{\prime} Q^{\prime} R^{\prime}$.

Denote by S^{\prime} the intersection of the segments $P^{\prime} Q^{\prime}$ and $O^{\prime} R^{\prime}$, and let S be the point on the segment $P Q$ whose projection is S^{\prime}. Recall that the z-coordinate of the point S is negative, since the z-coordinate of the points P^{\prime} and Q^{\prime} are both negative. Thus any point in the interior of the segment $S R$ sufficiently close to S has coordinates all of which are negative, and we are done.

Case 2: O^{\prime} is in the interior of the triangle $P^{\prime} Q^{\prime} R^{\prime}$.

Let T be the point on the plane $P Q R$ whose projection is O^{\prime}. If $T=O$, we are done again. Suppose T has negative (resp. positive) z-coordinate. Let U be a point in the interior of the triangle $P Q R$, sufficiently close to T, whose x-coordinates and y-coordinates are both negative (resp. positive). Then the coordinates of U are all negative (resp. positive), and we are done.

A2. Find all nondecreasing functions $f: \mathbb{R} \longrightarrow \mathbb{R}$ such that
(i) $f(0)=0, f(1)=1$;
(ii) $f(a)+f(b)=f(a) f(b)+f(a+b-a b)$ for all real numbers a, b such that $a<1<b$.

Solution. Let $g(x)=f(x+1)-1$. Then g is nondecreasing, $g(0)=0, g(-1)=-1$, and $g(-(a-1)(b-1))=-g(a-1) g(b-1)$ for $a<1<b$. Thus $g(-x y)=-g(x) g(y)$ for $x<0<y$, or $g(y z)=-g(y) g(-z)$ for $y, z>0$. Vice versa, if g satisfies those conditions, then f satisfies the given conditions.
Case 1: If $g(1)=0$, then $g(z)=0$ for all $z>0$. Now let $g: \mathbb{R} \longrightarrow \mathbb{R}$ be any nondecreasing function such that $g(-1)=-1$ and $g(x)=0$ for all $x \geq 0$. Then g satisfies the required conditions.

Case 2: If $g(1)>0$, putting $y=1$ yields

$$
\begin{equation*}
g(-z)=-\frac{g(z)}{g(1)} \tag{*}
\end{equation*}
$$

for all $z>0$. Hence $g(y z)=g(y) g(z) / g(1)$ for all $y, z>0$. Let $h(x)=g(x) / g(1)$. Then h is nondecreasing, $h(0)=0, h(1)=1$, and $h(x y)=h(x) h(y)$. It follows that $h\left(x^{q}\right)=h(x)^{q}$ for any $x>0$ and any rational number q. Since h is nondecreasing, there exists a nonnegative number k such that $h(x)=x^{k}$ for all $x>0$. Putting $g(1)=c$, we have $g(x)=c x^{k}$ for all $x>0$. Furthermore $(*)$ implies $g(-x)=-x^{k}$ for all $x>0$. Now let $k \geq 0, c>0$ and

$$
g(x)= \begin{cases}c x^{k}, & \text { if } x>0 \\ 0, & \text { if } x=0 \\ -(-x)^{k}, & \text { if } x<0\end{cases}
$$

Then g is nondecreasing, $g(0)=0, g(-1)=-1$, and $g(-x y)=-g(x) g(y)$ for $x<0<y$. Hence g satisfies the required conditions.

We obtain all solutions for f by the re-substitution $f(x)=g(x-1)+1$. In Case 1, we have any nondecreasing function f satisfying

$$
f(x)= \begin{cases}1, & \text { if } x \geq 1 \\ 0, & \text { if } x=0\end{cases}
$$

In Case 2, we obtain

$$
f(x)= \begin{cases}c(x-1)^{k}+1, & \text { if } x>1 \\ 1, & \text { if } x=1 \\ -(1-x)^{k}+1, & \text { if } x<1\end{cases}
$$

where $c>0$ and $k \geq 0$.

A3. Consider pairs of sequences of positive real numbers

$$
a_{1} \geq a_{2} \geq a_{3} \geq \cdots, \quad b_{1} \geq b_{2} \geq b_{3} \geq \cdots
$$

and the sums

$$
A_{n}=a_{1}+\cdots+a_{n}, \quad B_{n}=b_{1}+\cdots+b_{n} ; \quad n=1,2, \ldots
$$

For any pair define $c_{i}=\min \left\{a_{i}, b_{i}\right\}$ and $C_{n}=c_{1}+\cdots+c_{n}, n=1,2, \ldots$.
(1) Does there exist a pair $\left(a_{i}\right)_{i \geq 1},\left(b_{i}\right)_{i \geq 1}$ such that the sequences $\left(A_{n}\right)_{n \geq 1}$ and $\left(B_{n}\right)_{n \geq 1}$ are unbounded while the sequence $\left(C_{n}\right)_{n \geq 1}$ is bounded?
(2) Does the answer to question (1) change by assuming additionally that $b_{i}=1 / i, i=$ $1,2, \ldots$?

Justify your answer.

Solution. (1) Yes.
Let $\left(c_{i}\right)$ be an arbitrary sequence of positive numbers such that $c_{i} \geq c_{i+1}$ and $\sum_{i=1}^{\infty} c_{i}<\infty$. Let $\left(k_{m}\right)$ be a sequence of integers satisfying $1=k_{1}<k_{2}<k_{3}<\cdots$ and $\left(k_{m+1}-k_{m}\right) c_{k_{m}} \geq 1$.

Now we define the sequences $\left(a_{i}\right)$ and $\left(b_{i}\right)$ as follows. For n odd and $k_{n} \leq i<k_{n+1}$, define $a_{i}=c_{k_{n}}$ and $b_{i}=c_{i}$. Then we have $A_{k_{n+1}-1} \geq A_{k_{n}-1}+1$. For n even and $k_{n} \leq i<k_{n+1}$, define $a_{i}=c_{i}$ and $b_{i}=c_{k_{n}}$. Then we have $B_{k_{n+1}-1} \geq B_{k_{n}-1}+1$. Thus $\left(A_{n}\right)$ and $\left(B_{n}\right)$ are unbounded and $c_{i}=\min \left\{a_{i}, b_{i}\right\}$.
(2) Yes.

Suppose that there is such a pair.
Case 1: $b_{i}=c_{i}$ for only finitely many i 's.
There exists a sufficiently large I such that $c_{i}=a_{i}$ for any $i \geq I$. Therefore

$$
\sum_{i \geq I} c_{i}=\sum_{i \geq I} a_{i}=\infty
$$

a contradiction.
Case 2: $b_{i}=c_{i}$ for infinitely many i 's.
Let $\left(k_{m}\right)$ be a sequence of integers satisfying $k_{m+1} \geq 2 k_{m}$ and $b_{k_{m}}=c_{k_{m}}$. Then

$$
\sum_{k=k_{i}+1}^{k_{i+1}} c_{k} \geq\left(k_{i+1}-k_{i}\right) \frac{1}{k_{i+1}} \geq \frac{1}{2}
$$

Thus $\sum_{i=1}^{\infty} c_{i}=\infty$, a contradiction.

A4. Let n be a positive integer and let $x_{1} \leq x_{2} \leq \cdots \leq x_{n}$ be real numbers.
(1) Prove that

$$
\left(\sum_{i, j=1}^{n}\left|x_{i}-x_{j}\right|\right)^{2} \leq \frac{2\left(n^{2}-1\right)}{3} \sum_{i, j=1}^{n}\left(x_{i}-x_{j}\right)^{2} .
$$

(2) Show that the equality holds if and only if x_{1}, \ldots, x_{n} is an arithmetic sequence.

Solution. (1) Since both sides of the inequality are invariant under any translation of all x_{i} 's, we may assume without loss of generality that $\sum_{i=1}^{n} x_{i}=0$.

We have

$$
\sum_{i, j=1}^{n}\left|x_{i}-x_{j}\right|=2 \sum_{i<j}\left(x_{j}-x_{i}\right)=2 \sum_{i=1}^{n}(2 i-n-1) x_{i} .
$$

By the Cauchy-Schwarz inequality, we have

$$
\left(\sum_{i, j=1}^{n}\left|x_{i}-x_{j}\right|\right)^{2} \leq 4 \sum_{i=1}^{n}(2 i-n-1)^{2} \sum_{i=1}^{n} x_{i}^{2}=4 \cdot \frac{n(n+1)(n-1)}{3} \sum_{i=1}^{n} x_{i}^{2} .
$$

On the other hand, we have

$$
\sum_{i, j=1}^{n}\left(x_{i}-x_{j}\right)^{2}=n \sum_{i=1}^{n} x_{i}^{2}-\sum_{i=1}^{n} x_{i} \sum_{j=1}^{n} x_{j}+n \sum_{j=1}^{n} x_{j}^{2}=2 n \sum_{i=1}^{n} x_{i}^{2} .
$$

Therefore

$$
\left(\sum_{i, j=1}^{n}\left|x_{i}-x_{j}\right|\right)^{2} \leq \frac{2\left(n^{2}-1\right)}{3} \sum_{i, j=1}^{n}\left(x_{i}-x_{j}\right)^{2} .
$$

(2) If the equality holds, then $x_{i}=k(2 i-n-1)$ for some k, which means that x_{1}, \ldots, x_{n} is an arithmetic sequence.

On the other hand, suppose that $x_{1}, \ldots, x_{2 n}$ is an arithmetic sequence with common difference d. Then we have

$$
x_{i}=\frac{d}{2}(2 i-n-1)+\frac{x_{1}+x_{n}}{2} .
$$

Translate x_{i} 's by $-\left(x_{1}+x_{n}\right) / 2$ to obtain $x_{i}=d(2 i-n-1) / 2$ and $\sum_{i=1}^{n} x_{i}=0$, from which the equality follows.

A5. Let \mathbb{R}^{+}be the set of all positive real numbers. Find all functions $f: \mathbb{R}^{+} \longrightarrow \mathbb{R}^{+}$that satisfy the following conditions:
(i) $f(x y z)+f(x)+f(y)+f(z)=f(\sqrt{x y}) f(\sqrt{y z}) f(\sqrt{z x})$ for all $x, y, z \in \mathbb{R}^{+}$;
(ii) $f(x)<f(y)$ for all $1 \leq x<y$.

Solution 1. We claim that $f(x)=x^{\lambda}+x^{-\lambda}$, where λ is an arbitrary positive real number.
Lemma. There exists a unique function $g:[1, \infty) \longrightarrow[1, \infty)$ such that

$$
f(x)=g(x)+\frac{1}{g(x)}
$$

Proof. Put $x=y=z=1$ in the given functional equation

$$
f(x y z)+f(x)+f(y)+f(z)=f(\sqrt{x y}) f(\sqrt{y z}) f(\sqrt{z x})
$$

to obtain $4 f(1)=f(1)^{3}$. Since $f(1)>0$, we have $f(1)=2$.
Define the function $A:[1, \infty) \longrightarrow[2, \infty)$ by $A(x)=x+1 / x$. Since f is strictly increasing on $[1, \infty)$ and A is bijective, the function g is uniquely determined.

Since A is strictly increasing, we see that g is also strictly increasing. Since $f(1)=2$, we have $g(1)=1$.

We put $(x, y, z)=(t, t, 1 / t),\left(t^{2}, 1,1\right)$ to obtain $f(t)=f(1 / t)$ and $f\left(t^{2}\right)=f(t)^{2}-2$. Put $(x, y, z)=(s / t, t / s, s t),\left(s^{2}, 1 / s^{2}, t^{2}\right)$ to obtain

$$
f(s t)+f\left(\frac{t}{s}\right)=f(s) f(t) \quad \text { and } \quad f(s t) f\left(\frac{t}{s}\right)=f\left(s^{2}\right)+f\left(t^{2}\right)=f(s)^{2}+f(t)^{2}-4
$$

Let $1 \leq x \leq y$. We will show that $g(x y)=g(x) g(y)$. We have

$$
\begin{aligned}
f(x y)+f\left(\frac{y}{x}\right) & =\left(g(x)+\frac{1}{g(x)}\right)\left(g(y)+\frac{1}{g(y)}\right) \\
& =\left(g(x) g(y)+\frac{1}{g(x) g(y)}\right)+\left(\frac{g(x)}{g(y)}+\frac{g(y)}{g(x)}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
f(x y) f\left(\frac{y}{x}\right) & =\left(g(x)+\frac{1}{g(x)}\right)^{2}+\left(g(y)+\frac{1}{g(y)}\right)^{2}-4 \\
& =\left(g(x) g(y)+\frac{1}{g(x) g(y)}\right)\left(\frac{g(x)}{g(y)}+\frac{g(y)}{g(x)}\right) .
\end{aligned}
$$

Thus

$$
\left\{f(x y), f\left(\frac{y}{x}\right)\right\}=\left\{g(x) g(y)+\frac{1}{g(x) g(y)}, \frac{g(x)}{g(y)}+\frac{g(y)}{g(x)}\right\}=\left\{A(g(x) g(y)), A\left(\frac{g(y)}{g(x)}\right)\right\} .
$$

Since $f(x y)=A(g(x y))$ and A is bijective, it follows that either $g(x y)=g(x) g(y)$ or $g(x y)=g(y) / g(x)$. Since $x y \geq y$ and g is increasing, we have $g(x y)=g(x) g(y)$.

Fix a real number $\varepsilon>1$ and suppose that $g(\varepsilon)=\varepsilon^{\lambda}$. Since $g(\varepsilon)>1$, we have $\lambda>0$. Using the multiplicity of g, we may easily see that $g\left(\varepsilon^{q}\right)=\varepsilon^{q \lambda}$ for all rationals $q \in[0, \infty)$. Since g is strictly increasing, $g\left(\varepsilon^{t}\right)=\varepsilon^{t \lambda}$ for all $t \in[0, \infty)$, that is, $g(x)=x^{\lambda}$ for all $x \geq 1$.

For all $x \geq 1$, we have $f(x)=x^{\lambda}+x^{-\lambda}$. Recalling that $f(t)=f(1 / t)$, we have $f(x)=$ $x^{\lambda}+x^{-\lambda}$ for $0<x<1$ as well.

Now we must check that for any $\lambda>0$, the function $f(x)=x^{\lambda}+x^{-\lambda}$ satisfies the two given conditions. The condition (i) is satisfied because

$$
\begin{aligned}
f(\sqrt{x y}) f(\sqrt{y z}) f(\sqrt{z x}) & =\left((x y)^{\lambda / 2}+(x y)^{-\lambda / 2}\right)\left((y z)^{\lambda / 2}+(y z)^{-\lambda / 2}\right)\left((z x)^{\lambda / 2}+(z x)^{-\lambda / 2}\right) \\
& =(x y z)^{\lambda}+x^{\lambda}+y^{\lambda}+z^{\lambda}+x^{-\lambda}+y^{-\lambda}+z^{-\lambda}+(x y z)^{-\lambda} \\
& =f(x y z)+f(x)+f(y)+f(z) .
\end{aligned}
$$

The condition (ii) is also satisfied because $1 \leq x<y$ implies

$$
f(y)-f(x)=\left(y^{\lambda}-x^{\lambda}\right)\left(1-\frac{1}{(x y)^{\lambda}}\right)>0 .
$$

Solution 2. We can a find positive real number λ such that $f(e)=\exp (\lambda)+\exp (-\lambda)$ since the function $B:[0, \infty) \longrightarrow[2, \infty)$ defined by $B(x)=\exp (x)+\exp (-x)$ is bijective.

Since $f(t)^{2}=f\left(t^{2}\right)+2$ and $f(x)>0$, we have

$$
f\left(\exp \left(\frac{1}{2^{n}}\right)\right)=\exp \left(\frac{\lambda}{2^{n}}\right)+\exp \left(-\frac{\lambda}{2^{n}}\right)
$$

for all nonnegative integers n.
Since $f(s t)=f(s) f(t)-f(t / s)$, we have

$$
\begin{equation*}
f\left(\exp \left(\frac{m+1}{2^{n}}\right)\right)=f\left(\exp \left(\frac{1}{2^{n}}\right)\right) f\left(\exp \left(\frac{m}{2^{n}}\right)\right)-f\left(\exp \left(\frac{m-1}{2^{n}}\right)\right) \tag{*}
\end{equation*}
$$

for all nonnegative integers m and n.
From $(*)$ and $f(1)=2$, we obtain by induction that

$$
f\left(\exp \left(\frac{m}{2^{n}}\right)\right)=\exp \left(\frac{m \lambda}{2^{n}}\right)+\exp \left(-\frac{m \lambda}{2^{n}}\right)
$$

for all nonnegative integers m and n.
Since f is increasing on $[1, \infty)$, we have $f(x)=x^{\lambda}+x^{-\lambda}$ for $x \geq 1$.
We can prove that $f(x)=x^{\lambda}+x^{-\lambda}$ for $0<x<1$ and that this function satisfies the given conditions in the same manner as in the first solution.

A6. Let n be a positive integer and let $\left(x_{1}, \ldots, x_{n}\right),\left(y_{1}, \ldots, y_{n}\right)$ be two sequences of positive real numbers. Suppose $\left(z_{2}, \ldots, z_{2 n}\right)$ is a sequence of positive real numbers such that

$$
z_{i+j}^{2} \geq x_{i} y_{j} \quad \text { for all } 1 \leq i, j \leq n
$$

Let $M=\max \left\{z_{2}, \ldots, z_{2 n}\right\}$. Prove that

$$
\left(\frac{M+z_{2}+\cdots+z_{2 n}}{2 n}\right)^{2} \geq\left(\frac{x_{1}+\cdots+x_{n}}{n}\right)\left(\frac{y_{1}+\cdots+y_{n}}{n}\right) .
$$

Solution. Let $X=\max \left\{x_{1}, \ldots, x_{n}\right\}$ and $Y=\max \left\{y_{1}, \ldots, y_{n}\right\}$. By replacing x_{i} by $x_{i}^{\prime}=$ $x_{i} / X, y_{i}$ by $y_{i}^{\prime}=y_{i} / Y$, and z_{i} by $z_{i}^{\prime}=z_{i} / \sqrt{X Y}$, we may assume that $X=Y=1$. Now we will prove that

$$
\begin{equation*}
M+z_{2}+\cdots+z_{2 n} \geq x_{1}+\cdots+x_{n}+y_{1}+\cdots+y_{n} \tag{*}
\end{equation*}
$$

so

$$
\frac{M+z_{2}+\cdots+z_{2 n}}{2 n} \geq \frac{1}{2}\left(\frac{x_{1}+\cdots+x_{n}}{n}+\frac{y_{1}+\cdots+y_{n}}{n}\right)
$$

which implies the desired result by the AM-GM inequality.
To prove $(*)$, we will show that for any $r \geq 0$, the number of terms greater that r on the left hand side is at least the number of such terms on the right hand side. Then the k th largest term on the left hand side is greater than or equal to the k th largest term on the right hand side for each k, proving $(*)$. If $r \geq 1$, then there are no terms greater than r on the right hand side. So suppose $r<1$. Let $A=\left\{1 \leq i \leq n \mid x_{i}>r\right\}, a=|A|$, $B=\left\{1 \leq i \leq n \mid y_{i}>r\right\}, b=|B|$. Since $\max \left\{x_{1}, \ldots, x_{n}\right\}=\max \left\{y_{1}, \ldots, y_{n}\right\}=1$, both a and b are at least 1. Now $x_{i}>r$ and $y_{j}>r$ implies $z_{i+j} \geq \sqrt{x_{i} y_{j}}>r$, so

$$
C=\left\{2 \leq i \leq 2 n \mid z_{i}>r\right\} \supset A+B=\{\alpha+\beta \mid \alpha \in A, \beta \in B\} .
$$

However, we know that $|A+B| \geq|A|+|B|-1$, because if $A=\left\{i_{1}, \ldots, i_{a}\right\}, i_{1}<\cdots<i_{a}$ and $B=\left\{j_{1}, \ldots, j_{b}\right\}, j_{1}<\cdots<j_{b}$, then the $a+b-1$ numbers $i_{1}+j_{1}, i_{1}+j_{2}, \ldots, i_{1}+j_{b}$, $i_{2}+j_{b}, \ldots, i_{a}+j_{b}$ are all distinct and belong to $A+B$. Hence $|C| \geq a+b-1$. In particular, $|C| \geq 1$ so $z_{k}>r$ for some k. Then $M>r$, so the left hand side of $(*)$ has at least $a+b$ terms greater than r. Since $a+b$ is the number of terms greater than r on the right hand side, we have proved $(*)$.

Combinatorics

C1. Let A be a 101 -element subset of the set $S=\{1,2, \ldots, 1000000\}$. Prove that there exist numbers $t_{1}, t_{2}, \ldots, t_{100}$ in S such that the sets

$$
A_{j}=\left\{x+t_{j} \mid x \in A\right\}, \quad j=1,2, \ldots, 100
$$

are pairwise disjoint.

Solution 1. Consider the set $D=\{x-y \mid x, y \in A\}$. There are at most $101 \times 100+1=$ 10101 elements in D. Two sets $A+t_{i}$ and $A+t_{j}$ have nonempty intersection if and only if $t_{i}-t_{j}$ is in D. So we need to choose the 100 elements in such a way that we do not use a difference from D.

Now select these elements by induction. Choose one element arbitrarily. Assume that k elements, $k \leq 99$, are already chosen. An element x that is already chosen prevents us from selecting any element from the set $x+D$. Thus after k elements are chosen, at most $10101 k \leq 999999$ elements are forbidden. Hence we can select one more element.

Comment. The size $|S|=10^{6}$ is unnecessarily large. The following statement is true:
If A is a k-element subset of $S=\{1, \ldots, n\}$ and m is a positive integer such that $n>(m-1)\left(\binom{k}{2}+1\right)$, then there exist $t_{1}, \ldots, t_{m} \in S$ such that the sets $A_{j}=\left\{x+t_{j} \mid x \in A\right\}, j=1, \ldots, m$ are pairwise disjoint.

Solution 2. We give a solution to the generalised version.
Consider the set $B=\{|x-y| \mid x, y \in A\}$. Clearly, $|B| \leq\binom{ k}{2}+1$.
It suffices to prove that there exist $t_{1}, \ldots, t_{m} \in S$ such that $\left|t_{i}-t_{j}\right| \notin B$ for every distinct i and j. We will select t_{1}, \ldots, t_{m} inductively.

Choose 1 as t_{1}, and consider the set $C_{1}=S \backslash\left(B+t_{1}\right)$. Then we have $\left.\left|C_{1}\right| \geq n-\binom{k}{2}+1\right)>$ $(m-2)\left(\binom{k}{2}+1\right)$.

For $1 \leq i<m$, suppose that t_{1}, \ldots, t_{i} and C_{i} are already defined and that $\left|C_{i}\right|>$ $(m-i-1)\left(\binom{k}{2}+1\right) \geq 0$. Choose the least element in C_{i} as t_{i+1} and consider the set $C_{i+1}=C_{i} \backslash\left(B+t_{i+1}\right)$. Then

$$
\left|C_{i+1}\right| \geq\left|C_{i}\right|-\left(\binom{k}{2}+1\right)>(m-i-2)\left(\binom{k}{2}+1\right) \geq 0
$$

Clearly, t_{1}, \ldots, t_{m} satisfy the desired condition.

C2. Let D_{1}, \ldots, D_{n} be closed discs in the plane. (A closed disc is the region limited by a circle, taken jointly with this circle.) Suppose that every point in the plane is contained in at most 2003 discs D_{i}. Prove that there exists a disc D_{k} which intersects at most $7 \cdot 2003-1$ other discs D_{i}.

Solution. Pick a disc S with the smallest radius, say s. Subdivide the plane into seven regions as in Figure 1, that is, subdivide the complement of S into six congruent regions T_{1}, \ldots, T_{6}.

Figure 1

Since s is the smallest radius, any disc different from S whose centre lies inside S contains the centre O of the disc S. Therefore the number of such discs is less than or equal to 2002 .

We will show that if a disc D_{k} has its centre inside T_{i} and intersects S, then D_{k} contains P_{i}, where P_{i} is the point such that $O P_{i}=\sqrt{3} s$ and $O P_{i}$ bisects the angle formed by the two half-lines that bound T_{i}.

Subdivide T_{i} into U_{i} and V_{i} as in Figure 2.

Figure 2
The region U_{i} is contained in the disc with radius s and centre P_{i}. Thus, if the centre of D_{k} is inside U_{i}, then D_{k} contains P_{i}.

Suppose that the centre of D_{k} is inside V_{i}. Let Q be the centre of D_{k} and let R be the intersection of $O Q$ and the boundary of S. Since D_{k} intersects S, the radius of D_{k} is greater than $Q R$. Since $\angle Q P_{i} R \geq \angle C P_{i} B=60^{\circ}$ and $\angle P_{i} R O \geq \angle P_{i} B O=120^{\circ}$, we have $\angle Q P_{i} R \geq \angle P_{i} R Q$. Hence $Q R \geq Q P_{i}$ and so D_{k} contains P_{i}.

Figure 3
For $i=1, \ldots, 6$, the number of discs D_{k} having their centres inside T_{i} and intersecting S is less than or equal to 2003. Consequently, the number of discs D_{k} that intersect S is less than or equal to $2002+6 \cdot 2003=7 \cdot 2003-1$.

C3. Let $n \geq 5$ be a given integer. Determine the greatest integer k for which there exists a polygon with n vertices (convex or not, with non-selfintersecting boundary) having k internal right angles.

Solution. We will show that the greatest integer k satisfying the given condition is equal to 3 for $n=5$, and $\lfloor 2 n / 3\rfloor+1$ for $n \geq 6$.

Assume that there exists an n-gon having k internal right angles. Since all other $n-k$ angles are less than 360°, we have

$$
(n-k) \cdot 360^{\circ}+k \cdot 90^{\circ}>(n-2) \cdot 180^{\circ},
$$

or $k<(2 n+4) / 3$. Since k and n are integers, we have $k \leq\lfloor 2 n / 3\rfloor+1$.
If $n=5$, then $\lfloor 2 n / 3\rfloor+1=4$. However, if a pentagon has 4 internal right angles, then the other angle is equal to 180°, which is not appropriate. Figure 1 gives the pentagon with 3 internal right angles, thus the greatest integer k is equal to 3 .

Figure 1
We will construct an n-gon having $\lfloor 2 n / 3\rfloor+1$ internal right angles for each $n \geq 6$. Figure 2 gives the examples for $n=6,7,8$.

Figure 2
For $n \geq 9$, we will construct examples inductively. Since all internal non-right angles in this construction are greater than 180°, we can cut off 'a triangle without a vertex' around a non-right angle in order to obtain three more vertices and two more internal right angles as in Figure 3.

Figure 3

Comment. Here we give two other ways to construct examples.
One way is to add 'a rectangle with a hat' near an internal non-right angle as in Figure 4.

Figure 4
The other way is 'the escaping construction.' First we draw right angles in spiral.

Then we 'escape' from the point P.

The followings are examples for $n=9,10,11$. The angles around the black points are not right.

The 'escaping lines' are not straight in these figures. However, in fact, we can make them straight when we draw sufficiently large figures.

C4. Let x_{1}, \ldots, x_{n} and y_{1}, \ldots, y_{n} be real numbers. Let $A=\left(a_{i j}\right)_{1 \leq i, j \leq n}$ be the matrix with entries

$$
a_{i j}= \begin{cases}1, & \text { if } x_{i}+y_{j} \geq 0 \\ 0, & \text { if } x_{i}+y_{j}<0\end{cases}
$$

Suppose that B is an $n \times n$ matrix with entries 0,1 such that the sum of the elements in each row and each column of B is equal to the corresponding sum for the matrix A. Prove that $A=B$.

Solution 1. Let $B=\left(b_{i j}\right)_{1 \leq i, j \leq n}$. Define $S=\sum_{1 \leq i, j \leq n}\left(x_{i}+y_{j}\right)\left(a_{i j}-b_{i j}\right)$.
On one hand, we have

$$
S=\sum_{i=1}^{n} x_{i}\left(\sum_{j=1}^{n} a_{i j}-\sum_{j=1}^{n} b_{i j}\right)+\sum_{j=1}^{n} y_{j}\left(\sum_{i=1}^{n} a_{i j}-\sum_{i=1}^{n} b_{i j}\right)=0 .
$$

On the other hand, if $x_{i}+y_{j} \geq 0$, then $a_{i j}=1$, which implies $a_{i j}-b_{i j} \geq 0$; if $x_{i}+y_{j}<0$, then $a_{i j}=0$, which implies $a_{i j}-b_{i j} \leq 0$. Therefore $\left(x_{i}+y_{j}\right)\left(a_{i j}-b_{i j}\right) \geq 0$ for every i and j.

Thus we have $\left(x_{i}+y_{j}\right)\left(a_{i j}-b_{i j}\right)=0$ for every i and j. In particular, if $a_{i j}=0$, then $x_{i}+y_{j}<0$ and so $a_{i j}-b_{i j}=0$. This means that $a_{i j} \geq b_{i j}$ for every i and j.

Since the sum of the elements in each row of B is equal to the corresponding sum for A, we have $a_{i j}=b_{i j}$ for every i and j.

Solution 2. Let $B=\left(b_{i j}\right)_{1 \leq i, j \leq n}$. Suppose that $A \neq B$, that is, there exists $\left(i_{0}, j_{0}\right)$ such that $a_{i_{0} j_{0}} \neq b_{i_{0} j_{0}}$. We may assume without loss of generality that $a_{i_{0} j_{0}}=0$ and $b_{i_{0} j_{0}}=1$.

Since the sum of the elements in the i_{0}-th row of B is equal to that in A, there exists j_{1} such that $a_{i_{0} j_{1}}=1$ and $b_{i_{0} j_{1}}=0$. Similarly there exists i_{1} such that $a_{i_{1} j_{1}}=0$ and $b_{i_{1} j_{1}}=1$. Let us define i_{k} and j_{k} inductively in this way so that $a_{i_{k} j_{k}}=0, b_{i_{k} j_{k}}=1, a_{i_{k} j_{k+1}}=1$, $b_{i_{k} j_{k+1}}=0$.

Because the size of the matrix is finite, there exist s and t such that $s \neq t$ and $\left(i_{s}, j_{s}\right)=$ $\left(i_{t}, j_{t}\right)$.

Since $a_{i_{k} j_{k}}=0$ implies $x_{i_{k}}+y_{j_{k}}<0$ by definition, we have $\sum_{k=s}^{t-1}\left(x_{i_{k}}+y_{j_{k}}\right)<0$. Similarly, since $a_{i_{k} j_{k+1}}=1$ implies $x_{i_{k}}+y_{j_{k+1}} \geq 0$, we have $\sum_{k=s}^{t-1}\left(x_{i_{k}}+y_{j_{k+1}}\right) \geq 0$. However, since $j_{s}=j_{t}$, we have

$$
\sum_{k=s}^{t-1}\left(x_{i_{k}}+y_{j_{k+1}}\right)=\sum_{k=s}^{t-1} x_{i_{k}}+\sum_{k=s+1}^{t} y_{j_{k}}=\sum_{k=s}^{t-1} x_{i_{k}}+\sum_{k=s}^{t-1} y_{j_{k}}=\sum_{k=s}^{t-1}\left(x_{i_{k}}+y_{j_{k}}\right)
$$

This is a contradiction.

C5. Every point with integer coordinates in the plane is the centre of a disc with radius $1 / 1000$.
(1) Prove that there exists an equilateral triangle whose vertices lie in different discs.
(2) Prove that every equilateral triangle with vertices in different discs has side-length greater than 96 .

Solution 1. (1) Define $f: \mathbb{Z} \longrightarrow[0,1)$ by $f(x)=x \sqrt{3}-\lfloor x \sqrt{3}\rfloor$. By the pigeonhole principle, there exist distinct integers x_{1} and x_{2} such that $\left|f\left(x_{1}\right)-f\left(x_{2}\right)\right|<0.001$. Put $a=\left|x_{1}-x_{2}\right|$. Then the distance either between $(a, a \sqrt{3})$ and $(a,\lfloor a \sqrt{3}\rfloor)$ or between $(a, a \sqrt{3})$ and $(a,\lfloor a \sqrt{3}\rfloor+1)$ is less than 0.001 . Therefore the points $(0,0),(2 a, 0),(a, a \sqrt{3})$ lie in different discs and form an equilateral triangle.
(2) Suppose that $P^{\prime} Q^{\prime} R^{\prime}$ is a triangle such that $P^{\prime} Q^{\prime}=Q^{\prime} R^{\prime}=R^{\prime} P^{\prime}=l \leq 96$ and P^{\prime}, Q^{\prime}, R^{\prime} lie in discs with centres P, Q, R, respectively. Then

$$
l-0.002 \leq P Q, Q R, R P \leq l+0.002
$$

Since $P Q R$ is not an equilateral triangle, we may assume that $P Q \neq Q R$. Therefore

$$
\begin{aligned}
\left|P Q^{2}-Q R^{2}\right| & =(P Q+Q R)|P Q-Q R| \\
& \leq((l+0.002)+(l+0.002))((l+0.002)-(l-0.002)) \\
& \leq 2 \cdot 96.002 \cdot 0.004 \\
& <1
\end{aligned}
$$

However, $P Q^{2}-Q R^{2} \in \mathbb{Z}$. This is a contradiction.

Solution 2. We give another solution to (2).
Lemma. Suppose that $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$ are equilateral triangles and that A, B, C and $A^{\prime}, B^{\prime}, C^{\prime}$ lie anticlockwise. If $A A^{\prime}, B B^{\prime} \leq r$, then $C C^{\prime} \leq 2 r$.

Proof. Let $\alpha, \beta, \gamma ; \alpha^{\prime}, \beta^{\prime}, \gamma^{\prime}$ be the complex numbers corresponding to $A, B, C ; A^{\prime}, B^{\prime}$, C^{\prime}. Then

$$
\gamma=\omega \beta+(1-\omega) \alpha \quad \text { and } \quad \gamma^{\prime}=\omega \beta^{\prime}+(1-\omega) \alpha^{\prime}
$$

where $\omega=(1+\sqrt{3} i) / 2$. Therefore

$$
\begin{aligned}
C C^{\prime} & =\left|\gamma-\gamma^{\prime}\right|=\left|\omega\left(\beta-\beta^{\prime}\right)+(1-\omega)\left(\alpha-\alpha^{\prime}\right)\right| \\
& \leq|\omega|\left|\beta-\beta^{\prime}\right|+|1-\omega|\left|\alpha-\alpha^{\prime}\right|=B B^{\prime}+A A^{\prime} \\
& \leq 2 r .
\end{aligned}
$$

Suppose that P, Q, R lie on discs with radius r and centres $P^{\prime}, Q^{\prime}, R^{\prime}$, respectively, and that $P Q R$ is an equilateral triangle. Let $R^{\prime \prime}$ be the point such that $P^{\prime} Q^{\prime} R^{\prime \prime}$ is an equilateral triangle and $P^{\prime}, Q^{\prime}, R^{\prime}$ lie anticlockwise. It follows from the lemma that $R R^{\prime \prime} \leq 2 r$, and so $R^{\prime} R^{\prime \prime} \leq R R^{\prime}+R R^{\prime \prime} \leq r+2 r=3 r$ by the triangle inequality.

Put $\overrightarrow{P^{\prime} Q^{\prime}}=\binom{m}{n}$ and $\overrightarrow{P^{\prime} R^{\prime}}=\binom{s}{t}$, where m, n, s, t are integers. We may suppose that $m, n \geq 0$. Then we have

$$
\sqrt{\left(\frac{m-n \sqrt{3}}{2}-s\right)^{2}+\left(\frac{n+m \sqrt{3}}{2}-t\right)^{2}} \leq 3 r
$$

Setting $a=2 t-n$ and $b=m-2 s$, we obtain

$$
\sqrt{(a-m \sqrt{3})^{2}+(b-n \sqrt{3})^{2}} \leq 6 r .
$$

Since $|a-m \sqrt{3}| \geq 1 /|a+m \sqrt{3}|,|b-n \sqrt{3}| \geq 1 /|b+n \sqrt{3}|$ and $|a| \leq m \sqrt{3}+6 r$, $|b| \leq n \sqrt{3}+6 r$, we have

$$
\sqrt{\frac{1}{(2 m \sqrt{3}+6 r)^{2}}+\frac{1}{(2 n \sqrt{3}+6 r)^{2}}} \leq 6 r
$$

Since $1 / x^{2}+1 / y^{2} \geq 8 /(x+y)^{2}$ for all positive real numbers x and y, it follows that

$$
\frac{2 \sqrt{2}}{2 \sqrt{3}(m+n)+12 r} \leq 6 r .
$$

As $P^{\prime} Q^{\prime}=\sqrt{m^{2}+n^{2}} \geq(m+n) / \sqrt{2}$, we have

$$
\frac{2 \sqrt{2}}{2 \sqrt{6} P^{\prime} Q^{\prime}+12 r} \leq 6 r .
$$

Therefore

$$
P^{\prime} Q^{\prime} \geq \frac{1}{6 \sqrt{3} r}-\sqrt{6} r .
$$

Finally we obtain

$$
P Q \geq P^{\prime} Q^{\prime}-2 r \geq \frac{1}{6 \sqrt{3} r}-\sqrt{6} r-2 r
$$

For $r=1 / 1000$, we have $P Q \geq 96.22 \cdots>96$.

C6. Let $f(k)$ be the number of integers n that satisfy the following conditions:
(i) $0 \leq n<10^{k}$, so n has exactly k digits (in decimal notation), with leading zeroes allowed;
(ii) the digits of n can be permuted in such a way that they yield an integer divisible by 11.

Prove that $f(2 m)=10 f(2 m-1)$ for every positive integer m.

Solution 1. We use the notation $\left[a_{k-1} a_{k-2} \cdots a_{0}\right]$ to indicate the positive integer with digits $a_{k-1}, a_{k-2}, \ldots, a_{0}$.

The following fact is well-known:

$$
\left[a_{k-1} a_{k-2} \cdots a_{0}\right] \equiv i \quad(\bmod 11) \Longleftrightarrow \sum_{l=0}^{k-1}(-1)^{l} a_{l} \equiv i \quad(\bmod 11)
$$

Fix $m \in \mathbb{N}$ and define the sets A_{i} and B_{i} as follows:

- A_{i} is the set of all integers n with the following properties:
(1) $0 \leq n<10^{2 m}$, i.e., n has $2 m$ digits;
(2) the right $2 m-1$ digits of n can be permuted so that the resulting integer is congruent to i modulo 11 .
- $\quad B_{i}$ is the set of all integers n with the following properties:
(1) $0 \leq n<10^{2 m-1}$, i.e., n has $2 m-1$ digits;
(2) the digits of n can be permuted so that the resulting integer is congruent to i modulo 11.

It is clear that $f(2 m)=\left|A_{0}\right|$ and $f(2 m-1)=\left|B_{0}\right|$. Since $\underbrace{99 \cdots 9}_{2 m} \equiv 0(\bmod 11)$, we have

$$
n \in A_{i} \Longleftrightarrow \underbrace{99 \cdots 9}_{2 m}-n \in A_{-i} .
$$

Hence

$$
\begin{equation*}
\left|A_{i}\right|=\left|A_{-i}\right| . \tag{1}
\end{equation*}
$$

Since $\underbrace{99 \cdots 9}_{2 m-1} \equiv 9(\bmod 11)$, we have

$$
n \in B_{i} \Longleftrightarrow \underbrace{99 \cdots 9}_{2 m-1}-n \in B_{9-i} .
$$

Thus

$$
\begin{equation*}
\left|B_{i}\right|=\left|B_{9-i}\right| . \tag{2}
\end{equation*}
$$

For any $2 m$-digit integer $n=\left[j a_{2 m-2} \cdots a_{0}\right]$, we have

$$
n \in A_{i} \Longleftrightarrow\left[a_{2 m-2} \cdots a_{0}\right] \in B_{i-j} .
$$

Hence

$$
\left|A_{i}\right|=\left|B_{i}\right|+\left|B_{i-1}\right|+\cdots+\left|B_{i-9}\right| .
$$

Since $B_{i}=B_{i+11}$, this can be written as

$$
\begin{equation*}
\left|A_{i}\right|=\sum_{k=0}^{10}\left|B_{k}\right|-\left|B_{i+1}\right| \tag{3}
\end{equation*}
$$

hence

$$
\begin{equation*}
\left|A_{i}\right|=\left|A_{j}\right| \Longleftrightarrow\left|B_{i+1}\right|=\left|B_{j+1}\right| . \tag{4}
\end{equation*}
$$

From (1), (2), and (4), we obtain $\left|A_{i}\right|=\left|A_{0}\right|$ and $\left|B_{i}\right|=\left|B_{0}\right|$. Substituting this into (3) yields $\left|A_{0}\right|=10\left|B_{0}\right|$, and so $f(2 m)=10 f(2 m-1)$.

Comment. This solution works for all even bases b, and the result is $f(2 m)=b f(2 m-1)$.
Solution 2. We will use the notation in Solution 1. For a $2 m$-tuple $\left(a_{0}, \ldots, a_{2 m-1}\right)$ of integers, we consider the following property:

$$
\begin{equation*}
\left(a_{0}, \ldots, a_{2 m-1}\right) \text { can be permuted so that } \sum_{l=0}^{2 m-1}(-1)^{l} a_{l} \equiv 0 \quad(\bmod 11) . \tag{*}
\end{equation*}
$$

It is easy to verify that

$$
\begin{equation*}
\left(a_{0}, \ldots, a_{2 m-1}\right) \text { satisfies }(*) \Longleftrightarrow\left(a_{0}+k, \ldots, a_{2 m-1}+k\right) \text { satisfies }(*) \tag{1}
\end{equation*}
$$

for all integers k, and that

$$
\begin{equation*}
\left(a_{0}, \ldots, a_{2 m-1}\right) \text { satisfies }(*) \Longleftrightarrow\left(k a_{0}, \ldots, k a_{2 m-1}\right) \text { satisfies }(*) \tag{2}
\end{equation*}
$$

for all integers $k \not \equiv 0(\bmod 11)$.
For an integer k, denote by $\langle k\rangle$ the nonnegative integer less than 11 congruent to k modulo 11.

For a fixed $j \in\{0,1, \ldots, 9\}$, let k be the unique integer such that $k \in\{1,2, \ldots, 10\}$ and $(j+1) k \equiv 1(\bmod 11)$.

Suppose that $\left[a_{2 m-1} \cdots a_{1} j\right] \in A_{0}$, that is, $\left(a_{2 m-1}, \ldots, a_{1}, j\right)$ satisfies $(*)$. From (1) and (2), it follows that $\left(\left(a_{2 m-1}+1\right) k-1, \ldots,\left(a_{1}+1\right) k-1,0\right)$ also satisfies $(*)$. Putting $b_{i}=$ $\left\langle\left(a_{i}+1\right) k\right\rangle-1$, we have $\left[b_{2 m-1} \cdots b_{1}\right] \in B_{0}$.

For any $j \in\{0,1, \ldots, 9\}$, we can reconstruct $\left[a_{2 m-1} \ldots a_{1} j\right]$ from $\left[b_{2 m-1} \cdots b_{1}\right]$. Hence we have $\left|A_{0}\right|=10\left|B_{0}\right|$, and so $f(2 m)=10 f(2 m-1)$.

Geometry

G1. Let $A B C D$ be a cyclic quadrilateral. Let P, Q, R be the feet of the perpendiculars from D to the lines $B C, C A, A B$, respectively. Show that $P Q=Q R$ if and only if the bisectors of $\angle A B C$ and $\angle A D C$ are concurrent with $A C$.

Solution 1.

It is well-known that P, Q, R are collinear (Simson's theorem). Moreover, since $\angle D P C$ and $\angle D Q C$ are right angles, the points D, P, Q, C are concyclic and so $\angle D C A=\angle D P Q=$ $\angle D P R$. Similarly, since D, Q, R, A are concyclic, we have $\angle D A C=\angle D R P$. Therefore $\triangle D C A \sim \triangle D P R$.

Likewise, $\triangle D A B \sim \triangle D Q P$ and $\triangle D B C \sim \triangle D R Q$. Then

$$
\frac{D A}{D C}=\frac{D R}{D P}=\frac{D B \cdot \frac{Q R}{B C}}{D B \cdot \frac{P Q}{B A}}=\frac{Q R}{P Q} \cdot \frac{B A}{B C}
$$

Thus $P Q=Q R$ if and only if $D A / D C=B A / B C$.
Now the bisectors of the angles $A B C$ and $A D C$ divide $A C$ in the ratios of $B A / B C$ and $D A / D C$, respectively. This completes the proof.

Solution 2. Suppose that the bisectors of $\angle A B C$ and $\angle A D C$ meet $A C$ at L and M, respectively. Since $A L / C L=A B / C B$ and $A M / C M=A D / C D$, the bisectors in question
meet on $A C$ if and only if $A B / C B=A D / C D$, that is, $A B \cdot C D=C B \cdot A D$. We will prove that $A B \cdot C D=C B \cdot A D$ is equivalent to $P Q=Q R$.

Because $D P \perp B C, D Q \perp A C, D R \perp A B$, the circles with diameters $D C$ and $D A$ contain the pairs of points P, Q and Q, R, respectively. It follows that $\angle P D Q$ is equal to γ or $180^{\circ}-\gamma$, where $\gamma=\angle A C B$. Likewise, $\angle Q D R$ is equal to α or $180^{\circ}-\alpha$, where $\alpha=\angle C A B$. Then, by the law of sines, we have $P Q=C D \sin \gamma$ and $Q R=A D \sin \alpha$. Hence the condition $P Q=Q R$ is equivalent to $C D / A D=\sin \alpha / \sin \gamma$.

On the other hand, $\sin \alpha / \sin \gamma=C B / A B$ by the law of sines again. Thus $P Q=Q R$ if and only if $C D / A D=C B / A B$, which is the same as $A B \cdot C D=C B \cdot A D$.

Comment. Solution 2 shows that this problem can be solved without the knowledge of Simson's theorem.

G2. Three distinct points A, B, C are fixed on a line in this order. Let Γ be a circle passing through A and C whose centre does not lie on the line $A C$. Denote by P the intersection of the tangents to Γ at A and C. Suppose Γ meets the segment $P B$ at Q. Prove that the intersection of the bisector of $\angle A Q C$ and the line $A C$ does not depend on the choice of Γ.

Solution 1.

Suppose that the bisector of $\angle A Q C$ intersects the line $A C$ and the circle Γ at R and S, respectively, where S is not equal to Q.

Since $\triangle A P C$ is an isosceles triangle, we have $A B: B C=\sin \angle A P B: \sin \angle C P B$. Likewise, since $\triangle A S C$ is an isosceles triangle, we have $A R: R C=\sin \angle A S Q: \sin \angle C S Q$.

Applying the sine version of Ceva's theorem to the triangle $P A C$ and Q, we obtain

$$
\sin \angle A P B: \sin \angle C P B=\sin \angle P A Q \sin \angle Q C A: \sin \angle P C Q \sin \angle Q A C
$$

The tangent theorem shows that $\angle P A Q=\angle A S Q=\angle Q C A$ and $\angle P C Q=\angle C S Q=$ $\angle Q A C$.

Hence $A B: B C=A R^{2}: R C^{2}$, and so R does not depend on Γ.

Solution 2.

Let R be the intersection of the bisector of the angle $A Q C$ and the line $A C$.
We may assume that $A(-1,0), B(b, 0), C(1,0)$, and $\Gamma: x^{2}+(y+p)^{2}=1+p^{2}$. Then $P(0,1 / p)$.

Let M be the midpoint of the largest arc $A C$. Then $M\left(0,-p-\sqrt{1+p^{2}}\right)$. The points Q, R, M are collinear, since $\angle A Q R=\angle C Q R$.

Because $P B: y=-x / p b+1 / p$, computation shows that

$$
Q\left(\frac{\left(1+p^{2}\right) b-p b \sqrt{\left(1+p^{2}\right)\left(1-b^{2}\right)}}{1+p^{2} b^{2}}, \frac{-p\left(1-b^{2}\right)+\sqrt{\left(1+p^{2}\right)\left(1-b^{2}\right)}}{1+p^{2} b^{2}}\right)
$$

so we have

$$
\frac{Q P}{B Q}=\frac{\sqrt{1+p^{2}}}{p \sqrt{1-b^{2}}}
$$

Since

$$
\frac{M O}{P M}=\frac{p+\sqrt{1+p^{2}}}{\frac{1}{p}+p+\sqrt{1+p^{2}}}=\frac{p}{\sqrt{1+p^{2}}},
$$

we obtain

$$
\frac{O R}{R B}=\frac{M O}{P M} \cdot \frac{Q P}{B Q}=\frac{p}{\sqrt{1+p^{2}}} \cdot \frac{\sqrt{1+p^{2}}}{p \sqrt{1-b^{2}}}=\frac{1}{\sqrt{1-b^{2}}}
$$

Therefore R does not depend on p or Γ.

G3. Let $A B C$ be a triangle and let P be a point in its interior. Denote by D, E, F the feet of the perpendiculars from P to the lines $B C, C A, A B$, respectively. Suppose that

$$
A P^{2}+P D^{2}=B P^{2}+P E^{2}=C P^{2}+P F^{2}
$$

Denote by I_{A}, I_{B}, I_{C} the excentres of the triangle $A B C$. Prove that P is the circumcentre of the triangle $I_{A} I_{B} I_{C}$.

Solution. Since the given condition implies

$$
0=\left(B P^{2}+P E^{2}\right)-\left(C P^{2}+P F^{2}\right)=\left(B P^{2}-P F^{2}\right)-\left(C P^{2}-P E^{2}\right)=B F^{2}-C E^{2}
$$

we may put $x=B F=C E$. Similarly we may put $y=C D=A F$ and $z=A E=B D$.
If one of three points D, E, F does not lie on the sides of the triangle $A B C$, then this contradicts the triangle inequality. Indeed, if, for example, B, C, D lie in this order, we have $A B+B C=(x+y)+(z-y)=x+z=A C$, a contradiction. Thus all three points lie on the sides of the triangle $A B C$.

Putting $a=B C, b=C A, c=A B$ and $s=(a+b+c) / 2$, we have $x=s-a, y=s-b$, $z=s-c$. Since $B D=s-c$ and $C D=s-b$, we see that D is the point at which the excircle of the triangle $A B C$ opposite to A meets $B C$. Similarly E and F are the points at which the excircle opposite to B and C meet $C A$ and $A B$, respectively. Since both $P D$ and $I_{A} D$ are perpendicular to $B C$, the three points P, D, I_{A} are collinear. Analogously P, E, I_{B} are collinear and P, F, I_{C} are collinear.

The three points I_{A}, C, I_{B} are collinear and the triangle $P I_{A} I_{B}$ is isosceles because $\angle P I_{A} C=\angle P I_{B} C=\angle C / 2$. Likewise we have $P I_{A}=P I_{C}$ and so $P I_{A}=P I_{B}=P I_{C}$. Thus P is the circumcentre of the triangle $I_{A} I_{B} I_{C}$.
Comment 1. The conclusion is true even if the point P lies outside the triangle $A B C$.
Comment 2. In fact, the common value of $A P^{2}+P D^{2}, B P^{2}+P E^{2}, C P^{2}+P F^{2}$ is equal to $8 R^{2}-s^{2}$, where R is the circumradius of the triangle $A B C$ and $s=(B C+C A+A B) / 2$. We can prove this as follows:

Observe that the circumradius of the triangle $I_{A} I_{B} I_{C}$ is equal to $2 R$ since its orthic triangle is $A B C$. It follows that $P D=P I_{A}-D I_{A}=2 R-r_{A}$, where r_{A} is the radius of the excircle of the triangle $A B C$ opposite to A. Putting r_{B} and r_{C} in a similar manner, we have $P E=2 R-r_{B}$ and $P F=2 R-r_{C}$. Now we have

$$
A P^{2}+P D^{2}=A E^{2}+P E^{2}+P D^{2}=(s-c)^{2}+\left(2 R-r_{B}\right)^{2}+\left(2 R-r_{A}\right)^{2}
$$

Since

$$
\begin{aligned}
\left(2 R-r_{A}\right)^{2} & =4 R^{2}-4 R r_{A}+r_{A}^{2} \\
& =4 R^{2}-4 \cdot \frac{a b c}{4 \operatorname{area}(\triangle A B C)} \cdot \frac{\operatorname{area}(\triangle A B C)}{s-a}+\left(\frac{\operatorname{area}(\triangle A B C)}{s-a}\right)^{2} \\
& =4 R^{2}+\frac{s(s-b)(s-c)-a b c}{s-a} \\
& =4 R^{2}+b c-s^{2}
\end{aligned}
$$

and we can obtain $\left(2 R-r_{B}\right)^{2}=4 R^{2}+c a-s^{2}$ in a similar way, it follows that

$$
A P^{2}+P D^{2}=(s-c)^{2}+\left(4 R^{2}+c a-s^{2}\right)+\left(4 R^{2}+b c-s^{2}\right)=8 R^{2}-s^{2}
$$

G4. Let $\Gamma_{1}, \Gamma_{2}, \Gamma_{3}, \Gamma_{4}$ be distinct circles such that Γ_{1}, Γ_{3} are externally tangent at P, and Γ_{2}, Γ_{4} are externally tangent at the same point P. Suppose that Γ_{1} and $\Gamma_{2} ; \Gamma_{2}$ and $\Gamma_{3} ; \Gamma_{3}$ and $\Gamma_{4} ; \Gamma_{4}$ and Γ_{1} meet at A, B, C, D, respectively, and that all these points are different from P.

Prove that

$$
\frac{A B \cdot B C}{A D \cdot D C}=\frac{P B^{2}}{P D^{2}}
$$

Solution 1.

Figure 1
Let Q be the intersection of the line $A B$ and the common tangent of Γ_{1} and Γ_{3}. Then

$$
\angle A P B=\angle A P Q+\angle B P Q=\angle P D A+\angle P C B .
$$

Define $\theta_{1}, \ldots, \theta_{8}$ as in Figure 1. Then

$$
\begin{equation*}
\theta_{2}+\theta_{3}+\angle A P B=\theta_{2}+\theta_{3}+\theta_{5}+\theta_{8}=180^{\circ} . \tag{1}
\end{equation*}
$$

Similarly, $\angle B P C=\angle P A B+\angle P D C$ and

$$
\begin{equation*}
\theta_{4}+\theta_{5}+\theta_{2}+\theta_{7}=180^{\circ} . \tag{2}
\end{equation*}
$$

Multiply the side-lengths of the triangles $P A B, P B C, P C D, P A D$ by $P C \cdot P D, P D \cdot P A$, $P A \cdot P B, P B \cdot P C$, respectively, to get the new quadrilateral $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ as in Figure 2.

Figure 2
(1) and (2) show that $A^{\prime} D^{\prime} \| B^{\prime} C^{\prime}$ and $A^{\prime} B^{\prime} \| C^{\prime} D^{\prime}$. Thus the quadrilateral $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ is a parallelogram. It follows that $A^{\prime} B^{\prime}=C^{\prime} D^{\prime}$ and $A^{\prime} D^{\prime}=C^{\prime} B^{\prime}$, that is, $A B \cdot P C \cdot P D=$ $C D \cdot P A \cdot P B$ and $A D \cdot P B \cdot P C=B C \cdot P A \cdot P D$, from which we see that

$$
\frac{A B \cdot B C}{A D \cdot D C}=\frac{P B^{2}}{P D^{2}}
$$

Solution 2. Let $O_{1}, O_{2}, O_{3}, O_{4}$ be the centres of $\Gamma_{1}, \Gamma_{2}, \Gamma_{3}, \Gamma_{4}$, respectively, and let A^{\prime}, $B^{\prime}, C^{\prime}, D^{\prime}$ be the midpoints of $P A, P B, P C, P D$, respectively. Since Γ_{1}, Γ_{3} are externally tangent at P, it follows that O_{1}, O_{3}, P are collinear. Similarly we see that O_{2}, O_{4}, P are collinear.

Put $\theta_{1}=\angle O_{4} O_{1} O_{2}, \theta_{2}=\angle O_{1} O_{2} O_{3}, \theta_{3}=\angle O_{2} O_{3} O_{4}, \theta_{4}=\angle O_{3} O_{4} O_{1}$ and $\phi_{1}=\angle P O_{1} O_{4}$, $\phi_{2}=\angle P O_{2} O_{3}, \phi_{3}=\angle P O_{3} O_{2}, \phi_{4}=\angle P O_{4} O_{1}$. By the law of sines, we have

$$
\begin{array}{ll}
O_{1} O_{2}: O_{1} O_{3}=\sin \phi_{3}: \sin \theta_{2}, & O_{3} O_{4}: O_{2} O_{4}=\sin \phi_{2}: \sin \theta_{3}, \\
O_{3} O_{4}: O_{1} O_{3}=\sin \phi_{1}: \sin \theta_{4}, & O_{1} O_{2}: O_{2} O_{4}=\sin \phi_{4}: \sin \theta_{1}
\end{array}
$$

Since the segment $P A$ is the common chord of Γ_{1} and Γ_{2}, the segment $P A^{\prime}$ is the altitude from P to $O_{1} O_{2}$. Similarly $P B^{\prime}, P C^{\prime}, P D^{\prime}$ are the altitudes from P to $O_{2} O_{3}, O_{3} O_{4}, O_{4} O_{1}$, respectively. Then $O_{1}, A^{\prime}, P, D^{\prime}$ are concyclic. So again by the law of sines, we have

$$
D^{\prime} A^{\prime}: P D^{\prime}=\sin \theta_{1}: \sin \phi_{1} .
$$

Likewise we have

$$
A^{\prime} B^{\prime}: P B^{\prime}=\sin \theta_{2}: \sin \phi_{2}, \quad B^{\prime} C^{\prime}: P B^{\prime}=\sin \theta_{3}: \sin \phi_{3}, \quad C^{\prime} D^{\prime}: P D^{\prime}=\sin \theta_{4}: \sin \phi_{4}
$$

Since $A^{\prime} B^{\prime}=A B / 2, B^{\prime} C^{\prime}=B C / 2, C^{\prime} D^{\prime}=C D / 2, D^{\prime} A^{\prime}=D A / 2, P B^{\prime}=P B / 2, P D^{\prime}=$ $P D / 2$, we have

$$
\begin{aligned}
\frac{A B \cdot B C}{A D \cdot D C} \cdot \frac{P D^{2}}{P B^{2}} & =\frac{A^{\prime} B^{\prime} \cdot B^{\prime} C^{\prime}}{A^{\prime} D^{\prime} \cdot D^{\prime} C^{\prime}} \cdot \frac{P D^{\prime 2}}{P B^{\prime 2}}=\frac{\sin \theta_{2} \sin \theta_{3} \sin \phi_{4} \sin \phi_{1}}{\sin \phi_{2} \sin \phi_{3} \sin \theta_{4} \sin \theta_{1}} \\
& =\frac{O_{1} O_{3}}{O_{1} O_{2}} \cdot \frac{O_{2} O_{4}}{O_{3} O_{4}} \cdot \frac{O_{1} O_{2}}{O_{2} O_{4}} \cdot \frac{O_{3} O_{4}}{O_{1} O_{3}}=1
\end{aligned}
$$

and the conclusion follows.
Comment. It is not necessary to assume that Γ_{1}, Γ_{3} and Γ_{2}, Γ_{4} are externally tangent. We may change the first sentence in the problem to the following:

Let $\Gamma_{1}, \Gamma_{2}, \Gamma_{3}, \Gamma_{4}$ be distinct circles such that Γ_{1}, Γ_{3} are tangent at P, and Γ_{2}, Γ_{4} are tangent at the same point P.

The following two solutions are valid for the changed version.

Solution 3.

Let O_{i} and r_{i} be the centre and the signed radius of $\Gamma_{i}, i=1,2,3,4$. We may assume that $r_{1}>0$. If O_{1}, O_{3} are in the same side of the common tangent, then we have $r_{3}>0$; otherwise we have $r_{3}<0$.

Put $\theta=\angle O_{1} P O_{2}$. We have $\angle O_{i} P O_{i+1}=\theta$ or $180^{\circ}-\theta$, which shows that

$$
\begin{equation*}
\sin \angle O_{i} P O_{i+1}=\sin \theta . \tag{1}
\end{equation*}
$$

Since $P B \perp O_{2} O_{3}$ and $\triangle P O_{2} O_{3} \equiv \triangle B O_{2} O_{3}$, we have

$$
\frac{1}{2} \cdot \frac{1}{2} \cdot O_{2} O_{3} \cdot P B=\operatorname{area}\left(\triangle P O_{2} O_{3}\right)=\frac{1}{2} \cdot P O_{2} \cdot P O_{3} \cdot \sin \theta=\frac{1}{2}\left|r_{2}\right|\left|r_{3}\right| \sin \theta .
$$

It follows that

$$
\begin{equation*}
P B=\frac{2\left|r_{2}\right|\left|r_{3}\right| \sin \theta}{O_{2} O_{3}} \tag{2}
\end{equation*}
$$

Because the triangle $O_{2} A B$ is isosceles, we have

$$
\begin{equation*}
A B=2\left|r_{2}\right| \sin \frac{\angle A O_{2} B}{2} \tag{3}
\end{equation*}
$$

Since $\angle O_{1} O_{2} P=\angle O_{1} O_{2} A$ and $\angle O_{3} O_{2} P=\angle O_{3} O_{2} B$, we have

$$
\sin \left(\angle A O_{2} B / 2\right)=\sin \angle O_{1} O_{2} O_{3} .
$$

Therefore, keeping in mind that

$$
\begin{aligned}
\frac{1}{2} \cdot O_{1} O_{2} \cdot O_{2} O_{3} \cdot \sin \angle O_{1} O_{2} O_{3} & =\operatorname{area}\left(\triangle O_{1} O_{2} O_{3}\right)=\frac{1}{2} \cdot O_{1} O_{3} \cdot P O_{2} \cdot \sin \theta \\
& =\frac{1}{2}\left|r_{1}-r_{3}\right|\left|r_{2}\right| \sin \theta
\end{aligned}
$$

we have

$$
A B=2\left|r_{2}\right| \frac{\left|r_{1}-r_{3}\right|\left|r_{2}\right| \sin \theta}{O_{1} O_{2} \cdot O_{2} O_{3}}
$$

by (3).
Likewise, by (1), (2), (4), we can obtain the lengths of $P D, B C, C D, D A$ and compute as follows:

$$
\begin{aligned}
\frac{A B \cdot B C}{C D \cdot D A} & =\frac{2\left|r_{1}-r_{3}\right| r_{2}^{2} \sin \theta}{O_{1} O_{2} \cdot O_{2} O_{3}} \cdot \frac{2\left|r_{2}-r_{4}\right| r_{3}^{2} \sin \theta}{O_{2} O_{3} \cdot O_{3} O_{4}} \cdot \frac{O_{3} O_{4} \cdot O_{4} O_{1}}{2\left|r_{1}-r_{3}\right| r_{4}^{2} \sin \theta} \cdot \frac{O_{4} O_{1} \cdot O_{1} O_{2}}{2\left|r_{2}-r_{4}\right| r_{1}^{2} \sin \theta} \\
& =\left(\frac{2\left|r_{2}\right|\left|r_{3}\right| \sin \theta}{O_{2} O_{3}}\right)^{2}\left(\frac{O_{4} O_{1}}{2\left|r_{4}\right|\left|r_{1}\right| \sin \theta}\right)^{2} \\
& =\frac{P B^{2}}{P D^{2}}
\end{aligned}
$$

Solution 4. Let l_{1} be the common tangent of the circles Γ_{1} and Γ_{3} and let l_{2} be that of Γ_{2} and Γ_{4}. Set the coordinate system as in the following figure.

We may assume that

$$
\begin{array}{ll}
\Gamma_{1}: x^{2}+y^{2}+2 a x \sin \theta-2 a y \cos \theta=0, & \Gamma_{2}: x^{2}+y^{2}+2 b x \sin \theta+2 b y \cos \theta=0, \\
\Gamma_{3}: x^{2}+y^{2}-2 c x \sin \theta+2 c y \cos \theta=0, & \Gamma_{4}: x^{2}+y^{2}-2 d x \sin \theta-2 d y \cos \theta=0 .
\end{array}
$$

Simple computation shows that

$$
\begin{aligned}
& A\left(-\frac{4 a b(a+b) \sin \theta \cos ^{2} \theta}{a^{2}+b^{2}+2 a b \cos 2 \theta},-\frac{4 a b(a-b) \sin ^{2} \theta \cos \theta}{a^{2}+b^{2}+2 a b \cos 2 \theta}\right) \\
& B\left(\frac{4 b c(b-c) \sin \theta \cos ^{2} \theta}{b^{2}+c^{2}-2 b c \cos 2 \theta},-\frac{4 b c(b+c) \sin ^{2} \theta \cos \theta}{b^{2}+c^{2}-2 b c \cos 2 \theta}\right) \\
& C\left(\frac{4 c d(c+d) \sin \theta \cos ^{2} \theta}{c^{2}+d^{2}+2 c d \cos 2 \theta}, \frac{4 c d(c-d) \sin ^{2} \theta \cos \theta}{c^{2}+d^{2}+2 c d \cos 2 \theta}\right) \\
& D\left(-\frac{4 d a(d-a) \sin \theta \cos ^{2} \theta}{d^{2}+a^{2}-2 d a \cos 2 \theta}, \frac{4 d a(d+a) \sin ^{2} \theta \cos \theta}{d^{2}+a^{2}-2 d a \cos 2 \theta}\right)
\end{aligned}
$$

Slightly long computation shows that

$$
\begin{aligned}
& A B=\frac{4 b^{2}|a+c| \sin \theta \cos \theta}{\sqrt{\left(a^{2}+b^{2}+2 a b \cos 2 \theta\right)\left(b^{2}+c^{2}-2 b c \cos 2 \theta\right)}}, \\
& B C=\frac{4 c^{2}|b+d| \sin \theta \cos \theta}{\sqrt{\left(b^{2}+c^{2}-2 b c \cos 2 \theta\right)\left(c^{2}+d^{2}+2 c d \cos 2 \theta\right)}}, \\
& C D=\frac{4 d^{2}|c+a| \sin \theta \cos \theta}{\sqrt{\left(c^{2}+d^{2}+2 c d \cos 2 \theta\right)\left(d^{2}+a^{2}-2 d a \cos 2 \theta\right)}}, \\
& D A=\frac{4 a^{2}|d+b| \sin \theta \cos \theta}{\sqrt{\left(d^{2}+a^{2}-2 d a \cos 2 \theta\right)\left(a^{2}+b^{2}+2 a b \cos 2 \theta\right)}},
\end{aligned}
$$

which implies

$$
\frac{A B \cdot B C}{A D \cdot D C}=\frac{b^{2} c^{2}\left(d^{2}+a^{2}-2 d a \cos 2 \theta\right)}{d^{2} a^{2}\left(b^{2}+c^{2}-2 b c \cos 2 \theta\right)}
$$

On the other hand, we have

$$
M B=\frac{4|b||c| \sin \theta \cos \theta}{\sqrt{b^{2}+c^{2}-2 b c \cos 2 \theta}} \quad \text { and } \quad M D=\frac{4|d||a| \sin \theta \cos \theta}{\sqrt{d^{2}+a^{2}-2 d a \cos 2 \theta}},
$$

which implies

$$
\frac{M B^{2}}{M D^{2}}=\frac{b^{2} c^{2}\left(d^{2}+a^{2}-2 d a \cos 2 \theta\right)}{d^{2} a^{2}\left(b^{2}+c^{2}-2 b c \cos 2 \theta\right)} .
$$

Hence we obtain

$$
\frac{A B \cdot B C}{A D \cdot D C}=\frac{M B^{2}}{M D^{2}}
$$

G5. Let $A B C$ be an isosceles triangle with $A C=B C$, whose incentre is I. Let P be a point on the circumcircle of the triangle $A I B$ lying inside the triangle $A B C$. The lines through P parallel to $C A$ and $C B$ meet $A B$ at D and E, respectively. The line through P parallel to $A B$ meets $C A$ and $C B$ at F and G, respectively. Prove that the lines $D F$ and $E G$ intersect on the circumcircle of the triangle $A B C$.

Solution 1.

The corresponding sides of the triangles $P D E$ and $C F G$ are parallel. Therefore, if $D F$ and $E G$ are not parallel, then they are homothetic, and so $D F, E G, C P$ are concurrent at the centre of the homothety. This observation leads to the following claim:

Claim. Suppose that $C P$ meets again the circumcircle of the triangle $A B C$ at Q. Then Q is the intersection of $D F$ and $E G$.

Proof. Since $\angle A Q P=\angle A B C=\angle B A C=\angle P F C$, it follows that the quadrilateral $A Q P F$ is cyclic, and so $\angle F Q P=\angle P A F$. Since $\angle I B A=\angle C B A / 2=\angle C A B / 2=\angle I A C$, the circumcircle of the triangle $A I B$ is tangent to $C A$ at A, which implies that $\angle P A F=$ $\angle D B P$. Since $\angle Q B D=\angle Q C A=\angle Q P D$, it follows that the quadrilateral $D Q B P$ is cyclic, and so $\angle D B P=\angle D Q P$. Thus $\angle F Q P=\angle P A F=\angle D B P=\angle D Q P$, which implies that F, D, Q are collinear. Analogously we obtain that G, E, Q are collinear.

Hence the lines $D F, E G, C P$ meet the circumcircle of the triangle $A B C$ at the same point.

Solution 2.

Set the coordinate system so that $A(-1,0), B(1,0), C(0, c)$. Suppose that $I(0, \alpha)$.
Since

$$
\operatorname{area}(\triangle A B C)=\frac{1}{2}(A B+B C+C A) \alpha
$$

we obtain

$$
\alpha=\frac{c}{1+\sqrt{1+c^{2}}} .
$$

Suppose that $O_{1}(0, \beta)$ is the centre of the circumcircle Γ_{1} of the triangle $A I B$. Since

$$
(\beta-\alpha)^{2}=O_{1} I^{2}=O_{1} A^{2}=1+\beta^{2},
$$

we have $\beta=-1 / c$ and so $\Gamma_{1}: x^{2}+(y+1 / c)^{2}=1+(1 / c)^{2}$.
Let $P(p, q)$. Since $D(p-q / c, 0), E(p+q / c, 0), F(q / c-1, q), G(-q / c+1, q)$, it follows that the equations of the lines $D F$ and $E G$ are

$$
y=\frac{q}{\frac{2 q}{c}-p-1}\left(x-\left(p-\frac{q}{c}\right)\right) \quad \text { and } \quad y=\frac{q}{-\frac{2 q}{c}-p+1}\left(x-\left(p+\frac{q}{c}\right)\right),
$$

respectively. Therefore the intersection Q of these lines is $\left((q-c) p /(2 q-c), q^{2} /(2 q-c)\right)$.
Let $O_{2}(0, \gamma)$ be the circumcentre of the triangle $A B C$. Then $\gamma=\left(c^{2}-1\right) / 2 c$ since $1+\gamma^{2}=O_{2} A^{2}=O_{2} C^{2}=(\gamma-c)^{2}$.

Note that $p^{2}+(q+1 / c)^{2}=1+(1 / c)^{2}$ since $P(p, q)$ is on the circle Γ_{1}. It follows that

$$
O_{2} Q^{2}=\left(\frac{q-c}{2 q-c}\right)^{2} p^{2}+\left(\frac{q^{2}}{2 q-c}-\frac{c^{2}-1}{2 c}\right)^{2}=\left(\frac{c^{2}+1}{2 c}\right)^{2}=O_{2} C^{2},
$$

which shows that Q is on the circumcircle of the triangle $A B C$.
Comment. The point P can be any point on the circumcircle of the triangle $A I B$ other than A and B; that is, P need not lie inside the triangle $A B C$.

G6. Each pair of opposite sides of a convex hexagon has the following property: the distance between their midpoints is equal to $\sqrt{3} / 2$ times the sum of their lengths.

Prove that all the angles of the hexagon are equal.

Solution 1. We first prove the following lemma:
Lemma. Consider a triangle $P Q R$ with $\angle Q P R \geq 60^{\circ}$. Let L be the midpoint of $Q R$. Then $P L \leq \sqrt{3} Q R / 2$, with equality if and only if the triangle $P Q R$ is equilateral.

Proof.

Let S be the point such that the triangle $Q R S$ is equilateral, where the points P and S lie in the same half-plane bounded by the line $Q R$. Then the point P lies inside the circumcircle of the triangle $Q R S$, which lies inside the circle with centre L and radius $\sqrt{3} Q R / 2$. This completes the proof of the lemma.

The main diagonals of a convex hexagon form a triangle though the triangle can be degenerated. Thus we may choose two of these three diagonals that form an angle greater than or equal to 60°. Without loss of generality, we may assume that the diagonals $A D$ and $B E$ of the given hexagon $A B C D E F$ satisfy $\angle A P B \geq 60^{\circ}$, where P is the intersection of these diagonals. Then, using the lemma, we obtain

$$
M N=\frac{\sqrt{3}}{2}(A B+D E) \geq P M+P N \geq M N
$$

where M and N are the midpoints of $A B$ and $D E$, respectively. Thus it follows from the lemma that the triangles $A B P$ and $D E P$ are equilateral.

Therefore the diagonal $C F$ forms an angle greater than or equal to 60° with one of the diagonals $A D$ and $B E$. Without loss of generality, we may assume that $\angle A Q F \geq 60^{\circ}$, where Q is the intersection of $A D$ and $C F$. Arguing in the same way as above, we infer that the triangles $A Q F$ and $C Q D$ are equilateral. This implies that $\angle B R C=60^{\circ}$, where R is the intersection of $B E$ and $C F$. Using the same argument as above for the third time, we obtain that the triangles $B C R$ and $E F R$ are equilateral. This completes the solution.

Solution 2. Let $A B C D E F$ be the given hexagon and let $\boldsymbol{a}=\overrightarrow{A B}, \boldsymbol{b}=\overrightarrow{B C}, \ldots, \boldsymbol{f}=\overrightarrow{F A}$.

Let M and N be the midpoints of the sides $A B$ and $D E$, respectively. We have

$$
\overrightarrow{M N}=\frac{1}{2} \boldsymbol{a}+\boldsymbol{b}+\boldsymbol{c}+\frac{1}{2} \boldsymbol{d} \quad \text { and } \quad \overrightarrow{M N}=-\frac{1}{2} \boldsymbol{a}-\boldsymbol{f}-\boldsymbol{e}-\frac{1}{2} \boldsymbol{d} .
$$

Thus we obtain

$$
\begin{equation*}
\overrightarrow{M N}=\frac{1}{2}(\boldsymbol{b}+\boldsymbol{c}-\boldsymbol{e}-\boldsymbol{f}) . \tag{1}
\end{equation*}
$$

From the given property, we have

$$
\begin{equation*}
\overrightarrow{M N}=\frac{\sqrt{3}}{2}(|\boldsymbol{a}|+|\boldsymbol{d}|) \geq \frac{\sqrt{3}}{2}|\boldsymbol{a}-\boldsymbol{d}| \tag{2}
\end{equation*}
$$

Set $\boldsymbol{x}=\boldsymbol{a}-\boldsymbol{d}, \boldsymbol{y}=\boldsymbol{c}-\boldsymbol{f}, \boldsymbol{z}=\boldsymbol{e}-\boldsymbol{b}$. From (1) and (2), we obtain

$$
\begin{equation*}
|\boldsymbol{y}-\boldsymbol{z}| \geq \sqrt{3}|\boldsymbol{x}| . \tag{3}
\end{equation*}
$$

Similarly we see that

$$
\begin{align*}
& |\boldsymbol{z}-\boldsymbol{x}| \geq \sqrt{3}|\boldsymbol{y}|, \tag{4}\\
& |\boldsymbol{x}-\boldsymbol{y}| \geq \sqrt{3}|\boldsymbol{z}| . \tag{5}
\end{align*}
$$

Note that

$$
\begin{aligned}
(3) & \Longleftrightarrow|\boldsymbol{y}|^{2}-2 \boldsymbol{y} \cdot \boldsymbol{z}+|\boldsymbol{z}|^{2} \geq 3|\boldsymbol{x}|^{2}, \\
(4) & \Longleftrightarrow|\boldsymbol{z}|^{2}-2 \boldsymbol{z} \cdot \boldsymbol{x}+|\boldsymbol{x}|^{2} \geq 3|\boldsymbol{y}|^{2}, \\
(5) & \Longleftrightarrow|\boldsymbol{x}|^{2}-2 \boldsymbol{x} \cdot \boldsymbol{y}+|\boldsymbol{y}|^{2} \geq 3|\boldsymbol{z}|^{2} .
\end{aligned}
$$

By adding up the last three inequalities, we obtain

$$
-|\boldsymbol{x}|^{2}-|\boldsymbol{y}|^{2}-|\boldsymbol{z}|^{2}-2 \boldsymbol{y} \cdot \boldsymbol{z}-2 \boldsymbol{z} \cdot \boldsymbol{x}-2 \boldsymbol{x} \cdot \boldsymbol{y} \geq 0
$$

or $-|\boldsymbol{x}+\boldsymbol{y}+\boldsymbol{z}|^{2} \geq 0$. Thus $\boldsymbol{x}+\boldsymbol{y}+\boldsymbol{z}=\mathbf{0}$ and the equalities hold in all inequalities above. Hence we conclude that

$$
\begin{gathered}
\boldsymbol{x}+\boldsymbol{y}+\boldsymbol{z}=\mathbf{0} \\
|\boldsymbol{y}-\boldsymbol{z}|=\sqrt{3}|\boldsymbol{x}|, \quad \boldsymbol{a}\|\boldsymbol{d}\| \boldsymbol{x} \\
|\boldsymbol{z}-\boldsymbol{x}|=\sqrt{3}|\boldsymbol{y}|, \quad \boldsymbol{c}\|\boldsymbol{f}\| \boldsymbol{y} \\
|\boldsymbol{x}-\boldsymbol{y}|=\sqrt{3}|\boldsymbol{z}|, \quad \boldsymbol{e}\|\boldsymbol{b}\| \boldsymbol{z}
\end{gathered}
$$

Suppose that $P Q R$ is the triangle such that $\overrightarrow{P Q}=\boldsymbol{x}, \overrightarrow{Q R}=\boldsymbol{y}, \overrightarrow{R P}=\boldsymbol{z}$. We may assume $\angle Q P R \geq 60^{\circ}$, without loss of generality. Let L be the midpoint of $Q R$, then $P L=|\boldsymbol{z}-\boldsymbol{x}| / 2=\sqrt{3}|\boldsymbol{y}| / 2=\sqrt{3} Q R / 2$. It follows from the lemma in Solution 1 that the triangle $P Q R$ is equilateral. Thus we have $\angle A B C=\angle B C D=\cdots=\angle F A B=120^{\circ}$.

Comment. We have obtained the complete characterisation of the hexagons satisfying the given property. They are all obtained from an equilateral triangle by cutting its 'corners' at the same height.

G7. Let $A B C$ be a triangle with semiperimeter s and inradius r. The semicircles with diameters $B C, C A, A B$ are drawn on the outside of the triangle $A B C$. The circle tangent to all three semicircles has radius t. Prove that

$$
\frac{s}{2}<t \leq \frac{s}{2}+\left(1-\frac{\sqrt{3}}{2}\right) r .
$$

Solution 1.

Let O be the centre of the circle and let D, E, F be the midpoints of $B C, C A, A B$, respectively. Denote by $D^{\prime}, E^{\prime}, F^{\prime}$ the points at which the circle is tangent to the semicircles. Let $d^{\prime}, e^{\prime}, f^{\prime}$ be the radii of the semicircles. Then all of $D D^{\prime}, E E^{\prime}, F F^{\prime}$ pass through O, and $s=d^{\prime}+e^{\prime}+f^{\prime}$.

Put

$$
d=\frac{s}{2}-d^{\prime}=\frac{-d^{\prime}+e^{\prime}+f^{\prime}}{2}, \quad e=\frac{s}{2}-e^{\prime}=\frac{d^{\prime}-e^{\prime}+f^{\prime}}{2}, \quad f=\frac{s}{2}-f^{\prime}=\frac{d^{\prime}+e^{\prime}-f^{\prime}}{2} .
$$

Note that $d+e+f=s / 2$. Construct smaller semicircles inside the triangle $A B C$ with radii d, e, f and centres D, E, F. Then the smaller semicircles touch each other, since $d+e=f^{\prime}=D E, e+f=d^{\prime}=E F, f+d=e^{\prime}=F D$. In fact, the points of tangency are the points where the incircle of the triangle $D E F$ touches its sides.

Suppose that the smaller semicircles cut $D D^{\prime}, E E^{\prime}, F F^{\prime}$ at $D^{\prime \prime}, E^{\prime \prime}, F^{\prime \prime}$, respectively. Since these semicircles do not overlap, the point O is outside the semicircles. Therefore $D^{\prime} O>D^{\prime} D^{\prime \prime}$, and so $t>s / 2$. Put $g=t-s / 2$.

Clearly, $O D^{\prime \prime}=O E^{\prime \prime}=O F^{\prime \prime}=g$. Therefore the circle with centre O and radius g touches all of the three mutually tangent semicircles.

Claim. We have

$$
\frac{1}{d^{2}}+\frac{1}{e^{2}}+\frac{1}{f^{2}}+\frac{1}{g^{2}}=\frac{1}{2}\left(\frac{1}{d}+\frac{1}{e}+\frac{1}{f}+\frac{1}{g}\right)^{2} .
$$

Proof. Consider a triangle $P Q R$ and let $p=Q R, q=R P, r=P Q$. Then

$$
\cos \angle Q P R=\frac{-p^{2}+q^{2}+r^{2}}{2 q r}
$$

and

$$
\sin \angle Q P R=\frac{\sqrt{(p+q+r)(-p+q+r)(p-q+r)(p+q-r)}}{2 q r} .
$$

Since

$$
\cos \angle E D F=\cos (\angle O D E+\angle O D F)=\cos \angle O D E \cos \angle O D F-\sin \angle O D E \sin \angle O D F,
$$ we have

$$
\begin{aligned}
\frac{d^{2}+d e+d f-e f}{(d+e)(d+f)}=\frac{\left(d^{2}+d e+d g-e g\right)\left(d^{2}+d f+d g-f g\right)}{(d+g)^{2}(d+e)(d+f)} \\
-\frac{4 d g \sqrt{(d+e+g)(d+f+g) e f}}{(d+g)^{2}(d+e)(d+f)}
\end{aligned}
$$

which simplifies to

$$
(d+g)\left(\frac{1}{d}+\frac{1}{e}+\frac{1}{f}+\frac{1}{g}\right)-2\left(\frac{d}{g}+1+\frac{g}{d}\right)=-2 \sqrt{\frac{(d+e+g)(d+f+g)}{e f}}
$$

Squaring and simplifying, we obtain

$$
\begin{aligned}
\left(\frac{1}{d}+\frac{1}{e}+\frac{1}{f}+\frac{1}{g}\right)^{2} & =4\left(\frac{1}{d e}+\frac{1}{d f}+\frac{1}{d g}+\frac{1}{e f}+\frac{1}{e g}+\frac{1}{f g}\right) \\
& =2\left(\left(\frac{1}{d}+\frac{1}{e}+\frac{1}{f}+\frac{1}{g}\right)^{2}-\left(\frac{1}{d^{2}}+\frac{1}{e^{2}}+\frac{1}{f^{2}}+\frac{1}{g^{2}}\right)\right)
\end{aligned}
$$

from which the conclusion follows.
Solving for the smaller value of g, i.e., the larger value of $1 / g$, we obtain

$$
\begin{aligned}
\frac{1}{g} & =\frac{1}{d}+\frac{1}{e}+\frac{1}{f}+\sqrt{2\left(\frac{1}{d}+\frac{1}{e}+\frac{1}{f}\right)^{2}-2\left(\frac{1}{d^{2}}+\frac{1}{e^{2}}+\frac{1}{f^{2}}\right)} \\
& =\frac{1}{d}+\frac{1}{e}+\frac{1}{f}+2 \sqrt{\frac{d+e+f}{d e f}} .
\end{aligned}
$$

Comparing the formulas area $(\triangle D E F)=\operatorname{area}(\triangle A B C) / 4=r s / 4$ and area $(\triangle D E F)=$ $\sqrt{(d+e+f) d e f}$, we have

$$
\frac{r}{2}=\frac{2}{s} \sqrt{(d+e+f) d e f}=\sqrt{\frac{d e f}{d+e+f}} .
$$

All we have to prove is that

$$
\frac{r}{2 g} \geq \frac{1}{2-\sqrt{3}}=2+\sqrt{3}
$$

Since

$$
\frac{r}{2 g}=\sqrt{\frac{d e f}{d+e+f}}\left(\frac{1}{d}+\frac{1}{e}+\frac{1}{f}+2 \sqrt{\frac{d+e+f}{d e f}}\right)=\frac{x+y+z}{\sqrt{x y+y z+z x}}+2,
$$

where $x=1 / d, y=1 / e, z=1 / f$, it suffices to prove that

$$
\frac{(x+y+z)^{2}}{x y+y z+z x} \geq 3
$$

This inequality is true because

$$
(x+y+z)^{2}-3(x y+y z+z x)=\frac{1}{2}\left((x-y)^{2}+(y-z)^{2}+(z-x)^{2}\right) \geq 0
$$

Solution 2. We prove that $t>s / 2$ in the same way as in Solution 1. Put $g=t-s / 2$.

Now set the coordinate system so that $E(-e, 0), F(f, 0)$, and the y-coordinate of D is positive. Let $\Gamma_{d}, \Gamma_{e}, \Gamma_{f}, \Gamma_{g}$ be the circles with radii d, e, f, g and centres D, E, F, O, respectively. Let $\Gamma_{r / 2}$ be the incircle of the triangle $D E F$. Note that the radius of $\Gamma_{r / 2}$ is $r / 2$.

Now consider the inversion with respect to the circle with radius 1 and centre $(0,0)$.

Let $\Gamma_{d}^{\prime}, \Gamma_{e}^{\prime}, \Gamma_{f}^{\prime}, \Gamma_{g}^{\prime}, \Gamma_{r / 2}^{\prime}$ be the images of $\Gamma_{d}, \Gamma_{e}, \Gamma_{f}, \Gamma_{g}, \Gamma_{r / 2}$, respectively. Set $\alpha=1 / 4 e$, $\beta=1 / 4 f$ and $R=\alpha+\beta$. The equations of the lines $\Gamma_{e}^{\prime}, \Gamma_{f}^{\prime}$ and $\Gamma_{r / 2}^{\prime}$ are $x=-2 \alpha, x=2 \beta$ and $y=1 / r$, respectively. Both of the radii of the circles Γ_{d}^{\prime} and Γ_{g}^{\prime} are R, and their centres are $(-\alpha+\beta, 1 / r)$ and $(-\alpha+\beta, 1 / r+2 R)$, respectively.

Let D be the distance between $(0,0)$ and the centre of Γ_{g}^{\prime}. Then we have

$$
2 g=\frac{1}{D-R}-\frac{1}{D+R}=\frac{2 R}{D^{2}-R^{2}},
$$

which shows $g=R /\left(D^{2}-R^{2}\right)$.
What we have to show is $g \leq(1-\sqrt{3} / 2) r$, that is $(4+2 \sqrt{3}) g \leq r$. This is verified by the following computation:

$$
\begin{aligned}
r-(4+2 \sqrt{3}) g & =r-(4+2 \sqrt{3}) \frac{R}{D^{2}-R^{2}}=\frac{r}{D^{2}-R^{2}}\left(\left(D^{2}-R^{2}\right)-(4+2 \sqrt{3}) \frac{1}{r} R\right) \\
& =\frac{r}{D^{2}-R^{2}}\left(\left(\frac{1}{r}+2 R\right)^{2}+(\alpha-\beta)^{2}-R^{2}-(4+2 \sqrt{3}) \frac{1}{r} R\right) \\
& =\frac{r}{D^{2}-R^{2}}\left(3\left(R-\frac{1}{\sqrt{3} r}\right)^{2}+(\alpha-\beta)^{2}\right) \\
& \geq 0 .
\end{aligned}
$$

Number Theory

N1. Let m be a fixed integer greater than 1 . The sequence $x_{0}, x_{1}, x_{2}, \ldots$ is defined as follows:

$$
x_{i}= \begin{cases}2^{i}, & \text { if } 0 \leq i \leq m-1 ; \\ \sum_{j=1}^{m} x_{i-j}, & \text { if } i \geq m .\end{cases}
$$

Find the greatest k for which the sequence contains k consecutive terms divisible by m.

Solution. Let r_{i} be the remainder of $x_{i} \bmod m$. Then there are at most m^{m} types of m consecutive blocks in the sequence $\left(r_{i}\right)$. So, by the pigeonhole principle, some type reappears. Since the definition formula works forward and backward, the sequence $\left(r_{i}\right)$ is purely periodic.

Now the definition formula backward $x_{i}=x_{i+m}-\sum_{j=1}^{m-1} x_{i+j}$ applied to the block $\left(r_{0}, \ldots, r_{m-1}\right)$ produces the m-consecutive block $\underbrace{0, \ldots, 0}_{m-1}, 1$. Together with the pure periodicity, we see that $\max k \geq m-1$.

On the other hand, if there are m-consecutive zeroes in $\left(r_{i}\right)$, then the definition formula and the pure periodicity force $r_{i}=0$ for any $i \geq 0$, a contradiction. Thus max $k=m-1$.

N2. Each positive integer a undergoes the following procedure in order to obtain the number $d=d(a)$:
(i) move the last digit of a to the first position to obtain the number b;
(ii) square b to obtain the number c;
(iii) move the first digit of c to the end to obtain the number d.
(All the numbers in the problem are considered to be represented in base 10.) For example, for $a=2003$, we get $b=3200, c=10240000$, and $d=02400001=2400001=d(2003)$.

Find all numbers a for which $d(a)=a^{2}$.

Solution. Let a be a positive integer for which the procedure yields $d=d(a)=a^{2}$. Further assume that a has $n+1$ digits, $n \geq 0$.

Let s be the last digit of a and f the first digit of c. Since $(* \cdots * s)^{2}=a^{2}=d=* \cdots * f$ and $(s * \cdots *)^{2}=b^{2}=c=f * \cdots *$, where the stars represent digits that are unimportant at the moment, f is both the last digit of the square of a number that ends in s and the first digit of the square of a number that starts in s.

The square $a^{2}=d$ must have either $2 n+1$ or $2 n+2$ digits. If $s=0$, then $n \neq 0, b$ has n digits, its square c has at most $2 n$ digits, and so does d, a contradiction. Thus the last digit of a is not 0 .

Consider now, for example, the case $s=4$. Then f must be 6 , but this is impossible, since the squares of numbers that start in 4 can only start in 1 or 2 , which is easily seen from

$$
160 \cdots 0=(40 \cdots 0)^{2} \leq(4 * \cdots *)^{2}<(50 \cdots 0)^{2}=250 \cdots 0 .
$$

Thus s cannot be 4 .
The following table gives all possibilities:

s	1	2	3	4	5	6	7	8	9
$f=$ last digit of $(\cdots s)^{2}$	1	4	9	6	5	6	9	4	1
$f=$ first digit of $(s \cdots)^{2}$	$1,2,3$	$4,5,6,7,8$	9,1	1,2	2,3	3,4	$4,5,6$	$6,7,8$	8,9

Thus $s=1, s=2$, or $s=3$ and in each case $f=s^{2}$. When s is 1 or 2 , the square $c=b^{2}$ of the ($n+1$)-digit number b which starts in s has $2 n+1$ digits. Moreover, when $s=3$, the square $c=b^{2}$ either has $2 n+1$ digits and starts in 9 or has $2 n+2$ digits and starts in 1 . However the latter is impossible since $f=s^{2}=9$. Thus c must have $2 n+1$ digits.

Let $a=10 x+s$, where x is an n-digit number (in case $x=0$ we set $n=0$). Then

$$
\begin{aligned}
& b=10^{n} s+x \\
& c=10^{2 n} s^{2}+2 \cdot 10^{n} s x+x^{2}, \\
& d=10\left(c-10^{m-1} f\right)+f=10^{2 n+1} s^{2}+20 \cdot 10^{n} s x+10 x^{2}-10^{m} f+f,
\end{aligned}
$$

where m is the number of digits of c. However, we already know that m must be $2 n+1$ and $f=s^{2}$, so

$$
d=20 \cdot 10^{n} s x+10 x^{2}+s^{2}
$$

and the equality $a^{2}=d$ yields

$$
x=2 s \cdot \frac{10^{n}-1}{9},
$$

i.e.,

$$
a=\underbrace{6 \cdots 6}_{n} 3 \text { or } a=\underbrace{4 \cdots 4}_{n} 2 \text { or } a=\underbrace{2 \cdots 2}_{n} 1 \text {, }
$$

for $n \geq 0$. The first two possibilities must be rejected for $n \geq 1$, since $a^{2}=d$ would have $2 n+2$ digits, which means that c would have to have at least $2 n+2$ digits, but we already know that c must have $2 n+1$ digits. Thus the only remaining possibilities are

$$
a=3 \quad \text { or } \quad a=2 \quad \text { or } \quad a=\underbrace{2 \cdots 2}_{n} 1 \text {, }
$$

for $n \geq 0$. It is easily seen that they all satisfy the requirements of the problem.

N3. Determine all pairs of positive integers (a, b) such that

$$
\frac{a^{2}}{2 a b^{2}-b^{3}+1}
$$

is a positive integer.

Solution. Let (a, b) be a pair of positive integers satisfying the condition. Because $k=$ $a^{2} /\left(2 a b^{2}-b^{3}+1\right)>0$, we have $2 a b^{2}-b^{3}+1>0, a>b / 2-1 / 2 b^{2}$, and hence $a \geq b / 2$. Using this, we infer from $k \geq 1$, or $a^{2} \geq b^{2}(2 a-b)+1$, that $a^{2}>b^{2}(2 a-b) \geq 0$. Hence

$$
\begin{equation*}
a>b \quad \text { or } \quad 2 a=b . \tag{*}
\end{equation*}
$$

Now consider the two solutions a_{1}, a_{2} to the equation

$$
a^{2}-2 k b^{2} a+k\left(b^{3}-1\right)=0
$$

for fixed positive integers k and b, and assume that one of them is an integer. Then the other is also an integer because $a_{1}+a_{2}=2 k b^{2}$. We may assume that $a_{1} \geq a_{2}$, and we have $a_{1} \geq k b^{2}>0$. Furthermore, since $a_{1} a_{2}=k\left(b^{3}-1\right)$, we get

$$
0 \leq a_{2}=\frac{k\left(b^{3}-1\right)}{a_{1}} \leq \frac{k\left(b^{3}-1\right)}{k b^{2}}<b .
$$

Together with $(*)$, we conclude that $a_{2}=0$ or $a_{2}=b / 2$ (in the latter case b must be even).
If $a_{2}=0$, then $b^{3}-1=0$, and hence $a_{1}=2 k, b=1$.
If $a_{2}=b / 2$, then $k=b^{2} / 4$ and $a_{1}=b^{4} / 2-b / 2$.
Therefore the only possibilities are

$$
(a, b)=(2 l, 1) \quad \text { or } \quad(l, 2 l) \quad \text { or } \quad\left(8 l^{4}-l, 2 l\right)
$$

for some positive integer l. All of these pairs satisfy the given condition.
Comment 1. An alternative way to see $(*)$ is as follows: Fix $a \geq 1$ and consider the function $f_{a}(b)=2 a b^{2}-b^{3}+1$. Then f_{a} is increasing on $[0,4 a / 3]$ and decreasing on $[4 a / 3, \infty)$. We have

$$
\begin{aligned}
f_{a}(a) & =a^{3}+1>a^{2}, \\
f_{a}(2 a-1) & =4 a^{2}-4 a+2>a^{2}, \\
f_{a}(2 a+1) & =-4 a^{2}-4 a<0 .
\end{aligned}
$$

Hence if $b \geq a$ and $a^{2} / f_{a}(b)$ is a positive integer, then $b=2 a$.
Indeed, if $a \leq b \leq 4 a / 3$, then $f_{a}(b) \geq f_{a}(a)>a^{2}$, and so $a^{2} / f_{a}(b)$ is not an integer, a contradiction, and if $b>4 a / 3$, then
(i) if $b \geq 2 a+1$, then $f_{a}(b) \leq f_{a}(2 a+1)<0$, a contradiction;
(ii) if $b \leq 2 a-1$, then $f_{a}(b) \geq f_{a}(2 a-1)>a^{2}$, and so $a^{2} / f_{a}(b)$ is not an integer, a contradiction.

Comment 2. There are several alternative solutions to this problem. Here we sketch three of them.

1. The discriminant D of the equation (\sharp) is the square of some integer $d \geq 0$: $D=$ $\left(2 b^{2} k-b\right)^{2}+4 k-b^{2}=d^{2}$. If $e=2 b^{2} k-b=d$, we have $4 k=b^{2}$ and $a=2 b^{2} k-b / 2, b / 2$. Otherwise, the clear estimation $\left|d^{2}-e^{2}\right| \geq 2 e-1$ for $d \neq e$ implies $\left|4 k-b^{2}\right| \geq 4 b^{2} k-2 b-1$. If $4 k-b^{2}>0$, this implies $b=1$. The other case yields no solutions.
2. Assume that $b \neq 1$ and let $s=\operatorname{gcd}\left(2 a, b^{3}-1\right), 2 a=s u, b^{3}-1=s t^{\prime}$, and $2 a b^{2}-b^{3}+1=s t$. Then $t+t^{\prime}=u b^{2}$ and $\operatorname{gcd}(u, t)=1$. Together with $s t \mid a^{2}$, we have $t \mid s$. Let $s=r t$. Then the problem reduces to the following lemma:

Lemma. Let b, r, t, t^{\prime}, u be positive integers satisfying $b^{3}-1=r t t^{\prime}$ and $t+t^{\prime}=u b^{2}$. Then $r=1$. Furthermore, either one of t or t^{\prime} or u is 1 .

The lemma is proved as follows. We have $b^{3}-1=r t\left(u b^{2}-t\right)=r t^{\prime}\left(u b^{2}-t^{\prime}\right)$. Since $r t^{2} \equiv r t^{\prime 2} \equiv 1\left(\bmod b^{2}\right)$, if $r t^{2} \neq 1$ and $r t^{\prime 2} \neq 1$, then $t, t^{\prime}>b / \sqrt{r}$. It is easy to see that

$$
r \frac{b}{\sqrt{r}}\left(u b^{2}-\frac{b}{\sqrt{r}}\right) \geq b^{3}-1,
$$

unless $r=u=1$.
3. With the same notation as in the previous solution, since $r t^{2} \mid\left(b^{3}-1\right)^{2}$, it suffices to prove the following lemma:

Lemma. Let $b \geq 2$. If a positive integer $x \equiv 1\left(\bmod b^{2}\right)$ divides $\left(b^{3}-1\right)^{2}$, then $x=1$ or $x=\left(b^{3}-1\right)^{2}$ or $(b, x)=(4,49)$ or $(4,81)$.

To prove this lemma, let p, q be positive integers with $p>q>0$ satisfying $\left(b^{3}-1\right)^{2}=$ $\left(p b^{2}+1\right)\left(q b^{2}+1\right)$. Then

$$
\begin{equation*}
b^{4}=2 b+p+q+p q b^{2} . \tag{1}
\end{equation*}
$$

A natural observation leads us to multiply (1) by $q b^{2}-1$. We get

$$
\left(q\left(p q-b^{2}\right)+1\right) b^{4}=p-(q+2 b)\left(q b^{2}-1\right) .
$$

Together with the simple estimation

$$
-3<\frac{p-(q+2 b)\left(q b^{2}-1\right)}{b^{4}}<1,
$$

the conclusion of the lemma follows.
Comment 3. The problem was originally proposed in the following form:
Let a, b be relatively prime positive integers. Suppose that $a^{2} /\left(2 a b^{2}-b^{3}+1\right)$ is a positive integer greater than 1 . Prove that $b=1$.

N4. Let b be an integer greater than 5 . For each positive integer n, consider the number

$$
x_{n}=\underbrace{11 \cdots 1}_{n-1} \underbrace{22 \cdots 2}_{n} 5 \text {, }
$$

written in base b.
Prove that the following condition holds if and only if $b=10$:
there exists a positive integer M such that for any integer n greater than M, the number x_{n} is a perfect square.

Solution. For $b=6,7,8,9$, the number 5 is congruent to no square numbers modulo b, and hence x_{n} is not a square. For $b=10$, we have $x_{n}=\left(\left(10^{n}+5\right) / 3\right)^{2}$ for all n. By algebraic calculation, it is easy to see that $x_{n}=\left(b^{2 n}+b^{n+1}+3 b-5\right) /(b-1)$.

Consider now the case $b \geq 11$ and put $y_{n}=(b-1) x_{n}$. Assume that the condition in the problem is satisfied. Then it follows that $y_{n} y_{n+1}$ is a perfect square for $n>M$. Since $b^{2 n}+b^{n+1}+3 b-5<\left(b^{n}+b / 2\right)^{2}$, we infer

$$
\begin{equation*}
y_{n} y_{n+1}<\left(b^{n}+\frac{b}{2}\right)^{2}\left(b^{n+1}+\frac{b}{2}\right)^{2}=\left(b^{2 n+1}+\frac{b^{n+1}(b+1)}{2}+\frac{b^{2}}{4}\right)^{2} . \tag{1}
\end{equation*}
$$

On the other hand, we can prove by computation that

$$
\begin{equation*}
y_{n} y_{n+1}>\left(b^{2 n+1}+\frac{b^{n+1}(b+1)}{2}-b^{3}\right)^{2} \tag{2}
\end{equation*}
$$

From (1) and (2), we conclude that for all integers $n>M$, there is an integer a_{n} such that

$$
\begin{equation*}
y_{n} y_{n+1}=\left(b^{2 n+1}+\frac{b^{n+1}(b+1)}{2}+a_{n}\right)^{2} \quad \text { and } \quad-b^{3}<a_{n}<\frac{b^{2}}{4} . \tag{3}
\end{equation*}
$$

It follows that $b^{n} \mid\left(a_{n}^{2}-(3 b-5)^{2}\right)$, and thus $a_{n}= \pm(3 b-5)$ for all sufficiently large n. Substituting in (3), we obtain $a_{n}=3 b-5$ and

$$
\begin{equation*}
8(3 b-5) b+b^{2}(b+1)^{2}=4 b^{3}+4(3 b-5)\left(b^{2}+1\right) . \tag{4}
\end{equation*}
$$

The left hand side of the equation (4) is divisible by b. The other side is a polynomial in b with integral coefficients and its constant term is -20 . Hence b must divide 20. Since $b \geq 11$, we conclude that $b=20$, but then $x_{n} \equiv 5(\bmod 8)$ and hence x_{n} is not a square.

Comment. Here is a shorter solution using a limit argument:
Assume that x_{n} is a square for all $n>M$, where M is a positive integer.
For $n>M$, take $y_{n}=\sqrt{x_{n}} \in \mathbb{N}$. Clearly,

$$
\lim _{n \rightarrow \infty} \frac{\frac{b^{2 n}}{b-1}}{x_{n}}=1
$$

Hence

$$
\lim _{n \rightarrow \infty} \frac{\frac{b^{n}}{\sqrt{b-1}}}{y_{n}}=1
$$

On the other hand,

$$
\begin{equation*}
\left(b y_{n}+y_{n+1}\right)\left(b y_{n}-y_{n+1}\right)=b^{2} x_{n}-x_{n+1}=b^{n+2}+3 b^{2}-2 b-5 . \tag{*}
\end{equation*}
$$

These equations imply

$$
\lim _{n \rightarrow \infty}\left(b y_{n}-y_{n+1}\right)=\frac{b \sqrt{b-1}}{2}
$$

As $b y_{n}-y_{n+1}$ is an integer, there exists $N>M$ such that $b y_{n}-y_{n+1}=b \sqrt{b-1} / 2$ for any $n>N$. This means that $b-1$ is a perfect square.

If b is odd, then $\sqrt{b-1} / 2$ is an integer and so b divides $b \sqrt{b-1} / 2$. Hence using ($*$), we obtain $b \mid 5$. This is a contradiction.

If b is even, then $b / 2$ divides 5 . Hence $b=10$.
In the case $b=10$, we have $x_{n}=\left(\left(10^{n}+5\right) / 3\right)^{2}$ for $n \geq 1$.

N5. An integer n is said to be good if $|n|$ is not the square of an integer. Determine all integers m with the following property:
m can be represented, in infinitely many ways, as a sum of three distinct good integers whose product is the square of an odd integer.

Solution. Assume that m is expressed as $m=u+v+w$ and $u v w$ is an odd perfect square. Then u, v, w are odd and because $u v w \equiv 1(\bmod 4)$, exactly two or none of them are congruent to 3 modulo 4 . In both cases, we have $m=u+v+w \equiv 3(\bmod 4)$.

Conversely, we prove that $4 k+3$ has the required property. To prove this, we look for representations of the form

$$
4 k+3=x y+y z+z x .
$$

In any such representations, the product of the three summands is a perfect square. Setting $x=1+2 l$ and $y=1-2 l$, we have $z=2 l^{2}+2 k+1$ from above. Then

$$
\begin{aligned}
& x y=1-4 l^{2}=f(l), \\
& y z=-4 l^{3}+2 l^{2}-(4 k+2) l+2 k+1=g(l), \\
& z x=4 l^{3}+2 l^{2}+(4 k+2) l+2 k+1=h(l) .
\end{aligned}
$$

The numbers $f(l), g(l), h(l)$ are odd for each integer l and their product is a perfect square, as noted above. They are distinct, except for finitely many l. It remains to note that $|g(l)|$ and $|h(l)|$ are not perfect squares for infinitely many l (note that $|f(l)|$ is not a perfect square, unless $l=0$).

Choose distinct prime numbers p, q such that $p, q>4 k+3$ and pick l such that

$$
\begin{array}{lll}
1+2 l \equiv 0 & (\bmod p), & 1+2 l \not \equiv 0 \\
1-2 l \equiv 0 & \left(\bmod p^{2}\right), \\
\bmod q), & 1-2 l \not \equiv 0 & \left(\bmod q^{2}\right) .
\end{array}
$$

We can choose such l by the Chinese remainder theorem. Then $2 l^{2}+2 k+1$ is not divisible by p, because $p>4 k+3$. Hence $|h(l)|$ is not a perfect square. Similarly, $|g(l)|$ is not a perfect square.

N6. Let p be a prime number. Prove that there exists a prime number q such that for every integer n, the number $n^{p}-p$ is not divisible by q.

Solution. Since $\left(p^{p}-1\right) /(p-1)=1+p+p^{2}+\cdots+p^{p-1} \equiv p+1\left(\bmod p^{2}\right)$, we can get at least one prime divisor of $\left(p^{p}-1\right) /(p-1)$ which is not congruent to 1 modulo p^{2}. Denote such a prime divisor by q. This q is what we wanted. The proof is as follows. Assume that there exists an integer n such that $n^{p} \equiv p(\bmod q)$. Then we have $n^{p^{2}} \equiv p^{p} \equiv 1(\bmod q)$ by the definition of q. On the other hand, from Fermat's little theorem, $n^{q-1} \equiv 1(\bmod q)$, because q is a prime. Since $p^{2} \nmid q-1$, we have $\left(p^{2}, q-1\right) \mid p$, which leads to $n^{p} \equiv 1(\bmod q)$. Hence we have $p \equiv 1(\bmod q)$. However, this implies $1+p+\cdots+p^{p-1} \equiv p(\bmod q)$. From the definition of q, this leads to $p \equiv 0(\bmod q)$, a contradiction.

Comment 1. First, students will come up, perhaps, with the idea that q has to be of the form $p k+1$. Then,

$$
\exists n \quad n^{p} \equiv p \quad(\bmod q) \Longleftrightarrow p^{k} \equiv 1 \quad(\bmod q)
$$

i.e.,

$$
\forall n \quad n^{p} \not \equiv p \quad(\bmod q) \Longleftrightarrow p^{k} \not \equiv 1 \quad(\bmod q) .
$$

So, we have to find such q. These observations will take you quite naturally to the idea of taking a prime divisor of $p^{p}-1$. Therefore the idea of the solution is not so tricky or technical.

Comment 2. The prime q satisfies the required condition if and only if q remains a prime in $k=\mathbb{Q}(\sqrt[p]{p})$. By applying Chebotarev's density theorem to the Galois closure of k, we see that the set of such q has the density $1 / p$. In particular, there are infinitely many q satisfying the required condition. This gives an alternative solution to the problem.

N7. The sequence $a_{0}, a_{1}, a_{2}, \ldots$ is defined as follows:

$$
a_{0}=2, \quad a_{k+1}=2 a_{k}^{2}-1 \quad \text { for } k \geq 0
$$

Prove that if an odd prime p divides a_{n}, then 2^{n+3} divides $p^{2}-1$.

Solution. By induction, we show that

$$
a_{n}=\frac{(2+\sqrt{3})^{2^{n}}+(2-\sqrt{3})^{2^{n}}}{2}
$$

Case 1: $x^{2} \equiv 3(\bmod p)$ has an integer solution
Let m be an integer such that $m^{2} \equiv 3(\bmod p)$. Then $(2+m)^{2^{n}}+(2-m)^{2^{n}} \equiv 0(\bmod p)$. Therefore $(2+m)(2-m) \equiv 1(\bmod p)$ shows that $(2+m)^{2^{n+1}} \equiv-1(\bmod p)$ and that $2+m$ has the order 2^{n+2} modulo p. This implies $2^{n+2} \mid(p-1)$ and so $2^{n+3} \mid\left(p^{2}-1\right)$.
Case 2: otherwise
Similarly, we see that there exist integers a, b satisfying $(2+\sqrt{3})^{2^{n+1}}=-1+p a+p b \sqrt{3}$. Furthermore, since $\left((1+\sqrt{3}) a_{n-1}\right)^{2}=\left(a_{n}+1\right)(2+\sqrt{3})$, there exist integers a^{\prime}, b^{\prime} satisfying $\left((1+\sqrt{3}) a_{n-1}\right)^{2^{n+2}}=-1+p a^{\prime}+p b^{\prime} \sqrt{3}$.

Let us consider the set $S=\{i+j \sqrt{3} \mid 0 \leq i, j \leq p-1,(i, j) \neq(0,0)\}$. Let $I=\{a+b \sqrt{3} \mid$ $a \equiv b \equiv 0(\bmod p)\}$. We claim that for each $i+j \sqrt{3} \in S$, there exists an $i^{\prime}+j^{\prime} \sqrt{3} \in S$ satisfying $(i+j \sqrt{3})\left(i^{\prime}+j^{\prime} \sqrt{3}\right)-1 \in I$. In fact, since $i^{2}-3 j^{2} \not \equiv 0(\bmod p)($ otherwise 3 is a square $\bmod p$), we can take an integer k satisfying $k\left(i^{2}-3 j^{2}\right)-1 \in I$. Then $i^{\prime}+j^{\prime} \sqrt{3}$ with $i^{\prime}+j^{\prime} \sqrt{3}-k(i-j \sqrt{3}) \in I$ will do. Now the claim together with the previous observation implies that the minimal r with $\left((1+\sqrt{3}) a_{n-1}\right)^{r}-1 \in I$ is equal to 2^{n+3}. The claim also implies that a map $f: S \longrightarrow S$ satisfying $(i+j \sqrt{3})(1+\sqrt{3}) a_{n-1}-f(i+j \sqrt{3}) \in I$ for any $i+j \sqrt{3} \in S$ exists and is bijective. Thus $\prod_{x \in S} x=\prod_{x \in S} f(x)$, so

$$
\left(\prod_{x \in S} x\right)\left(\left((1+\sqrt{3}) a_{n-1}\right)^{p^{2}-1}-1\right) \in I .
$$

Again, by the claim, we have $\left((1+\sqrt{3}) a_{n-1}\right)^{p^{2}-1}-1 \in I$. Hence $2^{n+3} \mid\left(p^{2}-1\right)$.
Comment 1. Not only Case 2 but also Case 1 can be treated by using $(1+\sqrt{3}) a_{n-1}$. In fact, we need not divide into cases: in any case, the element $(1+\sqrt{3}) a_{n-1}=(1+\sqrt{3}) / \sqrt{2}$ of the multiplicative group $\mathbb{F}_{p^{2}}^{\times}$of the finite field $\mathbb{F}_{p^{2}}$ having p^{2} elements has the order 2^{n+3}, which suffices (in Case 1, the number $(1+\sqrt{3}) a_{n-1}$ even belongs to the subgroup \mathbb{F}_{p}^{\times}of $\mathbb{F}_{p^{2}}^{\times}$, so $\left.2^{n+3} \mid(p-1)\right)$.

Comment 2. The numbers a_{k} are the numerators of the approximation to $\sqrt{3}$ obtained by using the Newton method with $f(x)=x^{2}-3, x_{0}=2$. More precisely,

$$
x_{k+1}=\frac{x_{k}+\frac{3}{x_{k}}}{2}, \quad x_{k}=\frac{a_{k}}{d_{k}},
$$

where

$$
d_{k}=\frac{(2+\sqrt{3})^{2^{k}}-(2-\sqrt{3})^{2^{k}}}{2 \sqrt{3}}
$$

Comment 3. Define $f_{n}(x)$ inductively by

$$
f_{0}(x)=x, \quad f_{k+1}(x)=f_{k}(x)^{2}-2 \quad \text { for } k \geq 0
$$

Then the condition $p \mid a_{n}$ can be read that the $\bmod p$ reduction of the minimal polynomial f_{n} of the algebraic integer $\alpha=\zeta_{2^{n+2}}+\zeta_{2^{n+2}}^{-1}$ over \mathbb{Q} has the root $2 a_{0}$ in \mathbb{F}_{p}, where $\zeta_{2^{n+2}}$ is a primitive 2^{n+2}-th root of 1 . Thus the conclusion $\left(p^{2}-1\right) \mid 2^{n+3}$ of the problem is a part of the decomposition theorem in the class field theory applied to the abelian extension $\mathbb{Q}(\alpha)$, which asserts that a prime p is completely decomposed in $\mathbb{Q}(\alpha)$ (equivalently, f_{n} has a root $\bmod p)$ if and only if the class of p in $\left(\mathbb{Z} / 2^{n+2} \mathbb{Z}\right)^{\times}$belongs to its subgroup $\{1,-1\}$. Thus the problem illustrates a result in the class field theory.

N8. Let p be a prime number and let A be a set of positive integers that satisfies the following conditions:
(i) the set of prime divisors of the elements in A consists of $p-1$ elements;
(ii) for any nonempty subset of A, the product of its elements is not a perfect p-th power.

What is the largest possible number of elements in A ?

Solution. The answer is $(p-1)^{2}$. For simplicity, let $r=p-1$. Suppose that the prime numbers p_{1}, \ldots, p_{r} are distinct. Define

$$
B_{i}=\left\{p_{i}, p_{i}^{p+1}, p_{i}^{2 p+1}, \ldots, p_{i}^{(r-1) p+1}\right\}
$$

and let $B=\bigcup_{i=1}^{r} B_{i}$. Then B has r^{2} elements and clearly satisfies (i) and (ii).
Now suppose that $|A| \geq r^{2}+1$ and that A satisfies (i) and (ii). We will show that a (nonempty) product of elements in A is a perfect p-th power. This will complete the proof.

Let p_{1}, \ldots, p_{r} be distinct prime numbers for which each $t \in A$ can be written as $t=$ $p_{1}^{a_{1}} \cdots p_{r}^{a_{r}}$. Take $t_{1}, \ldots, t_{r^{2}+1} \in A$, and for each i, let $v_{i}=\left(a_{i 1}, a_{i 2}, \ldots, a_{i r}\right)$ denote the vector of exponents of prime divisors of t_{i}. We would like to show that a (nonempty) sum of v_{i} is the zero vector modulo p.

We shall show that the following system of congruence equations has a nonzero solution:

$$
\begin{aligned}
& F_{1}=\sum_{i=1}^{r^{2}+1} a_{i 1} x_{i}^{r} \equiv 0 \quad(\bmod p), \\
& F_{2}=\sum_{i=1}^{r^{2}+1} a_{i 2} x_{i}^{r} \equiv 0 \quad(\bmod p), \\
& \vdots \\
& F_{r}=\sum_{i=1}^{r^{2}+1} a_{i r} x_{i}^{r} \equiv 0 \quad(\bmod p) .
\end{aligned}
$$

If $\left(x_{1}, \ldots, x_{r^{2}+1}\right)$ is a nonzero solution to the above system, then, since $x_{i}^{r} \equiv 0$ or $1(\bmod p)$, a sum of vectors v_{i} is the zero vector modulo p.

In order to find a nonzero solution to the above system, it is enough to show that the following congruence equation has a nonzero solution:

$$
\begin{equation*}
F=F_{1}^{r}+F_{2}^{r}+\cdots+F_{r}^{r} \equiv 0 \quad(\bmod p) . \tag{*}
\end{equation*}
$$

In fact, because each F_{i}^{r} is 0 or 1 modulo p, the nonzero solution to this equation ($*$) has to satisfy $F_{i}^{r} \equiv 0$ for $1 \leq i \leq r$.

We will show that the number of the solutions to the equation $(*)$ is divisible by p. Then since $(0,0, \ldots, 0)$ is a trivial solution, there exists a nonzero solution to $(*)$ and we are done.

We claim that

$$
\sum F^{r}\left(x_{1}, \ldots, x_{r^{2}+1}\right) \equiv 0 \quad(\bmod p)
$$

where the sum is over the set of all vectors $\left(x_{1}, \ldots, x_{r^{2}+1}\right)$ in the vector space $\mathbb{F}_{p}^{r^{2}+1}$ over the finite field \mathbb{F}_{p}. By Fermat's little theorem, this claim evidently implies that the number of solutions to the equation $(*)$ is divisible by p.

We prove the claim. In each monomial in F^{r}, there are at most r^{2} variables, and therefore at least one of the variables is absent. Suppose that the monomial is of the form $b x_{i_{1}}^{\alpha_{1}} x_{i_{2}}^{\alpha_{2}} \cdots x_{i_{k}}^{\alpha_{k}}$, where $1 \leq k \leq r^{2}$. Then $\sum b x_{i_{1}}^{\alpha_{1}} x_{i_{2}}^{\alpha_{2}} \cdots x_{i_{k}}^{\alpha_{k}}$, where the sum is over the same set as above, is equal to $p^{r^{2}+1-k} \sum_{x_{i_{1}}, \ldots, x_{i_{k}}} b x_{i_{1}}^{\alpha_{1}} x_{i_{2}}^{\alpha_{2}} \cdots x_{i_{k}}^{\alpha_{k}}$, which is divisible by p. This proves the claim.

Comment. In general, if we replace $p-1$ in (i) with any positive integer d, the answer is $(p-1) d$. In fact, if $k>(p-1) d$, then the constant term of the element $\left(1-g_{1}\right) \cdots\left(1-g_{k}\right)$ of the group algebra $\mathbb{Q}_{p}\left(\zeta_{p}\right)\left[(\mathbb{Z} / p \mathbb{Z})^{d}\right]$ can be evaluated p-adically so we see that it is not equal to 1 . Here $g_{1}, \ldots, g_{k} \in(\mathbb{Z} / p \mathbb{Z})^{d}, \mathbb{Q}_{p}$ is the p-adic number field, and ζ_{p} is a primitive p-th root of 1 . This also gives an alternative solution to the problem.

Algebra

A1. Find all monic integer polynomials $p(x)$ of degree two for which there exists an integer polynomial $q(x)$ such that $p(x) q(x)$ is a polynomial having all coefficients ± 1.

First solution. We show that the only polynomials $p(x)$ with the required property are $x^{2} \pm x \pm 1, x^{2} \pm 1$ and $x^{2} \pm 2 x+1$.

Let $f(x)$ be any polynomial of degree n having all coefficients ± 1. Suppose that z is a root of $f(x)$ with $|z|>1$. Then

$$
|z|^{n}=\left| \pm z^{n-1} \pm z^{n-2} \pm \cdots \pm 1\right| \leq|z|^{n-1}+|z|^{n-2}+\cdots+1=\frac{|z|^{n}-1}{|z|-1}
$$

This leads to $|z|^{n}(|z|-2) \leq-1$; hence $|z|<2$. Thus, all the roots of $f(x)=0$ have absolute value less than 2.

Clearly, a polynomial $p(x)$ with the required properties must be of the form $p(x)=x^{2}+a x \pm 1$ for some integer a. Let x_{1} and x_{2} be its roots (not necessarily distinct). As $x_{1} x_{2}= \pm 1$, we may assume that $\left|x_{1}\right| \geq 1$ and $\left|x_{2}\right| \leq 1$. Since x_{1}, x_{2} are also roots of $p(x) q(x)$, a polynomial with coefficients ± 1, we have $\left|x_{1}\right|<2$, and so $|a|=\left|x_{1}+x_{2}\right| \leq\left|x_{1}\right|+\left|x_{2}\right|<2+1$. Thus, $a \in\{ \pm 2, \pm 1,0\}$.

If $a= \pm 1$, then $q(x)=1$ leads to a solution.
If $a=0$, then $q(x)=x+1$ leads to a solution.
If $a= \pm 2$, both polynomials $x^{2} \pm 2 x-1$ have one root of absolute value greater than 2 , so they cannot satisfy the requirement. Finally, the polynomials $p(x)=x^{2} \pm 2 x+1$ do have the required property with $q(x)=x \mp 1$, respectively.

Comment. By a "root" we may mean a "complex root," and then nothing requires clarification. But complex numbers need not be mentioned at all, because $p(x)=x^{2}+a x \pm 1$ has real roots if $|a| \geq 2$; and the cases of $|a| \leq 1$ must be handled separately anyway.

The proposer remarks that even if $p(x) q(x)$ is allowed to have zero coefficients, the conclusion $|z|<2$ about its roots holds true. However, extra solutions appear: x^{2} and $x^{2} \pm x$.

Second solution. Suppose that the polynomials $p(x)=a_{0}+a_{1} x+x^{2}$ and $q(x)=b_{0}+b_{1} x+\cdots+b_{n} x^{n}$ are such that $p(x) q(x)=c_{0}+c_{1} x+\cdots+c_{n+2} x^{n+2}$ with all $c_{k}= \pm 1$. Then $\left|a_{0}\right|=\left|b_{0}\right|=\left|b_{n}\right|=1$ and

$$
a_{0} b_{1}=c_{1}-a_{1} b_{0}, \quad a_{0} b_{k}=c_{k}-a_{1} b_{k-1}-b_{k-2} \quad \text { for } k=2, \ldots, n,
$$

whence

$$
\left|b_{1}\right| \geq\left|a_{1}\right|-1, \quad\left|b_{k}\right| \geq\left|a_{1} b_{k-1}\right|-\left|b_{k-2}\right|-1 \quad \text { for } k=2, \ldots, n .
$$

Assume $\left|a_{1}\right| \geq 3$. Then clearly $q(x)$ cannot be a constant, so $n \geq 1$, and we get

$$
\left|b_{1}\right| \geq 2, \quad\left|b_{k}\right| \geq 3\left|b_{k-1}\right|-\left|b_{k-2}\right|-1 \quad \text { for } k=2, \ldots, n .
$$

Recasting the last inequality into

$$
\left|b_{k}\right|-\left|b_{k-1}\right| \geq 2\left|b_{k-1}\right|-\left|b_{k-2}\right|-1 \geq 2\left(\left|b_{k-1}\right|-\left|b_{k-2}\right|\right)-1
$$

we see that the sequence $d_{k}=\left|b_{k}\right|-\left|b_{k-1}\right| \quad(k=1, \ldots, n)$ obeys the recursive estimate $d_{k} \geq 2 d_{k-1}-1$ for $k \geq 2$. As $d_{1}=\left|b_{1}\right|-1 \geq 1$, this implies by obvious induction $d_{k} \geq 1$ for $k=1, \ldots, n$. Equivalently, $\left|b_{k}\right| \geq\left|b_{k-1}\right|+1$ for $k=2, \ldots, n$, and hence $\left|b_{n}\right| \geq\left|b_{0}\right|+n$, in contradiction to $\left|b_{0}\right|=\left|b_{n}\right|=1, n \geq 1$.

It follows that $p(x)$ must be of the form $a_{0}+a_{1} x+x^{2}$ with $\left|a_{0}\right|=1,\left|a_{1}\right| \leq 2$. If $\left|a_{1}\right| \leq 1$ or $\left|a_{1}\right|=2$ and $a_{0}=1$, then the corresponding $q(x)$ exists; see the eight examples in the first solution.

We are left with the case $\left|a_{1}\right|=2, a_{0}=-1$. Assume $q(x)$ exists. There is no loss of generality in assuming that $b_{0}=1$ and $a_{1}=2$ (if $b_{0}=-1$, replace $q(x)$ by $-q(x)$; and if $a_{1}=-2$, replace $q(x)$ by $\left.q(-x)\right)$. With $b_{0}=1, a_{0}=-1, a_{1}=2$ the initial recursion formulas become

$$
b_{1}=2-c_{1}, \quad b_{k}=2 b_{k-1}+b_{k-2}-c_{k} \quad \text { for } k=2, \ldots, n .
$$

Therefore $b_{1} \geq 1, \quad b_{2} \geq 2 b_{1}+1-c_{2} \geq 2$, and induction shows that $b_{k} \geq 2$ for $k=2, \ldots, n$, again in contradiction with $\left|b_{n}\right|=1$. So there are no "good" trinomials $p(x)$ except the eight mentioned above.

A2. Let \mathbb{R}^{+}denote the set of positive real numbers. Determine all functions $f: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$such that

$$
f(x) f(y)=2 f(x+y f(x))
$$

for all positive real numbers x and y.
Solution. The answer is the constant function $f(x)=2$ which clearly satisfies the equation.

First, we show that a function f satisfying the equation is nondecreasing. Indeed, suppose that $f(x)<f(z)$ for some positive real numbers $x>z$. Set $y=(x-z)(f(z)-f(x))>0$, so that $x+y f(x)=z+y f(z)$. The equation now implies

$$
f(x) f(y)=2 f(x+y f(x))=2 f(z+y f(z))=f(z) f(y)
$$

therefore $f(x)=f(z)$, a contradiction. Thus, f is nondecreasing.
Assume now that f is not strictly increasing, that is, $f(x)=f(z)$ holds for some positive real numbers $x>z$. If y belongs to the interval $(0,(x-z) / f(x)$] then $z<z+y f(z) \leq x$. Since f is nondecreasing, we obtain

$$
f(z) \leq f(z+y f(z)) \leq f(x)=f(z)
$$

leading to $f(z+y f(z))=f(x)$. Thus, $f(z) f(y)=2 f(z+y f(z))=2 f(x)=2 f(z)$. Hence, $f(y)=2$ for all y in the above interval.

But if $f\left(y_{0}\right)=2$ for some y_{0} then

$$
2 \cdot 2=f\left(y_{0}\right) f\left(y_{0}\right)=2 f\left(y_{0}+y_{0} f\left(y_{0}\right)\right)=2 f\left(3 y_{0}\right) ; \text { therefore } f\left(3 y_{0}\right)=2
$$

By obvious induction, we get that $f\left(3^{k} y_{0}\right)=2$ for all positive integers k, and so $f(x)=2$ for all $x \in \mathbb{R}^{+}$.

Assume now that f is a strictly increasing function. We then conclude that the inequality $f(x) f(y)=2 f(x+y f(x))>2 f(x)$ holds for all positive real numbers x, y. Thus, $f(y)>2$ for all $y>0$. The equation implies

$$
2 f(x+1 \cdot f(x))=f(x) f(1)=f(1) f(x)=2 f(1+x f(1)) \quad \text { for } x>0
$$

and since f is injective, we get $x+1 \cdot f(x)=1+x \cdot f(1)$ leading to the conclusion that $f(x)=x(f(1)-1)+1$ for all $x \in \mathbb{R}^{+}$. Taking a small x (close to zero), we get $f(x)<2$, which is a contradiction. (Alternatively, one can verify directly that $f(x)=c x+1$ is not a solution of the given functional equation.)

A3. Four real numbers p, q, r, s satisfy

$$
p+q+r+s=9 \quad \text { and } \quad p^{2}+q^{2}+r^{2}+s^{2}=21
$$

Prove that $a b-c d \geq 2$ holds for some permutation (a, b, c, d) of (p, q, r, s).

First solution. Up to a permutation, we may assume that $p \geq q \geq r \geq s$. We first consider the case where $p+q \geq 5$. Then

$$
p^{2}+q^{2}+2 p q \geq 25=4+\left(p^{2}+q^{2}+r^{2}+s^{2}\right) \geq 4+p^{2}+q^{2}+2 r s
$$

which is equivalent to $p q-r s \geq 2$.
Assume now that $p+q<5$; then

$$
\begin{equation*}
4<r+s \leq p+q<5 \tag{1}
\end{equation*}
$$

Observe that

$$
(p q+r s)+(p r+q s)+(p s+q r)=\frac{(p+q+r+s)^{2}-\left(p^{2}+q^{2}+r^{2}+s^{2}\right)}{2}=30
$$

Moreover,

$$
p q+r s \geq p r+q s \geq p s+q r
$$

because $(p-s)(q-r) \geq 0$ and $(p-q)(r-s) \geq 0$.
We conclude that $p q+r s \geq 10$. From (1), we get $0 \leq(p+q)-(r+s)<1$, therefore

$$
(p+q)^{2}-2(p+q)(r+s)+(r+s)^{2}<1
$$

Adding this to $(p+q)^{2}+2(p+q)(r+s)+(r+s)^{2}=9^{2}$ gives

$$
(p+q)^{2}+(r+s)^{2}<41
$$

Therefore

$$
\begin{aligned}
41=21+2 \cdot 10 & \leq\left(p^{2}+q^{2}+r^{2}+s^{2}\right)+2(p q+r s) \\
& =(p+q)^{2}+(r+s)^{2}<41,
\end{aligned}
$$

which is a contradiction.

Second solution. We first note that $p q+p r+p s+q r+q s+r s=30$, as in the first solution. Thus, if (a, b, c, d) is any permutation of (p, q, r, s), then

$$
b c+c d+d b=30-a(b+c+d)=30-a(9-a)=30-9 a+a^{2}
$$

while

$$
b c+c d+d b \leq b^{2}+c^{2}+d^{2}=21-a^{2}
$$

Hence $30-9 a+a^{2} \leq 21-a^{2}$, leading to $a \in[3 / 2,3]$. Thus the numbers p, q, r and s are in the interval $[3 / 2,3]$.

Assume now that $p \geq q \geq r \geq s$. Note that $q \geq 2$ because otherwise $p=9-(q+r+s) \geq 9-3 q>9-6=3$, which is impossible.

Write $x=r-s, y=q-r$ and $z=p-q$. On the one hand,

$$
\begin{aligned}
& (p-q)^{2}+(p-r)^{2}+(p-s)^{2}+(q-r)^{2}+(q-s)^{2}+(r-s)^{2} \\
& \quad=3\left(p^{2}+q^{2}+r^{2}+s^{2}\right)-2(p q+p r+p s+q r+q s+r s)=3
\end{aligned}
$$

On the other hand, this expression equals

$$
\begin{aligned}
z^{2}+(z+y)^{2}+ & (z+y+x)^{2}+y^{2}+(y+x)^{2}+x^{2} \\
& =3 x^{2}+4 y^{2}+3 z^{2}+4 x y+4 y z+2 z x .
\end{aligned}
$$

Hence,

$$
\begin{equation*}
3 x^{2}+4 y^{2}+3 z^{2}+4 x y+4 y z+2 z x=3 \tag{2}
\end{equation*}
$$

Furthermore,

$$
p q-r s=q(p-s)+(q-r) s=q(x+y+z)+y s
$$

If $x+y+z \geq 1$ then, in view of $q \geq 2$, we immediately get $p q-r s \geq 2$.
If $x+y+z<1$ then (2) implies

$$
3 x^{2}+4 y^{2}+3 z^{2}+4 x y+4 y z+2 z x>3(x+y+z)^{2} .
$$

It follows that $y^{2}>2 x y+2 y z+4 z x \geq 2 y(x+z)$, so that $y>2(x+z)$ and hence $3 y>2(x+y+z)$. The value of the left-hand side of (2) obviously does not exceed $4(x+y+z)^{2}$, so that $2(x+y+z) \geq \sqrt{3}$. Eventually, $3 y>\sqrt{3}$ and recalling that $s \geq 3 / 2$, we obtain

$$
p q-r s=q(x+y+z)+y s \geq 2 \cdot \frac{\sqrt{3}}{2}+\frac{\sqrt{3}}{3} \cdot \frac{3}{2}=\frac{3 \sqrt{3}}{2}>2 .
$$

A4. Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfying the equation

$$
f(x+y)+f(x) f(y)=f(x y)+2 x y+1
$$

for all real numbers x and y.
Solution. The solutions are $f(x)=2 x-1, f(x)=-x-1$ and $f(x)=x^{2}-1$. It is easy to check that these functions indeed satisfy the given equation.

We begin by setting $y=1$ which gives

$$
\begin{equation*}
f(x+1)=a f(x)+2 x+1, \tag{1}
\end{equation*}
$$

where $a=1-f(1)$. Then we change y to $y+1$ in the equation and use (1) to expand $f(x+y+1)$ and $f(y+1)$. The result is

$$
a(f(x+y)+f(x) f(y))+(2 y+1)(1+f(x))=f(x(y+1))+2 x y+1
$$

or, using the initial equation again,

$$
a(f(x y)+2 x y+1)+(2 y+1)(1+f(x))=f(x(y+1))+2 x y+1
$$

Let us now set $x=2 t$ and $y=-1 / 2$ to obtain

$$
a(f(-t)-2 t+1)=f(t)-2 t+1
$$

Replacing t by $-t$ yields one more relation involving $f(t)$ and $f(-t)$:

$$
\begin{equation*}
a(f(t)+2 t+1)=f(-t)+2 t+1 \tag{2}
\end{equation*}
$$

We now eliminate $f(-t)$ from the last two equations, leading to

$$
\left(1-a^{2}\right) f(t)=2(1-a)^{2} t+a^{2}-1
$$

Note that $a \neq-1$ (or else $8 t=0$ for all t, which is false). If additionally $a \neq 1$ then $1-a^{2} \neq 0$, therefore

$$
f(t)=2\left(\frac{1-a}{1+a}\right) t-1
$$

Setting $t=1$ and recalling that $f(1)=1-a$, we get $a=0$ or $a=3$, which gives the first two solutions.

The case $a=1$ remains, where (2) yields

$$
\begin{equation*}
f(t)=f(-t) \quad \text { for all } t \in \mathbb{R} \tag{3}
\end{equation*}
$$

Now set $y=x$ and $y=-x$ in the original equation. In view of (3), we obtain, respectively,

$$
f(2 x)+f(x)^{2}=f\left(x^{2}\right)+2 x^{2}+1, \quad f(0)+f(x)^{2}=f\left(x^{2}\right)-2 x^{2}+1
$$

Subtracting gives $f(2 x)=4 x^{2}+f(0)$. Set $x=0$ in (1). Since $f(1)=1-a=0$, this yields $f(0)=-1$. Hence $f(2 x)=4 x^{2}-1$, i. e. $f(x)=x^{2}-1$ for all $x \in \mathbb{R}$. This completes the solution.

A5. Let x, y and z be positive real numbers such that $x y z \geq 1$. Prove the inequality

$$
\frac{x^{5}-x^{2}}{x^{5}+y^{2}+z^{2}}+\frac{y^{5}-y^{2}}{y^{5}+z^{2}+x^{2}}+\frac{z^{5}-z^{2}}{z^{5}+x^{2}+y^{2}} \geq 0
$$

First solution. Standard recasting shows that the given inequality is equivalent to

$$
\frac{x^{2}+y^{2}+z^{2}}{x^{5}+y^{2}+z^{2}}+\frac{x^{2}+y^{2}+z^{2}}{y^{5}+z^{2}+x^{2}}+\frac{z^{2}+x^{2}+y^{2}}{z^{5}+x^{2}+y^{2}} \leq 3
$$

In view of the Cauchy-Schwarz inequality and the condition $x y z \geq 1$, we have

$$
\left(x^{5}+y^{2}+z^{2}\right)\left(y z+y^{2}+z^{2}\right) \geq\left(x^{5 / 2}(y z)^{1 / 2}+y^{2}+z^{2}\right)^{2} \geq\left(x^{2}+y^{2}+z^{2}\right)^{2}
$$

or

$$
\frac{x^{2}+y^{2}+z^{2}}{x^{5}+y^{2}+z^{2}} \leq \frac{y z+y^{2}+z^{2}}{x^{2}+y^{2}+z^{2}}
$$

Taking the cyclic sum and using the fact that $x^{2}+y^{2}+z^{2} \geq y z+z x+x y$ gives

$$
\frac{x^{2}+y^{2}+z^{2}}{x^{5}+y^{2}+z^{2}}+\frac{x^{2}+y^{2}+z^{2}}{y^{5}+z^{2}+x^{2}}+\frac{x^{2}+y^{2}+z^{2}}{z^{5}+x^{2}+y^{2}} \leq 2+\frac{y z+z x+x y}{x^{2}+y^{2}+z^{2}} \leq 3
$$

which is exactly what we wished to show.
Comment. The way the Cauchy-Schwarz inequality is used is the crucial point in the solution; it is not at all obvious! The condition $x y z \geq 1$ (which might as well have been $x y z=1$) allows to transform the expression to a homogeneous form. The smart use of Cauchy-Schwarz inequality has the effect that the common numerators of the three fractions become common denominators in the transformed expression.

Second solution. We shall prove something more, namely that

$$
\begin{equation*}
\frac{x^{5}}{x^{5}+y^{2}+z^{2}}+\frac{y^{5}}{y^{5}+z^{2}+x^{2}}+\frac{z^{5}}{z^{5}+x^{2}+y^{2}} \geq 1 \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
1 \geq \frac{x^{2}}{x^{5}+y^{2}+z^{2}}+\frac{y^{2}}{y^{5}+z^{2}+x^{2}}+\frac{z^{2}}{z^{5}+x^{2}+y^{2}} \tag{2}
\end{equation*}
$$

We first prove (1). We have $y z\left(y^{2}+z^{2}\right)=y^{3} z+y z^{3} \leq y^{4}+z^{4}$; the latter inequality holds because $y^{4}-y^{3} z-y z^{3}+z^{4}=\left(y^{3}-z^{3}\right)(y-z) \geq 0$. Therefore $x\left(y^{4}+z^{4}\right) \geq x y z\left(y^{2}+z^{2}\right) \geq y^{2}+z^{2}$, or

$$
\frac{x^{5}}{x^{5}+y^{2}+z^{2}} \geq \frac{x^{5}}{x^{5}+x y^{4}+x z^{4}}=\frac{x^{4}}{x^{4}+y^{4}+z^{4}}
$$

Taking the cyclic sum, we get the desired inequality.
The proof of (2) is based on exactly the same ideas as in the first solution. From the Cauchy-Schwarz inequality and the fact that $x y z \geq 1$, we have

$$
\left(x^{5}+y^{2}+z^{2}\right)\left(y z+y^{2}+z^{2}\right) \geq\left(x^{2}+y^{2}+z^{2}\right)^{2}
$$

implying

$$
\frac{x^{2}}{x^{5}+y^{2}+z^{2}} \leq \frac{x^{2}\left(y z+y^{2}+z^{2}\right)}{\left(x^{2}+y^{2}+z^{2}\right)^{2}} .
$$

Taking the cyclic sum, we have

$$
\begin{aligned}
& \frac{x^{2}}{x^{5}+y^{2}+z^{2}}+\frac{y^{2}}{y^{5}+z^{2}+x^{2}}+\frac{z^{2}}{z^{5}+x^{2}+y^{2}} \\
\leq & \frac{2\left(x^{2} y^{2}+y^{2} z^{2}+z^{2} x^{2}\right)+x^{2} y z+y^{2} z x+z^{2} x y}{\left(x^{2}+y^{2}+z^{2}\right)^{2}} \\
= & \frac{\left(x^{2}+y^{2}+z^{2}\right)^{2}-\left(x^{4}+y^{4}+z^{4}\right)+\left(x^{2} y z+y^{2} z x+z^{2} x y\right)}{\left(x^{2}+y^{2}+z^{2}\right)^{2}} .
\end{aligned}
$$

Thus we need to show that $x^{4}+y^{4}+z^{4} \geq x^{2} y z+y^{2} z x+z^{2} x y$; and this last inequality holds because

$$
\begin{aligned}
x^{4}+y^{4}+z^{4} & =\frac{x^{4}+y^{4}}{2}+\frac{y^{4}+z^{4}}{2}+\frac{z^{4}+x^{4}}{2} \geq x^{2} y^{2}+y^{2} z^{2}+z^{2} x^{2} \\
& =\frac{x^{2} y^{2}+y^{2} z^{2}}{2}+\frac{y^{2} z^{2}+z^{2} x^{2}}{2}+\frac{z^{2} x^{2}+x^{2} y^{2}}{2} \\
& \geq y^{2} z x+z^{2} x y+x^{2} y z .
\end{aligned}
$$

Combinatorics

C1. A house has an even number of lamps distributed among its rooms in such a way that there are at least three lamps in every room. Each lamp shares a switch with exactly one other lamp, not necessarily from the same room. Each change in the switch shared by two lamps changes their states simultaneously. Prove that for every initial state of the lamps there exists a sequence of changes in some of the switches at the end of which each room contains lamps which are on as well as lamps which are off.

Solution. Two lamps sharing a switch will be called twins. A room will be called normal if some of its lamps are on and some are off. We devise an algorithm that increases the number of normal rooms in the house. After several runs of the algorithm we arrive at the state with all rooms normal.

Choose any room R_{0} which is not normal, assuming without loss of generality that all lamps in R_{0} are off. If there is a pair of twins in R_{0}, we switch them on and stop. Saying stop means that we have achieved what we wanted: there are more normal rooms than before the algorithm started.

So suppose there are no twins in R_{0}. Choose any lamp $a_{0} \in R_{0}$ and let $b_{0} \in R_{1}$ be its twin. Change their states. After this move room R_{0} becomes normal. If R_{1} also becomes (or remains) normal, then stop. Otherwise all lamps in R_{1} are in equal state; as before we can assume that there are no twins in R_{1}. Choose any lamp $a_{1} \in R_{1}$ other than b_{0} and let $b_{1} \in R_{2}$ be its twin. Change the states of these two twin lamps. If R_{2} becomes (or stays) normal, stop.

Proceed in this fashion until a repetition occurs in the sequence $R_{0}, R_{1}, R_{2}, \ldots$. Thus assume that the rooms $R_{0}, R_{1}, \ldots, R_{m}$ are all distinct, each R_{i} connected to R_{i+1} through a twin pair $a_{i} \in R_{i}, b_{i} \in R_{i+1}(i=0, \ldots, m-1)$, and there is a lamp $a_{m} \in R_{m}\left(a_{m} \neq b_{m-1}\right)$ which has its twin b_{m} in some room R_{k} visited earlier $(0 \leq k \leq m-1)$. If the algorithm did not stop after we entered room R_{m}, we change the states of the lamps a_{m} and b_{m}; room R_{m} becomes normal.

If $k \geq 1$, then there are two lamps in R_{k} touched previously, b_{k-1} and a_{k}. They are the twins of a_{k-1} and b_{k}, so neither of them can be b_{m} (twin to a_{m}). Recall that the moment we entered room R_{k} the first time, by pressing the b_{k-1} switch, this room became "abnormal" only until we touched lamp a_{k}. Thus b_{k-1} and a_{k} are in different states now. Whatever the new state of lamp b_{m}, room R_{k} remains normal. Stop.

Finally, if $k=0$, then $b_{m} \in R_{0}$ and $b_{m} \neq a_{0}$ because the twin of a_{0} is b_{0}. Each room has at least three lamps, so there is a lamp $c \in R_{0}, c \neq a_{0}, c \neq b_{m}$. In the first move lamp a_{0} was put on while c stayed off. Whatever the new state of b_{m}, room R_{0} stays normal. Stop.

So, indeed, after a single run of this algorithm, the number of normal rooms increases at least by 1 . This completes the proof.

Comment. The problem was submitted in the following formulation:
A school has an even number of students, each of whom attends exactly one of its (finitely many) classes. Each class has at least three students, and each student has exactly one "best friend" in the same school such that, whenever B is A 's "best friend", then A is B 's "best friend". Furthermore, each student prefers either apple juice over orange juice or orange juice over apple juice, but students change their preferences from time to time. "Best friends", however, will change their preferences (which may or may not be the same) always together, at the same moment.
Whatever preference each student may initially have, prove that there is always a sequence of changes of preferences which will lead to a situation in which no class will have students all of whom have the same preference.

C2. Let k be a fixed positive integer. A company has a special method to sell sombreros. Each customer can convince two persons to buy a sombrero after he/she buys one; convincing someone already convinced does not count. Each of these new customers can convince two others and so on. If each one of the two customers convinced by someone makes at least k persons buy sombreros (directly or indirectly), then that someone wins a free instructional video. Prove that if n persons bought sombreros, then at most $n /(k+2)$ of them got videos.

First solution. Consider the problem in reverse: If w persons won free videos, what is the least number n of persons who bought sombreros? One can easily compute this minimum for small values of w : for $w=1$ it is $2 k+3$, and for $w=2$ it is $3 k+5$. These can be rewritten as $n \geq 1 \cdot(k+2)+(k+1)$ and $n \geq 2(k+2)+(k+1)$, leading to the conjecture that

$$
\begin{equation*}
n \geq w(k+2)+(k+1) \tag{1}
\end{equation*}
$$

Let us say that a person P influenced a person Q if P made Q buy a sombrero directly or indirectly, or if $Q=P$. A component is the set of persons influenced by someone who was influenced by no one else but himself. No person from a component influenced another one from a different component. So it suffices to prove (1) for each component. Indeed, if (1) holds for r components of size n_{i} with w_{i} winners, $i=1, \ldots, r$, then

$$
n=\sum n_{i} \geq \sum\left(w_{i}(k+2)+(k+1)\right)=\left(\sum w_{i}\right)(k+2)+r(k+1)
$$

implying (1) for $n=\sum n_{i}, w=\sum w_{i}$.
Thus one may assume that the whole group is a single component, i. e. all customers were influenced by one person A (directly or indirectly).

Moreover, it suffices to prove (1) for a group G with w winners and of minimum size n. Notice that then A is a video winner. If not, imagine him removed from the group. A video winner from the original group is also a winner in the new one. So we have decreased n without changing w, a contradiction.

Under these assumptions, we proceed to prove (1) by induction on $w \geq 1$. For $w=1$, the group of customers contains a single video winner A, the two persons B and C he/she convinced directly to buy sombreros, and two nonintersecting groups of k persons, the ones persuaded by B and C (directly or indirectly). This makes at least $2 k+3$ persons, as needed.

Assume the claim holds for groups with less than w winners, and consider a group with n winners where everyone was influenced by some person A. Recall that A is a winner. Let B and C be the persons convinced directly by A to buy
sombreros. Let n_{B} be the number of people influenced by B, and w_{B} the number of video winners among them. Define n_{C} and w_{C} analogously.

We have $n_{B} \geq w_{B}(k+2)+(k+1)$, by the induction hypothesis if $w_{B}>0$ and because A is a winner if $w_{B}=0$. Analogously $n_{C} \geq w_{C}(k+2)+(k+1)$. Adding the two inequalities gives us $n \geq w(k+2)+(k+1)$, since $n=n_{B}+n_{C}+1$ and $w=w_{B}+w_{C}+1$. This concludes the proof.

Second solution. As in the first solution, we say that a person P influenced a person Q if P made Q buy a sombrero directly or indirectly, or if $Q=P$. Likewise, we keep the definition of a component. For brevity, let us write winners instead of video winners.

The components form a partition of the set of people who bought sombreros. It is enough to prove that in each component the fraction of winners is at most $1 /(k+2)$.

We will minimise the number of people buying sombreros while keeping the number of winners fixed.

First, we can assume that no winners were convinced (directly) by a nonwinner. Indeed, if a nonwinner P convinced a winner Q, remove all people influenced by P but not by Q and let whoever convinced P (if anyone did) now convince Q. Observe that no winner was removed, hence the new configuration has fewer people, but the same winners.

Thus, indeed, there is no loss of generality in assuming that:
The set of all buyers makes up a single component.
Every winner could have been convinced only by another winner.
Now remove all the winners and consider the new components. We claim that
Each new component has at least $k+1$ persons.
Indeed, let \mathcal{C} be a new component. In view of (2), there is a member C of \mathcal{C} who had been convinced by some removed winner W. Then C must have influenced at least $k+1$ people (including himself), but all the people influenced by C are in \mathcal{C}. Therefore $|\mathcal{C}| \geq k+1$.

Now return the winners one by one in such a way that when a winner returns, the people he convinced (directly) are already present. This is possible because of (3). In that way the number of components decreases by one with each winner, thus the number of components with all winners removed is equal to $w+1$, where w is the number of winners. It follows from (4) that the number of nonwinners satisfies the estimate

$$
n-w \geq(w+1)(k+1)
$$

This implies the desired bound.

C3. In an $m \times n$ rectangular board of $m n$ unit squares, adjacent squares are ones with a common edge, and a path is a sequence of squares in which any two consecutive squares are adjacent. Each square of the board can be coloured black or white. Let N denote the number of colourings of the board such that there exists at least one black path from the left edge of the board to its right edge, and let M denote the number of colourings in which there exist at least two non-intersecting black paths from the left edge to the right edge. Prove that $N^{2} \geq M \cdot 2^{m n}$.

Solution. We generalise the claim to the following. Suppose that a twosided $m \times n$ board is considered, where some of the squares are transparent and some others are not. Each square must be coloured black or white. However, a transparent square needs to be coloured only on one side; then it looks the same from above and from below. In contrast, a non-transparent square must be coloured on both sides (in the same colour or not).

Let A (respectively B) be the set of colourings of the board with at least one black path from the left edge to the right edge if one looks from above (respectively from below).

Let C be the set of colourings of the board in which there exist two black paths from the left edge to the right edge of the board, one on top and one underneath, not intersecting at any transparent square.

Let D be the set of all colourings of the board.
We claim that

$$
\begin{equation*}
|A| \cdot|B| \geq|C| \cdot|D| \tag{1}
\end{equation*}
$$

Note that this implies the original claim in the case where all squares are transparent: one then has $|A|=|B|=N,|C|=M,|D|=2^{m n}$.

We prove (1) by induction on the number k of transparent squares. If $k=0$ then $|A|=|B|=N \cdot 2^{m n},|C|=N^{2}$ and $|D|=\left(2^{m n}\right)^{2}$, so equality holds in (1). Suppose the claim is true for some k and consider a board with $k+1$ transparent squares. Let A, B, C and D be the sets of colourings of this board as defined above. Choose one transparent square ϑ. Now, convert ϑ into a non-transparent square, and let $A^{\prime}, B^{\prime}, C^{\prime}$ and D^{\prime} be the respective sets of colourings of the new board. By the induction hypothesis, we have:

$$
\begin{equation*}
\left|A^{\prime}\right| \cdot\left|B^{\prime}\right| \geq\left|C^{\prime}\right| \cdot\left|D^{\prime}\right| \tag{2}
\end{equation*}
$$

Upon the change made, the number of all colourings doubles. So $\left|D^{\prime}\right|=2|D|$.
To any given colouring in A, there correspond two colourings in A^{\prime}, obtained by colouring ϑ black and white from below. This is a bijective correspondence,
so $\left|A^{\prime}\right|=2|A|$. Likewise, $\left|B^{\prime}\right|=2|B|$. In view of (2), it suffices to prove that

$$
\begin{equation*}
\left|C^{\prime}\right| \geq 2|C| \tag{3}
\end{equation*}
$$

Make ϑ transparent again and take any colouring in C. It contains two black paths (one seen from above and one from below) that do not intersect at transparent squares. Being transparent, ϑ can therefore lie on at most one of them, say on the path above. So when we make ϑ non-transparent, let us keep its colour on the side above but colour the side below in the two possible ways. The two colourings obtained will be in C^{\prime}. It is easy to see that when doing so, different colourings in C give rise to different pairs of colourings in C^{\prime}. Hence (3) follows, implying (2). As already mentioned, this completes the solution.

Comment. A more direct approach to the problem may go as follows. Consider two $m \times n$ boards instead of one. Let \mathcal{A} denote the set of all colourings of the two boards such that there are at least two non-intersecting black paths from the left edge of the first board to its right edge. Clearly, $|\mathcal{A}|=M \cdot 2^{m n}$: we can colour the first board in M ways and the second board in an arbitrary fashion.

Let \mathcal{B} denote the set of all colourings of the two boards such that there is at least one black path from the left edge of the first board to its right edge, and at least one black path from the left edge of the second board to its right edge. Clearly, $|\mathcal{B}|=N^{2}$.

It suffices to find an injective function $f: \mathcal{A} \hookrightarrow \mathcal{B}$.
Such an injection can indeed be constructed. However, working it out in all details seems to be a delicate task.

C4. Let $n \geq 3$ be a given positive integer. We wish to label each side and each diagonal of a regular n-gon P_{1}, \ldots, P_{n} with a positive integer less than or equal to r so that:
(i) every integer between 1 and r occurs as a label;
(ii) in each triangle $P_{i} P_{j} P_{k}$ two of the labels are equal and greater than the third.

Given these conditions:
(a) Determine the largest positive integer r for which this can be done.
(b) For that value of r, how many such labellings are there?

Solution. A labelling which satisfies condition (ii) will be called good. A labelling which satisfies both given conditions (i) and (ii) will be called very good. Let us try to understand the structure of good labellings.

Sides and diagonals of the polygon will be called just edges. Let $A B$ be an edge with the maximum label m. Let X be any vertex different from A and B. Condition (ii), applied to triangle $A B X$, implies that one of the segments $A X, B X$ has label m, and the other one has a label smaller than m. Thus we can split all vertices into two disjoint groups 1 and 2 ; group 1 contains vertices X such that $A X$ has label m (including vertex B) and group 2 contains vertices X such that $B X$ has label m (including vertex A). We claim that the edges labelled m are exactly those which join a vertex of group 1 with a vertex of group 2.

First consider any vertex $X \neq B$ in group 1 and any vertex $Y \neq A$ in group 2. In triangle $A X Y$, we already know that the label of $A X$ (which is m) is larger than the label of $A Y$ (which is not m). Therefore the label of $X Y$ also has to be equal to m, as we wanted to show.

Now consider any two vertices X, Y in group 1. In triangle $A X Y$, the edges $A X$ and $A Y$ have the same label m. So the third edge must have a label smaller than m, as desired. Similarly, any edge joining two vertices in group 2 has a label smaller than m.

We conclude that a good labelling of an n-gon consists of:

- a collection of edges with the maximum label m; they are the ones that go from a vertex of group 1 to a vertex of group 2,
- a good labelling of the polygon determined by the vertices of group 1, and
- a good labelling of the polygon determined by the vertices of group 2 .
(a) The greatest possible value of r is $n-1$. We prove this by induction starting with the degenerate cases $n=1$ and $n=2$, where the claim is immediate. Assusme it true for values less than n, where $n \geq 3$, and consider any good labelling of an n-gon P.

Its edges are split into two groups 1 and 2 ; suppose they have k and $n-k$ vertices, respectively. The k-gon P_{1} formed by the vertices in group 1 inherits a good labelling. By the induction hypothesis, this good labelling uses at most $k-1$ different labels. Similarly, the $(n-k)$-gon P_{2} formed by the vertices in group 2 inherits a good labelling which uses at most $n-k-1$ different labels. The remaining segments, which join a vertex of group 1 with a vertex of group 2, all have the same (maximum) label. Therefore, the total number of different labels in our good labelling is at most $(k-1)+(n-k-1)+1=n-1$. This number can be easily achieved, as long as we use different labels in P_{1} and P_{2}.
(b) Let $f(n)$ be the number of very good labellings of an n-gon P with labels $1, \ldots, n-1$. We will show by induction that

$$
f(n)=n!(n-1)!/ 2^{n-1}
$$

This holds for $n=1$ and $n=2$. Fix $n \geq 3$ and assume that $f(k)=k!(k-1)!/ 2^{k-1}$ for $k<n$.

Divide the n vertices into two non-empty groups 1 and 2 in any way. If group 1 is of size k, there are $\binom{n}{k}$ ways of doing that. We must label every edge joining a vertex of group 1 and a vertex of group 2 with the label $n-1$. Now we need to choose which $k-1$ of the remaining labels $1,2, \ldots, n-2$ will be used to label the k-gon P_{1}; there are $\binom{n-2}{k-1}$ possible choices. The remaining $n-k-1$ labels will be used to label the $(n-k)$-gon P_{2}. Finally, there are $f(k)$ very good labellings of P_{1} and $f(n-k)$ very good labellings of P_{2}.

Now we sum the resulting expression over all possible values of k, noticing that we have counted each very good labelling twice, since choosing a set to be group 1 is equivalent to choosing its complement. We have:

$$
\begin{aligned}
f(n) & =\frac{1}{2} \sum_{k=1}^{n-1}\binom{n}{k}\binom{n-2}{k-1} f(k) f(n-k) \\
& =\frac{n!(n-1)!}{2(n-1)} \sum_{k=1}^{n-1} \frac{f(k)}{k!(k-1)!} \cdot \frac{f(n-k)}{(n-k)!(n-k-1)!} \\
& =\frac{n!(n-1)!}{2(n-1)} \sum_{k=1}^{n-1} \frac{1}{2^{k-1}} \cdot \frac{1}{2^{n-k-1}}=\frac{n!(n-1)!}{2^{n-1}},
\end{aligned}
$$

which is what we wanted to show.

C5. There are n markers, each with one side white and the other side black, aligned in a row so that their white sides are up. In each step, if possible, we choose a marker with the white side up (but not one of the outermost markers), remove it and reverse the closest marker to the left and the closest marker to the right of it. Prove that one can achieve the state with only two markers remaining if and only if $n-1$ is not divisible by 3 .

First solution. Given a particular chain of markers, we call white (resp. black) markers the ones with the white (resp. black) side up. Note that the parity of the number of black markers remains unchanged during the game. Hence, if only two markers remain, these markers must have the same colour.

Next, we define an invariant. To a white marker with t black markers to its left we assign the number $(-1)^{t}$. Only white markers have numbers assigned to them. Let S be the residue class modulo 3 of the sum of all numbers assigned to the white markers.

It is easy to check that S is an invariant under the allowed operations. Suppose, for instance, that a white marker W is removed, with t black markers to the left of it, and that the closest neighbours of W are black. Then S increases by $-(-1)^{t}+(-1)^{t-1}+(-1)^{t-1}=3(-1)^{t-1}$. The other three cases are analogous.

If the game ends with two black markers, the number S is zero; if it ends with two white markers, then S is 2 . Since we start with n white markers and in this case $S \equiv n(\bmod 3)$, a necessary condition for the game to end is $n \equiv 0,2(\bmod 3)$.

If we start with $n \geq 5$ white markers, taking the leftmost allowed white markers in three consecutive moves, we obtain a row of $n-3$ white markers without black markers. Since the goal can be reached for $n=2,3$, we conclude that the game can end with two markers for every positive integer n satisfying $n \equiv 0,2(\bmod 3)$.

Second solution. Denote by L the leftmost and by R the rightmost marker, respectively. To start with, note again that the parity of the number of black-side-up markers remains unchanged. Hence, if only two markers remain, these markers must have the same colour up.

We will show by induction on n that the game can be succesfully finished if and only if $n \equiv 0,2(\bmod 3)$ and that the upper sides of L and R will be black in the first case and white in the second case.

The statement is clear for $n=2$ and 3 . Assume that we finished the game for some n, and denote by k the position of the marker X (counting from the left) that was last removed. Having finished the game, we have also finished the subgames with the k markers from L to X and with the $n-k+1$ markers
from X to R (inclusive). Thereby, by the induction hypothesis, before X was removed, the upper side of L had been black if $k \equiv 0(\bmod 3)$, and white if $k \equiv 2(\bmod 3)$, while the upper side of R had been black if $n-k+1 \equiv 0(\bmod 3)$, and white if $n-k+1 \equiv 2(\bmod 3)$. Markers R and L were reversed upon the removal of X. Therefore, in the final position, R and L are white if and only if $k \equiv n-k+1 \equiv 0(\bmod 3)$, which yields $n \equiv 2(\bmod 3)$, and black if and only if $k \equiv n-k+1 \equiv 2(\bmod 3)$, which yields $n \equiv 0(\bmod 3)$.

On the other hand, a game with n markers can be reduced to a game with $n-3$ markers by removing the second, fourth and third marker in this order. This finishes the induction.

C6. In a mathematical competition in which 6 problems were posed to the participants, every two of these problems were solved by more than $2 / 5$ of the contestants. Moreover, no contestant solved all the 6 problems. Show that there are at least 2 contestants who solved exactly 5 problems each.

First solution. Assume there were n contestants. Let us count the number N of ordered pairs (C, P), where P is a pair of problems solved by contestant C. On the one hand, for every one of the 15 pairs of problems, there are at least $(2 n+1) / 5$ contestants who solved both problems in the pair. Therefore

$$
\begin{equation*}
N \geq 15 \cdot \frac{2 n+1}{5}=6 n+3 \tag{1}
\end{equation*}
$$

On the other hand, assume k contestants solved 5 problems. Each of them solved 10 pairs of problems, whereas each of the $n-k$ remaining contestants solved at most 6 pairs of problems. Thus

$$
\begin{equation*}
N \leq 10 k+6(n-k)=6 n+4 k \tag{2}
\end{equation*}
$$

From these two estimates we immediately get $k \geq 1$. If $(2 n+1) / 5$ were not an integer, there would be, for every pair of problems, at least $(2 n+1) / 5$ contestants who solved both problems in the pair (rather than $(2 n+1) / 5)$. Then (1) would improve to $N \geq 6 n+6$ and this would yield $k \geq 2$. Alternatively, had some student solved less than 4 problems, he would have solved at most 3 pairs of problems (rather than 6), and our second estimate would improve to $N \leq 6 n+4 k-3$, which together with $N \geq 6 n+3$ also gives $k \geq 2$.

So we are left with the case where 5 divides $2 n+1$ and every contestant has solved 4 or 5 problems. Let us assume $k=1$ and let us call the contestant who solved 5 problems the 'winner'. We must then have $N=6 n+4$ (the winner solved 10 pairs of problems, and the rest of the contestants solved exactly 6 pairs of problems each). Let us call a pair of problems 'special' if more than $(2 n+1) / 5$ contestants solved both problems of the pair. If there were more than one special pair of problems, our first estimate would be improved to

$$
N \geq 13 \cdot \frac{2 n+1}{5}+2\left(\frac{2 n+1}{5}+1\right)=6 n+5
$$

which is impossible. Similarly, if a special pair of problems exists, no more than $(2 n+1) / 5+1$ contestants could have solved both problems in the pair, because otherwise

$$
N \geq 14 \cdot \frac{2 n+1}{5}+\left(\frac{2 n+1}{5}+2\right)=6 n+5
$$

Let us now count the number M of pairs (C, P) where the 'tough' problem (the one not solved by the winner) is one of the problems in P. For each of the 5 pairs of problems containing the tough problem, there are either $(2 n+1) / 5$ or $(2 n+1) / 5+1$ contestants who solved both problems of the pair. We then get $M=2 n+1$ or $M=2 n+2$; the latter is possible only if there is a special pair of problems and this special pair contains the tough problem. On the other hand, assume m contestants solved the tough problem. Each of them solved 3 other problems and therefore solved 3 pairs of problems containing the tough one. We can then write $M=3 m$. Hence $2 n+1 \equiv 0$ or $2(\bmod 3)$.

Finally, let us chose one of the problems other than the tough one, say p, and count the number L of pairs (C, P) for which $p \in P$. We can certainly chose p such that the special pair of problems, if it exists, does not contain p. Then we have $L=2 n+1$ (each of the 5 pairs of problems containing p have exactly $(2 n+1) / 5$ contestants who solved both problems of the pair). On the other hand, if l is the number of contestants, other than the winner, who solved problem p, we have $L=3 l+4$ (the winner solved problem p and other 4 problems, so she solved 4 pairs of problems containg p, and each of the l students who solved p, solved other 3 problems, hence each of them solved 3 pairs of problems containing p). Therefore $2 n+1 \equiv 1(\bmod 3)$, which is a contradiction.

Second solution. This is basically the same proof as above, written in symbols rather than words. Suppose there were n contestants. Let $p_{i j}$ be the number of contestants who solved both problem i and problem $j(1 \leq i<j \leq 6)$ and let n_{r} be the number of contestants who solved exactly r problems $(0 \leq r \leq 6)$. Clearly, $\sum n_{r}=n$.

By hypothesis, $p_{i j} \geq(2 n+1) / 5$ for all $i<j$, and so

$$
S=\sum_{i<j} p_{i j} \geq 15 \cdot \frac{2 n+1}{5}=6 n+3
$$

A contestant who solved exactly r problems contributes a ' 1 ' to $\binom{r}{2}$ summands in this sum (where as usual $\binom{r}{2}=0$ for $r<2$). Therefore

$$
S=\sum_{r=0}^{6}\binom{r}{2} n_{r}
$$

Combining this with the previous estimate we obtain

$$
\begin{equation*}
3 \leq S-6 n=\sum_{r=0}^{6}\left(\binom{r}{2}-6\right) n_{r} \tag{3}
\end{equation*}
$$

which rewrites as

$$
4 n_{5}+9 n_{6} \geq 3+6 n_{0}+6 n_{1}+5 n_{2}+3 n_{3}
$$

If no contestant solved all problems, then $n_{6}=0$, and we see from the above that n_{5} must be positive. To show that $n_{5} \geq 2$, assume the contrary, i. e., $n_{5}=1$. Then all of $n_{0}, n_{1}, n_{2}, n_{3}$ must be zero, so that $n_{4}=n-1$. The right equality of (3) reduces to $S=6 n+4$.

Each one of the 15 summands in $S=\sum p_{i j}$ is at least $(2 n+1) / 5=\lambda$. Because $S=6 n+4$, they cannot be all equal ($6 n+4$ is not divisible by 15); therefore 14 of them are equal to λ and one is $\lambda+1$.

Let $\left(i_{0}, j_{0}\right)$ be this specific pair with $p_{i_{0} j_{0}}=\lambda+1$. The contestant who solved 5 problems will be again called the winner. Assume, without loss of generality, that it was problem 6 at which the winner failed, and that problem 1 is not in the pair (i_{0}, j_{0}); that is, $2 \leq i_{0}<j_{0} \leq 6$. Consider the sums

$$
S^{\prime}=p_{16}+p_{26}+p_{36}+p_{46}+p_{56} \quad \text { and } \quad S^{\prime \prime}=p_{12}+p_{13}+p_{14}+p_{15}+p_{16}
$$

Suppose that problem 6 has been solved by x contestants (each of them contributes a ' 3 ' to S^{\prime}) and problem 1 has been solved by y contestants other than the winner (each of them contributes a ' 3 ' to $S^{\prime \prime}$, and the winner contributes a ' 4 '). Thus $S^{\prime}=3 x$ and $S^{\prime \prime}=3 y+4$.

The pair (i_{0}, j_{0}) does not appear in the sum $S^{\prime \prime}$, which is therefore equal to $5 \lambda=2 n+1$. The sum S^{\prime} is either 5λ or $5 \lambda+1$. Hence $3 x \in\{2 n+1,2 n+2\}$ and $3 y+4=2 n+1$, which is impossible, as examination of remainders $(\bmod 3)$ shows. Contradiction ends the proof.

Comment. The problem submitted by the proposer consisted of two parts which were found to be two independent problems by the PSC.

Part (a) asked for a proof that if every problem has been solved by more than $2 / 5$ of the contestants then there exists a set of 3 problems solved by more than $1 / 5$ of the contestants and a set of 4 problems solved by more than $1 / 15$ of the contestants.

The arguments needed for a proof of (a) seem rather standard, giving advantage to students who practised those techniques at training courses. This is much less the case with part (b), which was therefore chosen to be Problem C6 on the shortlist.

The proposer remarks that there exist examples showing the bound 2 can be attained for the number of contestants solving 5 problems, and that the problem would become harder if it asked to find one such example.

C7. Let $n>1$ be a given integer, and let a_{1}, \ldots, a_{n} be a sequence of integers such that n divides the sum $a_{1}+\cdots+a_{n}$. Show that there exist permutations σ and τ of $1,2, \ldots, n$ such that $\sigma(i)+\tau(i) \equiv a_{i}(\bmod n)$ for all $i=1, \ldots, n$.

Solution. Suppose that there exist suitable permutations σ and τ for a certain integer sequence a_{1}, \ldots, a_{n} of sum zero modulo n. Let b_{1}, \ldots, b_{n} be another integer sequence with sum divisible by n, and let b_{1}, \ldots, b_{n} differ modulo n from a_{1}, \ldots, a_{n} only in two places, i_{1} and i_{2}. Based on the fact that $\sigma(i)+\tau(i) \equiv b_{i}(\bmod n)$ for each $i \neq i_{1}, i_{2}$, one can transform σ and τ into suitable permutations for b_{1}, \ldots, b_{n}. All congruences below are assumed modulo n.

First we construct a three-column rectangular array

$\sigma\left(i_{1}\right)$	$-b_{i_{1}}$	$\tau\left(i_{1}\right)$
$\sigma\left(i_{2}\right)$	$-b_{i_{2}}$	$\tau\left(i_{2}\right)$
$\sigma\left(i_{3}\right)$	$-b_{i_{3}}$	$\tau\left(i_{3}\right)$
\vdots	\vdots	\vdots
$\sigma\left(i_{p-1}\right)$	$-b_{i_{p-1}}$	$\tau\left(i_{p-1}\right)$
$\sigma\left(i_{p}\right)$	$-b_{i_{p}}$	$\tau \tau\left(i_{p}\right)$
$\sigma\left(i_{p+1}\right)$	$-b_{i_{p+1}}$	$\tau\left(i_{p+1}\right)$
\vdots	\vdots	\vdots
$\sigma\left(i_{q-1}\right)$	$-b_{i_{q-1}}$	$\tau\left(i_{q-1}\right)$
$\sigma\left(i_{q}\right)$	$-b_{i_{q}}$	$\tau\left(i_{q}\right)$

whose rows are some of the ordered triples $T_{i}=\left(\sigma(i),-b_{i}, \tau(i)\right), i=1, \ldots, n$. In the first two rows, write the triples $T_{i_{1}}$ and $T_{i_{2}}$, respectively. Since σ and τ are permutations of $1, \ldots, n$, there is a unique index i_{3} such that $\sigma\left(i_{1}\right)+\tau\left(i_{3}\right) \equiv b_{i_{2}}$. Write the triple $T_{i_{3}}$ in row 3 . There is a unique i_{4} such that $\sigma\left(i_{2}\right)+\tau\left(i_{4}\right) \equiv b_{i_{3}}$; write the triple $T_{i_{4}}$ in row 4, and so on. Stop the first moment a number from column 1 occurs in this column twice, as i_{p} in row p and i_{q} in row q, where $p<q$.

We claim that $p=1$ or $p=2$. Assume on the contrary that $p>2$ and consider the subarray containing rows p through q. Each of these rows has sum 0 modulo n, because $\sigma(i)+\tau(i) \equiv b_{i}$ for $i \neq i_{1}, i_{2}$, as already mentioned. On the other hand, by construction the sum in each downward right diagonal of the original array is also 0 modulo n. It follows that the six boxed entries add up to 0 modulo n, i. e.

$$
-b_{i_{p}}+\tau\left(i_{p}\right)+\tau\left(i_{p+1}\right)+\sigma\left(i_{q-1}\right)+\sigma\left(i_{q}\right)-b_{i_{q}} \equiv 0
$$

Now, $i_{p}=i_{q}$ gives $b_{i_{q}} \equiv \sigma\left(i_{q}\right)+\tau\left(i_{p}\right)$, so that the displayed formula becomes $-b_{i_{p}}+\tau\left(i_{p+1}\right)+\sigma\left(i_{q-1}\right) \equiv 0$. And since $\sigma\left(i_{p-1}\right)-b_{i_{p}}+\tau\left(i_{p+1}\right) \equiv 0$ by the remark about diagonals, we obtain $\sigma\left(i_{p-1}\right)=\sigma\left(i_{q-1}\right)$. This implies $i_{p-1}=i_{q-1}$, in contradiction with the definition of p and q. Thus $p=1$ or $p=2$ indeed.

Now delete the repeating q th row of the array. Then shift cyclically column 1 and column 3 by moving each of their entries one position down and one position up, respectively. The sum in each row of the new array is 0 modulo n, except possibly in the first and the last row ("most" of the new rows used to be diagonals of the initial array). For $p=1$, the last row sum is also 0 modulo n, in view of $i_{p}=i_{q}=i_{1}$ and $\sigma\left(i_{q-2}\right)-b_{i_{q-1}}+\tau\left(i_{q}\right) \equiv 0$ (see the array on the left below). A single change is needed to accomodate the case $p=2$: in column 3, interchange the top entry $\tau\left(i_{2}\right)$ and the bottom entry $\tau\left(i_{1}\right)$ (see the array on the right). The last row sum becomes 0 modulo n since $i_{p}=i_{q}=i_{2}$.

$\sigma\left(i_{q-1}\right)$	$-b_{i_{1}}$	$\tau\left(i_{2}\right)$	$\sigma\left(i_{q-1}\right)$	$-b_{i_{1}}$	$\tau\left(i_{1}\right)$
$\sigma\left(i_{1}\right)$	$-b_{i_{2}}$	$\tau\left(i_{3}\right)$	$\sigma\left(i_{1}\right)$	$-b_{i_{2}}$	$\tau\left(i_{3}\right)$
$\sigma\left(i_{2}\right)$	$-b_{i_{3}}$	$\tau\left(i_{4}\right)$	$\sigma\left(i_{2}\right)$	$-b_{i_{3}}$	$\tau\left(i_{4}\right)$
\vdots	\vdots	\vdots	\vdots	\vdots	\vdots
$\sigma\left(i_{q-3}\right)$	$-b_{i_{q-2}}$	$\tau\left(i_{q-1}\right)$	$\sigma\left(i_{q-3}\right)$	$-b_{i_{q-2}}$	$\tau\left(i_{q-1}\right)$
$\sigma\left(i_{q-2}\right)$	$-b_{i_{q-1}}$	$\tau\left(i_{1}\right)$	$\sigma\left(i_{q-2}\right)$	$-b_{i_{q-1}}$	$\tau\left(i_{2}\right)$
	$(p=1)$				

For both $p=1$ and $p=2$, column 1 and column 3 are permutations the numbers of $\sigma\left(i_{1}\right), \ldots, \sigma\left(i_{q-1}\right)$ and $\tau\left(i_{1}\right), \ldots, \tau\left(i_{q-1}\right)$, respectively. So, adding the triples T_{i} not involved in the construction above, we obtain permutations σ^{\prime} and τ^{\prime} of $1, \ldots, n$ in column 1 and column 3 such that $\sigma^{\prime}(i)+\tau^{\prime}(i) \equiv b_{i}$ for all $i \neq i_{1}$. Finally, the relation $\sigma^{\prime}\left(i_{1}\right)+\tau^{\prime}\left(i_{1}\right) \equiv b_{i_{1}}$ follows from the fact that $\Sigma\left(\sigma^{\prime}(i)+\tau^{\prime}(i)\right) \equiv 0 \equiv \Sigma b_{i}$.

We proved that the statement remains true if we change elements of the original sequence a_{1}, \ldots, a_{n} two at a time. However, one can obtain from any given a_{1}, \ldots, a_{n} any other zero-sum sequence by changing two elements at a time. (The condition that the sequence has sum zero modulo n is used here again.) And because the claim is true for any constant sequence, the conclusion follows.

C8. Let M be a convex n-gon, $n \geq 4$. Some $n-3$ of its diagonals are coloured green and some other $n-3$ diagonals are coloured red, so that no two diagonals of the same colour meet inside M. Find the maximum possible number of intersection points of green and red diagonals inside M.

Solution. We start with some preliminary observations. It is well-known that $n-3$ is the maximum number of nonintersecting diagonals in a convex n-gon and that any such $n-3$ diagonals partition the n-gon into $n-2$ triangles. It is also known (and not hard to show by induction) that at least two nonadjacent vertices are then left free; that is, there are at least two diagonals cutting off triangles from the n-gon.

Passing to the conditions of the problem, for any diagonal d, denote by $f(d)$ the number of green/red inresections lying on d. Take any pair of green diagonals d, d^{\prime} and suppose there are k vertices, including the endpoints of d and d^{\prime}, of the part of M between d and d^{\prime}. The remaining $n-k$ vertices span a convex polygon $A \ldots B C \ldots D$; here A and B are the vertices of M, adjacent to the endpoints of d, outside the "part of M " just mentioned, and C and D are the vertices adjacent to the endpoints of d^{\prime}, also outside that part. (A, B can coincide, as well as C, D.)

Let m be the number of red segments in the polygon $A \ldots B C \ldots D$. Since this $(n-k)$-gon has at most $n-k-3$ nonintersecting diagonals, we get

$$
m \leq(n-k-3)+2
$$

the last ' 2 ' comes from the segments $A D$ and $B C$, which also can be red.
Each one of these m red segments intersects both d and d^{\prime}. Each one of the remaining $n-3-m$ red segments can meet at most one of d, d^{\prime}. Hence follows the estimate

$$
f(d)+f\left(d^{\prime}\right) \leq 2 m+(n-3-m)=n-3+m \leq n-3+(n-k-1)=2 n-k-4 .
$$

Now we pair the green diagonals in the following way: we choose any two green diagonals that cut off two triangles from M; they constitute the first pair d_{1}, d_{2}. Then we choose two green diagonals that cut off two triangles from the residual ($n-2$)-gon, to make up the second pair d_{3}, d_{4}, and so on; $d_{2 r-1}, d_{2 r}$ are the two diagonals in the r-th pairing. If $n-3$ is odd, the last green diagonal remains unpaired.

The polygon obtained after the r-th pairing has $n-2 r$ vertices. Two sides of that polygon are the two diagonals from that pairing; its remaining sides are either sides of M or some of the green diagonals $d_{1}, \ldots, d_{2 r}$. There are at most $2 r$ vertices of M outside the part of M between $d_{2 r-1}$ and $d_{2 r}$. Thus, denoting by k_{r} the number of vertices of that part, we have $k_{r} \geq n-2 r$.

In view of the previous estimates, the number of intersection points on those two diagonals satisfies the inequality

$$
f\left(d_{2 r-1}\right)+f\left(d_{2 r}\right) \leq 2 n-k_{r}-4 \leq n+2 r-4
$$

If $n-3$ is even, then $d_{1}, d_{2}, \ldots, d_{n-3}$ are all the green diagonals; and if $n-3$ is odd, the last unpaired green diagonal can meet at most $n-3$ (i.e., all) red ones. Thus, writing $n-3=2 \ell+\varepsilon, \varepsilon \in\{0,1\}$, we conclude that the total number of intersection points does not exceed the sum

$$
\begin{aligned}
\sum_{r=1}^{\ell}(n+2 r-4)+\varepsilon \cdot & (n-3)=\ell(2 \ell+\varepsilon-1)+\ell(\ell+1)+\varepsilon(2 \ell+\varepsilon) \\
& =3 \ell^{2}+\varepsilon(3 \ell+1)=\left\lceil\frac{3}{4}(n-3)^{2}\right\rceil
\end{aligned}
$$

where $\lceil t\rceil$ is the least integer not less than t. (For $n=4$ the void sum $\sum_{r=1}^{0}$ evaluates to 0.)

The following example shows that this value can be attained, for both n even and n odd. Let $P Q$ and $R S$ be two sides of M chosen so that the diagonals $Q R$ and $S P$ do not meet and, moreover, so that: if U is the part of the boundary of M between Q and R, and V is the part of the boundary of M between S and P $(S, P \notin U, Q, R \notin V)$, then the numbers of vertices of M on U and on V differ by at most 1 .

Colour in green: the diagonal $P R$, all diagonals connecting P to vertices on U and all diagonals connecting R to vertices on V.

Colour in red: the diagonal $Q S$, all diagonals connecting Q to vertices on V and all diagonals connecting S to vertices on U.

Then equality holds in the estimate above. In conclusion, $\left\lceil\frac{3}{4}(n-3)^{2}\right\rceil$ is the greatest number of intersection points available.

Comment. It seems that the easiest way to verify that these examples indeed yield equality in the estimates obtained is to draw a diagram and visualise the process of detaching the corner triangles in appropriate pairings; all inequalities that appear in the arguments above turn into equalities. This is also the way (by inspecting the detaching procedure) in which it is expected that the solver can construct these examples.

Geometry

G1. In a triangle $A B C$ satisfying $A B+B C=3 A C$ the incircle has centre I and touches the sides $A B$ and $B C$ at D and E, respectively. Let K and L be the symmetric points of D and E with respect to I. Prove that the quadrilateral $A C K L$ is cyclic.

Solution. Let P be the other point of intersection of $B I$ with the circumcircle of triangle $A B C$, let M be the midpoint of $A C$ and N the projection of P to $I K$. Since $A B+B C=3 A C$, we get $B D=B E=A C$, so $B D=2 C M$. Furthermore, $\angle A B P=\angle A C P$, therefore the triangles $D B I$ and $M C P$ are similar in ratio 2 .

It is a known fact that $P A=P I=P C$. Moreover, $\angle N P I=\angle D B I$, so that the triangles $P N I$ and $C M P$ are congruent. Hence $I D=2 P M=2 I N$; i. e. N is the midpoint of $I K$. This shows that $P N$ is the perpendicular bisector of $I K$, which gives $P C=P K=P I$. Analogously, $P A=P L=P I$. So P is the centre of the circle through A, K, I, L and C.

Comment. Variations are possible here. One might for instance define N to be the midpoint of $I K$ and apply Ptolemy's theorem to the quadrilateral $B A P C$ and deduce that the triangles $N P I$ and $D B I$ are similar in ratio 2 to conclude that $P N \perp I K$.

G2. Six points are chosen on the sides of an equilateral triangle $A B C$: A_{1}, A_{2} on $B C, B_{1}, B_{2}$ on $C A$, and C_{1}, C_{2} on $A B$, so that they are the vertices of a convex hexagon $A_{1} A_{2} B_{1} B_{2} C_{1} C_{2}$ with equal side lengths. Prove that the lines $A_{1} B_{2}, B_{1} C_{2}$ and $C_{1} A_{2}$ are concurrent.

First solution. Let P be the point inside triangle $A B C$ such that the triangle $A_{1} A_{2} P$ is equilateral. Note that $A_{1} P \| C_{1} C_{2}$ and $A_{1} P=C_{1} C_{2}$, therefore $A_{1} P C_{1} C_{2}$ is a rhombus. Similarly, $A_{2} P B_{2} B_{1}$ is also a rhombus. Hence, the triangle $C_{1} B_{2} P$ is equilateral. Let $\alpha=\angle B_{2} B_{1} A_{2}, \beta=\angle B_{1} A_{2} A_{1}$ and $\gamma=\angle C_{1} C_{2} A_{1}$. Then α and β are external angles of the triangle $C B_{1} A_{2}$ with $\angle C=60^{\circ}$, and hence $\alpha+\beta=240^{\circ}$. Note also that $\angle B_{2} P A_{2}=\alpha$ and $\angle C_{1} P A_{1}=\gamma$. So,

$$
\alpha+\gamma=360^{\circ}-\left(\angle C_{1} P B_{2}+\angle A_{1} P A_{2}\right)=240^{\circ}
$$

Hence, $\beta=\gamma$. Similarly, $\angle C_{1} B_{2} B_{1}=\beta$. Therefore the triangles $A_{1} A_{2} B_{1}$, $B_{1} B_{2} C_{1}$ and $C_{1} C_{2} A_{1}$ are congruent, which implies that the triangle $A_{1} B_{1} C_{1}$ is equilateral. This shows that $B_{1} C_{2}, A_{1} B_{2}$ and $C_{1} A_{2}$ are the perpendicular bisectors of $A_{1} C_{1}, C_{1} B_{1}$ and $B_{1} A_{1}$; hence the result.

Second solution. Let $\alpha=\angle A C_{2} B_{2}, \beta=\angle A B_{1} C_{1}$ and K be the intersection of $B_{1} C_{1}$ with $B_{2} C_{2}$. The triangles $B_{1} B_{2} C_{1}$ and $B_{2} C_{1} C_{2}$ are isosceles, so $\angle B_{1} C_{1} B_{2}=\beta$ and $\angle C_{2} B_{2} C_{1}=\alpha$.

Denoting further $\angle B_{1} C_{2} B_{2}=\varphi$ and $\angle C_{1} B_{1} C_{2}=\psi$ we get (from the triangle $A B_{1} C_{2}$) $\alpha+\beta+\varphi+\psi=120^{\circ}$; and (from the triangles $K B_{1} C_{2}, K C_{1} B_{2}$) $\alpha+\beta=\varphi+\psi$. Then $\alpha+\beta=60^{\circ}, \angle C_{1} K B_{2}=120^{\circ}$, and so the quadrilateral
$A B_{2} K C_{1}$ is cyclic. Hence $\angle K A C_{1}=\alpha$ and $\angle B_{2} A K=\beta$. From $K C_{2}=K A=$ $K B_{1}$ and $\angle B_{1} K C_{2}=120^{\circ}$ we get $\varphi=\psi=30^{\circ}$.

In the same way, one shows that $\angle B_{2} A_{1} B_{1}=\angle C_{2} B_{1} A_{1}=30^{\circ}$. It follows that $A_{1} B_{1} B_{2} C_{2}$ is a cyclic quadrilateral and since its opposite sides $A_{1} C_{2}$ and $B_{1} B_{2}$ have equal lengths, it is an isosceles trapezoid. This implies that $A_{1} B_{1}$ and $C_{2} B_{2}$ are parallel lines, hence $\angle A_{1} B_{1} C_{2}=\angle B_{2} C_{2} B_{1}=30^{\circ}$.

Thus, $B_{1} C_{2}$ bisects the angle $C_{1} B_{1} A_{1}$. Similarly, by cyclicity, $C_{1} A_{2}$ and $A_{1} B_{2}$ are the bisectors of the angles $A_{1} C_{1} B_{1}$ and $B_{1} A_{1} C_{1}$, therefore they are concurrent.

Third solution. Consider the six vectors of equal lengths, with zero sum:

$$
\mathbf{u}=\overrightarrow{B_{2} C_{1}}, \mathbf{u}^{\prime}=\overrightarrow{C_{1} C_{2}}, \mathbf{v}=\overrightarrow{C_{2} A_{1}}, \mathbf{v}^{\prime}=\overrightarrow{A_{1} A_{2}}, \mathbf{w}=\overrightarrow{A_{2} B_{1}}, \mathbf{w}^{\prime}=\overrightarrow{B_{1} B_{2}}
$$

Since $\mathbf{u}^{\prime}, \mathbf{v}^{\prime}, \mathbf{w}^{\prime}$ clearly add up to zero vector, the same is true of $\mathbf{u}, \mathbf{v}, \mathbf{w}$. So $\mathbf{u}+\mathbf{v}=-\mathbf{w}$.

The sum of two vectors of equal lengths is a vector of the same length only if they make an angle of 120°. This follows e. g. from the parallelogram interpretation of vector addition or from the law of cosines. Therefore the three lines $B_{2} C_{1}, C_{2} A_{1}, A_{2} B_{1}$ define an equilateral triangle.

Consequently the "corner" triangles $A C_{1} B_{2}, B A_{1} C_{2}, C B_{1} A_{2}$ are similar, and in fact congruent, as $B_{2} C_{1}=C_{2} A_{1}=A_{2} B_{1}$. Thus the whole configuration is invariant under rotation through 120° about O, the centre of the triangle $A B C$.

In view of the equalities $\angle B_{2} C_{1} C_{2}=\angle C_{2} A_{1} A_{2}$ and $\angle A_{1} A_{2} B_{1}=\angle B_{1} B_{2} C_{1}$ the line $B_{1} C_{2}$ is a symmetry axis of the hexagon $A_{1} A_{2} B_{1} B_{2} C_{1} C_{2}$, so it must pass through the rotation centre O. In conclusion, the three lines in question concur at O.

G3. Let $A B C D$ be a parallelogram. A variable line ℓ passing through the point A intersects the rays $B C$ and $D C$ at points X and Y, respectively. Let K and L be the centres of the excircles of triangles $A B X$ and $A D Y$, touching the sides $B X$ and $D Y$, respectively. Prove that the size of angle $K C L$ does not depend on the choice of the line ℓ.

First solution. Let $\angle B A X=2 \alpha, \angle D A Y=2 \beta$. The points K and L lie on the internal bisectors of the angles A in triangles $A B X, A D Y$ and on the external bisectors of their angles B and D. Taking B^{\prime} and D^{\prime} to be any points on the rays $A B$ and $A D$ beyond B and D, we have

$$
\begin{gathered}
\angle K A B=\angle K A X=\alpha, \quad \angle L A D=\angle L A Y=\beta \\
\angle K B B^{\prime}=\frac{1}{2} \angle B A D=\alpha+\beta=\angle L D D^{\prime}, \quad \text { so } \quad \angle A K B=\beta, \quad \angle A L D=\alpha
\end{gathered}
$$

Let the bisector of angle $B A D$ meet the circumcircle of triangle $A K L$ at a second point M. The vectors $\overrightarrow{B K}, \overrightarrow{A M}, \overrightarrow{D L}$ are parallel and equally oriented.

Since K and L lie on distinct sides of $A M$, we see that $A K M L$ is a cyclic convex quadrilateral, and hence

$$
\angle M K L=\angle M A L=\angle M A D-\angle L A D=\alpha ; \quad \text { likewise }, \quad \angle M L K=\beta
$$

Hence the triangles $A K B, K L M, L A D$ are similar, so $A K \cdot L M=K B \cdot K L$ and $K M \cdot L A=K L \cdot L D$. Applying Ptolemy's theorem to the cyclic quadrilateral

AKLM, we obtain

$$
A M \cdot K L=A K \cdot L M+K M \cdot L A=(K B+L D) \cdot K L
$$

implying $A M=B K+D L$.
The convex quadrilateral $B K L D$ is a trapezoid. Denoting the midpoints of its sides $B D$ and $K L$ respectively by P and Q, we have

$$
2 \cdot P Q=B K+D L=A M
$$

notice that the vector $\overrightarrow{P Q}$ is also parallel to the three vectors mentioned earlier, in particular to $\overrightarrow{A M}$, and equally oriented.

Now, P is also the midpoint of $A C$. It follows from the last few conclusions that Q is the midpoint of side $C M$ in the triangle $A C M$. So the segments $K L$ and $C M$ have a common midpoint, which means that $K C L M$ is a parallelogram. Thus, finally,

$$
\angle K C L=\angle K M L=180^{\circ}-(\alpha+\beta)=180^{\circ}-\frac{1}{2} \angle B A D
$$

which is a constant value, depending on the parallelogram $A B C D$ alone.

Second solution. Let the line $A K$ meet $D C$ at E, and let the line $A L$ meet $B C$ at F. Denote again $\angle B A X=2 \alpha, \angle D A Y=2 \beta$. Then $\angle B F A=\beta$. Moreover, $\angle K B F=(1 / 2) \angle B A D=\alpha+\beta=\angle K A F$. Since the points A and B lie on the same side of the line $K F$, we infer that $A B K F$ is a cyclic quadrilateral.

Speaking less rigourously, the points A, K, B, F are concyclic. The points E and C lie on the lines $A K$ and $B F$, and the segment $E C$ is parallel to $A B$. Therefore the points E, K, C, F lie on a circle, too; this follows easily from an inspection of angles - one just has to consider three cases, according as two, one or none of the points E, C lie(s) on the same side of line $K F$ as the segment $A B$ does.

Analogously, the points F, L, C, E lie on a circle. Clearly C, K, L are three distinct points. It follows that all five points C, E, F, K, L lie on a circle Ω.

From the cyclic quadrilateral $A B K F$ we have $\angle B F K=\angle B A K=\alpha$, which combined with $\angle B F A=\beta$ implies $\angle K F A=\alpha+\beta$. Since the points A, F, L are in line, $\angle K F L$ is either $\alpha+\beta$ or $180^{\circ}-(\alpha+\beta)$; and since K, C, F, L are concyclic, also $\angle K C L$ is either $\alpha+\beta$ or $180^{\circ}-(\alpha+\beta)$.

All that remains is to eliminate one of these two possibilities. To this effect, we will show that the points A and C lie on the same side of the line $K L$.

Assume without loss of generality that Y, the point where ℓ cuts the ray $D C$, lies beyond C on that ray. Then so does E.

If also F lies on the ray $B C$ beyond C then Ω does not penetrate the interior of $A B C D$. Hence the line $K L$ does not separate A from C. And if F lies on the segment $B C$ then L lies in the half-plane with edge $B C$, not containing A. Since K also lies in that half-plane, and since L lies on the opposite side of the line $D C$ than A, this again implies that the line $K L$ does not separate A from C.

Notice that the circle Ω intersects each one of the rays $A K, A L$ at two points $(K, E$, resp. $L, F)$, possibly coinciding. Thus A lies outside this circle. Knowing that C and A lie on the same side of the line $K L$, we infer that $\angle K C L>\angle K A L=\alpha+\beta$. This leaves the other possibility as the unique one: $\angle K C L=180^{\circ}-(\alpha+\beta)$.

Comment. Alternatively, continuity argument could be applied. If $\angle K C L$ takes on only two values, it must be a constant.

In our attempt to stay within the realm of classical geometry, we were forced to investigate the disposition of the points and lines in question. Notice that the first solution is case-independent.

Other solutions are available by calculation, be it with complex numbers or linear transformations in the coordinate plane; but no one of such approaches seems to be straightforward.

G4. Let $A B C D$ be a fixed convex quadrilateral with $B C=D A$ and $B C$ not parallel to $D A$. Let two variable points E and F lie on the sides $B C$ and $D A$, respectively, and satisfy $B E=D F$. The lines $A C$ and $B D$ meet at P, the lines $B D$ and $E F$ meet at Q, the lines $E F$ and $A C$ meet at R. Prove that the circumcircles of triangles $P Q R$, as E and F vary, have a common point other than P.

First solution. Let the perpendicular bisectors of the segments $A C$ and $B D$ meet at O. We show that the circumcircles of triangles $P Q R$ pass through O, which is fixed.

It follows from the equalities $O A=O C, O B=O D$ and $D A=B C$ that the triangles $O D A$ and $O B C$ are congruent. So the rotation about the point O through the angle $B O D$ takes the point B to D and the point C to A. Since $B E=D F$, the same rotation takes the point E to F. This implies that $O E=O F$ and

$$
\angle E O F=\angle B O D=\angle C O A \text { (= the angle of rotation). }
$$

These equalities imply that the isosceles triangles $E O F, B O D$ and $C O A$ are similar.

Suppose first that the three lines $A B, C D$ and $E F$ are not all parallel. Assume without loss of generality that the lines $E F$ and $C D$ meet at X. From the Menelaus theorem, applied to the triangles $A C D$ and $B C D$, we obtain

$$
\frac{A R}{R C}=\frac{A F}{F D} \cdot \frac{D X}{X C}=\frac{C E}{E B} \cdot \frac{D X}{X C}=\frac{D Q}{Q B} .
$$

In the case $A B\|E F\| C D$, the quadrilateral $A B C D$ is an isosceles trapezoid, and E, F are the midpoints of its lateral sides. The equality $A R / R C=D Q / Q B$ is then obvious.

It follows from the this equality and the similitude of triangles $B O D$ and $C O A$ that the triangles $B O Q$ and $C O R$ are similar. Thus $\angle B Q O=\angle C R O$, which means that the points P, Q, R and O are concyclic.

Second solution. This is just a variation of the preceding proof. As in the first solution, we show that the triangles $E O F, B O D$ and $C O A$ are similar. Denote by K, L, M the feet of the perpendiculars from the point O onto the lines $E F$, $B D, A C$, respectively. In view of the similarity just mentioned,

$$
\frac{O K}{O E}=\frac{O L}{O B}=\frac{O M}{O C}=\lambda \quad \text { and } \quad \angle E O K=\angle B O L=\angle C O M=\varphi
$$

Therefore the rotation about the point O through the angle φ, composed with the homothety with centre O and ratio λ, takes the points B, E, C to the points L, K, M, respectively. This implies that the points L, K, M are collinear. Hence by the theorem about the Simson line we conclude that the circumcircle of $P Q R$ passes through O.

Comment. The proposer observes that (as can be seen from the above solutions) the point under discussion can also be identified as the second common point of the circumcircles of triangles $B C P$ and $D A P$.

G5. Let $A B C$ be an acute-angled triangle with $A B \neq A C$, let H be its orthocentre and M the midpoint of $B C$. Points D on $A B$ and E on $A C$ are such that $A E=A D$ and D, H, E are collinear. Prove that $H M$ is orthogonal to the common chord of the circumcircles of triangles $A B C$ and $A D E$.

Solution. Let O and O_{1} be the circumcentres of the triangles $A B C$ and $A D E$, respectively. Since the radical axis of two circles is perpendicular to their line of centres, we have to prove that $O O_{1}$ is parallel to $H M$.

Consider the diameter $A P$ of the circumcircle of $A B C$ and let B_{1} and C_{1} be the feet of the altitudes from B and C in the triangle $A B C$. Since $A B \perp B P$ and $A C \perp C P$, it follows that $H C \| B P$ and $H B \| C P$. Thus $B P C H$ is a parallelogram; as a consequence, $H M$ cuts the circle at P.

The triangle $A D E$ is isosceles, so its circumcentre O_{1} lies on the bisector of the angle $B A C$. We shall prove that the intersection Q of $A O_{1}$ with $H P$ is the symmetric of A with respect to O_{1}. The rays $A H$ and $A O$ are isogonal conjugates, so the line $A Q$ bisects $\angle H A P$. Then the bisector theorem in the triangle $A H P$ yields

$$
\frac{Q H}{Q P}=\frac{A H}{A P}
$$

Because $A D E$ is an isosceles triangle, an easy angle computation shows that $H D$ bisects $\angle C_{1} H B$. Hence the bisector theorem again gives

$$
\frac{D C_{1}}{D B}=\frac{H C_{1}}{H B}
$$

Applying once more the fact that $A H$ and $A P$ are isogonal lines, we see that the right triangles $C_{1} H A$ and $C P A$ are similar, so

$$
\frac{A H}{A P}=\frac{C_{1} H}{C P}=\frac{C_{1} H}{B H}
$$

the last equality holds because $B P C H$ is a parallelogram, so that $P C=B H$.
Summarizing, we conclude that

$$
\frac{D C_{1}}{D B}=\frac{Q H}{Q P}
$$

that is, $Q D \| H C_{1}$. In the same way we obtain $Q E \| H B_{1}$. As a consequence, $A Q$ is a diameter of the circumcircle of triangle $A D E$, implying that O_{1} is the midpoint of $A Q$. Thus $O O_{1} \| P Q$; that is, $O O_{1}$ is parallel to $H M$.

G6. The median $A M$ of a triangle $A B C$ intersects its incircle ω at K and L. The lines through K and L parallel to $B C$ intersect ω again at X and Y. The lines $A X$ and $A Y$ intersect $B C$ at P and Q. Prove that $B P=C Q$.

First solution. Without loss of generality, one can assume the notation in the figure. Let ω_{1} be the image of ω under the homothety with centre A and ratio $A M / A K$. This homothety takes K to M and hence X to P, because $K X \| B C$. So ω_{1} is a circle through M and P inscribed in $\angle B A C$. Denote its points of tangency with $A B$ and $A C$ by U_{1} and V_{1}, respectively. Analogously, let ω_{2} be the image of ω under the homothety with center A and ratio $A M / A L$. Then ω_{2} is a circle through M and Q also inscribed in $\angle B A C$. Let it touch $A B$ and $A C$ at U_{2} and V_{2}, respectively. Then $U_{1} U_{2}=V_{1} V_{2}$, as $U_{1} U_{2}$ and $V_{1} V_{2}$ are the common external tangents of ω_{1} and ω_{2}.

By the power-of-a-point theorem in ω_{1} and ω_{2}, one has $B P=B U_{1}^{2} / B M$ and $C Q=C V_{2}^{2} / C M$. Since $B M=C M$, it suffices to show that $B U_{1}=C V_{2}$.

Consider the second common point N of ω_{1} and ω_{2} (M and N may coincide, in which case the "line $M N$ " is the common tangent). Let the line $M N$ meet $A B$ and $A C$ at D and E, respectively. Clearly D is the midpoint of $U_{1} U_{2}$ because $D U_{1}^{2}=D M \cdot D N=D U_{2}^{2}$ by the power-of-a-point theorem again. Likewise, E is the midpoint of $V_{1} V_{2}$. Note that B and C are on different sides of $D E$, which
reduces the problem to proving that $B D=C E$.
Since $D E$ is perpendicular to the line of centres of ω_{1} and ω_{2}, we have $\angle A D M=\angle A E M$. Then the law of sines for triangles $B D M$ and $C E M$ gives

$$
B D=\frac{B M \sin \angle B M D}{\sin \angle B D M}=\frac{B M \sin \angle B M D}{\sin \angle A D M}, \quad C E=\frac{C M \sin \angle C M E}{\sin \angle A E M}
$$

Because $B M=C M$ and $\angle B M D=\angle C M E$, the conclusion follows.
Second solution. Let ω touch $B C, C A$ and $A B$ at D, E and F, respectively, and let I be the incentre of triangle $A B C$. The key step of this solution is the observation that the lines $A M, E F$ and $D I$ are concurrent.

Indeed, suppose that $E F$ and $D I$ meet at T. Let the parallel through T to $B C$ meet $A B$ and $A C$ at U and V, respectively. One has $I T \perp U V$, and since $I E \perp A C$, it follows that the points I, T, V and E are concyclic. Moreover, V and E lie on the same side of the line $I T$, so that $\angle I V T=\angle I E T$. By symmetry, $\angle I U T=\angle I F T$. But $\angle I E T=\angle I F T$, hence $U V I$ is an isosceles triangle with altitude $I T$ to its base $U V$. So T is the midpoint of $U V$, implying that $A T$ meets $B C$ at its midpoint M.

Now observe that $E F$ is the polar of A with respect to ω, therefore

$$
\frac{A K}{A L}=\frac{T K}{T L} .
$$

Furthermore, let $L Y$ meet $A P$ at Z. Then

$$
\frac{K X}{L Z}=\frac{A K}{A L} .
$$

The line $I T$ is the common perpendicular bisector of $K X$ and $L Y$. As we have shown, T lies on $A M$, i. e. on $K L$. Hence

$$
\frac{K X}{L Y}=\frac{T K}{T L}
$$

The last three relations show that L is the midpoint of $Y Z$, so M is the midpoint of $P Q$.

G7. In an acute triangle $A B C$, let D, E, F, P, Q, R be the feet of perpendiculars from A, B, C, A, B, C to $B C, C A, A B, E F, F D, D E$, respectively. Prove that $p(A B C) p(P Q R) \geq p(D E F)^{2}$, where $p(T)$ denotes the perimeter of the triangle T.

First solution. The points D, E and F are interior to the sides of triangle $A B C$ which is acute-angled. It is widely known that the triangles $A B C$ and $A E F$ are similar. Equivalently, the lines $B C$ and $E F$ are antiparallel with respect to the sides of $\angle A$. Similar conclusions hold true for the pairs of lines $C A, F D$ and $A B, D E$. This is a general property related to the feet of the altitudes in every triangle. In particular, it follows that P, Q and R are interior to the respective sides of triangle $D E F$.

Let K and L be the feet of the perpendiculars from E and F to $A B$ and $A C$, respectively. By the remark above, $K L$ and $E F$ are antiparallel with respect to the sides of the same $\angle A$. Therefore $\angle A K L=\angle A E F=\angle A B C$, meaning that $K L \| B C$.

Now, $E K$ and $B Q$ are respective altitudes in the similar triangles $A E F$ and $D B F$, so they divide the opposite sides in the same ratio:

$$
\frac{A K}{K F}=\frac{D Q}{Q F}
$$

This implies $K Q \| A D$. By symmetry, $L R \| A D$. Since $K L$ is parallel to $B C$, it is perpendicular to $A D$. It follows that $Q R \geq K L$.

From the similar triangles $A K L, A E F, A B C$ we obtain

$$
\frac{K L}{E F}=\frac{A K}{A E}=\cos \angle A=\frac{A E}{A B}=\frac{E F}{B C} .
$$

Hence $Q R \geq E F^{2} / B C$. Likewise, $P Q \geq D E^{2} / A B$ and $R P \geq F D^{2} / C A$.
Therefore it suffices to show that

$$
(A B+B C+C A)\left(\frac{D E^{2}}{A B}+\frac{E F^{2}}{B C}+\frac{F D^{2}}{C A}\right) \geq(D E+E F+F A)^{2}
$$

which is a direct consequence of the Cauchy-Schwarz inequality.

Second solution. Let $\alpha=\angle A, \beta=\angle B, \gamma=\angle C$. There is no loss of generality in assuming that triangle $A B C$ has circumradius 1. The triangles $A E F$ and $A B C$ are similar in ratio $\cos \alpha$, so $E F=B C \cos \alpha=\sin 2 \alpha$. By symmetry, $F D=\sin 2 \beta, D E=\sin 2 \gamma$. Next, since $\angle B D F=\angle C D E=\alpha$, it follows that $D Q=B D \cos \alpha=A B \cos \beta \cos \alpha=2 \cos \alpha \cos \beta \sin \gamma$.

Similarly, $D R=2 \cos \alpha \sin \beta \cos \gamma$. Now the law of cosines for triangle $D Q R$ gives after short manipulation

$$
Q R=\sin 2 \alpha \sqrt{1-\sin 2 \beta \sin 2 \gamma}
$$

Likewise, $R P=\sin 2 \beta \sqrt{1-\sin 2 \gamma \sin 2 \alpha}, P Q=\sin 2 \gamma \sqrt{1-\sin 2 \alpha \sin 2 \beta}$.
Therefore the given inequality is equivalent to

$$
2 \sum \sin \alpha \sum \sin 2 \alpha \sqrt{1-\sin 2 \beta \sin 2 \gamma} \geq\left(\sum \sin 2 \alpha\right)^{2}
$$

where Σ means a cyclic sum over α, β, γ, the angles of an acute triangle. In view of this, all trigonometric functions below are positive. To eliminate the square roots, observe that

$$
1-\sin 2 \beta \sin 2 \gamma=\sin ^{2}(\beta-\gamma)+\cos ^{2} \alpha \geq \cos ^{2} \alpha
$$

Hence it suffices to establish $2 \sum \sin \alpha \sum \sin 2 \alpha \cos \alpha \geq\left(\sum \sin 2 \alpha\right)^{2}$. This is yet another immediate consequence of the Cauchy-Schwarz inequality:

$$
\sum 2 \sin \alpha \sum \sin 2 \alpha \cos \alpha \geq\left(\sum \sqrt{2 \sin \alpha} \sqrt{\sin 2 \alpha \cos \alpha}\right)^{2}=\left(\sum \sin 2 \alpha\right)^{2}
$$

Third solution. A stronger conclusion is true, namely:

$$
\frac{p(A B C)}{p(D E F)} \geq 2 \geq \frac{p(D E F)}{p(P Q R)}
$$

The left inequality is a known fact, so we consider only the right one.

It is immediate that the points A, B and C are the excentres of triangle $D E F$. Therefore P, Q and R are the tangency points of the excircles of this triangle with its sides. For the sake of clarity, let us adopt the notation $a=E F$, $b=F D, c=D E, \alpha=\angle D, \beta=\angle E, \gamma=\angle F$ now for the sides and angles of triangle $D E F$. Also, let $s=(a+b+c) / 2$. Then $E R=F Q=s-a, F P=D R=s-b$, $D Q=E P=s-c$.

Now we regard the line $D E$ as an axis by choosing the direction from D to E as the positive direction. The signed length of a line segment $U V$ on this axis will be denoted by $\overline{U V}$. Let X and Y be the orthogonal projections onto $D E$ of P and Q, respectively. On one hand, $\overline{D E}=\overline{D Y}+\overline{Y X}+\overline{X E}$. On the other hand,

$$
\overline{D Y}=D Q \cos \alpha, \quad \overline{X E}=E P \cos \beta
$$

Observe that these inequalities hold true in all cases, regardless of whether or not α and β are acute. Finally, it is clear that $\overline{Y X} \leq P Q$. In conclusion,

$$
D E=(s-c)(\cos \alpha+\cos \beta)+\overline{Y X} \leq(s-c)(\cos \alpha+\cos \beta)+P Q
$$

By symmetry,

$$
E F \leq(s-a)(\cos \beta+\cos \gamma)+Q R, \quad F D \leq(s-b)(\cos \gamma+\cos \alpha)+R P
$$

Adding up yields $p(D E F) \leq \sum(s-c)(\cos \alpha+\cos \beta)+p(P Q R)$, where again Σ denotes a cyclic sum over α, β, γ. This sum is equal to $a \cos \alpha+b \cos \beta+c \cos \gamma$, since $(s-b)+(s-c)=a,(s-c)+(s-a)=b,(s-a)+(s-b)=c$.

Now it suffices to show that $a \cos \alpha+b \cos \beta+c \cos \gamma \leq(1 / 2) p(D E F)$. Suppose that $a \leq b \leq c$; then $\cos \alpha \geq \cos \beta \geq \cos \gamma$, so one can apply Chebyshev's inequality to the triples (a, b, c) and $(\cos \alpha, \cos \beta, \cos \gamma)$. This gives

$$
a \cos \alpha+b \cos \beta+c \cos \gamma \leq \frac{1}{3}(a+b+c)(\cos \alpha+\cos \beta+\cos \gamma)
$$

But $\cos \alpha+\cos \beta+\cos \gamma \leq 3 / 2$ for every triangle, and the result follows.
Comment. This last solution shows that the proposed inequality splits into two independent ones, which can be expressed in words:

In every triangle, the perimeter of its orthic triangle is not greater than half the perimeter of the triangle itself, and the perimeter of its Nagel triangle is not smaller than half the perimeter of the triangle itself.

Whereas the first of these inequalities is indeed a very well-known fact, this seems not to be the case with the second one.

Number Theory

N1. Determine all positive integers relatively prime to all terms of the infinite sequence $a_{n}=2^{n}+3^{n}+6^{n}-1(n=1,2,3, \ldots)$.

Solution. We claim that 1 is the only such number. This amounts to showing that every prime p is a divisor of a certain a_{n}. This is true for $p=2$ and $p=3$ as $a_{2}=48$.

Fix a prime $p>3$. All congruences that follow are considered modulo p. By Fermat's little theorem, one has $2^{p-1} \equiv 1,3^{p-1} \equiv 1,6^{p-1} \equiv 1$. Then the evident congruence $3+2+1 \equiv 6$ can be written as

$$
3 \cdot 2^{p-1}+2 \cdot 3^{p-1}+6^{p-1} \equiv 6, \quad \text { or } \quad 6 \cdot 2^{p-2}+6 \cdot 3^{p-2}+6 \cdot 6^{p-2} \equiv 6
$$

Simplifying by 6 shows that $a_{p-2}=2^{p-2}+3^{p-2}+6^{p-2}-1$ is divisible by p, and the proof is complete.

N2. Let a_{1}, a_{2}, \ldots be a sequence of integers with infinitely many positive and infinitely many negative terms. Suppose that for every positive integer M the numbers $a_{1}, a_{2}, \ldots, a_{M}$ leave different remainders upon division by M. Prove that every integer occurs exactly once in the sequence a_{1}, a_{2}, \ldots.

Solution. The hypothesis of the problem can be reformulated by saying that for every positive integer M the numbers $a_{1}, a_{2}, \ldots, a_{M}$ form a complete system of residue classes modulo M. Note that if $i<j$ then $a_{i} \neq a_{j}$, otherwise the set $\left\{a_{1}, \ldots, a_{j}\right\}$ would contain at most $j-1$ distinct residues modulo j. Furthermore, if $i<j \leq n$, then $\left|a_{i}-a_{j}\right| \leq n-1$, for if $m=\left|a_{i}-a_{j}\right| \geq n$, then the set $\left\{a_{1}, \ldots, a_{m}\right\}$ would contain two numbers congruent modulo m, which is impossible.

Given any $n \geq 1$, let $i(n), j(n)$ be the indices such that $a_{i(n)}, a_{j(n)}$ are respectively the smallest and the largest number among a_{1}, \ldots, a_{n}. The above arguments show that $\left|a_{i(n)}-a_{j(n)}\right|=n-1$, therefore the set $\left\{a_{1}, \ldots, a_{n}\right\}$ consists of all integers between $a_{i(n)}$ and $a_{j(n)}$.

Now let x be an arbitrary integer. Since $a_{k}<0$ for infinitely many k and the terms of the sequence are distinct, we conclude that there exists i such that $a_{i}<x$. By a similar argument, there exists j such that $x<a_{j}$. Hence, if $n>\max \{i, j\}$, we conclude that every number between a_{i} and a_{j} (x in particular) is in $\left\{a_{1}, \ldots, a_{n}\right\}$.

Comment. Proving that for every M the set $\left\{a_{1}, \ldots, a_{M}\right\}$ is a block of consecutive integers can be also achieved by induction.

N3. Let a, b, c, d, e and f be positive integers. Suppose that the sum $S=a+b+c+d+e+f$ divides both $a b c+d e f$ and $a b+b c+c a-d e-e f-f d$. Prove that S is composite.

Solution. By hypothesis, all coefficients of the quadratic polynomial

$$
\begin{aligned}
f(x) & =(x+a)(x+b)(x+c)-(x-d)(x-e)(x-f) \\
& =S x^{2}+(a b+b c+c a-d e-e f-f d) x+(a b c+d e f)
\end{aligned}
$$

are multiples of S. Evaluating f at d we get that $f(d)=(a+d)(b+d)(c+d)$ is a multiple of S. This readily implies that S is composite because each of $a+d, b+d$ and $c+d$ is less than S.

N4. Find all positive integers $n>1$ for which there exists a unique integer a with $0<a \leq n$! such that $a^{n}+1$ is divisible by n !.

Solution. The answer is " n is prime."
If $n=2$, the only solution is $a=1$. If $n>2$ is even, then a^{n} is a square, therefore $a^{n}+1$ is congruent to 1 or 2 modulo 4 , while n ! is divisible by 4 . So there is no appropriate a in this case.

From now on, n is odd. Assume that $n=p$ is a prime and that $p!\mid a^{p}+1$ for some $a, 0<a \leq p$!. By Fermat's little theorem, $a^{p}+1 \equiv a+1(\bmod p)$. So, if p does not divide $a+1$, then $a^{p-1}+\cdots+a+1=\left(a^{p}+1\right) /(a+1) \equiv 1(\bmod p)$, which is a contradiction. Thus, $p \mid a+1$.

We shall show that $\left(a^{p}+1\right) /(a+1)$ has no prime divisors $q<p$. This will be enough to deduce the uniqueness of a. Indeed, the relation

$$
(p-1)!\left\lvert\,(a+1)\left(\frac{a^{p}+1}{a+1}\right)\right.
$$

forces $(p-1)!\mid a+1$. Combined with $p \mid a+1$, this leads to $p!\mid a+1$, and hence showing $a=p!-1$.

Suppose on the contrary that $q \mid\left(a^{p}+1\right) /(a+1)$, where $q<p$ is prime. Note that q is odd. We get $a^{p} \equiv-1(\bmod q)$, therefore $a^{2 p} \equiv 1(\bmod q)$. Clearly, q is coprime to a, so $a^{q-1} \equiv 1(\bmod q)$. Writing $d=\operatorname{gcd}(q-1,2 p)$, we obtain $a^{d} \equiv 1(\bmod q)$. Since $q<p$, we have $d=2$. Hence, $a \equiv \pm 1(\bmod q)$. The case $a \equiv 1(\bmod q)$ gives $\left(a^{p}+1\right) /(a+1) \equiv 1(\bmod q)$, which is impossible. The case $a \equiv-1(\bmod q)$ gives

$$
\begin{aligned}
\frac{a^{p}+1}{a+1} & \equiv a^{p-1}-a^{p-2}+\cdots+1 \\
& \equiv(-1)^{p-1}-(-1)^{p-2}+\cdots+1 \equiv p(\bmod q)
\end{aligned}
$$

leading to $q \mid p$ which is not possible as $q<p$. So, we see that primes fulfill the conditions under discussion.

It remains to deal with the case when n is odd and composite. Let $p<n$ be the least prime divisor of n. Let p^{α} be the highest power of p which divides n !. Since $2 p<p^{2} \leq n$, we have $n!=1 \ldots p \ldots(2 p) \ldots$, so $\alpha \geq 2$. Write $m=n!/ p^{\alpha}$, and take any integer a satisfying

$$
\begin{equation*}
a \equiv-1\left(\bmod p^{\alpha-1} m\right) \tag{1}
\end{equation*}
$$

Write $a=-1+p^{\alpha-1} k$. Then

$$
a^{p}=\left(-1+p^{\alpha-1} k\right)^{p}=-1+p^{\alpha} k+p^{\alpha} \sum_{j=2}^{p}(-1)^{p-j}\binom{p}{j} p^{j(\alpha-1)} k^{j}=-1+p^{\alpha} M
$$

where M is an integer because $j(\alpha-1) \geq \alpha$ for all $j \geq 2$ and $\alpha \geq 2$. Thus p^{α} divides $a^{p}+1$, and hence also $a^{n}+1$, because $p \mid n$ and n is odd. Furthermore, m too is a divisor of $a+1$, and hence of $a^{n}+1$. Since m is coprime to $p,\left(a^{n}+1\right) / n$! is an integer for all a satisfying congruence (1). Since it is clear that there are $p>2$ integers in the interval $[1, n!]$ satisfying (1), we conclude that composite values of n do not satisfy the condition given in the problem.

Comment. The fact that no prime divisor of $\left(a^{p}+1\right) /(a+1)$ is smaller than p is not a mere curiosity. More is true and can be deduced easily from the above proof, namely that if q is a prime factor of the above number, then either $q=p$ (and this happens if and only if $p \mid a+1)$ or $q \equiv 1(\bmod p)$.

N5. Denote by $d(n)$ the number of divisors of the positive integer n. A positive integer n is called highly divisible if $d(n)>d(m)$ for all positive integers $m<n$. Two highly divisible integers m and n with $m<n$ are called consecutive if there exists no highly divisible integer s satisfying $m<s<n$.
(a) Show that there are only finitely many pairs of consecutive highly divisible integers of the form (a, b) with $a \mid b$.
(b) Show that for every prime number p there exist infinitely many positive highly divisible integers r such that $p r$ is also highly divisible.

Solution. This problem requires an analysis of the structure of the highly divisible integers. Recall that if n has prime factorization

$$
n=\prod_{p^{\alpha_{p}(n)} \| n} p^{\alpha_{p}(n)}
$$

where p stands for a prime, then $d(n)=\prod_{p^{\alpha_{p}} \| n}\left(\alpha_{p}(n)+1\right)$.
Let us start by noting that since $d(n)$ takes arbitrarily large values (think of $d(m!)$, for example, for arbitrary large m 's), there exist infinitely many highly divisible integers. Furthermore, it is easy to see that if n is highly divisible and

$$
n=2^{\alpha_{2}(n)} 3^{\alpha_{3}(n)} \ldots p^{\alpha_{p}(n)}
$$

then $\alpha_{2}(n) \geq \cdots \geq \alpha_{p}(n)$. Thus, if $q<p$ are primes and $p \mid n$, then $q \mid n$.
We show that for every prime p all but finitely many highly divisible integers are multiples of p. This is obviously so for $p=2$. Assume that this were not so, that p is the r th prime $(r>1)$, and that n is one of the infinitely many highly divisible integers whose largest prime factor is less than p. For such an n, $\left(\alpha_{2}(n)+1\right)^{r-1} \geq d(n)$, therefore $\alpha_{2}(n)$ takes arbitrarily large values. Let n be such that $2^{\alpha_{2}(n)-1}>p^{2}$ and look at $m=n p / 2^{\left\lfloor\alpha_{2}(n) / 2\right\rfloor}$. Clearly, $m<n$, while

$$
d(m)=2 d(n) \frac{\alpha_{2}(n)-\left\lfloor\alpha_{2}(n) / 2\right\rfloor+1}{\alpha_{2}(n)+1}>d(n)
$$

contradicting the fact that n is highly divisible.
We now show a stronger property, namely that for any prime p and constant κ, there are only finitely many highly divisible positive integers n such that $\alpha_{p}(n) \leq \kappa$. Indeed, assume that this were not so. Let κ be a constant such that $\alpha_{p}(n) \leq \kappa$ for infinitely many highly divisible n. Let q be a large prime satisfying $q>p^{2 \kappa+1}$. All but finitely many such positive integers n are multiples of q. Look at the number $m=p^{\alpha_{p}(n) \alpha_{q}(n)+\alpha_{p}(n)+\alpha_{q}(n)} n / q^{\alpha_{q}(n)}$. An immediate calculation shows that $d(m)=d(n)$, therefore $m>n$. Thus,

$$
p^{2 \alpha_{p}(n) \alpha_{q}(n)+\alpha_{q}(n)} \geq p^{\alpha_{p}(n) \alpha_{q}(n)+\alpha_{q}(n)+\alpha_{p}(n)}>q^{\alpha_{q}(n)},
$$

giving $p^{2 \alpha_{p}(n)+1}>q>p^{2 \kappa+1}$, and we get a contradiction with the fact that $\alpha_{p}(n) \leq \kappa$.

We are now ready to prove both (a) and (b). For (a), let n be highly divisible and such that $\alpha_{3}(n) \geq 8$. All but finitely many highly divisible integers n have this property. Now $8 n / 9$ is an integer and $8 n / 9<n$, therefore $d(8 n / 9)<d(n)$. This implies

$$
\left(\alpha_{2}(n)+4\right)\left(\alpha_{3}(n)-1\right)<\left(\alpha_{2}(n)+1\right)\left(\alpha_{3}(n)+1\right)
$$

which is equivalent to

$$
\begin{equation*}
3 \alpha_{3}(n)-5<2 \alpha_{2}(n) \tag{1}
\end{equation*}
$$

Assume now that $n \mid m$ are consecutive and highly divisible. Since already $d(2 n)>d(n)$, we get that there must be a highly divisible integer in $(n, 2 n]$. Thus $m=2 n$, leading to $d(3 n / 2) \leq d(n)$ (or else there must be a highly divisible number between n and $3 n / 2$). This gives

$$
\alpha_{2}(n)\left(\alpha_{3}(n)+2\right) \leq\left(\alpha_{2}(n)+1\right)\left(\alpha_{3}(n)+1\right)
$$

which is equivalent to

$$
\alpha_{2}(n) \leq \alpha_{3}(n)+1
$$

which together with $\alpha_{3}(n) \geq 8$ contradicts inequality (1). This proves (a).
For part (b), let k be any positive integer and look at the smallest highly divisible positive integer n such that $\alpha_{p}(n) \geq k$. All but finitely many highly divisible integers n satisfy this last inequality. We claim that n / p is also highly divisible. If this were not so, then there would exist a highly divisible positive integer $m<n / p$ with $d(m) \geq d(n / p)$. Note that, by assumption, $\alpha_{p}(m)<\alpha_{p}(n)$. Then,

$$
d(m p)=d(m) \frac{\alpha_{p}(m)+2}{\alpha_{p}(m)+1} \geq d(n / p) \frac{\alpha_{p}(n)+1}{\alpha_{p}(n)}=d(n)
$$

where for the above inequality we used the fact that the function $(x+1) / x$ is decreasing. However, $m p<n$, so the above inequality contradicts the fact that n is highly divisible. This contradiction shows that n / p is highly divisible, and since k can be taken to be arbitrarily large, we get infinitely many examples of highly divisible integers n such that n / p is also highly divisible.

Comment. The notion of a highly divisible integer first appeared in a paper of Ramanujan in 1915. Eric Weinstein's World of Mathematics has one web page mentioning some properties of these numbers (called highly composite) and giving some bibliographical references, while Ross Honsberger's Mathematical

Gems (Third Edition) has a chapter dedicated to them. In spite of all these references, the properties of these numbers mentioned in the above sources have little relevance for the problem at hand and we believe that if given to the exam, the students who have seen these numbers before will not have any significant advantage over the ones who encounter them for the first time.

N6. Let a and b be positive integers such that $a^{n}+n$ divides $b^{n}+n$ for every positive integer n. Show that $a=b$.

Solution. Assume that $b \neq a$. Taking $n=1$ shows that $a+1$ divides $b+1$, so that $b \geq a$. Let $p>b$ be a prime and let n be a positive integer such that

$$
n \equiv 1(\bmod p-1) \quad \text { and } \quad n \equiv-a(\bmod p) .
$$

Such an n exists by the Chinese remainder theorem. (Without the Chinese remainder theorem, one could notice that $n=(a+1)(p-1)+1$ has this property.)

By Fermat's little theorem, $a^{n}=a\left(a^{p-1} \cdots a^{p-1}\right) \equiv a(\bmod p)$, and therefore $a^{n}+n \equiv 0(\bmod p)$. So p divides the number $a^{n}+n$, hence also $b^{n}+n$. However, by Fermat's little theorem again, we have analogously $b^{n}+n \equiv b-a(\bmod p)$. We are therefore led to the conclusion $p \mid b-a$, which is a contradiction.

Comment. The first thing coming to mind is to show that a and b share the same prime divisors. This is easily established by using Fermat's little theorem or Wilson's theorem. However, we know of no solution which uses this fact in any meaningful way.

For the conclusion to remain true, it is not sufficient that $a^{n}+n \mid b^{n}+n$ holds for infinitely many n. Indeed, take $a=1$ and any $b>1$. The given divisibility relation holds for all positive integers n of the form $p-1$, where $p>b$ is a prime, but $a \neq b$.

N7. Let $P(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0}$, where a_{0}, \ldots, a_{n} are integers, $a_{n}>0, n \geq 2$. Prove that there exists a positive integer m such that $P(m!)$ is a composite number.

Solution. We may assume that $a_{0}= \pm 1$, otherwise the conclusion is immediate. Observe that if $p>k \geq 1$ and p is a prime then

$$
\begin{equation*}
(p-k)!\equiv(-1)^{k}((k-1)!)^{-1}(\bmod p) \tag{1}
\end{equation*}
$$

where t^{-1} denotes the multiplicative inverse $(\bmod p)$ of t. Indeed, this is proved by writing

$$
(p-1)!=(p-k)![p-(k-1)][p-(k-2)] \cdots(p-1),
$$

reducing modulo p and using Wilson's theorem. With (1) in mind, we see that it might be worth looking at the rational numbers

$$
P\left(\frac{(-1)^{k}}{(k-1)!}\right)=\frac{(-1)^{k n}}{((k-1)!)^{n}} Q\left((-1)^{k}(k-1)!\right)
$$

where $Q(x)=a_{n}+a_{n-1} x+\cdots+a_{0} x^{n}$.
If $k-1>a_{n}^{2}$, then $a_{n} \mid(k-1)!$ and $(k-1)!/ a_{n}=1 \cdot 2 \cdots\left(a_{n}^{2} / a_{n}\right) \cdots(k-1)$ is divisible by all primes $\leq k-1$. Hence, for such k we have $Q((k-1)!)=a_{n} b_{k}$, where $b_{k}=1+a_{n-1}(k-1)!/ a_{n}+\cdots$ has no prime factors $\leq k-1$. Clearly, $Q(x)$ is not a constant polynomial, because its leading term is $a_{0}= \pm 1$. Therefore $|Q((k-1)!)|$ becomes arbitrarily large when k is large, and so does $\left|b_{k}\right|$. In particular, $\left|b_{k}\right|>1$ if k is large enough.

Take such an even k and choose any prime factor p of b_{k}. The above argument, combined with (1), shows that $p>k$ and that $P((p-k)!) \equiv 0(\bmod p)$.

In order to complete the proof, we only need to ensure that k can be chosen so that $|P((p-k)!)|>p$. We do not know p, but we know that $p \geq k$. Our best bet is to take k such that the first possible prime following k is "far away" from it; i. e., $p-k$ is large. For this, we may choose $k=m$!, where $m=q-1>2$ and q is a prime. Then m ! is composite, $m!+1$ is also composite (because $m!+1>m+1=q$ and $m!+1$ is a multiple of q by Wilson's theorem), and $m!+\ell$ is also composite for all $\ell=2, \ldots, m$. So, $p=m!+m+t$ for some $t \geq 1$, therefore $p-k=m+t$. For large m,

$$
P((p-k)!)=P((m+t)!)>\frac{(m+t)!}{2}
$$

because $a_{n}>0$. So it suffices to observe that

$$
\frac{(m+t)!}{2}>m!+m+t
$$

which is obviously true for m large enough and $t \geq 1$.
$47^{\text {th }}$ INTERNATIONAL MATHEMATICAL OLYMPIAD SLOVENIA 2006

Shortlisted problems with solutions

$47^{\text {th }}$ International Mathematical Olympiad Slovenia 2006

Shortlisted Problems with Solutions

Contents

Contributing Countries \& Problem Selection Committee 5
Algebra 7
Problem A1 7
Problem A2 9
Problem A3 10
Problem A4 13
Problem A5 15
Problem A6 17
Combinatorics 19
Problem C1 19
Problem C2 21
Problem C3 23
Problem C4 25
Problem C5 27
Problem C6 29
Problem C7 31
Geometry 35
Problem G1 35
Problem G2 36
Problem G3 38
Problem G4 39
Problem G5 40
Problem G6 42
Problem G7 45
Problem G8 46
Problem G9 48
Problem G10 51
Number Theory 55
Problem N1 55
Problem N2 56
Problem N3 57
Problem N4 58
Problem N5 59
Problem N6 60
Problem N7 63

Contributing Countries

Argentina, Australia, Brazil, Bulgaria, Canada, Colombia, Czech Republic, Estonia, Finland, France, Georgia, Greece, Hong Kong, India, Indonesia, Iran, Ireland, Italy, Japan, Republic of Korea, Luxembourg, Netherlands, Poland, Peru, Romania, Russia, Serbia and Montenegro, Singapore, Slovakia, South Africa, Sweden, Taiwan, Ukraine, United Kingdom, United States of America, Venezuela

Problem Selection Committee

Andrej Bauer
Robert Geretschläger
Géza Kós
Marcin Kuczma
Svetoslav Savchev

Algebra

A1. A sequence of real numbers $a_{0}, a_{1}, a_{2}, \ldots$ is defined by the formula

$$
a_{i+1}=\left\lfloor a_{i}\right\rfloor \cdot\left\langle a_{i}\right\rangle \quad \text { for } \quad i \geq 0
$$

here a_{0} is an arbitrary real number, $\left\lfloor a_{i}\right\rfloor$ denotes the greatest integer not exceeding a_{i}, and $\left\langle a_{i}\right\rangle=a_{i}-\left\lfloor a_{i}\right\rfloor$. Prove that $a_{i}=a_{i+2}$ for i sufficiently large.
(Estonia)
Solution. First note that if $a_{0} \geq 0$, then all $a_{i} \geq 0$. For $a_{i} \geq 1$ we have (in view of $\left\langle a_{i}\right\rangle<1$ and $\left\lfloor a_{i}\right\rfloor>0$)

$$
\left\lfloor a_{i+1}\right\rfloor \leq a_{i+1}=\left\lfloor a_{i}\right\rfloor \cdot\left\langle a_{i}\right\rangle<\left\lfloor a_{i}\right\rfloor ;
$$

the sequence $\left\lfloor a_{i}\right\rfloor$ is strictly decreasing as long as its terms are in $[1, \infty)$. Eventually there appears a number from the interval $[0,1)$ and all subsequent terms are 0 .

Now pass to the more interesting situation where $a_{0}<0$; then all $a_{i} \leq 0$. Suppose the sequence never hits 0 . Then we have $\left\lfloor a_{i}\right\rfloor \leq-1$ for all i, and so

$$
1+\left\lfloor a_{i+1}\right\rfloor>a_{i+1}=\left\lfloor a_{i}\right\rfloor \cdot\left\langle a_{i}\right\rangle>\left\lfloor a_{i}\right\rfloor ;
$$

this means that the sequence $\left\lfloor a_{i}\right\rfloor$ is nondecreasing. And since all its terms are integers from $(-\infty,-1]$, this sequence must be constant from some term on:

$$
\left\lfloor a_{i}\right\rfloor=c \quad \text { for } \quad i \geq i_{0} ; \quad c \text { a negative integer. }
$$

The defining formula becomes

$$
a_{i+1}=c \cdot\left\langle a_{i}\right\rangle=c\left(a_{i}-c\right)=c a_{i}-c^{2} .
$$

Consider the sequence

$$
\begin{equation*}
b_{i}=a_{i}-\frac{c^{2}}{c-1} . \tag{1}
\end{equation*}
$$

It satisfies the recursion rule

$$
b_{i+1}=a_{i+1}-\frac{c^{2}}{c-1}=c a_{i}-c^{2}-\frac{c^{2}}{c-1}=c b_{i}
$$

implying

$$
\begin{equation*}
b_{i}=c^{i-i_{0}} b_{i_{0}} \quad \text { for } \quad i \geq i_{0} . \tag{2}
\end{equation*}
$$

Since all the numbers a_{i} (for $i \geq i_{0}$) lie in $\left[c, c+1\right.$), the sequence $\left(b_{i}\right)$ is bounded. The equation (2) can be satisfied only if either $b_{i_{0}}=0$ or $|c|=1$, i.e., $c=-1$.

In the first case, $b_{i}=0$ for all $i \geq i_{0}$, so that

$$
a_{i}=\frac{c^{2}}{c-1} \quad \text { for } \quad i \geq i_{0}
$$

In the second case, $c=-1$, equations (1) and (2) say that

$$
a_{i}=-\frac{1}{2}+(-1)^{i-i_{0}} b_{i_{0}}= \begin{cases}a_{i_{0}} & \text { for } i=i_{0}, i_{0}+2, i_{0}+4, \ldots, \\ 1-a_{i_{0}} & \text { for } i=i_{0}+1, i_{0}+3, i_{0}+5, \ldots\end{cases}
$$

Summarising, we see that (from some point on) the sequence $\left(a_{i}\right)$ either is constant or takes alternately two values from the interval $(-1,0)$. The result follows.
Comment. There is nothing mysterious in introducing the sequence $\left(b_{i}\right)$. The sequence $\left(a_{i}\right)$ arises by iterating the function $x \mapsto c x-c^{2}$ whose unique fixed point is $c^{2} /(c-1)$.

A2. The sequence of real numbers $a_{0}, a_{1}, a_{2}, \ldots$ is defined recursively by

$$
a_{0}=-1, \quad \sum_{k=0}^{n} \frac{a_{n-k}}{k+1}=0 \quad \text { for } \quad n \geq 1
$$

Show that $a_{n}>0$ for $n \geq 1$.
(Poland)
Solution. The proof goes by induction. For $n=1$ the formula yields $a_{1}=1 / 2$. Take $n \geq 1$, assume $a_{1}, \ldots, a_{n}>0$ and write the recurrence formula for n and $n+1$, respectively as

$$
\sum_{k=0}^{n} \frac{a_{k}}{n-k+1}=0 \quad \text { and } \quad \sum_{k=0}^{n+1} \frac{a_{k}}{n-k+2}=0
$$

Subtraction yields

$$
\begin{aligned}
& 0=(n+2) \sum_{k=0}^{n+1} \frac{a_{k}}{n-k+2}-(n+1) \sum_{k=0}^{n} \frac{a_{k}}{n-k+1} \\
&=(n+2) a_{n+1}+\sum_{k=0}^{n}\left(\frac{n+2}{n-k+2}-\frac{n+1}{n-k+1}\right) a_{k}
\end{aligned}
$$

The coefficient of a_{0} vanishes, so

$$
a_{n+1}=\frac{1}{n+2} \sum_{k=1}^{n}\left(\frac{n+1}{n-k+1}-\frac{n+2}{n-k+2}\right) a_{k}=\frac{1}{n+2} \sum_{k=1}^{n} \frac{k}{(n-k+1)(n-k+2)} a_{k} .
$$

The coefficients of a_{1}, \ldots, a_{n} are all positive. Therefore, $a_{1}, \ldots, a_{n}>0$ implies $a_{n+1}>0$.
Comment. Students familiar with the technique of generating functions will immediately recognise $\sum a_{n} x^{n}$ as the power series expansion of $x / \ln (1-x)$ (with value -1 at 0). But this can be a trap; attempts along these lines lead to unpleasant differential equations and integrals hard to handle. Using only tools from real analysis (e.g. computing the coefficients from the derivatives) seems very difficult.

On the other hand, the coefficients can be approached applying complex contour integrals and some other techniques from complex analysis and an attractive formula can be obtained for the coefficients:

$$
a_{n}=\int_{1}^{\infty} \frac{\mathrm{d} x}{x^{n}\left(\pi^{2}+\log ^{2}(x-1)\right)} \quad(n \geq 1)
$$

which is evidently positive.

A3. The sequence $c_{0}, c_{1}, \ldots, c_{n}, \ldots$ is defined by $c_{0}=1, c_{1}=0$ and $c_{n+2}=c_{n+1}+c_{n}$ for $n \geq 0$. Consider the set S of ordered pairs (x, y) for which there is a finite set J of positive integers such that $x=\sum_{j \in J} c_{j}, y=\sum_{j \in J} c_{j-1}$. Prove that there exist real numbers α, β and m, M with the following property: An ordered pair of nonnegative integers (x, y) satisfies the inequality

$$
m<\alpha x+\beta y<M
$$

if and only if $(x, y) \in S$.
N. B. A sum over the elements of the empty set is assumed to be 0 .
(Russia)
Solution. Let $\varphi=(1+\sqrt{5}) / 2$ and $\psi=(1-\sqrt{5}) / 2$ be the roots of the quadratic equation $t^{2}-t-1=0$. So $\varphi \psi=-1, \varphi+\psi=1$ and $1+\psi=\psi^{2}$. An easy induction shows that the general term c_{n} of the given sequence satisfies

$$
c_{n}=\frac{\varphi^{n-1}-\psi^{n-1}}{\varphi-\psi} \quad \text { for } n \geq 0 .
$$

Suppose that the numbers α and β have the stated property, for appropriately chosen m and M. Since $\left(c_{n}, c_{n-1}\right) \in S$ for each n, the expression
$\alpha c_{n}+\beta c_{n-1}=\frac{\alpha}{\sqrt{5}}\left(\varphi^{n-1}-\psi^{n-1}\right)+\frac{\beta}{\sqrt{5}}\left(\varphi^{n-2}-\psi^{n-2}\right)=\frac{1}{\sqrt{5}}\left[(\alpha \varphi+\beta) \varphi^{n-2}-(\alpha \psi+\beta) \psi^{n-2}\right]$
is bounded as n grows to infinity. Because $\varphi>1$ and $-1<\psi<0$, this implies $\alpha \varphi+\beta=0$.
To satisfy $\alpha \varphi+\beta=0$, one can set for instance $\alpha=\psi, \beta=1$. We now find the required m and M for this choice of α and β.

Note first that the above displayed equation gives $c_{n} \psi+c_{n-1}=\psi^{n-1}, n \geq 1$. In the sequel, we denote the pairs in S by $\left(a_{J}, b_{J}\right)$, where J is a finite subset of the set \mathbb{N} of positive integers and $a_{J}=\sum_{j \in J} c_{j}, b_{J}=\sum_{j \in J} c_{j-1}$. Since $\psi a_{J}+b_{J}=\sum_{j \in J}\left(c_{j} \psi+c_{j-1}\right)$, we obtain

$$
\begin{equation*}
\psi a_{J}+b_{J}=\sum_{j \in J} \psi^{j-1} \quad \text { for each }\left(a_{J}, b_{J}\right) \in S \tag{1}
\end{equation*}
$$

On the other hand, in view of $-1<\psi<0$,

$$
-1=\frac{\psi}{1-\psi^{2}}=\sum_{j=0}^{\infty} \psi^{2 j+1}<\sum_{j \in J} \psi^{j-1}<\sum_{j=0}^{\infty} \psi^{2 j}=\frac{1}{1-\psi^{2}}=1-\psi=\varphi .
$$

Therefore, according to (1),

$$
-1<\psi a_{J}+b_{J}<\varphi \quad \text { for each }\left(a_{J}, b_{J}\right) \in S
$$

Thus $m=-1$ and $M=\varphi$ is an appropriate choice.
Conversely, we prove that if an ordered pair of nonnegative integers (x, y) satisfies the inequality $-1<\psi x+y<\varphi$ then $(x, y) \in S$.

Lemma. Let x, y be nonnegative integers such that $-1<\psi x+y<\varphi$. Then there exists a subset J of \mathbb{N} such that

$$
\begin{equation*}
\psi x+y=\sum_{j \in J} \psi^{j-1} \tag{2}
\end{equation*}
$$

Proof. For $x=y=0$ it suffices to choose the empty subset of \mathbb{N} as J, so let at least one of x, y be nonzero. There exist representations of $\psi x+y$ of the form

$$
\psi x+y=\psi^{i_{1}}+\cdots+\psi^{i_{k}}
$$

where $i_{1} \leq \cdots \leq i_{k}$ is a sequence of nonnegative integers, not necessarily distinct. For instance, we can take x summands $\psi^{1}=\psi$ and y summands $\psi^{0}=1$. Consider all such representations of minimum length k and focus on the ones for which i_{1} has the minimum possible value j_{1}. Among them, consider the representations where i_{2} has the minimum possible value j_{2}. Upon choosing j_{3}, \ldots, j_{k} analogously, we obtain a sequence $j_{1} \leq \cdots \leq j_{k}$ which clearly satisfies $\psi x+y=\sum_{r=1}^{k} \psi^{j_{r}}$. To prove the lemma, it suffices to show that j_{1}, \ldots, j_{k} are pairwise distinct.

Suppose on the contrary that $j_{r}=j_{r+1}$ for some $r=1, \ldots, k-1$. Let us consider the case $j_{r} \geq 2$ first. Observing that $2 \psi^{2}=1+\psi^{3}$, we replace j_{r} and j_{r+1} by $j_{r}-2$ and $j_{r}+1$, respectively. Since

$$
\psi^{j_{r}}+\psi^{j_{r+1}}=2 \psi^{j_{r}}=\psi^{j_{r}-2}\left(1+\psi^{3}\right)=\psi^{j_{r}-2}+\psi^{j_{r}+1}
$$

the new sequence also represents $\psi x+y$ as needed, and the value of i_{r} in it contradicts the minimum choice of j_{r}.

Let $j_{r}=j_{r+1}=0$. Then the sum $\psi x+y=\sum_{r=1}^{k} \psi^{j_{r}}$ contains at least two summands equal to $\psi^{0}=1$. On the other hand $j_{s} \neq 1$ for all s, because the equality $1+\psi=\psi^{2}$ implies that a representation of minimum length cannot contain consecutive i_{r} 's. It follows that

$$
\psi x+y=\sum_{r=1}^{k} \psi^{j_{r}}>2+\psi^{3}+\psi^{5}+\psi^{7}+\cdots=2-\psi^{2}=\varphi
$$

contradicting the condition of the lemma.
Let $j_{r}=j_{r+1}=1$; then $\sum_{r=1}^{k} \psi^{j_{r}}$ contains at least two summands equal to $\psi^{1}=\psi$. Like in the case $j_{r}=j_{r+1}=0$, we also infer that $j_{s} \neq 0$ and $j_{s} \neq 2$ for all s. Therefore

$$
\psi x+y=\sum_{r=1}^{k} \psi^{j_{r}}<2 \psi+\psi^{4}+\psi^{6}+\psi^{8}+\cdots=2 \psi-\psi^{3}=-1
$$

which is a contradiction again. The conclusion follows.
Now let the ordered pair (x, y) satisfy $-1<\psi x+y<\varphi$; hence the lemma applies to (x, y). Let $J \subset \mathbb{N}$ be such that (2) holds. Comparing (1) and (2), we conclude that $\psi x+y=\psi a_{J}+b_{J}$. Now, x, y, a_{J} and b_{J} are integers, and ψ is irrational. So the last equality implies $x=a_{J}$ and $y=b_{J}$. This shows that the numbers $\alpha=\psi, \beta=1, m=-1, M=\varphi$ meet the requirements.
Comment. We present another way to prove the lemma, constructing the set J inductively. For $x=y=0$, choose $J=\emptyset$. We induct on $n=3 x+2 y$. Suppose that an appropriate set J exists when $3 x+2 y<n$. Now assume $3 x+2 y=n>0$. The current set J should be

$$
\text { either } 1 \leq j_{1}<j_{2}<\cdots<j_{k} \quad \text { or } \quad j_{1}=0,1 \leq j_{2}<\cdots<j_{k} \text {. }
$$

These sets fulfil the condition if

$$
\frac{\psi x+y}{\psi}=\psi^{i_{1}-1}+\cdots+\psi^{i_{k}-1} \quad \text { or } \quad \frac{\psi x+y-1}{\psi}=\psi^{i_{2}-1}+\cdots+\psi^{i_{k}-1}
$$

respectively; therefore it suffices to find an appropriate set for $\frac{\psi x+y}{\psi}$ or $\frac{\psi x+y-1}{\psi}$, respectively.
Consider $\frac{\psi x+y}{\psi}$. Knowing that

$$
\frac{\psi x+y}{\psi}=x+(\psi-1) y=\psi y+(x-y)
$$

let $x^{\prime}=y, y^{\prime}=x-y$ and test the induction hypothesis on these numbers. We require $\frac{\psi x+y}{\psi} \in(-1, \varphi)$ which is equivalent to

$$
\begin{equation*}
\psi x+y \in(\varphi \cdot \psi,(-1) \cdot \psi)=(-1,-\psi) . \tag{3}
\end{equation*}
$$

Relation (3) implies $y^{\prime}=x-y \geq-\psi x-y>\psi>-1$; therefore $x^{\prime}, y^{\prime} \geq 0$. Moreover, we have $3 x^{\prime}+2 y^{\prime}=2 x+y \leq \frac{2}{3} n$; therefore, if (3) holds then the induction applies: the numbers x^{\prime}, y^{\prime} are represented in the form as needed, hence x, y also.

Now consider $\frac{\psi x+y-1}{\psi}$. Since

$$
\frac{\psi x+y-1}{\psi}=x+(\psi-1)(y-1)=\psi(y-1)+(x-y+1)
$$

we set $x^{\prime}=y-1$ and $y^{\prime}=x-y+1$. Again we require that $\frac{\psi x+y-1}{\psi} \in(-1, \varphi)$, i.e.

$$
\begin{equation*}
\psi x+y \in(\varphi \cdot \psi+1,(-1) \cdot \psi+1)=(0, \varphi) . \tag{4}
\end{equation*}
$$

If (4) holds then $y-1 \geq \psi x+y-1>-1$ and $x-y+1 \geq-\psi x-y+1>-\varphi+1>-1$, therefore $x^{\prime}, y^{\prime} \geq 0$. Moreover, $3 x^{\prime}+2 y^{\prime}=2 x+y-1<\frac{2}{3} n$ and the induction works.

Finally, $(-1,-\psi) \cup(0, \varphi)=(-1, \varphi)$ so at least one of (3) and (4) holds and the induction step is justified.

A4. Prove the inequality

$$
\sum_{i<j} \frac{a_{i} a_{j}}{a_{i}+a_{j}} \leq \frac{n}{2\left(a_{1}+a_{2}+\cdots+a_{n}\right)} \sum_{i<j} a_{i} a_{j}
$$

for positive real numbers $a_{1}, a_{2}, \ldots, a_{n}$.
(Serbia)
Solution 1. Let $S=\sum_{i} a_{i}$. Denote by L and R the expressions on the left and right hand side of the proposed inequality. We transform L and R using the identity

$$
\begin{equation*}
\sum_{i<j}\left(a_{i}+a_{j}\right)=(n-1) \sum_{i} a_{i} . \tag{1}
\end{equation*}
$$

And thus:

$$
\begin{equation*}
L=\sum_{i<j} \frac{a_{i} a_{j}}{a_{i}+a_{j}}=\sum_{i<j} \frac{1}{4}\left(a_{i}+a_{j}-\frac{\left(a_{i}-a_{j}\right)^{2}}{a_{i}+a_{j}}\right)=\frac{n-1}{4} \cdot S-\frac{1}{4} \sum_{i<j} \frac{\left(a_{i}-a_{j}\right)^{2}}{a_{i}+a_{j}} . \tag{2}
\end{equation*}
$$

To represent R we express the sum $\sum_{i<j} a_{i} a_{j}$ in two ways; in the second transformation identity (1) will be applied to the squares of the numbers a_{i} :

$$
\begin{gathered}
\sum_{i<j} a_{i} a_{j}=\frac{1}{2}\left(S^{2}-\sum_{i} a_{i}^{2}\right) \\
\sum_{i<j} a_{i} a_{j}=\frac{1}{2} \sum_{i<j}\left(a_{i}^{2}+a_{j}^{2}-\left(a_{i}-a_{j}\right)^{2}\right)=\frac{n-1}{2} \cdot \sum_{i} a_{i}^{2}-\frac{1}{2} \sum_{i<j}\left(a_{i}-a_{j}\right)^{2} .
\end{gathered}
$$

Multiplying the first of these equalities by $n-1$ and adding the second one we obtain

$$
n \sum_{i<j} a_{i} a_{j}=\frac{n-1}{2} \cdot S^{2}-\frac{1}{2} \sum_{i<j}\left(a_{i}-a_{j}\right)^{2} .
$$

Hence

$$
\begin{equation*}
R=\frac{n}{2 S} \sum_{i<j} a_{i} a_{j}=\frac{n-1}{4} \cdot S-\frac{1}{4} \sum_{i<j} \frac{\left(a_{i}-a_{j}\right)^{2}}{S} . \tag{3}
\end{equation*}
$$

Now compare (2) and (3). Since $S \geq a_{i}+a_{j}$ for any $i<j$, the claim $L \geq R$ results.

Solution 2. Let $S=a_{1}+a_{2}+\cdots+a_{n}$. For any $i \neq j$,

$$
4 \frac{a_{i} a_{j}}{a_{i}+a_{j}}=a_{i}+a_{j}-\frac{\left(a_{i}-a_{j}\right)^{2}}{a_{i}+a_{j}} \leq a_{i}+a_{j}-\frac{\left(a_{i}-a_{j}\right)^{2}}{a_{1}+a_{2}+\cdots+a_{n}}=\frac{\sum_{k \neq i} a_{i} a_{k}+\sum_{k \neq j} a_{j} a_{k}+2 a_{i} a_{j}}{S} .
$$

The statement is obtained by summing up these inequalities for all pairs i, j :

$$
\begin{gathered}
\sum_{i<j} \frac{a_{i} a_{j}}{a_{i}+a_{j}}=\frac{1}{2} \sum_{i} \sum_{j \neq i} \frac{a_{i} a_{j}}{a_{i}+a_{j}} \leq \frac{1}{8 S} \sum_{i} \sum_{j \neq i}\left(\sum_{k \neq i} a_{i} a_{k}+\sum_{k \neq j} a_{j} a_{k}+2 a_{i} a_{j}\right) \\
=\frac{1}{8 S}\left(\sum_{k} \sum_{i \neq k} \sum_{j \neq i} a_{i} a_{k}+\sum_{k} \sum_{j \neq k} \sum_{i \neq j} a_{j} a_{k}+\sum_{i} \sum_{j \neq i} 2 a_{i} a_{j}\right) \\
=\frac{1}{8 S}\left(\sum_{k} \sum_{i \neq k}(n-1) a_{i} a_{k}+\sum_{k} \sum_{j \neq k}(n-1) a_{j} a_{k}+\sum_{i} \sum_{j \neq i} 2 a_{i} a_{j}\right) \\
=\frac{n}{4 S} \sum_{i} \sum_{j \neq i} a_{i} a_{j}=\frac{n}{2 S} \sum_{i<j} a_{i} a_{j} .
\end{gathered}
$$

Comment. Here is an outline of another possible approach. Examine the function $R-L$ subject to constraints $\sum_{i} a_{i}=S, \sum_{i<j} a_{i} a_{j}=U$ for fixed constants $S, U>0$ (which can jointly occur as values of these symmetric forms). Suppose that among the numbers a_{i} there are some three, say a_{k}, a_{l}, a_{m} such that $a_{k}<a_{l} \leq a_{m}$. Then it is possible to decrease the value of $R-L$ by perturbing this triple so that in the new triple $a_{k}^{\prime}, a_{l}^{\prime}, a_{m}^{\prime}$ one has $a_{k}^{\prime}=a_{l}^{\prime} \leq a_{m}^{\prime}$, without touching the remaining $a_{i} \mathrm{~S}$ and without changing the values of S and U; this requires some skill in algebraic manipulations. It follows that the constrained minimum can be only attained for $n-1$ of the $a_{i} \mathrm{~s}$ equal and a single one possibly greater. In this case, $R-L \geq 0$ holds almost trivially.

A5. Let a, b, c be the sides of a triangle. Prove that

$$
\frac{\sqrt{b+c-a}}{\sqrt{b}+\sqrt{c}-\sqrt{a}}+\frac{\sqrt{c+a-b}}{\sqrt{c}+\sqrt{a}-\sqrt{b}}+\frac{\sqrt{a+b-c}}{\sqrt{a}+\sqrt{b}-\sqrt{c}} \leq 3
$$

(Korea)
Solution 1. Note first that the denominators are all positive, e.g. $\sqrt{a}+\sqrt{b}>\sqrt{a+b}>\sqrt{c}$.
Let $x=\sqrt{b}+\sqrt{c}-\sqrt{a}, y=\sqrt{c}+\sqrt{a}-\sqrt{b}$ and $z=\sqrt{a}+\sqrt{b}-\sqrt{c}$. Then
$b+c-a=\left(\frac{z+x}{2}\right)^{2}+\left(\frac{x+y}{2}\right)^{2}-\left(\frac{y+z}{2}\right)^{2}=\frac{x^{2}+x y+x z-y z}{2}=x^{2}-\frac{1}{2}(x-y)(x-z)$
and

$$
\frac{\sqrt{b+c-a}}{\sqrt{b}+\sqrt{c}-\sqrt{a}}=\sqrt{1-\frac{(x-y)(x-z)}{2 x^{2}}} \leq 1-\frac{(x-y)(x-z)}{4 x^{2}},
$$

applying $\sqrt{1+2 u} \leq 1+u$ in the last step. Similarly we obtain

$$
\frac{\sqrt{c+a-b}}{\sqrt{c}+\sqrt{a}-\sqrt{b}} \leq 1-\frac{(z-x)(z-y)}{4 z^{2}} \quad \text { and } \quad \frac{\sqrt{a+b-c}}{\sqrt{a}+\sqrt{b}-\sqrt{c}} \leq 1-\frac{(y-z)(y-x)}{4 y^{2}}
$$

Substituting these quantities into the statement, it is sufficient to prove that

$$
\begin{equation*}
\frac{(x-y)(x-z)}{x^{2}}+\frac{(y-z)(y-x)}{y^{2}}+\frac{(z-x)(z-y)}{z^{2}} \geq 0 . \tag{1}
\end{equation*}
$$

By symmetry we can assume $x \leq y \leq z$. Then

$$
\begin{gathered}
\frac{(x-y)(x-z)}{x^{2}}=\frac{(y-x)(z-x)}{x^{2}} \geq \frac{(y-x)(z-y)}{y^{2}}=-\frac{(y-z)(y-x)}{y^{2}} \\
\frac{(z-x)(z-y)}{z^{2}} \geq 0
\end{gathered}
$$

and (1) follows.
Comment 1. Inequality (1) is a special case of the well-known inequality

$$
x^{t}(x-y)(x-z)+y^{t}(y-z)(y-x)+z^{t}(z-x)(z-y) \geq 0
$$

which holds for all positive numbers x, y, z and real t; in our case $t=-2$. Case $t>0$ is called Schur's inequality. More generally, if $x \leq y \leq z$ are real numbers and p, q, r are nonnegative numbers such that $q \leq p$ or $q \leq r$ then

$$
p(x-y)(x-z)+q(y-z)(y-x)+r(z-x)(z-y) \geq 0 .
$$

Comment 2. One might also start using Cauchy-Schwarz' inequality (or the root mean square vs. arithmetic mean inequality) to the effect that

$$
\begin{equation*}
\left(\sum \frac{\sqrt{b+c-a}}{\sqrt{b}+\sqrt{c}-\sqrt{a}}\right)^{2} \leq 3 \cdot \sum \frac{b+c-a}{(\sqrt{b}+\sqrt{c}-\sqrt{a})^{2}} \tag{2}
\end{equation*}
$$

in cyclic sum notation. There are several ways to prove that the right-hand side of (2) never exceeds 9 (and this is just what we need). One of them is to introduce new variables x, y, z, as in Solution 1, which upon some manipulation brings the problem again to inequality (1).

Alternatively, the claim that right-hand side of (2) is not greater than 9 can be expressed in terms of the symmetric forms $\sigma_{1}=\sum x, \sigma_{2}=\sum x y, \sigma_{3}=x y z$ equivalently as

$$
\begin{equation*}
4 \sigma_{1} \sigma_{2} \sigma_{3} \leq \sigma_{2}^{3}+9 \sigma_{3}^{2} \tag{3}
\end{equation*}
$$

which is a known inequality. A yet different method to deal with the right-hand expression in (2) is to consider $\sqrt{a}, \sqrt{b}, \sqrt{c}$ as sides of a triangle. Through standard trigonometric formulas the problem comes down to showing that

$$
\begin{equation*}
p^{2} \leq 4 R^{2}+4 R r+3 r^{2}, \tag{4}
\end{equation*}
$$

p, R and r standing for the semiperimeter, the circumradius and the inradius of that triangle. Again, (4) is another known inequality. Note that the inequalities (1), (3), (4) are equivalent statements about the same mathematical situation.
Solution 2. Due to the symmetry of variables, it can be assumed that $a \geq b \geq c$. We claim that

$$
\frac{\sqrt{a+b-c}}{\sqrt{a}+\sqrt{b}-\sqrt{c}} \leq 1 \quad \text { and } \quad \frac{\sqrt{b+c-a}}{\sqrt{b}+\sqrt{c}-\sqrt{a}}+\frac{\sqrt{c+a-b}}{\sqrt{c}+\sqrt{a}-\sqrt{b}} \leq 2
$$

The first inequality follows from

$$
\sqrt{a+b-c}-\sqrt{a}=\frac{(a+b-c)-a}{\sqrt{a+b-c}+\sqrt{a}} \leq \frac{b-c}{\sqrt{b}+\sqrt{c}}=\sqrt{b}-\sqrt{c} .
$$

For proving the second inequality, let $p=\sqrt{a}+\sqrt{b}$ and $q=\sqrt{a}-\sqrt{b}$. Then $a-b=p q$ and the inequality becomes

$$
\frac{\sqrt{c-p q}}{\sqrt{c}-q}+\frac{\sqrt{c+p q}}{\sqrt{c}+q} \leq 2
$$

From $a \geq b \geq c$ we have $p \geq 2 \sqrt{c}$. Applying the Cauchy-Schwarz inequality,

$$
\begin{gathered}
\left(\frac{\sqrt{c-p q}}{\sqrt{c}-q}+\frac{\sqrt{c+p q}}{\sqrt{c}+q}\right)^{2} \leq\left(\frac{c-p q}{\sqrt{c}-q}+\frac{c+p q}{\sqrt{c}+q}\right)\left(\frac{1}{\sqrt{c}-q}+\frac{1}{\sqrt{c}+q}\right) \\
\quad=\frac{2\left(c \sqrt{c}-p q^{2}\right)}{c-q^{2}} \cdot \frac{2 \sqrt{c}}{c-q^{2}}=4 \cdot \frac{c^{2}-\sqrt{c} p q^{2}}{\left(c-q^{2}\right)^{2}} \leq 4 \cdot \frac{c^{2}-2 c q^{2}}{\left(c-q^{2}\right)^{2}} \leq 4
\end{gathered}
$$

A6. Determine the smallest number M such that the inequality

$$
\left|a b\left(a^{2}-b^{2}\right)+b c\left(b^{2}-c^{2}\right)+c a\left(c^{2}-a^{2}\right)\right| \leq M\left(a^{2}+b^{2}+c^{2}\right)^{2}
$$

holds for all real numbers a, b, c.
(Ireland)
Solution. We first consider the cubic polynomial

$$
P(t)=t b\left(t^{2}-b^{2}\right)+b c\left(b^{2}-c^{2}\right)+c t\left(c^{2}-t^{2}\right) .
$$

It is easy to check that $P(b)=P(c)=P(-b-c)=0$, and therefore

$$
P(t)=(b-c)(t-b)(t-c)(t+b+c),
$$

since the cubic coefficient is $b-c$. The left-hand side of the proposed inequality can therefore be written in the form

$$
\left|a b\left(a^{2}-b^{2}\right)+b c\left(b^{2}-c^{2}\right)+c a\left(c^{2}-a^{2}\right)\right|=|P(a)|=|(b-c)(a-b)(a-c)(a+b+c)|
$$

The problem comes down to finding the smallest number M that satisfies the inequality

$$
\begin{equation*}
|(b-c)(a-b)(a-c)(a+b+c)| \leq M \cdot\left(a^{2}+b^{2}+c^{2}\right)^{2} . \tag{1}
\end{equation*}
$$

Note that this expression is symmetric, and we can therefore assume $a \leq b \leq c$ without loss of generality. With this assumption,

$$
\begin{equation*}
|(a-b)(b-c)|=(b-a)(c-b) \leq\left(\frac{(b-a)+(c-b)}{2}\right)^{2}=\frac{(c-a)^{2}}{4} \tag{2}
\end{equation*}
$$

with equality if and only if $b-a=c-b$, i.e. $2 b=a+c$. Also

$$
\left(\frac{(c-b)+(b-a)}{2}\right)^{2} \leq \frac{(c-b)^{2}+(b-a)^{2}}{2}
$$

or equivalently,

$$
\begin{equation*}
3(c-a)^{2} \leq 2 \cdot\left[(b-a)^{2}+(c-b)^{2}+(c-a)^{2}\right], \tag{3}
\end{equation*}
$$

again with equality only for $2 b=a+c$. From (2) and (3) we get

$$
\begin{aligned}
& |(b-c)(a-b)(a-c)(a+b+c)| \\
\leq & \frac{1}{4} \cdot\left|(c-a)^{3}(a+b+c)\right| \\
= & \frac{1}{4} \cdot \sqrt{(c-a)^{6}(a+b+c)^{2}} \\
\leq & \frac{1}{4} \cdot \sqrt{\left(\frac{2 \cdot\left[(b-a)^{2}+(c-b)^{2}+(c-a)^{2}\right]}{3}\right)^{3} \cdot(a+b+c)^{2}} \\
= & \frac{\sqrt{2}}{2} \cdot\left(\sqrt[4]{\left(\frac{(b-a)^{2}+(c-b)^{2}+(c-a)^{2}}{3}\right)^{3} \cdot(a+b+c)^{2}}\right)^{2} .
\end{aligned}
$$

By the weighted AM-GM inequality this estimate continues as follows:

$$
\begin{aligned}
& |(b-c)(a-b)(a-c)(a+b+c)| \\
\leq & \frac{\sqrt{2}}{2} \cdot\left(\frac{(b-a)^{2}+(c-b)^{2}+(c-a)^{2}+(a+b+c)^{2}}{4}\right)^{2} \\
= & \frac{9 \sqrt{2}}{32} \cdot\left(a^{2}+b^{2}+c^{2}\right)^{2} .
\end{aligned}
$$

We see that the inequality (1) is satisfied for $M=\frac{9}{32} \sqrt{2}$, with equality if and only if $2 b=a+c$ and

$$
\frac{(b-a)^{2}+(c-b)^{2}+(c-a)^{2}}{3}=(a+b+c)^{2} .
$$

Plugging $b=(a+c) / 2$ into the last equation, we bring it to the equivalent form

$$
2(c-a)^{2}=9(a+c)^{2} .
$$

The conditions for equality can now be restated as

$$
2 b=a+c \quad \text { and } \quad(c-a)^{2}=18 b^{2} .
$$

Setting $b=1$ yields $a=1-\frac{3}{2} \sqrt{2}$ and $c=1+\frac{3}{2} \sqrt{2}$. We see that $M=\frac{9}{32} \sqrt{2}$ is indeed the smallest constant satisfying the inequality, with equality for any triple (a, b, c) proportional to ($1-\frac{3}{2} \sqrt{2}, 1,1+\frac{3}{2} \sqrt{2}$), up to permutation.
Comment. With the notation $x=b-a, y=c-b, z=a-c, s=a+b+c$ and $r^{2}=a^{2}+b^{2}+c^{2}$, the inequality (1) becomes just $|s x y z| \leq M r^{4}$ (with suitable constraints on s and r). The original asymmetric inequality turns into a standard symmetric one; from this point on the solution can be completed in many ways. One can e.g. use the fact that, for fixed values of $\sum x$ and $\sum x^{2}$, the product $x y z$ is a maximum/minimum only if some of x, y, z are equal, thus reducing one degree of freedom, etc.

As observed by the proposer, a specific attraction of the problem is that the maximum is attained at a point (a, b, c) with all coordinates distinct.

Combinatorics

C1. We have $n \geq 2$ lamps L_{1}, \ldots, L_{n} in a row, each of them being either on or off. Every second we simultaneously modify the state of each lamp as follows:

- if the lamp L_{i} and its neighbours (only one neighbour for $i=1$ or $i=n$, two neighbours for other i) are in the same state, then L_{i} is switched off;
- otherwise, L_{i} is switched on.

Initially all the lamps are off except the leftmost one which is on.
(a) Prove that there are infinitely many integers n for which all the lamps will eventually be off.
(b) Prove that there are infinitely many integers n for which the lamps will never be all off.
(France)
Solution. (a) Experiments with small n lead to the guess that every n of the form 2^{k} should be good. This is indeed the case, and more precisely: let A_{k} be the $2^{k} \times 2^{k}$ matrix whose rows represent the evolution of the system, with entries 0,1 (for off and on respectively). The top row shows the initial state $[1,0,0, \ldots, 0]$; the bottom row shows the state after $2^{k}-1$ steps. The claim is that:

$$
\text { The bottom row of } A_{k} \text { is }[1,1,1, \ldots, 1] \text {. }
$$

This will of course suffice because one more move then produces $[0,0,0, \ldots, 0]$, as required.
The proof is by induction on k. The base $k=1$ is obvious. Assume the claim to be true for a $k \geq 1$ and write the matrix A_{k+1} in the block form $\left(\begin{array}{ll}A_{k} & O_{k} \\ B_{k} & C_{k}\end{array}\right)$ with four $2^{k} \times 2^{k}$ matrices. After m steps, the last 1 in a row is at position $m+1$. Therefore O_{k} is the zero matrix. According to the induction hypothesis, the bottom row of $\left[A_{k} O_{k}\right]$ is $[1, \ldots, 1,0, \ldots, 0]$, with 2^{k} ones and 2^{k} zeros. The next row is thus

$$
[\underbrace{0, \ldots, 0}_{2^{k}-1}, 1,1, \underbrace{0, \ldots, 0}_{2^{k}-1}]
$$

It is symmetric about its midpoint, and this symmetry is preserved in all subsequent rows because the procedure described in the problem statement is left/right symmetric. Thus B_{k} is the mirror image of C_{k}. In particular, the rightmost column of B_{k} is identical with the leftmost column of C_{k}.

Imagine the matrix C_{k} in isolation from the rest of A_{k+1}. Suppose it is subject to evolution as defined in the problem: the first (leftmost) term in a row depends only on the two first terms in the preceding row, according as they are equal or not. Now embed C_{k} again in A_{k}. The 'leftmost' terms in the rows of C_{k} now have neighbours on their left side - but these neighbours are their exact copies. Consequently the actual evolution within C_{k} is the same, whether or not C_{k} is considered as a piece of A_{k+1} or in isolation. And since the top row of C_{k} is $[1,0, \ldots, 0]$, it follows that C_{k} is identical with A_{k}.

The bottom row of A_{k} is $[1,1, \ldots, 1]$; the same is the bottom row of C_{k}, hence also of B_{k}, which mirrors C_{k}. So the bottom row of A_{k+1} consists of ones only and the induction is complete.
(b) There are many ways to produce an infinite sequence of those n for which the state $[0,0, \ldots, 0]$ will never be achieved. As an example, consider $n=2^{k}+1$ (for $k \geq 1$). The evolution of the system can be represented by a matrix \mathcal{A} of width $2^{k}+1$ with infinitely many rows. The top 2^{k} rows form the matrix A_{k} discussed above, with one column of zeros attached at its right.

In the next row we then have the vector $[0,0, \ldots, 0,1,1]$. But this is just the second row of \mathcal{A} reversed. Subsequent rows will be mirror copies of the foregoing ones, starting from the second one. So the configuration $[1,1,0, \ldots, 0,0]$, i.e. the second row of \mathcal{A}, will reappear. Further rows will periodically repeat this pattern and there will be no row of zeros.

C2. A diagonal of a regular 2006-gon is called odd if its endpoints divide the boundary into two parts, each composed of an odd number of sides. Sides are also regarded as odd diagonals.

Suppose the 2006-gon has been dissected into triangles by 2003 nonintersecting diagonals. Find the maximum possible number of isosceles triangles with two odd sides.
(Serbia)
Solution 1. Call an isosceles triangle odd if it has two odd sides. Suppose we are given a dissection as in the problem statement. A triangle in the dissection which is odd and isosceles will be called iso-odd for brevity.
Lemma. Let $A B$ be one of dissecting diagonals and let \mathcal{L} be the shorter part of the boundary of the 2006 -gon with endpoints A, B. Suppose that \mathcal{L} consists of n segments. Then the number of iso-odd triangles with vertices on \mathcal{L} does not exceed $n / 2$.
Proof. This is obvious for $n=2$. Take n with $2<n \leq 1003$ and assume the claim to be true for every \mathcal{L} of length less than n. Let now \mathcal{L} (endpoints A, B) consist of n segments. Let $P Q$ be the longest diagonal which is a side of an iso-odd triangle $P Q S$ with all vertices on \mathcal{L} (if there is no such triangle, there is nothing to prove). Every triangle whose vertices lie on \mathcal{L} is obtuse or right-angled; thus S is the summit of $P Q S$. We may assume that the five points A, P, S, Q, B lie on \mathcal{L} in this order and partition \mathcal{L} into four pieces $\mathcal{L}_{A P}, \mathcal{L}_{P S}, \mathcal{L}_{S Q}, \mathcal{L}_{Q B}$ (the outer ones possibly reducing to a point).

By the definition of $P Q$, an iso-odd triangle cannot have vertices on both $\mathcal{L}_{A P}$ and $\mathcal{L}_{Q B}$. Therefore every iso-odd triangle within \mathcal{L} has all its vertices on just one of the four pieces. Applying to each of these pieces the induction hypothesis and adding the four inequalities we get that the number of iso-odd triangles within \mathcal{L} other than $P Q S$ does not exceed $n / 2$. And since each of $\mathcal{L}_{P S}, \mathcal{L}_{S Q}$ consists of an odd number of sides, the inequalities for these two pieces are actually strict, leaving a $1 / 2+1 / 2$ in excess. Hence the triangle $P S Q$ is also covered by the estimate $n / 2$. This concludes the induction step and proves the lemma.

The remaining part of the solution in fact repeats the argument from the above proof. Consider the longest dissecting diagonal $X Y$. Let $\mathcal{L}_{X Y}$ be the shorter of the two parts of the boundary with endpoints X, Y and let $X Y Z$ be the triangle in the dissection with vertex Z not on $\mathcal{L}_{X Y}$. Notice that $X Y Z$ is acute or right-angled, otherwise one of the segments $X Z, Y Z$ would be longer than $X Y$. Denoting by $\mathcal{L}_{X Z}, \mathcal{L}_{Y Z}$ the two pieces defined by Z and applying the lemma to each of $\mathcal{L}_{X Y}, \mathcal{L}_{X Z}, \mathcal{L}_{Y Z}$ we infer that there are no more than 2006/2 iso-odd triangles in all, unless $X Y Z$ is one of them. But in that case $X Z$ and $Y Z$ are odd diagonals and the corresponding inequalities are strict. This shows that also in this case the total number of iso-odd triangles in the dissection, including $X Y Z$, is not greater than 1003.

This bound can be achieved. For this to happen, it just suffices to select a vertex of the 2006-gon and draw a broken line joining every second vertex, starting from the selected one. Since 2006 is even, the line closes. This already gives us the required 1003 iso-odd triangles. Then we can complete the triangulation in an arbitrary fashion.

Solution 2. Let the terms odd triangle and iso-odd triangle have the same meaning as in the first solution.

Let $A B C$ be an iso-odd triangle, with $A B$ and $B C$ odd sides. This means that there are an odd number of sides of the 2006-gon between A and B and also between B and C. We say that these sides belong to the iso-odd triangle $A B C$.

At least one side in each of these groups does not belong to any other iso-odd triangle. This is so because any odd triangle whose vertices are among the points between A and B has two sides of equal length and therefore has an even number of sides belonging to it in total. Eliminating all sides belonging to any other iso-odd triangle in this area must therefore leave one side that belongs to no other iso-odd triangle. Let us assign these two sides (one in each group) to the triangle $A B C$.

To each iso-odd triangle we have thus assigned a pair of sides, with no two triangles sharing an assigned side. It follows that at most 1003 iso-odd triangles can appear in the dissection.

This value can be attained, as shows the example from the first solution.

C3. Let S be a finite set of points in the plane such that no three of them are on a line. For each convex polygon P whose vertices are in S, let $a(P)$ be the number of vertices of P, and let $b(P)$ be the number of points of S which are outside P. Prove that for every real number x

$$
\sum_{P} x^{a(P)}(1-x)^{b(P)}=1,
$$

where the sum is taken over all convex polygons with vertices in S.
NB. A line segment, a point and the empty set are considered as convex polygons of 2,1 and 0 vertices, respectively.
(Colombia)
Solution 1. For each convex polygon P whose vertices are in S, let $c(P)$ be the number of points of S which are inside P, so that $a(P)+b(P)+c(P)=n$, the total number of points in S. Denoting $1-x$ by y,

$$
\sum_{P} x^{a(P)} y^{b(P)}=\sum_{P} x^{a(P)} y^{b(P)}(x+y)^{c(P)}=\sum_{P} \sum_{i=0}^{c(P)}\binom{c(P)}{i} x^{a(P)+i} y^{b(P)+c(P)-i} .
$$

View this expression as a homogeneous polynomial of degree n in two independent variables x, y. In the expanded form, it is the sum of terms $x^{r} y^{n-r}(0 \leq r \leq n)$ multiplied by some nonnegative integer coefficients.

For a fixed r, the coefficient of $x^{r} y^{n-r}$ represents the number of ways of choosing a convex polygon P and then choosing some of the points of S inside P so that the number of vertices of P and the number of chosen points inside P jointly add up to r.

This corresponds to just choosing an r-element subset of S. The correspondence is bijective because every set T of points from S splits in exactly one way into the union of two disjoint subsets, of which the first is the set of vertices of a convex polygon - namely, the convex hull of T - and the second consists of some points inside that polygon.

So the coefficient of $x^{r} y^{n-r}$ equals $\binom{n}{r}$. The desired result follows:

$$
\sum_{P} x^{a(P)} y^{b(P)}=\sum_{r=0}^{n}\binom{n}{r} x^{r} y^{n-r}=(x+y)^{n}=1
$$

Solution 2. Apply induction on the number n of points. The case $n=0$ is trivial. Let $n>0$ and assume the statement for less than n points. Take a set S of n points.

Let C be the set of vertices of the convex hull of S, let $m=|C|$.
Let $X \subset C$ be an arbitrary nonempty set. For any convex polygon P with vertices in the set $S \backslash X$, we have $b(P)$ points of S outside P. Excluding the points of X - all outside P - the set $S \backslash X$ contains exactly $b(P)-|X|$ of them. Writing $1-x=y$, by the induction hypothesis

$$
\sum_{P \subset S \backslash X} x^{a(P)} y^{b(P)-|X|}=1
$$

(where $P \subset S \backslash X$ means that the vertices of P belong to the set $S \backslash X$). Therefore

$$
\sum_{P \subset S \backslash X} x^{a(P)} y^{b(P)}=y^{|X|}
$$

All convex polygons appear at least once, except the convex hull C itself. The convex hull adds x^{m}. We can use the inclusion-exclusion principle to compute the sum of the other terms:

$$
\begin{gathered}
\sum_{P \neq C} x^{a(P)} y^{b(P)}=\sum_{k=1}^{m}(-1)^{k-1} \sum_{|X|=k} \sum_{P \subset S \backslash X} x^{a(P)} y^{b(P)}=\sum_{k=1}^{m}(-1)^{k-1} \sum_{|X|=k} y^{k} \\
=\sum_{k=1}^{m}(-1)^{k-1}\binom{m}{k} y^{k}=-\left((1-y)^{m}-1\right)=1-x^{m}
\end{gathered}
$$

and then

$$
\sum_{P} x^{a(P)} y^{b(P)}=\sum_{P=C}+\sum_{P \neq C}=x^{m}+\left(1-x^{m}\right)=1
$$

C4. A cake has the form of an $n \times n$ square composed of n^{2} unit squares. Strawberries lie on some of the unit squares so that each row or column contains exactly one strawberry; call this arrangement \mathcal{A}.

Let \mathcal{B} be another such arrangement. Suppose that every grid rectangle with one vertex at the top left corner of the cake contains no fewer strawberries of arrangement \mathcal{B} than of arrangement \mathcal{A}. Prove that arrangement \mathcal{B} can be obtained from \mathcal{A} by performing a number of switches, defined as follows:

A switch consists in selecting a grid rectangle with only two strawberries, situated at its top right corner and bottom left corner, and moving these two strawberries to the other two corners of that rectangle.
(Taiwan)
Solution. We use capital letters to denote unit squares; O is the top left corner square. For any two squares X and Y let $[X Y]$ be the smallest grid rectangle containing these two squares. Strawberries lie on some squares in arrangement \mathcal{A}. Put a plum on each square of the target configuration \mathcal{B}. For a square X denote by $a(X)$ and $b(X)$ respectively the number of strawberries and the number of plums in $[O X]$. By hypothesis $a(X) \leq b(X)$ for each X, with strict inequality for some X (otherwise the two arrangements coincide and there is nothing to prove).

The idea is to show that by a legitimate switch one can obtain an arrangement \mathcal{A}^{\prime} such that

$$
\begin{equation*}
a(X) \leq a^{\prime}(X) \leq b(X) \quad \text { for each } X ; \quad \sum_{X} a(X)<\sum_{X} a^{\prime}(X) \tag{1}
\end{equation*}
$$

(with $a^{\prime}(X)$ defined analogously to $a(X)$; the sums range over all unit squares X). This will be enough because the same reasoning then applies to \mathcal{A}^{\prime}, giving rise to a new arrangement $\mathcal{A}^{\prime \prime}$, and so on (induction). Since $\sum a(X)<\sum a^{\prime}(X)<\sum a^{\prime \prime}(X)<\ldots$ and all these sums do not exceed $\sum b(X)$, we eventually obtain a sum with all summands equal to the respective $b(X)$; all strawberries will meet with plums.

Consider the uppermost row in which the plum and the strawberry lie on different squares P and S (respectively); clearly P must be situated left to S. In the column passing through P, let T be the top square and B the bottom square. The strawberry in that column lies below the plum (because there is no plum in that column above P, and the positions of strawberries and plums coincide everywhere above the row of P). Hence there is at least one strawberry in the region $[B S]$ below $[P S]$. Let V be the position of the uppermost strawberry in that region.

Denote by W the square at the intersection of the row through V with the column through S and let R be the square vertex-adjacent to W up-left. We claim that

$$
\begin{equation*}
a(X)<b(X) \quad \text { for all } \quad X \in[P R] \tag{2}
\end{equation*}
$$

This is so because if $X \in[P R]$ then the portion of $[O X]$ left to column $[T B]$ contains at least as many plums as strawberries (the hypothesis of the problem); in the portion above the row through P and S we have perfect balance; and in the remaining portion, i.e. rectangle $[P X]$ we have a plum on square P and no strawberry at all.

Now we are able to perform the required switch. Let U be the square at the intersection of the row through P with the column through V (some of P, U, R can coincide). We move strawberries from squares S and V to squares U and W. Then

$$
a^{\prime}(X)=a(X)+1 \quad \text { for } \quad X \in[U R] ; \quad a^{\prime}(X)=a(X) \quad \text { for other } X .
$$

And since the rectangle $[U R]$ is contained in $[P R]$, we still have $a^{\prime}(X) \leq b(X)$ for all S, in view of (2); conditions (1) are satisfied and the proof is complete.

C5. An (n, k)-tournament is a contest with n players held in k rounds such that:
(i) Each player plays in each round, and every two players meet at most once.
(ii) If player A meets player B in round i, player C meets player D in round i, and player A meets player C in round j, then player B meets player D in round j.

Determine all pairs (n, k) for which there exists an (n, k)-tournament.
(Argentina)
Solution. For each k, denote by t_{k} the unique integer such that $2^{t_{k}-1}<k+1 \leq 2^{t_{k}}$. We show that an (n, k)-tournament exists if and only if $2^{t_{k}}$ divides n.

First we prove that if $n=2^{t}$ for some t then there is an (n, k)-tournament for all $k \leq 2^{t}-1$. Let S be the set of $0-1$ sequences with length t. We label the 2^{t} players with the elements of S in an arbitrary fashion (which is possible as there are exactly 2^{t} sequences in S). Players are identified with their labels in the construction below. If $\alpha, \beta \in S$, let $\alpha+\beta \in S$ be the result of the modulo 2 term-by-term addition of α and β (with rules $0+0=0,0+1=1+0=1$, $1+1=0$; there is no carryover). For each $i=1, \ldots, 2^{t}-1$ let $\omega(i) \in S$ be the sequence of base 2 digits of i, completed with leading zeros if necessary to achieve length t.

Now define a tournament with $n=2^{t}$ players in $k \leq 2^{t}-1$ rounds as follows: For all $i=1, \ldots, k$, let player α meet player $\alpha+\omega(i)$ in round i. The tournament is well-defined as $\alpha+\omega(i) \in S$ and $\alpha+\omega(i)=\beta+\omega(i)$ implies $\alpha=\beta$; also $[\alpha+\omega(i)]+\omega(i)=\alpha$ for each $\alpha \in S$ (meaning that player $\alpha+\omega(i)$ meets player α in round i, as needed). Each player plays in each round. Next, every two players meet at most once (exactly once if $k=2^{t}-1$), since $\omega(i) \neq \omega(j)$ if $i \neq j$. Thus condition (i) holds true, and condition (ii) is also easy to check.

Let player α meet player β in round i, player γ meet player δ in round i, and player α meet player γ in round j. Then $\beta=\alpha+\omega(i), \delta=\gamma+\omega(i)$ and $\gamma=\alpha+\omega(j)$. By definition, β will play in round j with

$$
\beta+\omega(j)=[\alpha+\omega(i)]+\omega(j)=[\alpha+\omega(j)]+\omega(i)=\gamma+\omega(i)=\delta,
$$

as required by (ii).
So there exists an (n, k)-tournament for pairs (n, k) such that $n=2^{t}$ and $k \leq 2^{t}-1$. The same conclusion is straightforward for n of the form $n=2^{t} s$ and $k \leq 2^{t}-1$. Indeed, consider s different $\left(2^{t}, k\right)$-tournaments T_{1}, \ldots, T_{s}, no two of them having players in common. Their union can be regarded as a $\left(2^{t} s, k\right)$-tournament T where each round is the union of the respective rounds in T_{1}, \ldots, T_{s}.

In summary, the condition that $2^{t_{k}}$ divides n is sufficient for an (n, k)-tournament to exist. We prove that it is also necessary.

Consider an arbitrary (n, k)-tournament. Represent each player by a point and after each round, join by an edge every two players who played in this round. Thus to a round $i=1, \ldots, k$ there corresponds a graph G_{i}. We say that player Q is an i-neighbour of player P if there is a path of edges in G_{i} from P to Q; in other words, if there are players $P=X_{1}, X_{2}, \ldots, X_{m}=Q$ such that player X_{j} meets player X_{j+1} in one of the first i rounds, $j=1,2 \ldots, m-1$. The set of i-neighbours of a player will be called its i-component. Clearly two i-components are either disjoint or coincide.

Hence after each round i the set of players is partitioned into pairwise disjoint i-components. So, to achieve our goal, it suffices to show that all k-components have size divisible by $2^{t_{k}}$.

To this end, let us see how the i-component Γ of a player A changes after round $i+1$. Suppose that A meets player B with i-component Δ in round $i+1$ (components Γ and Δ are
not necessarily distinct). We claim that then in round $i+1$ each player from Γ meets a player from Δ, and vice versa.

Indeed, let C be any player in Γ, and let C meet D in round $i+1$. Since C is an i-neighbour of A, there is a sequence of players $A=X_{1}, X_{2}, \ldots, X_{m}=C$ such that X_{j} meets X_{j+1} in one of the first i rounds, $j=1,2 \ldots, m-1$. Let X_{j} meet Y_{j} in round $i+1$, for $j=1,2 \ldots, m$; in particular $Y_{1}=B$ and $Y_{m}=D$. Players Y_{j} exists in view of condition (i). Suppose that X_{j} and X_{j+1} met in round r, where $r \leq i$. Then condition (ii) implies that and Y_{j} and Y_{j+1} met in round r, too. Hence $B=Y_{1}, Y_{2}, \ldots, Y_{m}=D$ is a path in G_{i} from B to D. This is to say, D is in the i-component Δ of B, as claimed. By symmetry, each player from Δ meets a player from Γ in round $i+1$. It follows in particular that Γ and Δ have the same cardinality.

It is straightforward now that the ($i+1$)-component of A is $\Gamma \cup \Delta$, the union of two sets with the same size. Since Γ and Δ are either disjoint or coincide, we have either $|\Gamma \cup \Delta|=2|\Gamma|$ or $|\Gamma \cup \Delta|=|\Gamma|$; as usual, $|\cdots|$ denotes the cardinality of a finite set.

Let $\Gamma_{1}, \ldots, \Gamma_{k}$ be the consecutive components of a given player A. We obtained that either $\left|\Gamma_{i+1}\right|=2\left|\Gamma_{i}\right|$ or $\left|\Gamma_{i+1}\right|=\left|\Gamma_{i}\right|$ for $i=1, \ldots, k-1$. Because $\left|\Gamma_{1}\right|=2$, each $\left|\Gamma_{i}\right|$ is a power of 2 , $i=1, \ldots, k-1$. In particular $\left|\Gamma_{k}\right|=2^{u}$ for some u.

On the other hand, player A has played with k different opponents by (i). All of them belong to Γ_{k}, therefore $\left|\Gamma_{k}\right| \geq k+1$.

Thus $2^{u} \geq k+1$, and since t_{k} is the least integer satisfying $2^{t_{k}} \geq k+1$, we conclude that $u \geq t_{k}$. So the size of each k-component is divisible by $2^{t_{k}}$, which completes the argument.

C6. A holey triangle is an upward equilateral triangle of side length n with n upward unit triangular holes cut out. A diamond is a $60^{\circ}-120^{\circ}$ unit rhombus. Prove that a holey triangle T can be tiled with diamonds if and only if the following condition holds: Every upward equilateral triangle of side length k in T contains at most k holes, for $1 \leq k \leq n$.
(Colombia)
Solution. Let T be a holey triangle. The unit triangles in it will be called cells. We say simply "triangle" instead of "upward equilateral triangle" and "size" instead of "side length."

The necessity will be proven first. Assume that a holey triangle T can be tiled with diamonds and consider such a tiling. Let T^{\prime} be a triangle of size k in T containing h holes. Focus on the diamonds which cover (one or two) cells in T^{\prime}. Let them form a figure R. The boundary of T^{\prime} consists of upward cells, so R is a triangle of size k with h upward holes cut out and possibly some downward cells sticking out. Hence there are exactly $\left(k^{2}+k\right) / 2-h$ upward cells in R, and at least $\left(k^{2}-k\right) / 2$ downward cells (not counting those sticking out). On the other hand each diamond covers one upward and one downward cell, which implies $\left(k^{2}+k\right) / 2-h \geq\left(k^{2}-k\right) / 2$. It follows that $h \leq k$, as needed.

We pass on to the sufficiency. For brevity, let us say that a set of holes in a given triangle T is spread out if every triangle of size k in T contains at most k holes. For any set S of spread out holes, a triangle of size k will be called full of S if it contains exactly k holes of S. The proof is based on the following observation.
Lemma. Let S be a set of spread out holes in T. Suppose that two triangles T^{\prime} and $T^{\prime \prime}$ are full of S, and that they touch or intersect. Let $T^{\prime}+T^{\prime \prime}$ denote the smallest triangle in T containing them. Then $T^{\prime}+T^{\prime \prime}$ is also full of S.
Proof. Let triangles $T^{\prime}, T^{\prime \prime}, T^{\prime} \cap T^{\prime \prime}$ and $T^{\prime}+T^{\prime \prime}$ have sizes a, b, c and d, and let them contain a, b, x and y holes of S, respectively. (Note that $T^{\prime} \cap T^{\prime \prime}$ could be a point, in which case $c=0$.) Since S is spread out, we have $x \leq c$ and $y \leq d$. The geometric configuration of triangles clearly satisfies $a+b=c+d$. Furthermore, $a+b \leq x+y$, since $a+b$ counts twice the holes in $T^{\prime} \cap T^{\prime \prime}$. These conclusions imply $x=c$ and $y=d$, as we wished to show.

Now let T_{n} be a holey triangle of size n, and let the set H of its holes be spread out. We show by induction on n that T_{n} can be tiled with diamonds. The base $n=1$ is trivial. Suppose that $n \geq 2$ and that the claim holds for holey triangles of size less than n.

Denote by B the bottom row of T_{n} and by T^{\prime} the triangle formed by its top $n-1$ rows. There is at least one hole in B as T^{\prime} contains at most $n-1$ holes. If this hole is only one, there is a unique way to tile B with diamonds. Also, T^{\prime} contains exactly $n-1$ holes, making it a holey triangle of size $n-1$, and these holes are spread out. Hence it remains to apply the induction hypothesis.

So suppose that there are $m \geq 2$ holes in B and label them a_{1}, \ldots, a_{m} from left to right. Let ℓ be the line separating B from T^{\prime}. For each $i=1, \ldots, m-1$, pick an upward cell b_{i} between a_{i} and a_{i+1}, with base on ℓ. Place a diamond to cover b_{i} and its lower neighbour, a downward cell in B. The remaining part of B can be tiled uniquely with diamonds. Remove from T_{n} row B and the cells b_{1}, \ldots, b_{m-1} to obtain a holey triangle T_{n-1} of size $n-1$. The conclusion will follow by induction if the choice of b_{1}, \ldots, b_{m-1} guarantees that the following condition is satisfied: If the holes a_{1}, \ldots, a_{m-1} are replaced by b_{1}, \ldots, b_{m-1} then the new set of holes is spread out again.

We show that such a choice is possible. The cells b_{1}, \ldots, b_{m-1} can be defined one at a time in this order, making sure that the above condition holds at each step. Thus it suffices to prove that there is an appropriate choice for b_{1}, and we set $a_{1}=u, a_{2}=v$ for clarity.

Let Δ be the triangle of maximum size which is full of H, contains the top vertex of the hole u, and has base on line ℓ. Call Δ the associate of u. Observe that Δ does not touch v. Indeed, if Δ has size r then it contains r holes of T_{n}. Extending its slanted sides downwards produces a triangle Δ^{\prime} of size $r+1$ containing at least one more hole, namely u. Since there are at most $r+1$ holes in Δ^{\prime}, it cannot contain v. Consequently, Δ does not contain the top vertex of v.

Let w be the upward cell with base on ℓ which is to the right of Δ and shares a common vertex with it. The observation above shows that w is to the left of v. Note that w is not a hole, or else Δ could be extended to a larger triangle full of H.

We prove that if the hole u is replaced by w then the new set of holes is spread out again. To verify this, we only need to check that if a triangle Γ in T_{n} contains w but not u then Γ is not full of H. Suppose to the contrary that Γ is full of H. Consider the minimum triangle $\Gamma+\Delta$ containing Γ and the associate Δ of u. Clearly $\Gamma+\Delta$ is larger than Δ, because Γ contains w but Δ does not. Next, $\Gamma+\Delta$ is full of $H \backslash\{u\}$ by the lemma, since Γ and Δ have a common point and neither of them contains u.

If Γ is above line ℓ then so is $\Gamma+\Delta$, which contradicts the maximum choice of Δ. If Γ contains cells from row B, observe that $\Gamma+\Delta$ contains u. Let s be the size of $\Gamma+\Delta$. Being full of $H \backslash\{u\}, \Gamma+\Delta$ contains s holes other than u. But it also contains u, contradicting the assumption that H is spread out.

The claim follows, showing that $b_{1}=w$ is an appropriate choice for $a_{1}=u$ and $a_{2}=v$. As explained above, this is enough to complete the induction.

C7. Consider a convex polyhedron without parallel edges and without an edge parallel to any face other than the two faces adjacent to it.

Call a pair of points of the polyhedron antipodal if there exist two parallel planes passing through these points and such that the polyhedron is contained between these planes.

Let A be the number of antipodal pairs of vertices, and let B be the number of antipodal pairs of midpoints of edges. Determine the difference $A-B$ in terms of the numbers of vertices, edges and faces.
(Japan)
Solution 1. Denote the polyhedron by Γ; let its vertices, edges and faces be $V_{1}, V_{2}, \ldots, V_{n}$, $E_{1}, E_{2}, \ldots, E_{m}$ and $F_{1}, F_{2}, \ldots, F_{\ell}$, respectively. Denote by Q_{i} the midpoint of edge E_{i}.

Let S be the unit sphere, the set of all unit vectors in three-dimensional space. Map the boundary elements of Γ to some objects on S as follows.

For a face F_{i}, let $S^{+}\left(F_{i}\right)$ and $S^{-}\left(F_{i}\right)$ be the unit normal vectors of face F_{i}, pointing outwards from Γ and inwards to Γ, respectively. These points are diametrically opposite.

For an edge E_{j}, with neighbouring faces $F_{i_{1}}$ and $F_{i_{2}}$, take all support planes of Γ (planes which have a common point with Γ but do not intersect it) containing edge E_{j}, and let $S^{+}\left(E_{j}\right)$ be the set of their outward normal vectors. The set $S^{+}\left(E_{j}\right)$ is an arc of a great circle on S. Arc $S^{+}\left(E_{j}\right)$ is perpendicular to edge E_{j} and it connects points $S^{+}\left(F_{i_{1}}\right)$ and $S^{+}\left(F_{i_{2}}\right)$.

Define also the set of inward normal vectors $S^{-}\left(E_{i}\right)$ which is the reflection of $S^{+}\left(E_{i}\right)$ across the origin.

For a vertex V_{k}, which is the common endpoint of edges $E_{j_{1}}, \ldots, E_{j_{h}}$ and shared by faces $F_{i_{1}}, \ldots, F_{i_{h}}$, take all support planes of Γ through point V_{k} and let $S^{+}\left(V_{k}\right)$ be the set of their outward normal vectors. This is a region on S, a spherical polygon with vertices $S^{+}\left(F_{i_{1}}\right), \ldots, S^{+}\left(F_{i_{h}}\right)$ bounded by arcs $S^{+}\left(E_{j_{1}}\right), \ldots, S^{+}\left(E_{j_{h}}\right)$. Let $S^{-}\left(V_{k}\right)$ be the reflection of $S^{+}\left(V_{k}\right)$, the set of inward normal vectors.

Note that region $S^{+}\left(V_{k}\right)$ is convex in the sense that it is the intersection of several half spheres.

Now translate the conditions on Γ to the language of these objects.
(a) Polyhedron Γ has no parallel edges - the great circles of arcs $S^{+}\left(E_{i}\right)$ and $S^{-}\left(E_{j}\right)$ are different for all $i \neq j$.
(b) If an edge E_{i} does not belong to a face F_{j} then they are not parallel - the great circle which contains arcs $S^{+}\left(E_{i}\right)$ and $S^{-}\left(E_{i}\right)$ does not pass through points $S^{+}\left(F_{j}\right)$ and $S^{-}\left(F_{j}\right)$.
(c) Polyhedron Γ has no parallel faces - points $S^{+}\left(F_{i}\right)$ and $S^{-}\left(F_{j}\right)$ are pairwise distinct.

The regions $S^{+}\left(V_{k}\right)$, arcs $S^{+}\left(E_{j}\right)$ and points $S^{+}\left(F_{i}\right)$ provide a decomposition of the surface of the sphere. Regions $S^{-}\left(V_{k}\right)$, arcs $S^{-}\left(E_{j}\right)$ and points $S^{-}\left(F_{i}\right)$ provide the reflection of this decomposition. These decompositions are closely related to the problem.

Lemma 1. For any $1 \leq i, j \leq n$, regions $S^{-}\left(V_{i}\right)$ and $S^{+}\left(V_{j}\right)$ overlap if and only if vertices V_{i} and V_{j} are antipodal.
Lemma 2. For any $1 \leq i, j \leq m$, arcs $S^{-}\left(E_{i}\right)$ and $S^{+}\left(E_{j}\right)$ intersect if and only if the midpoints Q_{i} and Q_{j} of edges E_{i} and E_{j} are antipodal.
Proof of lemma 1. First note that by properties (a,b,c) above, the two regions cannot share only a single point or an arc. They are either disjoint or they overlap.

Assume that the two regions have a common interior point u. Let P_{1} and P_{2} be two parallel support planes of Γ through points V_{i} and V_{j}, respectively, with normal vector u. By the definition of regions $S^{-}\left(V_{i}\right)$ and $S^{+}\left(V_{j}\right), u$ is the inward normal vector of P_{1} and the outward normal vector of P_{2}. Therefore polyhedron Γ lies between the two planes; vertices V_{i} and V_{j} are antipodal.

To prove the opposite direction, assume that V_{i} and V_{j} are antipodal. Then there exist two parallel support planes P_{1} and P_{2} through V_{i} and V_{j}, respectively, such that Γ is between them. Let u be the inward normal vector of P_{1}; then u is the outward normal vector of P_{2}, therefore $u \in S^{-}\left(V_{i}\right) \cap S^{+}\left(V_{j}\right)$. The two regions have a common point, so they overlap.
Proof of lemma 2. Again, by properties (a, b) above, the endpoints of arc $S^{-}\left(E_{i}\right)$ cannot belong to $S^{+}\left(E_{j}\right)$ and vice versa. The two arcs are either disjoint or intersecting.

Assume that arcs $S^{-}\left(E_{i}\right)$ and $S^{+}\left(E_{j}\right)$ intersect at point u. Let P_{1} and P_{2} be the two support planes through edges E_{i} and E_{j}, respectively, with normal vector u. By the definition of arcs $S^{-}\left(E_{i}\right)$ and $S^{+}\left(E_{j}\right)$, vector u points inwards from P_{1} and outwards from P_{2}. Therefore Γ is between the planes. Since planes P_{1} and P_{2} pass through Q_{i} and Q_{j}, these points are antipodal.

For the opposite direction, assume that points Q_{i} and Q_{j} are antipodal. Let P_{1} and P_{2} be two support planes through these points, respectively. An edge cannot intersect a support plane, therefore E_{i} and E_{j} lie in the planes P_{1} and P_{2}, respectively. Let u be the inward normal vector of P_{1}, which is also the outward normal vector of P_{2}. Then $u \in S^{-}\left(E_{i}\right) \cap S^{+}\left(E_{j}\right)$. So the two arcs are not disjoint; they therefore intersect.

Now create a new decomposition of sphere S. Draw all arcs $S^{+}\left(E_{i}\right)$ and $S^{-}\left(E_{j}\right)$ on sphere S and put a knot at each point where two arcs meet. We have ℓ knots at points $S^{+}\left(F_{i}\right)$ and another ℓ knots at points $S^{-}\left(F_{i}\right)$, corresponding to the faces of Γ; by property (c) they are different. We also have some pairs $1 \leq i, j \leq m$ where $\operatorname{arcs} S^{-}\left(E_{i}\right)$ and $S^{+}\left(E_{j}\right)$ intersect. By Lemma 2, each antipodal pair (Q_{i}, Q_{j}) gives rise to two such intersections; hence, the number of all intersections is $2 B$ and we have $2 \ell+2 B$ knots in all.

Each intersection knot splits two arcs, increasing the number of arcs by 2 . Since we started with $2 m$ arcs, corresponding the edges of Γ, the number of the resulting curve segments is $2 m+4 B$.

The network of these curve segments divides the sphere into some "new" regions. Each new region is the intersection of some overlapping sets $S^{-}\left(V_{i}\right)$ and $S^{+}\left(V_{j}\right)$. Due to the convexity, the intersection of two overlapping regions is convex and thus contiguous. By Lemma 1, each pair of overlapping regions corresponds to an antipodal vertex pair and each antipodal vertex pair gives rise to two different overlaps, which are symmetric with respect to the origin. So the number of new regions is $2 A$.

The result now follows from Euler's polyhedron theorem. We have $n+l=m+2$ and

$$
(2 \ell+2 B)+2 A=(2 m+4 B)+2,
$$

therefore

$$
A-B=m-\ell+1=n-1
$$

Therefore $A-B$ is by one less than the number of vertices of Γ.

Solution 2. Use the same notations for the polyhedron and its vertices, edges and faces as in Solution 1. We regard points as vectors starting from the origin. Polyhedron Γ is regarded as a closed convex set, including its interior. In some cases the edges and faces of Γ are also regarded as sets of points. The symbol ∂ denotes the boundary of the certain set; e.g. $\partial \Gamma$ is the surface of Γ.

Let $\Delta=\Gamma-\Gamma=\{U-V: U, V \in \Gamma\}$ be the set of vectors between arbitrary points of Γ. Then Δ, being the sum of two bounded convex sets, is also a bounded convex set and, by construction, it is also centrally symmetric with respect to the origin. We will prove that Δ is also a polyhedron and express the numbers of its faces, edges and vertices in terms n, m, ℓ, A and B.
Lemma 1. For points $U, V \in \Gamma$, point $W=U-V$ is a boundary point of Δ if and only if U and V are antipodal. Moreover, for each boundary point $W \in \partial \Delta$ there exists exactly one pair of points $U, V \in \Gamma$ such that $W=U-V$.
Proof. Assume first that U and V are antipodal points of Γ. Let parallel support planes P_{1} and P_{2} pass through them such that Γ is in between. Consider plane $P=P_{1}-U=$ $P_{2}-V$. This plane separates the interiors of $\Gamma-U$ and $\Gamma-V$. After reflecting one of the sets, e.g. $\Gamma-V$, the sets $\Gamma-U$ and $-\Gamma+V$ lie in the same half space bounded by P. Then $(\Gamma-U)+(-\Gamma+V)=\Delta-W$ lies in that half space, so $0 \in P$ is a boundary point of the set $\Delta-W$. Translating by W we obtain that W is a boundary point of Δ.

To prove the opposite direction, let $W=U-V$ be a boundary point of Δ, and let $\Psi=$ $(\Gamma-U) \cap(\Gamma-V)$. We claim that $\Psi=\{0\}$. Clearly Ψ is a bounded convex set and $0 \in \Psi$. For any two points $X, Y \in \Psi$, we have $U+X, V+Y \in \Gamma$ and $W+(X-Y)=(U+X)-(V+Y) \in \Delta$. Since W is a boundary point of Δ, the vector $X-Y$ cannot have the same direction as W. This implies that the interior of Ψ is empty. Now suppose that Ψ contains a line segment S. Then $S+U$ and $S+V$ are subsets of some faces or edges of Γ and these faces/edges are parallel to S. In all cases, we find two faces, two edges, or a face and an edge which are parallel, contradicting the conditions of the problem. Therefore, $\Psi=\{0\}$ indeed.

Since $\Psi=(\Gamma-U) \cap(\Gamma-V)$ consists of a single point, the interiors of bodies $\Gamma-U$ and $\Gamma-V$ are disjoint and there exists a plane P which separates them. Let u be the normal vector of P pointing into that half space bounded by P which contains $\Gamma-U$. Consider the planes $P+U$ and $P+V$; they are support planes of Γ, passing through U and V, respectively. From plane $P+U$, the vector u points into that half space which contains Γ. From plane $P+V$, vector u points into the opposite half space containing Γ. Therefore, we found two proper support through points U and V such that Γ is in between.

For the uniqueness part, assume that there exist points $U_{1}, V_{1} \in \Gamma$ such that $U_{1}-V_{1}=U-V$. The points $U_{1}-U$ and $V_{1}-V$ lie in the sets $\Gamma-U$ and $\Gamma-V$ separated by P. Since $U_{1}-U=V_{1}-V$, this can happen only if both are in P; but the only such point is 0 . Therefore, $U_{1}-V_{1}=U-V$ implies $U_{1}=U$ and $V_{1}=V$. The lemma is complete.

Lemma 2. Let U and V be two antipodal points and assume that plane P, passing through 0 , separates the interiors of $\Gamma-U$ and $\Gamma-V$. Let $\Psi_{1}=(\Gamma-U) \cap P$ and $\Psi_{2}=(\Gamma-V) \cap P$. Then $\Delta \cap(P+U-V)=\Psi_{1}-\Psi_{2}+U-V$.
Proof. The sets $\Gamma-U$ and $-\Gamma+V$ lie in the same closed half space bounded by P. Therefore, for any points $X \in(\Gamma-U)$ and $Y \in(-\Gamma+V)$, we have $X+Y \in P$ if and only if $X, Y \in P$. Then
$(\Delta-(U-V)) \cap P=((\Gamma-U)+(-\Gamma+V)) \cap P=((\Gamma-U) \cap P)+((-\Gamma+V) \cap P)=\Psi_{1}-\Psi_{2}$.
Now a translation by $(U-V)$ completes the lemma.

Now classify the boundary points $W=U-V$ of Δ, according to the types of points U and V. In all cases we choose a plane P through 0 which separates the interiors of $\Gamma-U$ and $\Gamma-V$. We will use the notation $\Psi_{1}=(\Gamma-U) \cap P$ and $\Psi_{2}=(\Gamma-V) \cap P$ as well.

Case 1: Both U and V are vertices of Γ. Bodies $\Gamma-U$ and $\Gamma-V$ have a common vertex which is 0 . Choose plane P in such a way that $\Psi_{1}=\Psi_{2}=\{0\}$. Then Lemma 2 yields $\Delta \cap(P+W)=\{W\}$. Therefore $P+W$ is a support plane of Δ such that they have only one common point so no line segment exists on $\partial \Delta$ which would contain W in its interior.

Since this case occurs for antipodal vertex pairs and each pair is counted twice, the number of such boundary points on Δ is $2 A$.

Case 2: Point U is an interior point of an edge E_{i} and V is a vertex of Γ. Choose plane P such that $\Psi_{1}=E_{i}-U$ and $\Psi_{2}=\{0\}$. By Lemma $2, \Delta \cap(P+W)=E_{i}-V$. Hence there exists a line segment in $\partial \Delta$ which contains W in its interior, but there is no planar region in $\partial \Delta$ with the same property.

We obtain a similar result if V belongs to an edge of Γ and U is a vertex.
Case 3: Points U and V are interior points of edges E_{i} and E_{j}, respectively. Let P be the plane of $E_{i}-U$ and $E_{j}-V$. Then $\Psi_{1}=E_{i}-U, \Psi_{2}=E_{j}-V$ and $\Delta \cap(P+W)=E_{i}-E_{j}$. Therefore point W belongs to a parallelogram face on $\partial \Delta$.

The centre of the parallelogram is $Q_{i}-Q_{j}$, the vector between the midpoints. Therefore an edge pair $\left(E_{i}, E_{j}\right)$ occurs if and only if Q_{i} and Q_{j} are antipodal which happens $2 B$ times.

Case 4: Point U lies in the interior of a face F_{i} and V is a vertex of Γ. The only choice for P is the plane of $F_{i}-U$. Then we have $\Psi_{1}=F_{i}-U, \Psi_{2}=\{0\}$ and $\Delta \cap(P+W)=F_{i}-V$. This is a planar face of $\partial \Delta$ which is congruent to F_{i}.

For each face F_{i}, the only possible vertex V is the farthest one from the plane of F_{i}.
If U is a vertex and V belongs to face F_{i} then we obtain the same way that W belongs to a face $-F_{i}+U$ which is also congruent to F_{i}. Therefore, each face of Γ has two copies on $\partial \Delta$, a translated and a reflected copy.

Case 5: Point U belongs to a face F_{i} of Γ and point V belongs to an edge or a face G. In this case objects F_{i} and G must be parallel which is not allowed.

case 3

case 4

Now all points in $\partial \Delta$ belong to some planar polygons (cases 3 and 4), finitely many line segments (case 2) and points (case 1). Therefore Δ is indeed a polyhedron. Now compute the numbers of its vertices, edges and faces.

The vertices are obtained in case 1 , their number is $2 A$.
Faces are obtained in cases 3 and 4 . Case 3 generates $2 B$ parallelogram faces. Case 4 generates 2ℓ faces.

We compute the number of edges of Δ from the degrees (number of sides) of faces of Γ. Let d_{i} be the the degree of face F_{i}. The sum of degrees is twice as much as the number of edges, so $d_{1}+d_{2}+\ldots+d_{l}=2 m$. The sum of degrees of faces of Δ is $2 B \cdot 4+2\left(d_{1}+d_{2}+\cdots+d_{l}\right)=8 B+4 m$, so the number of edges on Δ is $4 B+2 m$.

Applying Euler's polyhedron theorem on Γ and Δ, we have $n+l=m+2$ and $2 A+(2 B+2 \ell)=$ $(4 B+2 m)+2$. Then the conclusion follows:

$$
A-B=m-\ell+1=n-1 .
$$

Geometry

G1. Let $A B C$ be a triangle with incentre I. A point P in the interior of the triangle satisfies

$$
\angle P B A+\angle P C A=\angle P B C+\angle P C B
$$

Show that $A P \geq A I$ and that equality holds if and only if P coincides with I.
(Korea)
Solution. Let $\angle A=\alpha, \angle B=\beta, \angle C=\gamma$. Since $\angle P B A+\angle P C A+\angle P B C+\angle P C B=\beta+\gamma$, the condition from the problem statement is equivalent to $\angle P B C+\angle P C B=(\beta+\gamma) / 2$, i. e. $\angle B P C=90^{\circ}+\alpha / 2$.

On the other hand $\angle B I C=180^{\circ}-(\beta+\gamma) / 2=90^{\circ}+\alpha / 2$. Hence $\angle B P C=\angle B I C$, and since P and I are on the same side of $B C$, the points B, C, I and P are concyclic. In other words, P lies on the circumcircle ω of triangle $B C I$.

Let Ω be the circumcircle of triangle $A B C$. It is a well-known fact that the centre of ω is the midpoint M of the arc $B C$ of Ω. This is also the point where the angle bisector $A I$ intersects Ω.

From triangle $A P M$ we have

$$
A P+P M \geq A M=A I+I M=A I+P M
$$

Therefore $A P \geq A I$. Equality holds if and only if P lies on the line segment $A I$, which occurs if and only if $P=I$.

G2. Let $A B C D$ be a trapezoid with parallel sides $A B>C D$. Points K and L lie on the line segments $A B$ and $C D$, respectively, so that $A K / K B=D L / L C$. Suppose that there are points P and Q on the line segment $K L$ satisfying

$$
\angle A P B=\angle B C D \quad \text { and } \quad \angle C Q D=\angle A B C
$$

Prove that the points P, Q, B and C are concyclic.
(Ukraine)
Solution 1. Because $A B \| C D$, the relation $A K / K B=D L / L C$ readily implies that the lines $A D, B C$ and $K L$ have a common point S.

Consider the second intersection points X and Y of the line $S K$ with the circles ($A B P$) and $(C D Q)$, respectively. Since $A P B X$ is a cyclic quadrilateral and $A B \| C D$, one has

$$
\angle A X B=180^{\circ}-\angle A P B=180^{\circ}-\angle B C D=\angle A B C .
$$

This shows that $B C$ is tangent to the circle $(A B P)$ at B. Likewise, $B C$ is tangent to the circle $(C D Q)$ at C. Therefore $S P \cdot S X=S B^{2}$ and $S Q \cdot S Y=S C^{2}$.

Let h be the homothety with centre S and ratio $S C / S B$. Since $h(B)=C$, the above conclusion about tangency implies that h takes circle $(A B P)$ to circle ($C D Q$). Also, h takes $A B$ to $C D$, and it easily follows that $h(P)=Y, h(X)=Q$, yielding $S P / S Y=S B / S C=S X / S Q$.

Equalities $S P \cdot S X=S B^{2}$ and $S Q / S X=S C / S B$ imply $S P \cdot S Q=S B \cdot S C$, which is equivalent to P, Q, B and C being concyclic.

Solution 2. The case where $P=Q$ is trivial. Thus assume that P and Q are two distinct points. As in the first solution, notice that the lines $A D, B C$ and $K L$ concur at a point S.

Let the lines $A P$ and $D Q$ meet at E, and let $B P$ and $C Q$ meet at F. Then $\angle E P F=\angle B C D$ and $\angle F Q E=\angle A B C$ by the condition of the problem. Since the angles $B C D$ and $A B C$ add up to 180°, it follows that $P E Q F$ is a cyclic quadrilateral.

Applying Menelaus' theorem, first to triangle $A S P$ and line $D Q$ and then to triangle $B S P$ and line $C Q$, we have

$$
\frac{A D}{D S} \cdot \frac{S Q}{Q P} \cdot \frac{P E}{E A}=1 \quad \text { and } \quad \frac{B C}{C S} \cdot \frac{S Q}{Q P} \cdot \frac{P F}{F B}=1
$$

The first factors in these equations are equal, as $A B \| C D$. Thus the last factors are also equal, which implies that $E F$ is parallel to $A B$ and $C D$. Using this and the cyclicity of $P E Q F$, we obtain

$$
\angle B C D=\angle B C F+\angle F C D=\angle B C Q+\angle E F Q=\angle B C Q+\angle E P Q
$$

On the other hand,

$$
\angle B C D=\angle A P B=\angle E P F=\angle E P Q+\angle Q P F
$$

and consequently $\angle B C Q=\angle Q P F$. The latter angle either coincides with $\angle Q P B$ or is supplementary to $\angle Q P B$, depending on whether Q lies between K and P or not. In either case it follows that P, Q, B and C are concyclic.

G3. Let $A B C D E$ be a convex pentagon such that

$$
\angle B A C=\angle C A D=\angle D A E \quad \text { and } \quad \angle A B C=\angle A C D=\angle A D E
$$

The diagonals $B D$ and $C E$ meet at P. Prove that the line $A P$ bisects the side $C D$.

Solution. Let the diagonals $A C$ and $B D$ meet at Q, the diagonals $A D$ and $C E$ meet at R, and let the ray $A P$ meet the side $C D$ at M. We want to prove that $C M=M D$ holds.

The idea is to show that Q and R divide $A C$ and $A D$ in the same ratio, or more precisely

$$
\begin{equation*}
\frac{A Q}{Q C}=\frac{A R}{R D} \tag{1}
\end{equation*}
$$

(which is equivalent to $Q R \| C D$). The given angle equalities imply that the triangles $A B C$, $A C D$ and $A D E$ are similar. We therefore have

$$
\frac{A B}{A C}=\frac{A C}{A D}=\frac{A D}{A E}
$$

Since $\angle B A D=\angle B A C+\angle C A D=\angle C A D+\angle D A E=\angle C A E$, it follows from $A B / A C=$ $A D / A E$ that the triangles $A B D$ and $A C E$ are also similar. Their angle bisectors in A are $A Q$ and $A R$, respectively, so that

$$
\frac{A B}{A C}=\frac{A Q}{A R}
$$

Because $A B / A C=A C / A D$, we obtain $A Q / A R=A C / A D$, which is equivalent to (1). Now Ceva's theorem for the triangle $A C D$ yields

$$
\frac{A Q}{Q C} \cdot \frac{C M}{M D} \cdot \frac{D R}{R A}=1
$$

In view of (1), this reduces to $C M=M D$, which completes the proof.
Comment. Relation (1) immediately follows from the fact that quadrilaterals $A B C D$ and $A C D E$ are similar.

G4. A point D is chosen on the side $A C$ of a triangle $A B C$ with $\angle C<\angle A<90^{\circ}$ in such a way that $B D=B A$. The incircle of $A B C$ is tangent to $A B$ and $A C$ at points K and L, respectively. Let J be the incentre of triangle $B C D$. Prove that the line $K L$ intersects the line segment $A J$ at its midpoint.

Solution. Denote by P be the common point of $A J$ and $K L$. Let the parallel to $K L$ through J meet $A C$ at M. Then P is the midpoint of $A J$ if and only if $A M=2 \cdot A L$, which we are about to show.

Denoting $\angle B A C=2 \alpha$, the equalities $B A=B D$ and $A K=A L$ imply $\angle A D B=2 \alpha$ and $\angle A L K=90^{\circ}-\alpha$. Since $D J$ bisects $\angle B D C$, we obtain $\angle C D J=\frac{1}{2} \cdot\left(180^{\circ}-\angle A D B\right)=90^{\circ}-\alpha$. Also $\angle D M J=\angle A L K=90^{\circ}-\alpha$ since $J M \| K L$. It follows that $J D=J M$.

Let the incircle of triangle $B C D$ touch its side $C D$ at T. Then $J T \perp C D$, meaning that $J T$ is the altitude to the base $D M$ of the isosceles triangle $D M J$. It now follows that $D T=M T$, and we have

$$
D M=2 \cdot D T=B D+C D-B C .
$$

Therefore

$$
\begin{aligned}
A M & =A D+(B D+C D-B C) \\
& =A D+A B+D C-B C \\
& =A C+A B-B C \\
& =2 \cdot A L,
\end{aligned}
$$

which completes the proof.

G5. In triangle $A B C$, let J be the centre of the excircle tangent to side $B C$ at A_{1} and to the extensions of sides $A C$ and $A B$ at B_{1} and C_{1}, respectively. Suppose that the lines $A_{1} B_{1}$ and $A B$ are perpendicular and intersect at D. Let E be the foot of the perpendicular from C_{1} to line $D J$. Determine the angles $\angle B E A_{1}$ and $\angle A E B_{1}$.
(Greece)

Solution 1. Let K be the intersection point of lines $J C$ and $A_{1} B_{1}$. Obviously $J C \perp A_{1} B_{1}$ and since $A_{1} B_{1} \perp A B$, the lines $J K$ and $C_{1} D$ are parallel and equal. From the right triangle $B_{1} C J$ we obtain $J C_{1}^{2}=J B_{1}^{2}=J C \cdot J K=J C \cdot C_{1} D$ from which we infer that $D C_{1} / C_{1} J=C_{1} J / J C$ and the right triangles $D C_{1} J$ and $C_{1} J C$ are similar. Hence $\angle C_{1} D J=\angle J C_{1} C$, which implies that the lines $D J$ and $C_{1} C$ are perpendicular, i.e. the points C_{1}, E, C are collinear.

Since $\angle C A_{1} J=\angle C B_{1} J=\angle C E J=90^{\circ}$, points A_{1}, B_{1} and E lie on the circle of diameter $C J$. Then $\angle D B A_{1}=\angle A_{1} C J=\angle D E A_{1}$, which implies that quadrilateral $B E A_{1} D$ is cyclic; therefore $\angle A_{1} E B=90^{\circ}$.

Quadrilateral $A D E B_{1}$ is also cyclic because $\angle E B_{1} A=\angle E J C=\angle E D C_{1}$, therefore we obtain $\angle A E B_{1}=\angle A D B=90^{\circ}$.

Solution 2. Consider the circles ω_{1}, ω_{2} and ω_{3} of diameters $C_{1} D, A_{1} B$ and $A B_{1}$, respectively. Line segments $J C_{1}, J B_{1}$ and $J A_{1}$ are tangents to those circles and, due to the right angle at D, ω_{2} and ω_{3} pass through point D. Since $\angle C_{1} E D$ is a right angle, point E lies on circle ω_{1}, therefore

$$
J C_{1}^{2}=J D \cdot J E .
$$

Since $J A_{1}=J B_{1}=J C_{1}$ are all radii of the excircle, we also have

$$
J A_{1}^{2}=J D \cdot J E \quad \text { and } \quad J B_{1}^{2}=J D \cdot J E .
$$

These equalities show that E lies on circles ω_{2} and ω_{3} as well, so $\angle B E A_{1}=\angle A E B_{1}=90^{\circ}$.
Solution 3. First note that $A_{1} B_{1}$ is perpendicular to the external angle bisector $C J$ of $\angle B C A$ and parallel to the internal angle bisector of that angle. Therefore, $A_{1} B_{1}$ is perpendicular to $A B$ if and only if triangle $A B C$ is isosceles, $A C=B C$. In that case the external bisector $C J$ is parallel to $A B$.

Triangles $A B C$ and $B_{1} A_{1} J$ are similar, as their corresponding sides are perpendicular. In particular, we have $\angle D A_{1} J=\angle C_{1} B A_{1}$; moreover, from cyclic deltoid $J A_{1} B C_{1}$,

$$
\angle C_{1} A_{1} J=\angle C_{1} B J=\frac{1}{2} \angle C_{1} B A_{1}=\frac{1}{2} \angle D A_{1} J .
$$

Therefore, $A_{1} C_{1}$ bisects angle $\angle D A_{1} J$.

In triangle $B_{1} A_{1} J$, line $J C_{1}$ is the external bisector at vertex J. The point C_{1} is the intersection of two external angle bisectors (at A_{1} and J) so C_{1} is the centre of the excircle ω, tangent to side $A_{1} J$, and to the extension of $B_{1} A_{1}$ at point D.

Now consider the similarity transform φ which moves B_{1} to A, A_{1} to B and J to C. This similarity can be decomposed into a rotation by 90° around a certain point O and a homothety from the same centre. This similarity moves point C_{1} (the centre of excircle ω) to J and moves D (the point of tangency) to C_{1}.

Since the rotation angle is 90°, we have $\angle X O \varphi(X)=90^{\circ}$ for an arbitrary point $X \neq O$. For $X=D$ and $X=C_{1}$ we obtain $\angle D O C_{1}=\angle C_{1} O J=90^{\circ}$. Therefore O lies on line segment $D J$ and $C_{1} O$ is perpendicular to $D J$. This means that $O=E$.

For $X=A_{1}$ and $X=B_{1}$ we obtain $\angle A_{1} O B=\angle B_{1} O A=90^{\circ}$, i.e.

$$
\angle B E A_{1}=\angle A E B_{1}=90^{\circ} .
$$

Comment. Choosing $X=J$, it also follows that $\angle J E C=90^{\circ}$ which proves that lines $D J$ and $C C_{1}$ intersect at point E. However, this is true more generally, without the assumption that $A_{1} B_{1}$ and $A B$ are perpendicular, because points C and D are conjugates with respect to the excircle. The last observation could replace the first paragraph of Solution 1.

G6. Circles ω_{1} and ω_{2} with centres O_{1} and O_{2} are externally tangent at point D and internally tangent to a circle ω at points E and F, respectively. Line t is the common tangent of ω_{1} and ω_{2} at D. Let $A B$ be the diameter of ω perpendicular to t, so that A, E and O_{1} are on the same side of t. Prove that lines $A O_{1}, B O_{2}, E F$ and t are concurrent.
(Brasil)
Solution 1. Point E is the centre of a homothety h which takes circle ω_{1} to circle ω. The radii $O_{1} D$ and $O B$ of these circles are parallel as both are perpendicular to line t. Also, $O_{1} D$ and $O B$ are on the same side of line $E O$, hence h takes $O_{1} D$ to $O B$. Consequently, points E, D and B are collinear. Likewise, points F, D and A are collinear as well.

Let lines $A E$ and $B F$ intersect at C. Since $A F$ and $B E$ are altitudes in triangle $A B C$, their common point D is the orthocentre of this triangle. So $C D$ is perpendicular to $A B$, implying that C lies on line t. Note that triangle $A B C$ is acute-angled. We mention the well-known fact that triangles $F E C$ and $A B C$ are similar in ratio $\cos \gamma$, where $\gamma=\angle A C B$. In addition, points C, E, D and F lie on the circle with diameter $C D$.

Let P be the common point of lines $E F$ and t. We are going to prove that P lies on line $A O_{1}$. Denote by N the second common point of circle ω_{1} and $A C$; this is the point of ω_{1} diametrically opposite to D. By Menelaus' theorem for triangle $D C N$, points A, O_{1} and P are collinear if and only if

$$
\frac{C A}{A N} \cdot \frac{N O_{1}}{O_{1} D} \cdot \frac{D P}{P C}=1 .
$$

Because $N O_{1}=O_{1} D$, this reduces to $C A / A N=C P / P D$. Let line t meet $A B$ at K. Then $C A / A N=C K / K D$, so it suffices to show that

$$
\begin{equation*}
\frac{C P}{P D}=\frac{C K}{K D} \tag{1}
\end{equation*}
$$

To verify (1), consider the circumcircle Ω of triangle $A B C$. Draw its diameter $C U$ through C, and let $C U$ meet $A B$ at V. Extend $C K$ to meet Ω at L. Since $A B$ is parallel to $U L$, we have $\angle A C U=\angle B C L$. On the other hand $\angle E F C=\angle B A C, \angle F E C=\angle A B C$ and $E F / A B=\cos \gamma$, as stated above. So reflection in the bisector of $\angle A C B$ followed by a homothety with centre C and ratio $1 / \cos \gamma$ takes triangle $F E C$ to triangle $A B C$. Consequently, this transformation
takes $C D$ to $C U$, which implies $C P / P D=C V / V U$. Next, we have $K L=K D$, because D is the orthocentre of triangle $A B C$. Hence $C K / K D=C K / K L$. Finally, $C V / V U=C K / K L$ because $A B$ is parallel to $U L$. Relation (1) follows, proving that P lies on line $A O_{1}$. By symmetry, P also lies on line $A O_{2}$ which completes the solution.
Solution 2. We proceed as in the first solution to define a triangle $A B C$ with orthocentre D, in which $A F$ and $B E$ are altitudes.

Denote by M the midpoint of $C D$. The quadrilateral $C E D F$ is inscribed in a circle with centre M, hence $M C=M E=M D=M F$.

Consider triangles $A B C$ and $O_{1} O_{2} M$. Lines $O_{1} O_{2}$ and $A B$ are parallel, both of them being perpendicular to line t. Next, $M O_{1}$ is the line of centres of circles ($C E F$) and ω_{1} whose common chord is $D E$. Hence $M O_{1}$ bisects $\angle D M E$ which is the external angle at M in the isosceles triangle $C E M$. It follows that $\angle D M O_{1}=\angle D C A$, so that $M O_{1}$ is parallel to $A C$. Likewise, $M O_{2}$ is parallel to $B C$.

Thus the respective sides of triangles $A B C$ and $O_{1} O_{2} M$ are parallel; in addition, these triangles are not congruent. Hence there is a homothety taking $A B C$ to $O_{1} O_{2} M$. The lines $A O_{1}$, $B O_{2}$ and $C M=t$ are concurrent at the centre Q of this homothety.

Finally, apply Pappus' theorem to the triples of collinear points A, O, B and O_{2}, D, O_{1}. The theorem implies that the points $A D \cap O O_{2}=F, A O_{1} \cap B O_{2}=Q$ and $O O_{1} \cap B D=E$ are collinear. In other words, line $E F$ passes through the common point Q of $A O_{1}, B O_{2}$ and t.
Comment. Relation (1) from Solution 1 expresses the well-known fact that points P and K are harmonic conjugates with respect to points C and D. It is also easy to justify it by direct computation. Denoting $\angle C A B=\alpha, \angle A B C=\beta$, it is straightforward to obtain $C P / P D=C K / K D=\tan \alpha \tan \beta$.

G7. In a triangle $A B C$, let M_{a}, M_{b}, M_{c} be respectively the midpoints of the sides $B C, C A$, $A B$ and T_{a}, T_{b}, T_{c} be the midpoints of the arcs $B C, C A, A B$ of the circumcircle of $A B C$, not containing the opposite vertices. For $i \in\{a, b, c\}$, let ω_{i} be the circle with $M_{i} T_{i}$ as diameter. Let p_{i} be the common external tangent to $\omega_{j}, \omega_{k}(\{i, j, k\}=\{a, b, c\})$ such that ω_{i} lies on the opposite side of p_{i} than ω_{j}, ω_{k} do. Prove that the lines p_{a}, p_{b}, p_{c} form a triangle similar to $A B C$ and find the ratio of similitude.
(Slovakia)
Solution. Let $T_{a} T_{b}$ intersect circle ω_{b} at T_{b} and U, and let $T_{a} T_{c}$ intersect circle ω_{c} at T_{c} and V. Further, let $U X$ be the tangent to ω_{b} at U, with X on $A C$, and let $V Y$ be the tangent to ω_{c} at V, with Y on $A B$. The homothety with centre T_{b} and ratio $T_{b} T_{a} / T_{b} U$ maps the circle ω_{b} onto the circumcircle of $A B C$ and the line $U X$ onto the line tangent to the circumcircle at T_{a}, which is parallel to $B C$; thus $U X \| B C$. The same is true of $V Y$, so that $U X\|B C\| V Y$.

Let $T_{a} T_{b}$ cut $A C$ at P and let $T_{a} T_{c}$ cut $A B$ at Q. The point X lies on the hypotenuse $P M_{b}$ of the right triangle $P U M_{b}$ and is equidistant from U and M_{b}. So X is the midpoint of $M_{b} P$. Similarly Y is the midpoint of $M_{c} Q$.

Denote the incentre of triangle $A B C$ as usual by I. It is a known fact that $T_{a} I=T_{a} B$ and $T_{c} I=T_{c} B$. Therefore the points B and I are symmetric across $T_{a} T_{c}$, and consequently $\angle Q I B=\angle Q B I=\angle I B C$. This implies that $B C$ is parallel to the line $I Q$, and likewise, to $I P$. In other words, $P Q$ is the line parallel to $B C$ passing through I.

Clearly $M_{b} M_{c} \| B C$. So $P M_{b} M_{c} Q$ is a trapezoid and the segment $X Y$ connects the midpoints of its nonparallel sides; hence $X Y \| B C$. This combined with the previously established relations $U X\|B C\| V Y$ shows that all the four points U, X, Y, V lie on a line which is the common tangent to circles ω_{b}, ω_{c}. Since it leaves these two circles on one side and the circle ω_{a} on the other, this line is just the line p_{a} from the problem statement.

Line p_{a} runs midway between I and $M_{b} M_{c}$. Analogous conclusions hold for the lines p_{b} and p_{c}. So these three lines form a triangle homothetic from centre I to triangle $M_{a} M_{b} M_{c}$ in ratio $1 / 2$, hence similar to $A B C$ in ratio $1 / 4$.

G8. Let $A B C D$ be a convex quadrilateral. A circle passing through the points A and D and a circle passing through the points B and C are externally tangent at a point P inside the quadrilateral. Suppose that

$$
\angle P A B+\angle P D C \leq 90^{\circ} \quad \text { and } \quad \angle P B A+\angle P C D \leq 90^{\circ} .
$$

Prove that $A B+C D \geq B C+A D$.
(Poland)
Solution. We start with a preliminary observation. Let T be a point inside the quadrilateral $A B C D$. Then:

$$
\begin{align*}
& \text { Circles }(B C T) \text { and }(D A T) \text { are tangent at } T \\
& \text { if and only if } \quad \angle A D T+\angle B C T=\angle A T B . \tag{1}
\end{align*}
$$

Indeed, if the two circles touch each other then their common tangent at T intersects the segment $A B$ at a point Z, and so $\angle A D T=\angle A T Z, \angle B C T=\angle B T Z$, by the tangent-chord theorem. Thus $\angle A D T+\angle B C T=\angle A T Z+\angle B T Z=\angle A T B$.

And conversely, if $\angle A D T+\angle B C T=\angle A T B$ then one can draw from T a ray $T Z$ with Z on $A B$ so that $\angle A D T=\angle A T Z, \angle B C T=\angle B T Z$. The first of these equalities implies that $T Z$ is tangent to the circle $(D A T)$; by the second equality, $T Z$ is tangent to the circle $(B C T)$, so the two circles are tangent at T.

So the equivalence (1) is settled. It will be used later on. Now pass to the actual solution. Its key idea is to introduce the circumcircles of triangles $A B P$ and $C D P$ and to consider their second intersection Q (assume for the moment that they indeed meet at two distinct points P and Q).

Since the point A lies outside the circle $(B C P)$, we have $\angle B C P+\angle B A P<180^{\circ}$. Therefore the point C lies outside the circle $(A B P)$. Analogously, D also lies outside that circle. It follows that P and Q lie on the same arc $C D$ of the circle $(B C P)$.

By symmetry, P and Q lie on the same arc $A B$ of the circle $(A B P)$. Thus the point Q lies either inside the angle $B P C$ or inside the angle $A P D$. Without loss of generality assume that Q lies inside the angle $B P C$. Then

$$
\begin{equation*}
\angle A Q D=\angle P Q A+\angle P Q D=\angle P B A+\angle P C D \leq 90^{\circ}, \tag{2}
\end{equation*}
$$

by the condition of the problem.
In the cyclic quadrilaterals $A P Q B$ and $D P Q C$, the angles at vertices A and D are acute. So their angles at Q are obtuse. This implies that Q lies not only inside the angle $B P C$ but in fact inside the triangle $B P C$, hence also inside the quadrilateral $A B C D$.

Now an argument similar to that used in deriving (2) shows that

$$
\begin{equation*}
\angle B Q C=\angle P A B+\angle P D C \leq 90^{\circ} . \tag{3}
\end{equation*}
$$

Moreover, since $\angle P C Q=\angle P D Q$, we get

$$
\angle A D Q+\angle B C Q=\angle A D P+\angle P D Q+\angle B C P-\angle P C Q=\angle A D P+\angle B C P .
$$

The last sum is equal to $\angle A P B$, according to the observation (1) applied to $T=P$. And because $\angle A P B=\angle A Q B$, we obtain

$$
\angle A D Q+\angle B C Q=\angle A Q B
$$

Applying now (1) to $T=Q$ we conclude that the circles $(B C Q)$ and ($D A Q$) are externally tangent at Q. (We have assumed $P \neq Q$; but if $P=Q$ then the last conclusion holds trivially.)

Finally consider the halfdiscs with diameters $B C$ and $D A$ constructed inwardly to the quadrilateral $A B C D$. They have centres at M and N, the midpoints of $B C$ and $D A$ respectively. In view of (2) and (3), these two halfdiscs lie entirely inside the circles ($B Q C$) and $(A Q D)$; and since these circles are tangent, the two halfdiscs cannot overlap. Hence $M N \geq \frac{1}{2} B C+\frac{1}{2} D A$.

On the other hand, since $\overrightarrow{M N}=\frac{1}{2}(\overrightarrow{B A}+\overrightarrow{C D})$, we have $M N \leq \frac{1}{2}(A B+C D)$. Thus indeed $A B+C D \geq B C+D A$, as claimed.

G9. Points A_{1}, B_{1}, C_{1} are chosen on the sides $B C, C A, A B$ of a triangle $A B C$, respectively. The circumcircles of triangles $A B_{1} C_{1}, B C_{1} A_{1}, C A_{1} B_{1}$ intersect the circumcircle of triangle $A B C$ again at points A_{2}, B_{2}, C_{2}, respectively $\left(A_{2} \neq A, B_{2} \neq B, C_{2} \neq C\right)$. Points A_{3}, B_{3}, C_{3} are symmetric to A_{1}, B_{1}, C_{1} with respect to the midpoints of the sides $B C, C A, A B$ respectively. Prove that the triangles $A_{2} B_{2} C_{2}$ and $A_{3} B_{3} C_{3}$ are similar.
(Russia)
Solution. We will work with oriented angles between lines. For two straight lines ℓ, m in the plane, $\angle(\ell, m)$ denotes the angle of counterclockwise rotation which transforms line ℓ into a line parallel to m (the choice of the rotation centre is irrelevant). This is a signed quantity; values differing by a multiple of π are identified, so that

$$
\angle(\ell, m)=-\angle(m, \ell), \quad \angle(\ell, m)+\angle(m, n)=\angle(\ell, n) .
$$

If ℓ is the line through points K, L and m is the line through M, N, one writes $\angle(K L, M N)$ for $\angle(\ell, m)$; the characters K, L are freely interchangeable; and so are M, N.

The counterpart of the classical theorem about cyclic quadrilaterals is the following: If K, L, M, N are four noncollinear points in the plane then

$$
\begin{equation*}
K, L, M, N \text { are concyclic if and only if } \angle(K M, L M)=\angle(K N, L N) . \tag{1}
\end{equation*}
$$

Passing to the solution proper, we first show that the three circles $\left(A B_{1} C_{1}\right),\left(B C_{1} A_{1}\right)$, $\left(C A_{1} B_{1}\right)$ have a common point. So, let $\left(A B_{1} C_{1}\right)$ and $\left(B C_{1} A_{1}\right)$ intersect at the points C_{1} and P. Then by (1)

$$
\begin{gathered}
\angle\left(P A_{1}, C A_{1}\right)=\angle\left(P A_{1}, B A_{1}\right)=\angle\left(P C_{1}, B C_{1}\right) \\
=\angle\left(P C_{1}, A C_{1}\right)=\angle\left(P B_{1}, A B_{1}\right)=\angle\left(P B_{1}, C B_{1}\right)
\end{gathered}
$$

Denote this angle by φ.
The equality between the outer terms shows, again by (1), that the points A_{1}, B_{1}, P, C are concyclic. Thus P is the common point of the three mentioned circles.

From now on the basic property (1) will be used without explicit reference. We have

$$
\begin{equation*}
\varphi=\angle\left(P A_{1}, B C\right)=\angle\left(P B_{1}, C A\right)=\angle\left(P C_{1}, A B\right) \tag{2}
\end{equation*}
$$

Let lines $A_{2} P, B_{2} P, C_{2} P$ meet the circle $(A B C)$ again at A_{4}, B_{4}, C_{4}, respectively. As

$$
\angle\left(A_{4} A_{2}, A A_{2}\right)=\angle\left(P A_{2}, A A_{2}\right)=\angle\left(P C_{1}, A C_{1}\right)=\angle\left(P C_{1}, A B\right)=\varphi
$$

we see that line $A_{2} A$ is the image of line $A_{2} A_{4}$ under rotation about A_{2} by the angle φ. Hence the point A is the image of A_{4} under rotation by 2φ about O, the centre of $(A B C)$. The same rotation sends B_{4} to B and C_{4} to C. Triangle $A B C$ is the image of $A_{4} B_{4} C_{4}$ in this map. Thus

$$
\begin{equation*}
\angle\left(A_{4} B_{4}, A B\right)=\angle\left(B_{4} C_{4}, B C\right)=\angle\left(C_{4} A_{4}, C A\right)=2 \varphi . \tag{3}
\end{equation*}
$$

Since the rotation by 2φ about O takes B_{4} to B, we have $\angle\left(A B_{4}, A B\right)=\varphi$. Hence by (2)

$$
\angle\left(A B_{4}, P C_{1}\right)=\angle\left(A B_{4}, A B\right)+\angle\left(A B, P C_{1}\right)=\varphi+(-\varphi)=0
$$

which means that $A B_{4} \| P C_{1}$.

Let C_{5} be the intersection of lines $P C_{1}$ and $A_{4} B_{4}$; define A_{5}, B_{5} analogously. So $A B_{4} \| C_{1} C_{5}$ and, by (3) and (2),

$$
\begin{equation*}
\angle\left(A_{4} B_{4}, P C_{1}\right)=\angle\left(A_{4} B_{4}, A B\right)+\angle\left(A B, P C_{1}\right)=2 \varphi+(-\varphi)=\varphi \tag{4}
\end{equation*}
$$

i.e., $\angle\left(B_{4} C_{5}, C_{5} C_{1}\right)=\varphi$. This combined with $\angle\left(C_{5} C_{1}, C_{1} A\right)=\angle\left(P C_{1}, A B\right)=\varphi$ (see (2)) proves that the quadrilateral $A B_{4} C_{5} C_{1}$ is an isosceles trapezoid with $A C_{1}=B_{4} C_{5}$.

Interchanging the roles of A and B we infer that also $B C_{1}=A_{4} C_{5}$. And since $A C_{1}+B C_{1}=$ $A B=A_{4} B_{4}$, it follows that the point C_{5} lies on the line segment $A_{4} B_{4}$ and partitions it into segments $A_{4} C_{5}, B_{4} C_{5}$ of lengths $B C_{1}\left(=A C_{3}\right)$ and $A C_{1}\left(=B C_{3}\right)$. In other words, the rotation which maps triangle $A_{4} B_{4} C_{4}$ onto $A B C$ carries C_{5} onto C_{3}. Likewise, it sends A_{5} to A_{3} and B_{5} to B_{3}. So the triangles $A_{3} B_{3} C_{3}$ and $A_{5} B_{5} C_{5}$ are congruent. It now suffices to show that the latter is similar to $A_{2} B_{2} C_{2}$.

Lines $B_{4} C_{5}$ and $P C_{5}$ coincide respectively with $A_{4} B_{4}$ and $P C_{1}$. Thus by (4)

$$
\angle\left(B_{4} C_{5}, P C_{5}\right)=\varphi .
$$

Analogously (by cyclic shift) $\varphi=\angle\left(C_{4} A_{5}, P A_{5}\right.$), which rewrites as

$$
\varphi=\angle\left(B_{4} A_{5}, P A_{5}\right) .
$$

These relations imply that the points P, B_{4}, C_{5}, A_{5} are concyclic. Analogously, P, C_{4}, A_{5}, B_{5} and P, A_{4}, B_{5}, C_{5} are concyclic quadruples. Therefore

$$
\begin{equation*}
\angle\left(A_{5} B_{5}, C_{5} B_{5}\right)=\angle\left(A_{5} B_{5}, P B_{5}\right)+\angle\left(P B_{5}, C_{5} B_{5}\right)=\angle\left(A_{5} C_{4}, P C_{4}\right)+\angle\left(P A_{4}, C_{5} A_{4}\right) \tag{5}
\end{equation*}
$$

On the other hand, since the points $A_{2}, B_{2}, C_{2}, A_{4}, B_{4}, C_{4}$ all lie on the circle $(A B C)$, we have

$$
\begin{equation*}
\angle\left(A_{2} B_{2}, C_{2} B_{2}\right)=\angle\left(A_{2} B_{2}, B_{4} B_{2}\right)+\angle\left(B_{4} B_{2}, C_{2} B_{2}\right)=\angle\left(A_{2} A_{4}, B_{4} A_{4}\right)+\angle\left(B_{4} C_{4}, C_{2} C_{4}\right) \tag{6}
\end{equation*}
$$

But the lines $A_{2} A_{4}, B_{4} A_{4}, B_{4} C_{4}, C_{2} C_{4}$ coincide respectively with $P A_{4}, C_{5} A_{4}, A_{5} C_{4}, P C_{4}$. So the sums on the right-hand sides of (5) and (6) are equal, leading to equality between their left-hand sides: $\angle\left(A_{5} B_{5}, C_{5} B_{5}\right)=\angle\left(A_{2} B_{2}, C_{2} B_{2}\right)$. Hence (by cyclic shift, once more) also $\angle\left(B_{5} C_{5}, A_{5} C_{5}\right)=\angle\left(B_{2} C_{2}, A_{2} C_{2}\right)$ and $\angle\left(C_{5} A_{5}, B_{5} A_{5}\right)=\angle\left(C_{2} A_{2}, B_{2} A_{2}\right)$. This means that the triangles $A_{5} B_{5} C_{5}$ and $A_{2} B_{2} C_{2}$ have their corresponding angles equal, and consequently they are similar.

Comment 1. This is the way in which the proof has been presented by the proposer. Trying to work it out in the language of classical geometry, so as to avoid oriented angles, one is led to difficulties due to the fact that the reasoning becomes heavily case-dependent. Disposition of relevant points can vary in many respects. Angles which are equal in one case become supplementary in another. Although it seems not hard to translate all formulas from the shapes they have in one situation to the one they have in another, the real trouble is to identify all cases possible and rigorously verify that the key conclusions retain validity in each case.

The use of oriented angles is a very efficient method to omit this trouble. It seems to be the most appropriate environment in which the solution can be elaborated.
Comment 2. Actually, the fact that the circles $\left(A B_{1} C_{1}\right),\left(B C_{1} A_{1}\right)$ and $\left(C A_{1} B_{1}\right)$ have a common point does not require a proof; it is known as Miquel's theorem.

G10. To each side a of a convex polygon we assign the maximum area of a triangle contained in the polygon and having a as one of its sides. Show that the sum of the areas assigned to all sides of the polygon is not less than twice the area of the polygon.
(Serbia)

Solution 1.

Lemma. Every convex ($2 n$)-gon, of area S, has a side and a vertex that jointly span a triangle of area not less than S / n.
Proof. By main diagonals of the ($2 n$)-gon we shall mean those which partition the ($2 n$)-gon into two polygons with equally many sides. For any side b of the $(2 n)$-gon denote by Δ_{b} the triangle $A B P$ where A, B are the endpoints of b and P is the intersection point of the main diagonals $A A^{\prime}, B B^{\prime}$. We claim that the union of triangles Δ_{b}, taken over all sides, covers the whole polygon.

To show this, choose any side $A B$ and consider the main diagonal $A A^{\prime}$ as a directed segment. Let X be any point in the polygon, not on any main diagonal. For definiteness, let X lie on the left side of the ray $A A^{\prime}$. Consider the sequence of main diagonals $A A^{\prime}, B B^{\prime}, C C^{\prime}, \ldots$, where A, B, C, \ldots are consecutive vertices, situated right to $A A^{\prime}$.

The n-th item in this sequence is the diagonal $A^{\prime} A$ (i.e. $A A^{\prime}$ reversed), having X on its right side. So there are two successive vertices K, L in the sequence A, B, C, \ldots before A^{\prime} such that X still lies to the left of $K K^{\prime}$ but to the right of $L L^{\prime}$. And this means that X is in the triangle $\Delta_{\ell^{\prime}}, \ell^{\prime}=K^{\prime} L^{\prime}$. Analogous reasoning applies to points X on the right of $A A^{\prime}$ (points lying on main diagonals can be safely ignored). Thus indeed the triangles Δ_{b} jointly cover the whole polygon.

The sum of their areas is no less than S. So we can find two opposite sides, say $b=A B$ and $b^{\prime}=A^{\prime} B^{\prime}$ (with $A A^{\prime}, B B^{\prime}$ main diagonals) such that $\left[\Delta_{b}\right]+\left[\Delta_{b^{\prime}}\right] \geq S / n$, where $[\cdots]$ stands for the area of a region. Let $A A^{\prime}, B B^{\prime}$ intersect at P; assume without loss of generality that $P B \geq P B^{\prime}$. Then

$$
\left[A B A^{\prime}\right]=[A B P]+\left[P B A^{\prime}\right] \geq[A B P]+\left[P A^{\prime} B^{\prime}\right]=\left[\Delta_{b}\right]+\left[\Delta_{b^{\prime}}\right] \geq S / n
$$

proving the lemma.
Now, let \mathcal{P} be any convex polygon, of area S, with m sides a_{1}, \ldots, a_{m}. Let S_{i} be the area of the greatest triangle in \mathcal{P} with side a_{i}. Suppose, contrary to the assertion, that

$$
\sum_{i=1}^{m} \frac{S_{i}}{S}<2
$$

Then there exist rational numbers q_{1}, \ldots, q_{m} such that $\sum q_{i}=2$ and $q_{i}>S_{i} / S$ for each i.
Let n be a common denominator of the m fractions q_{1}, \ldots, q_{m}. Write $q_{i}=k_{i} / n$; so $\sum k_{i}=2 n$. Partition each side a_{i} of \mathcal{P} into k_{i} equal segments, creating a convex ($2 n$)-gon of area S (with some angles of size 180°), to which we apply the lemma. Accordingly, this refined polygon has a side b and a vertex H spanning a triangle T of area $[T] \geq S / n$. If b is a piece of a side a_{i} of \mathcal{P}, then the triangle W with base a_{i} and summit H has area

$$
[W]=k_{i} \cdot[T] \geq k_{i} \cdot S / n=q_{i} \cdot S>S_{i}
$$

in contradiction with the definition of S_{i}. This ends the proof.

Solution 2. As in the first solution, we allow again angles of size 180° at some vertices of the convex polygons considered.

To each convex n-gon $\mathcal{P}=A_{1} A_{2} \ldots A_{n}$ we assign a centrally symmetric convex ($2 n$)-gon \mathcal{Q} with side vectors $\pm \overrightarrow{A_{i} A_{i+1}}, 1 \leq i \leq n$. The construction is as follows. Attach the $2 n$ vectors $\pm \overrightarrow{A_{i} A_{i+1}}$ at a common origin and label them $\overrightarrow{\mathbf{b}_{1}}, \overrightarrow{\mathbf{b}_{2}}, \ldots, \overrightarrow{\mathbf{b}_{2 n}}$ in counterclockwise direction; the choice of the first vector $\stackrel{\rightharpoonup}{\mathbf{b}_{1}}$ is irrelevant. The order of labelling is well-defined if \mathcal{P} has neither parallel sides nor angles equal to 180°. Otherwise several collinear vectors with the same direction are labelled consecutively $\overrightarrow{\mathbf{b}_{j}}, \overrightarrow{\mathbf{b}_{j+1}}, \ldots, \overrightarrow{\mathbf{b}_{j+r}}$. One can assume that in such cases the respective opposite vectors occur in the order $-\overrightarrow{\mathbf{b}_{j}},-\overrightarrow{\mathbf{b}_{j+1}}, \ldots,-\overrightarrow{\mathbf{b}_{j+r}}$, ensuring that $\overrightarrow{\mathbf{b}_{j+n}}=-\overrightarrow{\mathbf{b}_{j}}$ for $j=1, \ldots, 2 n$. Indices are taken cyclically here and in similar situations below.

Choose points $B_{1}, B_{2}, \ldots, B_{2 n}$ satisfying $\overrightarrow{B_{j} B_{j+1}}=\overrightarrow{\mathbf{b}_{j}}$ for $j=1, \ldots, 2 n$. The polygonal line $\mathcal{Q}=B_{1} B_{2} \ldots B_{2 n}$ is closed, since $\sum_{j=1}^{2 n} \overrightarrow{\mathbf{b}_{j}}=\overrightarrow{0}$. Moreover, \mathcal{Q} is a convex (2n)-gon due to the arrangement of the vectors $\overrightarrow{\mathbf{b}_{j}}$, possibly with 180°-angles. The side vectors of \mathcal{Q} are $\pm \overrightarrow{A_{i} A_{i+1}}$, $1 \leq i \leq n$. So in particular \mathcal{Q} is centrally symmetric, because it contains as side vectors $\overrightarrow{A_{i} A_{i+1}}$ and $-\overrightarrow{A_{i} A_{i+1}}$ for each $i=1, \ldots, n$. Note that $B_{j} B_{j+1}$ and $B_{j+n} B_{j+n+1}$ are opposite sides of \mathcal{Q}, $1 \leq j \leq n$. We call \mathcal{Q} the associate of \mathcal{P}.

Let S_{i} be the maximum area of a triangle with side $A_{i} A_{i+1}$ in $\mathcal{P}, 1 \leq i \leq n$. We prove that

$$
\begin{equation*}
\left[B_{1} B_{2} \ldots B_{2 n}\right]=2 \sum_{i=1}^{n} S_{i} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left[B_{1} B_{2} \ldots B_{2 n}\right] \geq 4\left[A_{1} A_{2} \ldots A_{n}\right] \tag{2}
\end{equation*}
$$

It is clear that (1) and (2) imply the conclusion of the original problem.
Lemma. For a side $A_{i} A_{i+1}$ of \mathcal{P}, let h_{i} be the maximum distance from a point of \mathcal{P} to line $A_{i} A_{i+1}$, $i=1, \ldots, n$. Denote by $B_{j} B_{j+1}$ the side of \mathcal{Q} such that $\overrightarrow{A_{i} A_{i+1}}=\overrightarrow{B_{j} B_{j+1}}$. Then the distance between $B_{j} B_{j+1}$ and its opposite side in \mathcal{Q} is equal to $2 h_{i}$.
Proof. Choose a vertex A_{k} of \mathcal{P} at distance h_{i} from line $A_{i} A_{i+1}$. Let \mathbf{u} be the unit vector perpendicular to $A_{i} A_{i+1}$ and pointing inside \mathcal{P}. Denoting by $\mathbf{x} \cdot \mathbf{y}$ the dot product of vectors \mathbf{x} and \mathbf{y}, we have

$$
h=\mathbf{u} \cdot \overrightarrow{A_{i} A_{k}}=\mathbf{u} \cdot\left(\overrightarrow{A_{i} A_{i+1}}+\cdots+\overrightarrow{A_{k-1} A_{k}}\right)=\mathbf{u} \cdot\left(\overrightarrow{A_{i} A_{i-1}}+\cdots+\overrightarrow{A_{k+1} A_{k}}\right)
$$

In \mathcal{Q}, the distance H_{i} between the opposite sides $B_{j} B_{j+1}$ and $B_{j+n} B_{j+n+1}$ is given by

$$
H_{i}=\mathbf{u} \cdot\left(\overrightarrow{B_{j} B_{j+1}}+\cdots+\overrightarrow{B_{j+n-1} B_{j+n}}\right)=\mathbf{u} \cdot\left(\overrightarrow{\mathbf{b}_{j}}+\overrightarrow{\mathbf{b}_{j+1}}+\cdots+\overrightarrow{\mathbf{b}_{j+n-1}}\right)
$$

The choice of vertex A_{k} implies that the n consecutive vectors $\overrightarrow{\mathbf{b}_{j}}, \overrightarrow{\mathbf{b}_{j+1}}, \ldots, \overrightarrow{\mathbf{b}_{j+n-1}}$ are precisely $\overrightarrow{A_{i} A_{i+1}}, \ldots, \overrightarrow{A_{k-1} A_{k}}$ and $\overrightarrow{A_{i} A_{i-1}}, \ldots, \overrightarrow{A_{k+1} A_{k}}$, taken in some order. This implies $H_{i}=2 h_{i}$.

For a proof of (1), apply the lemma to each side of \mathcal{P}. If O the centre of \mathcal{Q} then, using the notation of the lemma,

$$
\left[B_{j} B_{j+1} O\right]=\left[B_{j+n} B_{j+n+1} O\right]=\left[A_{i} A_{i+1} A_{k}\right]=S_{i}
$$

Summation over all sides of \mathcal{P} yields (1).
Set $d(\mathcal{P})=[\mathcal{Q}]-4[\mathcal{P}]$ for a convex polygon \mathcal{P} with associate \mathcal{Q}. Inequality (2) means that $d(\mathcal{P}) \geq 0$ for each convex polygon \mathcal{P}. The last inequality will be proved by induction on the
number ℓ of side directions of \mathcal{P}, i. e. the number of pairwise nonparallel lines each containing a side of \mathcal{P}.

We choose to start the induction with $\ell=1$ as a base case, meaning that certain degenerate polygons are allowed. More exactly, we regard as degenerate convex polygons all closed polygonal lines of the form $X_{1} X_{2} \ldots X_{k} Y_{1} Y_{2} \ldots Y_{m} X_{1}$, where $X_{1}, X_{2}, \ldots, X_{k}$ are points in this order on a line segment $X_{1} Y_{1}$, and so are $Y_{m}, Y_{m-1}, \ldots, Y_{1}$. The initial construction applies to degenerate polygons; their associates are also degenerate, and the value of d is zero. For the inductive step, consider a convex polygon \mathcal{P} which determines ℓ side directions, assuming that $d(\mathcal{P}) \geq 0$ for polygons with smaller values of ℓ.

Suppose first that \mathcal{P} has a pair of parallel sides, i. e. sides on distinct parallel lines. Let $A_{i} A_{i+1}$ and $A_{j} A_{j+1}$ be such a pair, and let $A_{i} A_{i+1} \leq A_{j} A_{j+1}$. Remove from \mathcal{P} the parallelogram R determined by vectors $\overrightarrow{A_{i} A_{i+1}}$ and $\overrightarrow{A_{i} A_{j+1}}$. Two polygons are obtained in this way. Translating one of them by vector $\overrightarrow{A_{i} A_{i+1}}$ yields a new convex polygon \mathcal{P}^{\prime}, of area $[\mathcal{P}]-[R]$ and with value of ℓ not exceeding the one of \mathcal{P}. The construction just described will be called operation A.

The associate of \mathcal{P}^{\prime} is obtained from \mathcal{Q} upon decreasing the lengths of two opposite sides by an amount of $2 A_{i} A_{i+1}$. By the lemma, the distance between these opposite sides is twice the distance between $A_{i} A_{i+1}$ and $A_{j} A_{j+1}$. Thus operation \mathbf{A} decreases $[\mathcal{Q}]$ by the area of a parallelogram with base and respective altitude twice the ones of R, i. e. by $4[R]$. Hence \mathbf{A} leaves the difference $d(\mathcal{P})=[\mathcal{Q}]-4[\mathcal{P}]$ unchanged.

Now, if \mathcal{P}^{\prime} also has a pair of parallel sides, apply operation \mathbf{A} to it. Keep doing so with the subsequent polygons obtained for as long as possible. Now, A decreases the number p of pairs of parallel sides in \mathcal{P}. Hence its repeated applications gradually reduce p to 0 , and further applications of \mathbf{A} will be impossible after several steps. For clarity, let us denote by \mathcal{P} again the polygon obtained at that stage.

The inductive step is complete if \mathcal{P} is degenerate. Otherwise $\ell>1$ and $p=0$, i. e. there are no parallel sides in \mathcal{P}. Observe that then $\ell \geq 3$. Indeed, $\ell=2$ means that the vertices of \mathcal{P} all lie on the boundary of a parallelogram, implying $p>0$.

Furthermore, since \mathcal{P} has no parallel sides, consecutive collinear vectors in the sequence $\left(\overrightarrow{\mathrm{b}_{k}}\right)$ (if any) correspond to consecutive 180°-angles in \mathcal{P}. Removing the vertices of such angles, we obtain a convex polygon with the same value of $d(\mathcal{P})$.

In summary, if operation \mathbf{A} is impossible for a nondegenerate polygon \mathcal{P}, then $\ell \geq 3$. In addition, one may assume that \mathcal{P} has no angles of size 180°.

The last two conditions then also hold for the associate \mathcal{Q} of \mathcal{P}, and we perform the following construction. Since $\ell \geq 3$, there is a side $B_{j} B_{j+1}$ of \mathcal{Q} such that the sum of the angles at B_{j} and B_{j+1} is greater than 180°. (Such a side exists in each convex k-gon for $k>4$.) Naturally, $B_{j+n} B_{j+n+1}$ is a side with the same property. Extend the pairs of sides $B_{j-1} B_{j}, B_{j+1} B_{j+2}$
and $B_{j+n-1} B_{j+n}, B_{j+n+1} B_{j+n+2}$ to meet at U and V, respectively. Let \mathcal{Q}^{\prime} be the centrally symmetric convex $2(n+1)$-gon obtained from \mathcal{Q} by inserting U and V into the sequence $B_{1}, \ldots, B_{2 n}$ as new vertices between B_{j}, B_{j+1} and B_{j+n}, B_{j+n+1}, respectively. Informally, we adjoin to \mathcal{Q} the congruent triangles $B_{j} B_{j+1} U$ and $B_{j+n} B_{j+n+1} V$. Note that B_{j}, B_{j+1}, B_{j+n} and B_{j+n+1} are kept as vertices of \mathcal{Q}^{\prime}, although $B_{j} B_{j+1}$ and $B_{j+n} B_{j+n+1}$ are no longer its sides.

Let $A_{i} A_{i+1}$ be the side of \mathcal{P} such that $\overrightarrow{A_{i} A_{i+1}}=\overrightarrow{B_{j} B_{j+1}}=\overrightarrow{\mathbf{b}_{j}}$. Consider the point W such that triangle $A_{i} A_{i+1} W$ is congruent to triangle $B_{j} B_{j+1} U$ and exterior to \mathcal{P}. Insert W into the sequence $A_{1}, A_{2}, \ldots, A_{n}$ as a new vertex between A_{i} and A_{i+1} to obtain an $(n+1)$-gon \mathcal{P}^{\prime}. We claim that \mathcal{P}^{\prime} is convex and its associate is \mathcal{Q}^{\prime}.

Vectors $\overrightarrow{A_{i} W}$ and $\overrightarrow{\mathbf{b}_{j-1}}$ are collinear and have the same direction, as well as vectors $\overrightarrow{W A_{i+1}}$ and $\overrightarrow{\mathbf{b}_{j+1}}$. Since $\overrightarrow{\mathbf{b}_{j-1}}, \overrightarrow{\mathbf{b}_{j}}, \overrightarrow{\mathbf{b}_{j+1}}$ are consecutive terms in the sequence $\left(\overrightarrow{\mathbf{b}_{k}}\right)$, the angle inequalities $\angle\left(\overrightarrow{\mathbf{b}_{j-1}}, \overrightarrow{\mathbf{b}_{j}}\right) \leq \angle\left(\overrightarrow{A_{i-1} A_{i}}, \overrightarrow{\mathbf{b}_{j}}\right)$ and $\angle\left(\overrightarrow{\mathbf{b}_{j}}, \overrightarrow{\mathbf{b}_{j+1}}\right) \leq \angle\left(\overrightarrow{\mathbf{b}_{j}}, \overrightarrow{A_{i+1} A_{i+2}}\right)$ hold true. They show that \mathcal{P}^{\prime} is a convex polygon. To construct its associate, vectors $\pm \overrightarrow{A_{i} A_{i+1}}= \pm \overrightarrow{\mathbf{b}_{j}}$ must be deleted from the defining sequence $\left(\overrightarrow{\mathrm{b}_{k}}\right)$ of \mathcal{Q}, and the vectors $\pm \overrightarrow{A_{i} W}, \pm \overrightarrow{W A_{i+1}}$ must be inserted appropriately into it. The latter can be done as follows:

$$
\ldots, \overrightarrow{\mathbf{b}_{j-1}}, \overrightarrow{A_{i} W}, \overrightarrow{W A_{i+1}}, \overrightarrow{\mathbf{b}_{j+1}}, \ldots,-\overrightarrow{\mathbf{b}_{j-1}},-\overrightarrow{A_{i} W},-\overrightarrow{W A_{i+1}},-\overrightarrow{\mathbf{b}_{j+1}}, \ldots
$$

This updated sequence produces \mathcal{Q}^{\prime} as the associate of \mathcal{P}^{\prime}.
It follows from the construction that $\left[\mathcal{P}^{\prime}\right]=[\mathcal{P}]+\left[A_{i} A_{i+1} W\right]$ and $\left[\mathcal{Q}^{\prime}\right]=[\mathcal{Q}]+2\left[A_{i} A_{i+1} W\right]$. Therefore $d\left(\mathcal{P}^{\prime}\right)=d(\mathcal{P})-2\left[A_{i} A_{i+1} W\right]<d(\mathcal{P})$.

To finish the induction, it remains to notice that the value of ℓ for \mathcal{P}^{\prime} is less than the one for \mathcal{P}. This is because side $A_{i} A_{i+1}$ was removed. The newly added sides $A_{i} W$ and $W A_{i+1}$ do not introduce new side directions. Each one of them is either parallel to a side of \mathcal{P} or lies on the line determined by such a side. The proof is complete.

Number Theory

N1. Determine all pairs (x, y) of integers satisfying the equation

$$
\begin{equation*}
1+2^{x}+2^{2 x+1}=y^{2} \tag{USA}
\end{equation*}
$$

Solution. If (x, y) is a solution then obviously $x \geq 0$ and $(x,-y)$ is a solution too. For $x=0$ we get the two solutions $(0,2)$ and $(0,-2)$.

Now let (x, y) be a solution with $x>0$; without loss of generality confine attention to $y>0$. The equation rewritten as

$$
2^{x}\left(1+2^{x+1}\right)=(y-1)(y+1)
$$

shows that the factors $y-1$ and $y+1$ are even, exactly one of them divisible by 4 . Hence $x \geq 3$ and one of these factors is divisible by 2^{x-1} but not by 2^{x}. So

$$
\begin{equation*}
y=2^{x-1} m+\epsilon, \quad m \text { odd }, \quad \epsilon= \pm 1 \tag{1}
\end{equation*}
$$

Plugging this into the original equation we obtain

$$
2^{x}\left(1+2^{x+1}\right)=\left(2^{x-1} m+\epsilon\right)^{2}-1=2^{2 x-2} m^{2}+2^{x} m \epsilon
$$

or, equivalently

$$
1+2^{x+1}=2^{x-2} m^{2}+m \epsilon
$$

Therefore

$$
\begin{equation*}
1-\epsilon m=2^{x-2}\left(m^{2}-8\right) \tag{2}
\end{equation*}
$$

For $\epsilon=1$ this yields $m^{2}-8 \leq 0$, i.e., $m=1$, which fails to satisfy (2).
For $\epsilon=-1$ equation (2) gives us

$$
1+m=2^{x-2}\left(m^{2}-8\right) \geq 2\left(m^{2}-8\right)
$$

implying $2 m^{2}-m-17 \leq 0$. Hence $m \leq 3$; on the other hand m cannot be 1 by (2). Because m is odd, we obtain $m=3$, leading to $x=4$. From (1) we get $y=23$. These values indeed satisfy the given equation. Recall that then $y=-23$ is also good. Thus we have the complete list of solutions $(x, y):(0,2),(0,-2),(4,23),(4,-23)$.

N2. For $x \in(0,1)$ let $y \in(0,1)$ be the number whose nth digit after the decimal point is the $\left(2^{n}\right)$ th digit after the decimal point of x. Show that if x is rational then so is y.
(Canada)
Solution. Since x is rational, its digits repeat periodically starting at some point. We wish to show that this is also true for the digits of y, implying that y is rational.

Let d be the length of the period of x and let $d=2^{u} \cdot v$, where v is odd. There is a positive integer w such that

$$
2^{w} \equiv 1 \quad(\bmod v)
$$

(For instance, one can choose w to be $\varphi(v)$, the value of Euler's function at v.) Therefore

$$
2^{n+w}=2^{n} \cdot 2^{w} \equiv 2^{n} \quad(\bmod v)
$$

for each n. Also, for $n \geq u$ we have

$$
2^{n+w} \equiv 2^{n} \equiv 0 \quad\left(\bmod 2^{u}\right)
$$

It follows that, for all $n \geq u$, the relation

$$
2^{n+w} \equiv 2^{n} \quad(\bmod d)
$$

holds. Thus, for n sufficiently large, the 2^{n+w} th digit of x is in the same spot in the cycle of x as its 2^{n} th digit, and so these digits are equal. Hence the $(n+w)$ th digit of y is equal to its nth digit. This means that the digits of y repeat periodically with period w from some point on, as required.

N3. The sequence $f(1), f(2), f(3), \ldots$ is defined by

$$
f(n)=\frac{1}{n}\left(\left\lfloor\frac{n}{1}\right\rfloor+\left\lfloor\frac{n}{2}\right\rfloor+\cdots+\left\lfloor\frac{n}{n}\right\rfloor\right)
$$

where $\lfloor x\rfloor$ denotes the integer part of x.
(a) Prove that $f(n+1)>f(n)$ infinitely often.
(b) Prove that $f(n+1)<f(n)$ infinitely often.
(South Africa)
Solution. Let $g(n)=n f(n)$ for $n \geq 1$ and $g(0)=0$. We note that, for $k=1, \ldots, n$,

$$
\left\lfloor\frac{n}{k}\right\rfloor-\left\lfloor\frac{n-1}{k}\right\rfloor=0
$$

if k is not a divisor of n and

$$
\left\lfloor\frac{n}{k}\right\rfloor-\left\lfloor\frac{n-1}{k}\right\rfloor=1
$$

if k divides n. It therefore follows that if $d(n)$ is the number of positive divisors of $n \geq 1$ then

$$
\begin{aligned}
g(n) & =\left\lfloor\frac{n}{1}\right\rfloor+\left\lfloor\frac{n}{2}\right\rfloor+\cdots+\left\lfloor\frac{n}{n-1}\right\rfloor+\left\lfloor\frac{n}{n}\right\rfloor \\
& =\left\lfloor\frac{n-1}{1}\right\rfloor+\left\lfloor\frac{n-1}{2}\right\rfloor+\cdots+\left\lfloor\frac{n-1}{n-1}\right\rfloor+\left\lfloor\frac{n-1}{n}\right\rfloor+d(n) \\
& =g(n-1)+d(n) .
\end{aligned}
$$

Hence

$$
g(n)=g(n-1)+d(n)=g(n-2)+d(n-1)+d(n)=\cdots=d(1)+d(2)+\cdots+d(n),
$$

meaning that

$$
f(n)=\frac{d(1)+d(2)+\cdots+d(n)}{n} .
$$

In other words, $f(n)$ is equal to the arithmetic mean of $d(1), d(2), \ldots, d(n)$. In order to prove the claims, it is therefore sufficient to show that $d(n+1)>f(n)$ and $d(n+1)<f(n)$ both hold infinitely often.

We note that $d(1)=1$. For $n>1, d(n) \geq 2$ holds, with equality if and only if n is prime. Since $f(6)=7 / 3>2$, it follows that $f(n)>2$ holds for all $n \geq 6$.

Since there are infinitely many primes, $d(n+1)=2$ holds for infinitely many values of n, and for each such $n \geq 6$ we have $d(n+1)=2<f(n)$. This proves claim (b).

To prove (a), notice that the sequence $d(1), d(2), d(3), \ldots$ is unbounded (e. g. $d\left(2^{k}\right)=k+1$ for all k). Hence $d(n+1)>\max \{d(1), d(2), \ldots, d(n)\}$ for infinitely many n. For all such n, we have $d(n+1)>f(n)$. This completes the solution.

N4. Let P be a polynomial of degree $n>1$ with integer coefficients and let k be any positive integer. Consider the polynomial $Q(x)=P(P(\ldots P(P(x)) \ldots)$, with k pairs of parentheses. Prove that Q has no more than n integer fixed points, i.e. integers satisfying the equation $Q(x)=x$.
(Romania)
Solution. The claim is obvious if every integer fixed point of Q is a fixed point of P itself. For the sequel assume that this is not the case. Take any integer x_{0} such that $Q\left(x_{0}\right)=x_{0}$, $P\left(x_{0}\right) \neq x_{0}$ and define inductively $x_{i+1}=P\left(x_{i}\right)$ for $i=0,1,2, \ldots ;$ then $x_{k}=x_{0}$.

It is evident that

$$
\begin{equation*}
P(u)-P(v) \text { is divisible by } u-v \text { for distinct integers } u, v \text {. } \tag{1}
\end{equation*}
$$

(Indeed, if $P(x)=\sum a_{i} x^{i}$ then each $a_{i}\left(u^{i}-v^{i}\right)$ is divisible by $u-v$.) Therefore each term in the chain of (nonzero) differences

$$
\begin{equation*}
x_{0}-x_{1}, \quad x_{1}-x_{2}, \quad \ldots, \quad x_{k-1}-x_{k}, \quad x_{k}-x_{k+1} \tag{2}
\end{equation*}
$$

is a divisor of the next one; and since $x_{k}-x_{k+1}=x_{0}-x_{1}$, all these differences have equal absolute values. For $x_{m}=\min \left(x_{1}, \ldots, x_{k}\right)$ this means that $x_{m-1}-x_{m}=-\left(x_{m}-x_{m+1}\right)$. Thus $x_{m-1}=x_{m+1}\left(\neq x_{m}\right)$. It follows that consecutive differences in the sequence (2) have opposite signs. Consequently, $x_{0}, x_{1}, x_{2}, \ldots$ is an alternating sequence of two distinct values. In other words, every integer fixed point of Q is a fixed point of the polynomial $P(P(x))$. Our task is to prove that there are at most n such points.

Let a be one of them so that $b=P(a) \neq a$ (we have assumed that such an a exists); then $a=P(b)$. Take any other integer fixed point α of $P(P(x))$ and let $P(\alpha)=\beta$, so that $P(\beta)=\alpha$; the numbers α and β need not be distinct (α can be a fixed point of P), but each of α, β is different from each of a, b. Applying property (1) to the four pairs of integers $(\alpha, a),(\beta, b)$, $(\alpha, b),(\beta, a)$ we get that the numbers $\alpha-a$ and $\beta-b$ divide each other, and also $\alpha-b$ and $\beta-a$ divide each other. Consequently

$$
\begin{equation*}
\alpha-b= \pm(\beta-a), \quad \alpha-a= \pm(\beta-b) . \tag{3}
\end{equation*}
$$

Suppose we have a plus in both instances: $\alpha-b=\beta-a$ and $\alpha-a=\beta-b$. Subtraction yields $a-b=b-a$, a contradiction, as $a \neq b$. Therefore at least one equality in (3) holds with a minus sign. For each of them this means that $\alpha+\beta=a+b$; equivalently $a+b-\alpha-P(\alpha)=0$.

Denote $a+b$ by C. We have shown that every integer fixed point of Q other that a and b is a root of the polynomial $F(x)=C-x-P(x)$. This is of course true for a and b as well. And since P has degree $n>1$, the polynomial F has the same degree, so it cannot have more than n roots. Hence the result.

Comment. The first part of the solution, showing that integer fixed points of any iterate of P are in fact fixed points of the second iterate $P \circ P$ is standard; moreover, this fact has already appeared in contests. We however do not consider this as a major drawback to the problem because the only tricky moment comes up only at the next stage of the reasoning - to apply the divisibility property (1) to points from distinct 2 -orbits of P. Yet maybe it would be more appropriate to state the problem in a version involving $k=2$ only.

N5. Find all integer solutions of the equation

$$
\frac{x^{7}-1}{x-1}=y^{5}-1 .
$$

(Russia)
Solution. The equation has no integer solutions. To show this, we first prove a lemma.
Lemma. If x is an integer and p is a prime divisor of $\frac{x^{7}-1}{x-1}$ then either $p \equiv 1(\bmod 7)$ or $p=7$. Proof. Both $x^{7}-1$ and $x^{p-1}-1$ are divisible by p, by hypothesis and by Fermat's little theorem, respectively. Suppose that 7 does not divide $p-1$. Then $\operatorname{gcd}(p-1,7)=1$, so there exist integers k and m such that $7 k+(p-1) m=1$. We therefore have

$$
x \equiv x^{7 k+(p-1) m} \equiv\left(x^{7}\right)^{k} \cdot\left(x^{p-1}\right)^{m} \equiv 1 \quad(\bmod p),
$$

and so

$$
\frac{x^{7}-1}{x-1}=1+x+\cdots+x^{6} \equiv 7 \quad(\bmod p)
$$

It follows that p divides 7 , hence $p=7$ must hold if $p \equiv 1(\bmod 7)$ does not, as stated.
The lemma shows that each positive divisor d of $\frac{x^{7}-1}{x-1}$ satisfies either $d \equiv 0(\bmod 7)$ or $d \equiv 1(\bmod 7)$.

Now assume that (x, y) is an integer solution of the original equation. Notice that $y-1>0$, because $\frac{x^{7}-1}{x-1}>0$ for all $x \neq 1$. Since $y-1$ divides $\frac{x^{7}-1}{x-1}=y^{5}-1$, we have $y \equiv 1(\bmod 7)$ or $y \equiv 2(\bmod 7)$ by the previous paragraph. In the first case, $1+y+y^{2}+y^{3}+y^{4} \equiv 5(\bmod 7)$, and in the second $1+y+y^{2}+y^{3}+y^{4} \equiv 3(\bmod 7)$. Both possibilities contradict the fact that the positive divisor $1+y+y^{2}+y^{3}+y^{4}$ of $\frac{x^{7}-1}{x-1}$ is congruent to 0 or 1 modulo 7 . So the given equation has no integer solutions.

N6. Let $a>b>1$ be relatively prime positive integers. Define the weight of an integer c, denoted by $w(c)$, to be the minimal possible value of $|x|+|y|$ taken over all pairs of integers x and y such that

$$
a x+b y=c .
$$

An integer c is called a local champion if $w(c) \geq w(c \pm a)$ and $w(c) \geq w(c \pm b)$.
Find all local champions and determine their number.

Solution. Call the pair of integers (x, y) a representation of c if $a x+b y=c$ and $|x|+|y|$ has the smallest possible value, i.e. $|x|+|y|=w(c)$.

We characterise the local champions by the following three observations.
Lemma 1. If (x, y) a representation of a local champion c then $x y<0$.
Proof. Suppose indirectly that $x \geq 0$ and $y \geq 0$ and consider the values $w(c)$ and $w(c+a)$. All representations of the numbers c and $c+a$ in the form $a u+b v$ can be written as

$$
c=a(x-k b)+b(y+k a), \quad c+a=a(x+1-k b)+b(y+k a)
$$

where k is an arbitrary integer.
Since $|x|+|y|$ is minimal, we have

$$
x+y=|x|+|y| \leq|x-k b|+|y+k a|
$$

for all k. On the other hand, $w(c+a) \leq w(c)$, so there exists a k for which

$$
|x+1-k b|+|y+k a| \leq|x|+|y|=x+y .
$$

Then

$$
(x+1-k b)+(y+k a) \leq|x+1-k b|+|y+k a| \leq x+y \leq|x-k b|+|y+k a|
$$

Comparing the first and the third expressions, we find $k(a-b)+1 \leq 0$ implying $k<0$. Comparing the second and fourth expressions, we get $|x+1-k b| \leq|x-k b|$, therefore $k b>x$; this is a contradiction.

If $x, y \leq 0$ then we can switch to $-c,-x$ and $-y$.
From this point, write $c=a x-b y$ instead of $c=a x+b y$ and consider only those cases where x and y are nonzero and have the same sign. By Lemma 1, there is no loss of generality in doing so.
Lemma 2. Let $c=a x-b y$ where $|x|+|y|$ is minimal and x, y have the same sign. The number c is a local champion if and only if $|x|<b$ and $|x|+|y|=\left\lfloor\frac{a+b}{2}\right\rfloor$.
Proof. Without loss of generality we may assume $x, y>0$.
The numbers $c-a$ and $c+b$ can be written as

$$
c-a=a(x-1)-b y \quad \text { and } \quad c+b=a x-b(y-1)
$$

and trivially $w(c-a) \leq(x-1)+y<w(c)$ and $w(c+b) \leq x+(y-1)<w(c)$ in all cases.
Now assume that c is a local champion and consider $w(c+a)$. Since $w(c+a) \leq w(c)$, there exists an integer k such that

$$
c+a=a(x+1-k b)-b(y-k a) \quad \text { and } \quad|x+1-k b|+|y-k a| \leq x+y
$$

This inequality cannot hold if $k \leq 0$, therefore $k>0$. We prove that we can choose $k=1$.
Consider the function $f(t)=|x+1-b t|+|y-a t|-(x+y)$. This is a convex function and we have $f(0)=1$ and $f(k) \leq 0$. By Jensen's inequality, $f(1) \leq\left(1-\frac{1}{k}\right) f(0)+\frac{1}{k} f(k)<1$. But $f(1)$ is an integer. Therefore $f(1) \leq 0$ and

$$
|x+1-b|+|y-a| \leq x+y
$$

Knowing $c=a(x-b)-b(y-a)$, we also have

$$
x+y \leq|x-b|+|y-a| .
$$

Combining the two inequalities yields $|x+1-b| \leq|x-b|$ which is equivalent to $x<b$.
Considering $w(c-b)$, we obtain similarly that $y<a$.
Now $|x-b|=b-x,|x+1-b|=b-x-1$ and $|y-a|=a-y$, therefore we have

$$
\begin{aligned}
&(b-x-1)+(a-y) \leq x+y \\
& \leq(b-x)+(a-y), \\
& \frac{a+b-1}{2} \leq x+y \leq \frac{a+b}{2} .
\end{aligned}
$$

Hence $x+y=\left\lfloor\frac{a+b}{2}\right\rfloor$.
To prove the opposite direction, assume $0<x<b$ and $x+y=\left\lfloor\frac{a+b}{2}\right\rfloor$. Since $a>b$, we also have $0<y<a$. Then

$$
w(c+a) \leq|x+1-b|+|y-a|=a+b-1-(x+y) \leq x+y=w(c)
$$

and

$$
w(c-b) \leq|x-b|+|y+1-a|=a+b-1-(x+y) \leq x+y=w(c)
$$

therefore c is a local champion indeed.
Lemma 3. Let $c=a x-b y$ and assume that x and y have the same sign, $|x|<b,|y|<a$ and $|x|+|y|=\left\lfloor\frac{a+b}{2}\right\rfloor$. Then $w(c)=x+y$.
Proof. By definition $w(c)=\min \{|x-k b|+|y-k a|: k \in \mathbb{Z}\}$. If $k \leq 0$ then obviously $|x-k b|+|y-k a| \geq x+y$. If $k \geq 1$ then

$$
|x-k b|+|y-k a|=(k b-x)+(k a-y)=k(a+b)-(x+y) \geq(2 k-1)(x+y) \geq x+y
$$

Therefore $w(c)=x+y$ indeed.
Lemmas 1,2 and 3 together yield that the set of local champions is

$$
C=\left\{ \pm(a x-b y): 0<x<b, x+y=\left\lfloor\frac{a+b}{2}\right\rfloor\right\}
$$

Denote by C^{+}and C^{-}the two sets generated by the expressions $+(a x-b y)$ and $-(a x-b y)$, respectively. It is easy to see that both sets are arithmetic progressions of length $b-1$, with difference $a+b$.

If a and b are odd, then $C^{+}=C^{-}$, because $a(-x)-b(-y)=a(b-x)-b(a-y)$ and $x+y=\frac{a+b}{2}$ is equivalent to $(b-x)+(a-y)=\frac{a+b}{2}$. In this case there exist $b-1$ local champions.

If a and b have opposite parities then the answer is different. For any $c_{1} \in C^{+}$and $c_{2} \in C^{-}$,

$$
2 c_{1} \equiv-2 c_{2} \equiv 2\left(a \frac{a+b-1}{2}-b \cdot 0\right) \equiv-a \quad(\bmod a+b)
$$

and

$$
2 c_{1}-2 c_{2} \equiv-2 a \quad(\bmod a+b)
$$

The number $a+b$ is odd and relatively prime to a, therefore the elements of C^{+}and C^{-}belong to two different residue classes modulo $a+b$. Hence, the set C is the union of two disjoint arithmetic progressions and the number of all local champions is $2(b-1)$.

So the number of local champions is $b-1$ if both a and b are odd and $2(b-1)$ otherwise.
Comment. The original question, as stated by the proposer, was:
(a) Show that there exists only finitely many local champions;
(b) Show that there exists at least one local champion.

N7. Prove that, for every positive integer n, there exists an integer m such that $2^{m}+m$ is divisible by n.
(Estonia)
Solution. We will prove by induction on d that, for every positive integer N, there exist positive integers $b_{0}, b_{1}, \ldots, b_{d-1}$ such that, for each $i=0,1,2, \ldots, d-1$, we have $b_{i}>N$ and

$$
2^{b_{i}}+b_{i} \equiv i \quad(\bmod d)
$$

This yields the claim for $m=b_{0}$.
The base case $d=1$ is trivial. Take an $a>1$ and assume that the statement holds for all $d<a$. Note that the remainders of 2^{i} modulo a repeat periodically starting with some exponent M. Let k be the length of the period; this means that $2^{M+k^{\prime}} \equiv 2^{M}(\bmod a)$ holds only for those k^{\prime} which are multiples of k. Note further that the period cannot contain all the a remainders, since 0 either is missing or is the only number in the period. Thus $k<a$.

Let $d=\operatorname{gcd}(a, k)$ and let $a^{\prime}=a / d, k^{\prime}=k / d$. Since $0<k<a$, we also have $0<d<a$. By the induction hypothesis, there exist positive integers $b_{0}, b_{1}, \ldots, b_{d-1}$ such that $b_{i}>\max \left(2^{M}, N\right)$ and

$$
\begin{equation*}
2^{b_{i}}+b_{i} \equiv i \quad(\bmod d) \quad \text { for } \quad i=0,1,2, \ldots, d-1 \tag{1}
\end{equation*}
$$

For each $i=0,1, \ldots, d-1$ consider the sequence

$$
\begin{equation*}
2^{b_{i}}+b_{i}, \quad 2^{b_{i}+k}+\left(b_{i}+k\right), \ldots, \quad 2^{b_{i}+\left(a^{\prime}-1\right) k}+\left(b_{i}+\left(a^{\prime}-1\right) k\right) . \tag{2}
\end{equation*}
$$

Modulo a, these numbers are congruent to

$$
2^{b_{i}}+b_{i}, \quad 2^{b_{i}}+\left(b_{i}+k\right), \ldots, 2^{b_{i}}+\left(b_{i}+\left(a^{\prime}-1\right) k\right)
$$

respectively. The d sequences contain $a^{\prime} d=a$ numbers altogether. We shall now prove that no two of these numbers are congruent modulo a.

Suppose that

$$
\begin{equation*}
2^{b_{i}}+\left(b_{i}+m k\right) \equiv 2^{b_{j}}+\left(b_{j}+n k\right) \quad(\bmod a) \tag{3}
\end{equation*}
$$

for some values of $i, j \in\{0,1, \ldots, d-1\}$ and $m, n \in\left\{0,1, \ldots, a^{\prime}-1\right\}$. Since d is a divisor of a, we also have

$$
2^{b_{i}}+\left(b_{i}+m k\right) \equiv 2^{b_{j}}+\left(b_{j}+n k\right) \quad(\bmod d) .
$$

Because d is a divisor of k and in view of (1), we obtain $i \equiv j(\bmod d)$. As $i, j \in\{0,1, \ldots, d-1\}$, this just means that $i=j$. Substituting this into (3) yields $m k \equiv n k(\bmod a)$. Therefore $m k^{\prime} \equiv n k^{\prime}\left(\bmod a^{\prime}\right)$; and since a^{\prime} and k^{\prime} are coprime, we get $m \equiv n\left(\bmod a^{\prime}\right)$. Hence also $m=n$.

It follows that the a numbers that make up the d sequences (2) satisfy all the requirements; they are certainly all greater than N because we chose each $b_{i}>\max \left(2^{M}, N\right)$. So the statement holds for a, completing the induction.

48 $8^{\text {th }}$ International Mathematical Olympiad VIETNAM 2007

IMO 2007
HaNOI-vETNU

Shortlisted

Problems

with Solutions

July 19-31, 2007
$48^{\text {th }}$ International Mathematical Olympiad Vietnam 2007

Shortlisted Problems with Solutions

Contents

Contributing Countries \& Problem Selection Committee 5
Algebra 7
Problem A1 7
Problem A2 10
Problem A3 12
Problem A4 14
Problem A5 16
Problem A6 20
Problem A7 22
Combinatorics 25
Problem C1 25
Problem C2 28
Problem C3 30
Problem C4 31
Problem C5 32
Problem C6 34
Problem C7 36
Problem C8 37
Geometry 39
Problem G1 39
Problem G2 41
Problem G3 42
Problem G4 43
Problem G5 44
Problem G6 46
Problem G7 49
Problem G8 52
Number Theory 55
Problem N1 55
Problem N2 56
Problem N3 57
Problem N4 58
Problem N5 60
Problem N6 62
Problem N7 63

Contributing Countries

Austria, Australia, Belgium, Bulgaria, Canada, Croatia, Czech Republic, Estonia, Finland, Greece, India, Indonesia, Iran, Japan, Korea (North), Korea (South), Lithuania, Luxembourg, Mexico, Moldova, Netherlands, New Zealand, Poland, Romania, Russia, Serbia, South Africa, Sweden, Thailand, Taiwan, Turkey, Ukraine, United Kingdom, United States of America

Problem Selection Committee

Ha Huy Khoai

Ilya Bogdanov
Tran Nam Dung
Le Tuan Hoa
Géza Kós

Algebra

A1. Given a sequence $a_{1}, a_{2}, \ldots, a_{n}$ of real numbers. For each $i(1 \leq i \leq n)$ define

$$
d_{i}=\max \left\{a_{j}: 1 \leq j \leq i\right\}-\min \left\{a_{j}: i \leq j \leq n\right\}
$$

and let

$$
d=\max \left\{d_{i}: 1 \leq i \leq n\right\} .
$$

(a) Prove that for arbitrary real numbers $x_{1} \leq x_{2} \leq \ldots \leq x_{n}$,

$$
\begin{equation*}
\max \left\{\left|x_{i}-a_{i}\right|: 1 \leq i \leq n\right\} \geq \frac{d}{2} \tag{1}
\end{equation*}
$$

(b) Show that there exists a sequence $x_{1} \leq x_{2} \leq \ldots \leq x_{n}$ of real numbers such that we have equality in (1).
(New Zealand)
Solution 1. (a) Let $1 \leq p \leq q \leq r \leq n$ be indices for which

$$
d=d_{q}, \quad a_{p}=\max \left\{a_{j}: 1 \leq j \leq q\right\}, \quad a_{r}=\min \left\{a_{j}: q \leq j \leq n\right\}
$$

and thus $d=a_{p}-a_{r}$. (These indices are not necessarily unique.)

For arbitrary real numbers $x_{1} \leq x_{2} \leq \ldots \leq x_{n}$, consider just the two quantities $\left|x_{p}-a_{p}\right|$ and $\left|x_{r}-a_{r}\right|$. Since

$$
\left(a_{p}-x_{p}\right)+\left(x_{r}-a_{r}\right)=\left(a_{p}-a_{r}\right)+\left(x_{r}-x_{p}\right) \geq a_{p}-a_{r}=d,
$$

we have either $a_{p}-x_{p} \geq \frac{d}{2}$ or $x_{r}-a_{r} \geq \frac{d}{2}$. Hence,

$$
\max \left\{\left|x_{i}-a_{i}\right|: 1 \leq i \leq n\right\} \geq \max \left\{\left|x_{p}-a_{p}\right|,\left|x_{r}-a_{r}\right|\right\} \geq \max \left\{a_{p}-x_{p}, x_{r}-a_{r}\right\} \geq \frac{d}{2}
$$

(b) Define the sequence $\left(x_{k}\right)$ as

$$
x_{1}=a_{1}-\frac{d}{2}, \quad x_{k}=\max \left\{x_{k-1}, a_{k}-\frac{d}{2}\right\} \quad \text { for } 2 \leq k \leq n
$$

We show that we have equality in (1) for this sequence.
By the definition, sequence $\left(x_{k}\right)$ is non-decreasing and $x_{k}-a_{k} \geq-\frac{d}{2}$ for all $1 \leq k \leq n$. Next we prove that

$$
\begin{equation*}
x_{k}-a_{k} \leq \frac{d}{2} \quad \text { for all } 1 \leq k \leq n \tag{2}
\end{equation*}
$$

Consider an arbitrary index $1 \leq k \leq n$. Let $\ell \leq k$ be the smallest index such that $x_{k}=x_{\ell}$. We have either $\ell=1$, or $\ell \geq 2$ and $x_{\ell}>x_{\ell-1}$. In both cases,

$$
\begin{equation*}
x_{k}=x_{\ell}=a_{\ell}-\frac{d}{2} \tag{3}
\end{equation*}
$$

Since

$$
a_{\ell}-a_{k} \leq \max \left\{a_{j}: 1 \leq j \leq k\right\}-\min \left\{a_{j}: k \leq j \leq n\right\}=d_{k} \leq d,
$$

equality (3) implies

$$
x_{k}-a_{k}=a_{\ell}-a_{k}-\frac{d}{2} \leq d-\frac{d}{2}=\frac{d}{2} .
$$

We obtained that $-\frac{d}{2} \leq x_{k}-a_{k} \leq \frac{d}{2}$ for all $1 \leq k \leq n$, so

$$
\max \left\{\left|x_{i}-a_{i}\right|: 1 \leq i \leq n\right\} \leq \frac{d}{2}
$$

We have equality because $\left|x_{1}-a_{1}\right|=\frac{d}{2}$.
Solution 2. We present another construction of a sequence (x_{i}) for part (b).
For each $1 \leq i \leq n$, let

$$
M_{i}=\max \left\{a_{j}: 1 \leq j \leq i\right\} \quad \text { and } \quad m_{i}=\min \left\{a_{j}: i \leq j \leq n\right\}
$$

For all $1 \leq i<n$, we have

$$
M_{i}=\max \left\{a_{1}, \ldots, a_{i}\right\} \leq \max \left\{a_{1}, \ldots, a_{i}, a_{i+1}\right\}=M_{i+1}
$$

and

$$
m_{i}=\min \left\{a_{i}, a_{i+1}, \ldots, a_{n}\right\} \leq \min \left\{a_{i+1}, \ldots, a_{n}\right\}=m_{i+1} .
$$

Therefore sequences $\left(M_{i}\right)$ and $\left(m_{i}\right)$ are non-decreasing. Moreover, since a_{i} is listed in both definitions,

$$
m_{i} \leq a_{i} \leq M_{i}
$$

To achieve equality in (1), set

$$
x_{i}=\frac{M_{i}+m_{i}}{2} .
$$

Since sequences $\left(M_{i}\right)$ and $\left(m_{i}\right)$ are non-decreasing, this sequence is non-decreasing as well.

From $d_{i}=M_{i}-m_{i}$ we obtain that

$$
-\frac{d_{i}}{2}=\frac{m_{i}-M_{i}}{2}=x_{i}-M_{i} \leq x_{i}-a_{i} \leq x_{i}-m_{i}=\frac{M_{i}-m_{i}}{2}=\frac{d_{i}}{2} .
$$

Therefore

$$
\max \left\{\left|x_{i}-a_{i}\right|: 1 \leq i \leq n\right\} \leq \max \left\{\frac{d_{i}}{2}: 1 \leq i \leq n\right\}=\frac{d}{2}
$$

Since the opposite inequality has been proved in part (a), we must have equality.

A2. Consider those functions $f: \mathbb{N} \rightarrow \mathbb{N}$ which satisfy the condition

$$
\begin{equation*}
f(m+n) \geq f(m)+f(f(n))-1 \tag{1}
\end{equation*}
$$

for all $m, n \in \mathbb{N}$. Find all possible values of $f(2007)$.
(\mathbb{N} denotes the set of all positive integers.)
(Bulgaria)
Answer. 1, 2, ..., 2008.
Solution. Suppose that a function $f: \mathbb{N} \rightarrow \mathbb{N}$ satisfies (1). For arbitrary positive integers $m>n$, by (1) we have

$$
f(m)=f(n+(m-n)) \geq f(n)+f(f(m-n))-1 \geq f(n)
$$

so f is nondecreasing.
Function $f \equiv 1$ is an obvious solution. To find other solutions, assume that $f \not \equiv 1$ and take the smallest $a \in \mathbb{N}$ such that $f(a)>1$. Then $f(b) \geq f(a)>1$ for all integer $b \geq a$.

Suppose that $f(n)>n$ for some $n \in \mathbb{N}$. Then we have

$$
f(f(n))=f((f(n)-n)+n) \geq f(f(n)-n)+f(f(n))-1
$$

so $f(f(n)-n) \leq 1$ and hence $f(n)-n<a$. Then there exists a maximal value of the expression $f(n)-n$; denote this value by c, and let $f(k)-k=c \geq 1$. Applying the monotonicity together with (1), we get

$$
\begin{aligned}
2 k+c \geq f(2 k)=f(k+k) & \geq f(k)+f(f(k))-1 \\
& \geq f(k)+f(k)-1=2(k+c)-1=2 k+(2 c-1)
\end{aligned}
$$

hence $c \leq 1$ and $f(n) \leq n+1$ for all $n \in \mathbb{N}$. In particular, $f(2007) \leq 2008$.
Now we present a family of examples showing that all values from 1 to 2008 can be realized. Let

$$
f_{j}(n)=\max \{1, n+j-2007\} \quad \text { for } j=1,2, \ldots, 2007 ; \quad f_{2008}(n)= \begin{cases}n, & 2007 \nmid n \\ n+1, & 2007 \mid n\end{cases}
$$

We show that these functions satisfy the condition (1) and clearly $f_{j}(2007)=j$.
To check the condition (1) for the function $f_{j}(j \leq 2007)$, note first that f_{j} is nondecreasing and $f_{j}(n) \leq n$, hence $f_{j}\left(f_{j}(n)\right) \leq f_{j}(n) \leq n$ for all $n \in \mathbb{N}$. Now, if $f_{j}(m)=1$, then the inequality (1) is clear since $f_{j}(m+n) \geq f_{j}(n) \geq f_{j}\left(f_{j}(n)\right)=f_{j}(m)+f_{j}\left(f_{j}(n)\right)-1$. Otherwise,

$$
f_{j}(m)+f_{j}\left(f_{j}(n)\right)-1 \leq(m+j-2007)+n=(m+n)+j-2007=f_{j}(m+n) .
$$

In the case $j=2008$, clearly $n+1 \geq f_{2008}(n) \geq n$ for all $n \in \mathbb{N}$; moreover, $n+1 \geq$ $f_{2008}\left(f_{2008}(n)\right)$ as well. Actually, the latter is trivial if $f_{2008}(n)=n$; otherwise, $f_{2008}(n)=n+1$, which implies $2007 \nmid n+1$ and hence $n+1=f_{2008}(n+1)=f_{2008}\left(f_{2008}(n)\right)$.

So, if $2007 \mid m+n$, then

$$
f_{2008}(m+n)=m+n+1=(m+1)+(n+1)-1 \geq f_{2008}(m)+f_{2008}\left(f_{2008}(n)\right)-1 .
$$

Otherwise, $2007 \nmid m+n$, hence $2007 \nmid m$ or $2007 \nmid n$. In the former case we have $f_{2008}(m)=m$, while in the latter one $f_{2008}\left(f_{2008}(n)\right)=f_{2008}(n)=n$, providing

$$
f_{2008}(m)+f_{2008}\left(f_{2008}(n)\right)-1 \leq(m+n+1)-1=f_{2008}(m+n)
$$

Comment. The examples above are not unique. The values $1,2, \ldots, 2008$ can be realized in several ways. Here we present other two constructions for $j \leq 2007$, without proof:

$$
g_{j}(n)=\left\{\begin{array}{ll}
1, & n<2007, \\
j, & n=2007, \\
n, & n>2007 ;
\end{array} \quad h_{j}(n)=\max \left\{1,\left\lfloor\frac{j n}{2007}\right\rfloor\right\} .\right.
$$

Also the example for $j=2008$ can be generalized. In particular, choosing a divisor $d>1$ of 2007, one can set

$$
f_{2008, d}(n)= \begin{cases}n, & d \nmid n, \\ n+1, & d \mid n .\end{cases}
$$

A3. Let n be a positive integer, and let x and y be positive real numbers such that $x^{n}+y^{n}=1$. Prove that

$$
\left(\sum_{k=1}^{n} \frac{1+x^{2 k}}{1+x^{4 k}}\right)\left(\sum_{k=1}^{n} \frac{1+y^{2 k}}{1+y^{4 k}}\right)<\frac{1}{(1-x)(1-y)} .
$$

(Estonia)
Solution 1. For each real $t \in(0,1)$,

$$
\frac{1+t^{2}}{1+t^{4}}=\frac{1}{t}-\frac{(1-t)\left(1-t^{3}\right)}{t\left(1+t^{4}\right)}<\frac{1}{t}
$$

Substituting $t=x^{k}$ and $t=y^{k}$,

$$
0<\sum_{k=1}^{n} \frac{1+x^{2 k}}{1+x^{4 k}}<\sum_{k=1}^{n} \frac{1}{x^{k}}=\frac{1-x^{n}}{x^{n}(1-x)} \quad \text { and } \quad 0<\sum_{k=1}^{n} \frac{1+y^{2 k}}{1+y^{4 k}}<\sum_{k=1}^{n} \frac{1}{y^{k}}=\frac{1-y^{n}}{y^{n}(1-y)} .
$$

Since $1-y^{n}=x^{n}$ and $1-x^{n}=y^{n}$,

$$
\frac{1-x^{n}}{x^{n}(1-x)}=\frac{y^{n}}{x^{n}(1-x)}, \quad \frac{1-y^{n}}{y^{n}(1-y)}=\frac{x^{n}}{y^{n}(1-y)}
$$

and therefore

$$
\left(\sum_{k=1}^{n} \frac{1+x^{2 k}}{1+x^{4 k}}\right)\left(\sum_{k=1}^{n} \frac{1+y^{2 k}}{1+y^{4 k}}\right)<\frac{y^{n}}{x^{n}(1-x)} \cdot \frac{x^{n}}{y^{n}(1-y)}=\frac{1}{(1-x)(1-y)}
$$

Solution 2. We prove

$$
\begin{equation*}
\left(\sum_{k=1}^{n} \frac{1+x^{2 k}}{1+x^{4 k}}\right)\left(\sum_{k=1}^{n} \frac{1+y^{2 k}}{1+y^{4 k}}\right)<\frac{\left(\frac{1+\sqrt{2}}{2} \ln 2\right)^{2}}{(1-x)(1-y)}<\frac{0.7001}{(1-x)(1-y)} \tag{1}
\end{equation*}
$$

The idea is to estimate each term on the left-hand side with the same constant. To find the upper bound for the expression $\frac{1+x^{2 k}}{1+x^{4 k}}$, consider the function $f(t)=\frac{1+t}{1+t^{2}}$ in interval $(0,1)$. Since

$$
f^{\prime}(t)=\frac{1-2 t-t^{2}}{\left(1+t^{2}\right)^{2}}=\frac{(\sqrt{2}+1+t)(\sqrt{2}-1-t)}{\left(1+t^{2}\right)^{2}}
$$

the function increases in interval $(0, \sqrt{2}-1]$ and decreases in $[\sqrt{2}-1,1)$. Therefore the maximum is at point $t_{0}=\sqrt{2}-1$ and

$$
f(t)=\frac{1+t}{1+t^{2}} \leq f\left(t_{0}\right)=\frac{1+\sqrt{2}}{2}=\alpha
$$

Applying this to each term on the left-hand side of (1), we obtain

$$
\begin{equation*}
\left(\sum_{k=1}^{n} \frac{1+x^{2 k}}{1+x^{4 k}}\right)\left(\sum_{k=1}^{n} \frac{1+y^{2 k}}{1+y^{4 k}}\right) \leq n \alpha \cdot n \alpha=(n \alpha)^{2} . \tag{2}
\end{equation*}
$$

To estimate $(1-x)(1-y)$ on the right-hand side, consider the function

$$
g(t)=\ln \left(1-t^{1 / n}\right)+\ln \left(1-(1-t)^{1 / n}\right) .
$$

Substituting s for $1-t$, we have

$$
-n g^{\prime}(t)=\frac{t^{1 / n-1}}{1-t^{1 / n}}-\frac{s^{1 / n-1}}{1-s^{1 / n}}=\frac{1}{s t}\left(\frac{(1-t) t^{1 / n}}{1-t^{1 / n}}-\frac{(1-s) s^{1 / n}}{1-s^{1 / n}}\right)=\frac{h(t)-h(s)}{s t} .
$$

The function

$$
h(t)=t^{1 / n} \frac{1-t}{1-t^{1 / n}}=\sum_{i=1}^{n} t^{i / n}
$$

is obviously increasing for $t \in(0,1)$, hence for these values of t we have

$$
g^{\prime}(t)>0 \Longleftrightarrow h(t)<h(s) \Longleftrightarrow t<s=1-t \Longleftrightarrow t<\frac{1}{2}
$$

Then, the maximum of $g(t)$ in $(0,1)$ is attained at point $t_{1}=1 / 2$ and therefore

$$
g(t) \leq g\left(\frac{1}{2}\right)=2 \ln \left(1-2^{-1 / n}\right), \quad t \in(0,1)
$$

Substituting $t=x^{n}$, we have $1-t=y^{n},(1-x)(1-y)=\exp g(t)$ and hence

$$
\begin{equation*}
(1-x)(1-y)=\exp g(t) \leq\left(1-2^{-1 / n}\right)^{2} \tag{3}
\end{equation*}
$$

Combining (2) and (3), we get

$$
\left(\sum_{k=1}^{n} \frac{1+x^{2 k}}{1+x^{4 k}}\right)\left(\sum_{k=1}^{n} \frac{1+y^{2 k}}{1+y^{4 k}}\right) \leq(\alpha n)^{2} \cdot 1 \leq(\alpha n)^{2} \frac{\left(1-2^{-1 / n}\right)^{2}}{(1-x)(1-y)}=\frac{\left(\alpha n\left(1-2^{-1 / n}\right)\right)^{2}}{(1-x)(1-y)} .
$$

Applying the inequality $1-\exp (-t)<t$ for $t=\frac{\ln 2}{n}$, we obtain

$$
\alpha n\left(1-2^{-1 / n}\right)=\alpha n\left(1-\exp \left(-\frac{\ln 2}{n}\right)\right)<\alpha n \cdot \frac{\ln 2}{n}=\alpha \ln 2=\frac{1+\sqrt{2}}{2} \ln 2 .
$$

Hence,

$$
\left(\sum_{k=1}^{n} \frac{1+x^{2 k}}{1+x^{4 k}}\right)\left(\sum_{k=1}^{n} \frac{1+y^{2 k}}{1+y^{4 k}}\right)<\frac{\left(\frac{1+\sqrt{2}}{2} \ln 2\right)^{2}}{(1-x)(1-y)}
$$

Comment. It is a natural idea to compare the sum $S_{n}(x)=\sum_{k=1}^{n} \frac{1+x^{2 k}}{1+x^{4 k}}$ with the integral $I_{n}(x)=$ $\int_{0}^{n} \frac{1+x^{2 t}}{1+x^{4 t}} \mathrm{~d} t$. Though computing the integral is quite standard, many difficulties arise. First, the integrand $\frac{1+x^{2 k}}{1+x^{4 k}}$ has an increasing segment and, depending on x, it can have a decreasing segment as well. So comparing $S_{n}(x)$ and $I_{n}(x)$ is not completely obvious. We can add a term to fix the estimate, e.g. $S_{n} \leq I_{n}+(\alpha-1)$, but then the final result will be weak for the small values of n. Second, we have to minimize $(1-x)(1-y) I_{n}(x) I_{n}(y)$ which leads to very unpleasant computations.

However, by computer search we found that the maximum of $I_{n}(x) I_{n}(y)$ is at $x=y=2^{-1 / n}$, as well as the maximum of $S_{n}(x) S_{n}(y)$, and the latter is less. Hence, one can conjecture that the exact constant which can be put into the numerator on the right-hand side of (1) is

$$
\left(\ln 2 \cdot \int_{0}^{1} \frac{1+4^{-t}}{1+16^{-t}} \mathrm{~d} t\right)^{2}=\frac{1}{4}\left(\frac{1}{2} \ln \frac{17}{2}+\arctan 4-\frac{\pi}{4}\right)^{2} \approx 0.6484
$$

A4. Find all functions $f: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$such that

$$
\begin{equation*}
f(x+f(y))=f(x+y)+f(y) \tag{1}
\end{equation*}
$$

for all $x, y \in \mathbb{R}^{+}$. (Symbol \mathbb{R}^{+}denotes the set of all positive real numbers.)
(Thaliand)
Answer. $f(x)=2 x$.
Solution 1. First we show that $f(y)>y$ for all $y \in \mathbb{R}^{+}$. Functional equation (1) yields $f(x+f(y))>f(x+y)$ and hence $f(y) \neq y$ immediately. If $f(y)<y$ for some y, then setting $x=y-f(y)$ we get

$$
f(y)=f((y-f(y))+f(y))=f((y-f(y))+y)+f(y)>f(y)
$$

contradiction. Therefore $f(y)>y$ for all $y \in \mathbb{R}^{+}$.
For $x \in \mathbb{R}^{+}$define $g(x)=f(x)-x$; then $f(x)=g(x)+x$ and, as we have seen, $g(x)>0$. Transforming (1) for function $g(x)$ and setting $t=x+y$,

$$
\begin{aligned}
f(t+g(y)) & =f(t)+f(y) \\
g(t+g(y))+t+g(y) & =(g(t)+t)+(g(y)+y)
\end{aligned}
$$

and therefore

$$
\begin{equation*}
g(t+g(y))=g(t)+y \quad \text { for all } t>y>0 \tag{2}
\end{equation*}
$$

Next we prove that function $g(x)$ is injective. Suppose that $g\left(y_{1}\right)=g\left(y_{2}\right)$ for some numbers $y_{1}, y_{2} \in \mathbb{R}^{+}$. Then by (2),

$$
g(t)+y_{1}=g\left(t+g\left(y_{1}\right)\right)=g\left(t+g\left(y_{2}\right)\right)=g(t)+y_{2}
$$

for all $t>\max \left\{y_{1}, y_{2}\right\}$. Hence, $g\left(y_{1}\right)=g\left(y_{2}\right)$ is possible only if $y_{1}=y_{2}$.
Now let u, v be arbitrary positive numbers and $t>u+v$. Applying (2) three times,

$$
g(t+g(u)+g(v))=g(t+g(u))+v=g(t)+u+v=g(t+g(u+v)) .
$$

By the injective property we conclude that $t+g(u)+g(v)=t+g(u+v)$, hence

$$
\begin{equation*}
g(u)+g(v)=g(u+v) . \tag{3}
\end{equation*}
$$

Since function $g(v)$ is positive, equation (3) also shows that g is an increasing function.
Finally we prove that $g(x)=x$. Combining (2) and (3), we obtain

$$
g(t)+y=g(t+g(y))=g(t)+g(g(y))
$$

and hence

$$
g(g(y))=y
$$

Suppose that there exists an $x \in \mathbb{R}^{+}$such that $g(x) \neq x$. By the monotonicity of g, if $x>g(x)$ then $g(x)>g(g(x))=x$. Similarly, if $x<g(x)$ then $g(x)<g(g(x))=x$. Both cases lead to contradiction, so there exists no such x.

We have proved that $g(x)=x$ and therefore $f(x)=g(x)+x=2 x$ for all $x \in \mathbb{R}^{+}$. This function indeed satisfies the functional equation (1).

Comment. It is well-known that the additive property (3) together with $g(x) \geq 0$ (for $x>0$) imply $g(x)=c x$. So, after proving (3), it is sufficient to test functions $f(x)=(c+1) x$.
Solution 2. We prove that $f(y)>y$ and introduce function $g(x)=f(x)-x>0$ in the same way as in Solution 1.

For arbitrary $t>y>0$, substitute $x=t-y$ into (1) to obtain

$$
f(t+g(y))=f(t)+f(y)
$$

which, by induction, implies

$$
\begin{equation*}
f(t+n g(y))=f(t)+n f(y) \quad \text { for all } t>y>0, n \in \mathbb{N} . \tag{4}
\end{equation*}
$$

Take two arbitrary positive reals y and z and a third fixed number $t>\max \{y, z\}$. For each positive integer k, let $\ell_{k}=\left\lfloor k \frac{g(y)}{g(z)}\right\rfloor$. Then $t+k g(y)-\ell_{k} g(z) \geq t>z$ and, applying (4) twice,

$$
\begin{aligned}
f\left(t+k g(y)-\ell_{k} g(z)\right)+\ell_{k} f(z) & =f(t+k g(y))=f(t)+k f(y), \\
0<\frac{1}{k} f\left(t+k g(y)-\ell_{k} g(z)\right) & =\frac{f(t)}{k}+f(y)-\frac{\ell_{k}}{k} f(z) .
\end{aligned}
$$

As $k \rightarrow \infty$ we get

$$
0 \leq \lim _{k \rightarrow \infty}\left(\frac{f(t)}{k}+f(y)-\frac{\ell_{k}}{k} f(z)\right)=f(y)-\frac{g(y)}{g(z)} f(z)=f(y)-\frac{f(y)-y}{f(z)-z} f(z)
$$

and therefore

$$
\frac{f(y)}{y} \leq \frac{f(z)}{z}
$$

Exchanging variables y and z, we obtain the reverse inequality. Hence, $\frac{f(y)}{y}=\frac{f(z)}{z}$ for arbitrary y and z; so function $\frac{f(x)}{x}$ is constant, $f(x)=c x$.

Substituting back into (1), we find that $f(x)=c x$ is a solution if and only if $c=2$. So the only solution for the problem is $f(x)=2 x$.

A5. Let $c>2$, and let $a(1), a(2), \ldots$ be a sequence of nonnegative real numbers such that

$$
\begin{equation*}
a(m+n) \leq 2 a(m)+2 a(n) \quad \text { for all } m, n \geq 1, \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
a\left(2^{k}\right) \leq \frac{1}{(k+1)^{c}} \quad \text { for all } k \geq 0 \tag{2}
\end{equation*}
$$

Prove that the sequence $a(n)$ is bounded.
(Croatia)
Solution 1. For convenience, define $a(0)=0$; then condition (1) persists for all pairs of nonnegative indices.
Lemma 1. For arbitrary nonnegative indices n_{1}, \ldots, n_{k}, we have

$$
\begin{equation*}
a\left(\sum_{i=1}^{k} n_{i}\right) \leq \sum_{i=1}^{k} 2^{i} a\left(n_{i}\right) \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
a\left(\sum_{i=1}^{k} n_{i}\right) \leq 2 k \sum_{i=1}^{k} a\left(n_{i}\right) . \tag{4}
\end{equation*}
$$

Proof. Inequality (3) is proved by induction on k. The base case $k=1$ is trivial, while the induction step is provided by
$a\left(\sum_{i=1}^{k+1} n_{i}\right)=a\left(n_{1}+\sum_{i=2}^{k+1} n_{i}\right) \leq 2 a\left(n_{1}\right)+2 a\left(\sum_{i=1}^{k} n_{i+1}\right) \leq 2 a\left(n_{1}\right)+2 \sum_{i=1}^{k} 2^{i} a\left(n_{i+1}\right)=\sum_{i=1}^{k+1} 2^{i} a\left(n_{i}\right)$.
To establish (4), first the inequality

$$
a\left(\sum_{i=1}^{2^{d}} n_{i}\right) \leq 2^{d} \sum_{i=1}^{2^{d}} a\left(n_{i}\right)
$$

can be proved by an obvious induction on d. Then, turning to (4), we find an integer d such that $2^{d-1}<k \leq 2^{d}$ to obtain

$$
a\left(\sum_{i=1}^{k} n_{i}\right)=a\left(\sum_{i=1}^{k} n_{i}+\sum_{i=k+1}^{2^{d}} 0\right) \leq 2^{d}\left(\sum_{i=1}^{k} a\left(n_{i}\right)+\sum_{i=k+1}^{2^{d}} a(0)\right)=2^{d} \sum_{i=1}^{k} a\left(n_{i}\right) \leq 2 k \sum_{i=1}^{k} a\left(n_{i}\right) .
$$

Fix an increasing unbounded sequence $0=M_{0}<M_{1}<M_{2}<\ldots$ of real numbers; the exact values will be defined later. Let n be an arbitrary positive integer and write

$$
n=\sum_{i=0}^{d} \varepsilon_{i} \cdot 2^{i}, \quad \text { where } \varepsilon_{i} \in\{0,1\}
$$

Set $\varepsilon_{i}=0$ for $i>d$, and take some positive integer f such that $M_{f}>d$. Applying (3), we get

$$
a(n)=a\left(\sum_{k=1}^{f} \sum_{M_{k-1} \leq i<M_{k}} \varepsilon_{i} \cdot 2^{i}\right) \leq \sum_{k=1}^{f} 2^{k} a\left(\sum_{M_{k-1} \leq i<M_{k}} \varepsilon_{i} \cdot 2^{i}\right) .
$$

Note that there are less than $M_{k}-M_{k-1}+1$ integers in interval $\left[M_{k-1}, M_{k}\right.$); hence, using (4) we have

$$
\begin{aligned}
a(n) & \leq \sum_{k=1}^{f} 2^{k} \cdot 2\left(M_{k}-M_{k-1}+1\right) \sum_{M_{k-1} \leq i<M_{k}} \varepsilon_{i} \cdot a\left(2^{i}\right) \\
& \leq \sum_{k=1}^{f} 2^{k} \cdot 2\left(M_{k}-M_{k-1}+1\right)^{2} \max _{M_{k-1} \leq i<M_{k}} a\left(2^{i}\right) \\
& \leq \sum_{k=1}^{f} 2^{k+1}\left(M_{k}+1\right)^{2} \cdot \frac{1}{\left(M_{k-1}+1\right)^{c}}=\sum_{k=1}^{f}\left(\frac{M_{k}+1}{M_{k-1}+1}\right)^{2} \frac{2^{k+1}}{\left(M_{k-1}+1\right)^{c-2}} .
\end{aligned}
$$

Setting $M_{k}=4^{k /(c-2)}-1$, we obtain

$$
a(n) \leq \sum_{k=1}^{f} 4^{2 /(c-2)} \frac{2^{k+1}}{\left(4^{(k-1) /(c-2)}\right)^{c-2}}=8 \cdot 4^{2 /(c-2)} \sum_{k=1}^{f}\left(\frac{1}{2}\right)^{k}<8 \cdot 4^{2 /(c-2)}
$$

and the sequence $a(n)$ is bounded.

Solution 2.

Lemma 2. Suppose that s_{1}, \ldots, s_{k} are positive integers such that

$$
\sum_{i=1}^{k} 2^{-s_{i}} \leq 1
$$

Then for arbitrary positive integers n_{1}, \ldots, n_{k} we have

$$
a\left(\sum_{i=1}^{k} n_{i}\right) \leq \sum_{i=1}^{k} 2^{s_{i}} a\left(n_{i}\right)
$$

Proof. Apply an induction on k. The base cases are $k=1$ (trivial) and $k=2$ (follows from the condition (1)). Suppose that $k>2$. We can assume that $s_{1} \leq s_{2} \leq \cdots \leq s_{k}$. Note that

$$
\sum_{i=1}^{k-1} 2^{-s_{i}} \leq 1-2^{-s_{k-1}}
$$

since the left-hand side is a fraction with the denominator $2^{s_{k-1}}$, and this fraction is less than 1. Define $s_{k-1}^{\prime}=s_{k-1}-1$ and $n_{k-1}^{\prime}=n_{k-1}+n_{k}$; then we have

$$
\sum_{i=1}^{k-2} 2^{-s_{i}}+2^{-s_{k-1}^{\prime}} \leq\left(1-2 \cdot 2^{-s_{k-1}}\right)+2^{1-s_{k-1}}=1
$$

Now, the induction hypothesis can be applied to achieve

$$
\begin{aligned}
a\left(\sum_{i=1}^{k} n_{i}\right)=a\left(\sum_{i=1}^{k-2} n_{i}+n_{k-1}^{\prime}\right) & \leq \sum_{i=1}^{k-2} 2^{s_{i}} a\left(n_{i}\right)+2^{s_{k-1}^{\prime}} a\left(n_{k-1}^{\prime}\right) \\
& \leq \sum_{i=1}^{k-2} 2^{s_{i}} a\left(n_{i}\right)+2^{s_{k-1}-1} \cdot 2\left(a\left(n_{k-1}\right)+a\left(n_{k}\right)\right) \\
& \leq \sum_{i=1}^{k-2} 2^{s_{i}} a\left(n_{i}\right)+2^{s_{k-1}} a\left(n_{k-1}\right)+2^{s_{k}} a\left(n_{k}\right)
\end{aligned}
$$

Let $q=c / 2>1$. Take an arbitrary positive integer n and write

$$
n=\sum_{i=1}^{k} 2^{u_{i}}, \quad 0 \leq u_{1}<u_{2}<\cdots<u_{k}
$$

Choose $s_{i}=\left\lfloor\log _{2}\left(u_{i}+1\right)^{q}\right\rfloor+d(i=1, \ldots, k)$ for some integer d. We have

$$
\sum_{i=1}^{k} 2^{-s_{i}}=2^{-d} \sum_{i=1}^{k} 2^{-\left\lfloor\log _{2}\left(u_{i}+1\right)^{q}\right\rfloor}
$$

and we choose d in such a way that

$$
\frac{1}{2}<\sum_{i=1}^{k} 2^{-s_{i}} \leq 1
$$

In particular, this implies

$$
2^{d}<2 \sum_{i=1}^{k} 2^{-\left\lfloor\log _{2}\left(u_{i}+1\right)^{q}\right\rfloor}<4 \sum_{i=1}^{k} \frac{1}{\left(u_{i}+1\right)^{q}} .
$$

Now, by Lemma 2 we obtain

$$
\begin{aligned}
a(n)=a\left(\sum_{i=1}^{k} 2^{u_{i}}\right) & \leq \sum_{i=1}^{k} 2^{s_{i}} a\left(2^{u_{i}}\right) \leq \sum_{i=1}^{k} 2^{d}\left(u_{i}+1\right)^{q} \cdot \frac{1}{\left(u_{i}+1\right)^{2 q}} \\
& =2^{d} \sum_{i=1}^{k} \frac{1}{\left(u_{i}+1\right)^{q}}<4\left(\sum_{i=1}^{k} \frac{1}{\left(u_{i}+1\right)^{q}}\right)^{2},
\end{aligned}
$$

which is bounded since $q>1$.
Comment 1. In fact, Lemma 2 (applied to the case $n_{i}=2^{u_{i}}$ only) provides a sharp bound for any $a(n)$. Actually, let $b(k)=\frac{1}{(k+1)^{c}}$ and consider the sequence

$$
\begin{equation*}
a(n)=\min \left\{\sum_{i=1}^{k} 2^{s_{i}} b\left(u_{i}\right) \mid k \in \mathbb{N}, \quad \sum_{i=1}^{k} 2^{-s_{i}} \leq 1, \quad \sum_{i=1}^{k} 2^{u_{i}}=n\right\} . \tag{5}
\end{equation*}
$$

We show that this sequence satisfies the conditions of the problem. Take two arbitrary indices m and n. Let

$$
\begin{aligned}
& a(m)=\sum_{i=1}^{k} 2^{s_{i}} b\left(u_{i}\right), \quad \sum_{i=1}^{k} 2^{-s_{i}} \leq 1, \quad \sum_{i=1}^{k} 2^{u_{i}}=m ; \\
& a(n)=\sum_{i=1}^{l} 2^{r_{i}} b\left(w_{i}\right), \quad \sum_{i=1}^{l} 2^{-r_{i}} \leq 1, \quad \sum_{i=1}^{l} 2^{w_{i}}=n .
\end{aligned}
$$

Then we have

$$
\sum_{i=1}^{k} 2^{-1-s_{i}}+\sum_{i=1}^{l} 2^{-1-r_{i}} \leq \frac{1}{2}+\frac{1}{2}=1, \quad \sum_{i=1}^{k} 2^{u_{i}}+\sum_{i=1}^{l} 2^{w_{i}}=m+n,
$$

so by (5) we obtain

$$
a(n+m) \leq \sum_{i=1}^{k} 2^{1+s_{i}} b\left(u_{i}\right)+\sum_{i=1}^{l} 2^{1+r_{i}} b\left(w_{i}\right)=2 a(m)+2 a(n) .
$$

Comment 2. The condition $c>2$ is sharp; we show that the sequence (5) is not bounded if $c \leq 2$.
First, we prove that for an arbitrary n the minimum in (5) is attained with a sequence (u_{i}) consisting of distinct numbers. To the contrary, assume that $u_{k-1}=u_{k}$. Replace u_{k-1} and u_{k} by a single number $u_{k-1}^{\prime}=u_{k}+1$, and s_{k-1} and s_{k} by $s_{k-1}^{\prime}=\min \left\{s_{k-1}, s_{k}\right\}$. The modified sequences provide a better bound since

$$
2^{s_{k-1}^{\prime}} b\left(u_{k-1}^{\prime}\right)=2^{s_{k-1}^{\prime}} b\left(u_{k}+1\right)<2^{s_{k-1}} b\left(u_{k-1}\right)+2^{s_{k}} b\left(u_{k}\right)
$$

(we used the fact that $b(k)$ is decreasing). This is impossible.
Hence, the claim is proved, and we can assume that the minimum is attained with $u_{1}<\cdots<u_{k}$; then

$$
n=\sum_{i=1}^{k} 2^{u_{i}}
$$

is simply the binary representation of n. (In particular, it follows that $a\left(2^{n}\right)=b(n)$ for each n.)
Now we show that the sequence $\left(a\left(2^{k}-1\right)\right)$ is not bounded. For some s_{1}, \ldots, s_{k} we have

$$
a\left(2^{k}-1\right)=a\left(\sum_{i=1}^{k} 2^{i-1}\right)=\sum_{i=1}^{k} 2^{s_{i}} b(i-1)=\sum_{i=1}^{k} \frac{2^{s_{i}}}{i^{c}} .
$$

By the Cauchy-Schwarz inequality we get

$$
a\left(2^{k}-1\right)=a\left(2^{k}-1\right) \cdot 1 \geq\left(\sum_{i=1}^{k} \frac{2^{s_{i}}}{i^{c}}\right)\left(\sum_{i=1}^{k} \frac{1}{2^{s_{i}}}\right) \geq\left(\sum_{i=1}^{k} \frac{1}{i^{c / 2}}\right)^{2},
$$

which is unbounded.
For $c \leq 2$, it is also possible to show a concrete counterexample. Actually, one can prove that the sequence

$$
a\left(\sum_{i=1}^{k} 2^{u_{i}}\right)=\sum_{i=1}^{k} \frac{i}{\left(u_{i}+1\right)^{2}} \quad\left(0 \leq u_{1}<\ldots<u_{k}\right)
$$

satisfies (1) and (2) but is not bounded.

A6. Let $a_{1}, a_{2}, \ldots, a_{100}$ be nonnegative real numbers such that $a_{1}^{2}+a_{2}^{2}+\ldots+a_{100}^{2}=1$. Prove that

$$
a_{1}^{2} a_{2}+a_{2}^{2} a_{3}+\ldots+a_{100}^{2} a_{1}<\frac{12}{25}
$$

(Poland)
Solution. Let $S=\sum_{k=1}^{100} a_{k}^{2} a_{k+1}$. (As usual, we consider the indices modulo 100, e.g. we set $a_{101}=a_{1}$ and $a_{102}=a_{2}$.)

Applying the Cauchy-Schwarz inequality to sequences $\left(a_{k+1}\right)$ and $\left(a_{k}^{2}+2 a_{k+1} a_{k+2}\right)$, and then the AM-GM inequality to numbers a_{k+1}^{2} and a_{k+2}^{2},

$$
\begin{align*}
(3 S)^{2} & =\left(\sum_{k=1}^{100} a_{k+1}\left(a_{k}^{2}+2 a_{k+1} a_{k+2}\right)\right)^{2} \leq\left(\sum_{k=1}^{100} a_{k+1}^{2}\right)\left(\sum_{k=1}^{100}\left(a_{k}^{2}+2 a_{k+1} a_{k+2}\right)^{2}\right) \tag{1}\\
& =1 \cdot \sum_{k=1}^{100}\left(a_{k}^{2}+2 a_{k+1} a_{k+2}\right)^{2}=\sum_{k=1}^{100}\left(a_{k}^{4}+4 a_{k}^{2} a_{k+1} a_{k+2}+4 a_{k+1}^{2} a_{k+2}^{2}\right) \\
& \leq \sum_{k=1}^{100}\left(a_{k}^{4}+2 a_{k}^{2}\left(a_{k+1}^{2}+a_{k+2}^{2}\right)+4 a_{k+1}^{2} a_{k+2}^{2}\right)=\sum_{k=1}^{100}\left(a_{k}^{4}+6 a_{k}^{2} a_{k+1}^{2}+2 a_{k}^{2} a_{k+2}^{2}\right) .
\end{align*}
$$

Applying the trivial estimates

$$
\sum_{k=1}^{100}\left(a_{k}^{4}+2 a_{k}^{2} a_{k+1}^{2}+2 a_{k}^{2} a_{k+2}^{2}\right) \leq\left(\sum_{k=1}^{100} a_{k}^{2}\right)^{2} \quad \text { and } \quad \sum_{k=1}^{100} a_{k}^{2} a_{k+1}^{2} \leq\left(\sum_{i=1}^{50} a_{2 i-1}^{2}\right)\left(\sum_{j=1}^{50} a_{2 j}^{2}\right)
$$

we obtain that

$$
(3 S)^{2} \leq\left(\sum_{k=1}^{100} a_{k}^{2}\right)^{2}+4\left(\sum_{i=1}^{50} a_{2 i-1}^{2}\right)\left(\sum_{j=1}^{50} a_{2 j}^{2}\right) \leq 1+\left(\sum_{i=1}^{50} a_{2 i-1}^{2}+\sum_{j=1}^{50} a_{2 j}^{2}\right)^{2}=2
$$

hence

$$
S \leq \frac{\sqrt{2}}{3} \approx 0.4714<\frac{12}{25}=0.48
$$

Comment 1. By applying the Lagrange multiplier method, one can see that the maximum is attained at values of a_{i} satisfying

$$
\begin{equation*}
a_{k-1}^{2}+2 a_{k} a_{k+1}=2 \lambda a_{k} \tag{2}
\end{equation*}
$$

for all $k=1,2, \ldots, 100$. Though this system of equations seems hard to solve, it can help to find the estimate above; it may suggest to have a closer look at the expression $a_{k-1}^{2} a_{k}+2 a_{k}^{2} a_{k+1}$.

Moreover, if the numbers a_{1}, \ldots, a_{100} satisfy (2), we have equality in (1). (See also Comment 3.)
Comment 2. It is natural to ask what is the best constant c_{n} in the inequality

$$
\begin{equation*}
a_{1}^{2} a_{2}+a_{2}^{2} a_{3}+\ldots+a_{n}^{2} a_{1} \leq c_{n}\left(a_{1}^{2}+a_{2}^{2}+\ldots+a_{n}^{2}\right)^{3 / 2} \tag{3}
\end{equation*}
$$

For $1 \leq n \leq 4$ one may prove $c_{n}=1 / \sqrt{n}$ which is achieved when $a_{1}=a_{2}=\ldots=a_{n}$. However, the situation changes completely if $n \geq 5$. In this case we do not know the exact value of c_{n}. By computer search it can be found that $c_{n} \approx 0.4514$ and it is realized for example if

$$
a_{1} \approx 0.5873, \quad a_{2} \approx 0.6771, \quad a_{3} \approx 0.4224, \quad a_{4} \approx 0.1344, \quad a_{5} \approx 0.0133
$$

and $a_{k} \approx 0$ for $k \geq 6$. This example also proves that $c_{n}>0.4513$.

Comment 3. The solution can be improved in several ways to give somewhat better bounds for c_{n}. Here we show a variant which proves $c_{n}<0.4589$ for $n \geq 5$.

The value of c_{n} does not change if negative values are also allowed in (3). So the problem is equivalent to maximizing

$$
f\left(a_{1}, a_{2}, \ldots, a_{n}\right)=a_{1}^{2} a_{2}+a_{2}^{2} a_{3}+\ldots+a_{n}^{2} a_{1}
$$

on the unit sphere $a_{1}^{2}+a_{2}^{2}+\ldots+a_{n}^{2}=1$ in \mathbb{R}^{n}. Since the unit sphere is compact, the function has a maximum and we can apply the Lagrange multiplier method; for each maximum point there exists a real number λ such that

$$
a_{k-1}^{2}+2 a_{k} a_{k+1}=\lambda \cdot 2 a_{k} \quad \text { for all } k=1,2, \ldots, n
$$

Then

$$
3 S=\sum_{k=1}^{n}\left(a_{k-1}^{2} a_{k}+2 a_{k}^{2} a_{k+1}\right)=\sum_{k=1}^{n} 2 \lambda a_{k}^{2}=2 \lambda
$$

and therefore

$$
\begin{equation*}
a_{k-1}^{2}+2 a_{k} a_{k+1}=3 S a_{k} \quad \text { for all } k=1,2, \ldots, n \tag{4}
\end{equation*}
$$

From (4) we can derive

$$
\begin{equation*}
9 S^{2}=\sum_{k=1}^{n}\left(3 S a_{k}\right)^{2}=\sum_{k=1}^{n}\left(a_{k-1}^{2}+2 a_{k} a_{k+1}\right)^{2}=\sum_{k=1}^{n} a_{k}^{4}+4 \sum_{k=1}^{n} a_{k}^{2} a_{k+1}^{2}+4 \sum_{k=1}^{n} a_{k}^{2} a_{k+1} a_{k+2} \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
3 S^{2}=\sum_{k=1}^{n} 3 S a_{k-1}^{2} a_{k}=\sum_{k=1}^{n} a_{k-1}^{2}\left(a_{k-1}^{2}+2 a_{k} a_{k+1}\right)=\sum_{k=1}^{n} a_{k}^{4}+2 \sum_{k=1}^{n} a_{k}^{2} a_{k+1} a_{k+2} . \tag{6}
\end{equation*}
$$

Let p be a positive number. Combining (5) and (6) and applying the AM-GM inequality,

$$
\begin{aligned}
(9+3 p) S^{2} & =(1+p) \sum_{k=1}^{n} a_{k}^{4}+4 \sum_{k=1}^{n} a_{k}^{2} a_{k+1}^{2}+(4+2 p) \sum_{k=1}^{n} a_{k}^{2} a_{k+1} a_{k+2} \\
& \leq(1+p) \sum_{k=1}^{n} a_{k}^{4}+4 \sum_{k=1}^{n} a_{k}^{2} a_{k+1}^{2}+\sum_{k=1}^{n}\left(2(1+p) a_{k}^{2} a_{k+2}^{2}+\frac{(2+p)^{2}}{2(1+p)} a_{k}^{2} a_{k+1}^{2}\right) \\
& =(1+p) \sum_{k=1}^{n}\left(a_{k}^{4}+2 a_{k}^{2} a_{k+1}^{2}+2 a_{k}^{2} a_{k+2}^{2}\right)+\left(4+\frac{(2+p)^{2}}{2(1+p)}-2(1+p)\right) \sum_{k=1}^{n} a_{k}^{2} a_{k+1}^{2} \\
& \leq(1+p)\left(\sum_{k=1}^{n} a_{k}^{2}\right)^{2}+\frac{8+4 p-3 p^{2}}{2(1+p)} \sum_{k=1}^{n} a_{k}^{2} a_{k+1}^{2} \\
& =(1+p)+\frac{8+4 p-3 p^{2}}{2(1+p)} \sum_{k=1}^{n} a_{k}^{2} a_{k+1}^{2} .
\end{aligned}
$$

Setting $p=\frac{2+2 \sqrt{7}}{3}$ which is the positive root of $8+4 p-3 p^{2}=0$, we obtain

$$
S \leq \sqrt{\frac{1+p}{9+3 p}}=\sqrt{\frac{5+2 \sqrt{7}}{33+6 \sqrt{7}}} \approx 0.458879
$$

A7. Let $n>1$ be an integer. In the space, consider the set

$$
S=\{(x, y, z) \mid x, y, z \in\{0,1, \ldots, n\}, x+y+z>0\} .
$$

Find the smallest number of planes that jointly contain all $(n+1)^{3}-1$ points of S but none of them passes through the origin.
(Netherlands)
Answer. $3 n$ planes.
Solution. It is easy to find $3 n$ such planes. For example, planes $x=i, y=i$ or $z=i$ $(i=1,2, \ldots, n)$ cover the set S but none of them contains the origin. Another such collection consists of all planes $x+y+z=k$ for $k=1,2, \ldots, 3 n$.

We show that $3 n$ is the smallest possible number.
Lemma 1. Consider a nonzero polynomial $P\left(x_{1}, \ldots, x_{k}\right)$ in k variables. Suppose that P vanishes at all points $\left(x_{1}, \ldots, x_{k}\right)$ such that $x_{1}, \ldots, x_{k} \in\{0,1, \ldots, n\}$ and $x_{1}+\cdots+x_{k}>0$, while $P(0,0, \ldots, 0) \neq 0$. Then $\operatorname{deg} P \geq k n$.
Proof. We use induction on k. The base case $k=0$ is clear since $P \neq 0$. Denote for clarity $y=x_{k}$.

Let $R\left(x_{1}, \ldots, x_{k-1}, y\right)$ be the residue of P modulo $Q(y)=y(y-1) \ldots(y-n)$. Polynomial $Q(y)$ vanishes at each $y=0,1, \ldots, n$, hence $P\left(x_{1}, \ldots, x_{k-1}, y\right)=R\left(x_{1}, \ldots, x_{k-1}, y\right)$ for all $x_{1}, \ldots, x_{k-1}, y \in\{0,1, \ldots, n\}$. Therefore, R also satisfies the condition of the Lemma; moreover, $\operatorname{deg}_{y} R \leq n$. Clearly, $\operatorname{deg} R \leq \operatorname{deg} P$, so it suffices to prove that $\operatorname{deg} R \geq n k$.

Now, expand polynomial R in the powers of y :

$$
R\left(x_{1}, \ldots, x_{k-1}, y\right)=R_{n}\left(x_{1}, \ldots, x_{k-1}\right) y^{n}+R_{n-1}\left(x_{1}, \ldots, x_{k-1}\right) y^{n-1}+\cdots+R_{0}\left(x_{1}, \ldots, x_{k-1}\right) .
$$

We show that polynomial $R_{n}\left(x_{1}, \ldots, x_{k-1}\right)$ satisfies the condition of the induction hypothesis.
Consider the polynomial $T(y)=R(0, \ldots, 0, y)$ of degree $\leq n$. This polynomial has n roots $y=1, \ldots, n$; on the other hand, $T(y) \not \equiv 0$ since $T(0) \neq 0$. Hence $\operatorname{deg} T=n$, and its leading coefficient is $R_{n}(0,0, \ldots, 0) \neq 0$. In particular, in the case $k=1$ we obtain that coefficient R_{n} is nonzero.

Similarly, take any numbers $a_{1}, \ldots, a_{k-1} \in\{0,1, \ldots, n\}$ with $a_{1}+\cdots+a_{k-1}>0$. Substituting $x_{i}=a_{i}$ into $R\left(x_{1}, \ldots, x_{k-1}, y\right)$, we get a polynomial in y which vanishes at all points $y=0, \ldots, n$ and has degree $\leq n$. Therefore, this polynomial is null, hence $R_{i}\left(a_{1}, \ldots, a_{k-1}\right)=0$ for all $i=0,1, \ldots, n$. In particular, $R_{n}\left(a_{1}, \ldots, a_{k-1}\right)=0$.

Thus, the polynomial $R_{n}\left(x_{1}, \ldots, x_{k-1}\right)$ satisfies the condition of the induction hypothesis. So, we have $\operatorname{deg} R_{n} \geq(k-1) n$ and $\operatorname{deg} P \geq \operatorname{deg} R \geq \operatorname{deg} R_{n}+n \geq k n$.

Now we can finish the solution. Suppose that there are N planes covering all the points of S but not containing the origin. Let their equations be $a_{i} x+b_{i} y+c_{i} z+d_{i}=0$. Consider the polynomial

$$
P(x, y, z)=\prod_{i=1}^{N}\left(a_{i} x+b_{i} y+c_{i} z+d_{i}\right)
$$

It has total degree N. This polynomial has the property that $P\left(x_{0}, y_{0}, z_{0}\right)=0$ for any $\left(x_{0}, y_{0}, z_{0}\right) \in S$, while $P(0,0,0) \neq 0$. Hence by Lemma 1 we get $N=\operatorname{deg} P \geq 3 n$, as desired.

Comment 1. There are many other collections of $3 n$ planes covering the set S but not covering the origin.

Solution 2. We present a different proof of the main Lemma 1. Here we confine ourselves to the case $k=3$, which is applied in the solution, and denote the variables by x, y and z. (The same proof works for the general statement as well.)

The following fact is known with various proofs; we provide one possible proof for the completeness.
Lemma 2. For arbitrary integers $0 \leq m<n$ and for an arbitrary polynomial $P(x)$ of degree m,

$$
\begin{equation*}
\sum_{k=0}^{n}(-1)^{k}\binom{n}{k} P(k)=0 \tag{1}
\end{equation*}
$$

Proof. We use an induction on n. If $n=1$, then $P(x)$ is a constant polynomial, hence $P(1)-P(0)=0$, and the base is proved.

For the induction step, define $P_{1}(x)=P(x+1)-P(x)$. Then clearly $\operatorname{deg} P_{1}=\operatorname{deg} P-1=$ $m-1<n-1$, hence by the induction hypothesis we get

$$
\begin{aligned}
0 & =-\sum_{k=0}^{n-1}(-1)^{k}\binom{n-1}{k} P_{1}(k)=\sum_{k=0}^{n-1}(-1)^{k}\binom{n-1}{k}(P(k)-P(k+1)) \\
& =\sum_{k=0}^{n-1}(-1)^{k}\binom{n-1}{k} P(k)-\sum_{k=0}^{n-1}(-1)^{k}\binom{n-1}{k} P(k+1) \\
& =\sum_{k=0}^{n-1}(-1)^{k}\binom{n-1}{k} P(k)+\sum_{k=1}^{n}(-1)^{k}\binom{n-1}{k-1} P(k) \\
& =P(0)+\sum_{k=1}^{n-1}(-1)^{k}\left(\binom{n-1}{k-1}+\binom{n-1}{k}\right) P(k)+(-1)^{n} P(n)=\sum_{k=0}^{n}(-1)^{k}\binom{n}{k} P(k) .
\end{aligned}
$$

Now return to the proof of Lemma 1. Suppose, to the contrary, that $\operatorname{deg} P=N<3 n$. Consider the sum

$$
\Sigma=\sum_{i=0}^{n} \sum_{j=0}^{n} \sum_{k=0}^{n}(-1)^{i+j+k}\binom{n}{i}\binom{n}{j}\binom{n}{k} P(i, j, k)
$$

The only nonzero term in this sum is $P(0,0,0)$ and its coefficient is $\binom{n}{0}^{3}=1$; therefore $\Sigma=P(0,0,0) \neq 0$.

On the other hand, if $P(x, y, z)=\sum_{\alpha+\beta+\gamma \leq N} p_{\alpha, \beta, \gamma} x^{\alpha} y^{\beta} z^{\gamma}$, then

$$
\begin{aligned}
\Sigma & =\sum_{i=0}^{n} \sum_{j=0}^{n} \sum_{k=0}^{n}(-1)^{i+j+k}\binom{n}{i}\binom{n}{j}\binom{n}{k} \sum_{\alpha+\beta+\gamma \leq N} p_{\alpha, \beta, \gamma} i^{\alpha} j^{\beta} k^{\gamma} \\
& =\sum_{\alpha+\beta+\gamma \leq N} p_{\alpha, \beta, \gamma}\left(\sum_{i=0}^{n}(-1)^{i}\binom{n}{i} i^{\alpha}\right)\left(\sum_{j=0}^{n}(-1)^{j}\binom{n}{j} j^{\beta}\right)\left(\sum_{k=0}^{n}(-1)^{k}\binom{n}{k} k^{\gamma}\right) .
\end{aligned}
$$

Consider an arbitrary term in this sum. We claim that it is zero. Since $N<3 n$, one of three inequalities $\alpha<n, \beta<n$ or $\gamma<n$ is valid. For the convenience, suppose that $\alpha<n$. Applying Lemma 2 to polynomial x^{α}, we get $\sum_{i=0}^{n}(-1)^{i}\binom{n}{i} i^{\alpha}=0$, hence the term is zero as required.

This yields $\Sigma=0$ which is a contradiction. Therefore, $\operatorname{deg} P \geq 3 n$.

Comment 2. The proof does not depend on the concrete coefficients in Lemma 2. Instead of this Lemma, one can simply use the fact that there exist numbers $\alpha_{0}, \alpha_{1}, \ldots, \alpha_{n}\left(\alpha_{0} \neq 0\right)$ such that

$$
\sum_{k=0}^{n} \alpha_{k} k^{m}=0 \quad \text { for every } 0 \leq m<n
$$

This is a system of homogeneous linear equations in variables α_{i}. Since the number of equations is less than the number of variables, the only nontrivial thing is that there exists a solution with $\alpha_{0} \neq 0$. It can be shown in various ways.

Combinatorics

C1. Let $n>1$ be an integer. Find all sequences $a_{1}, a_{2}, \ldots, a_{n^{2}+n}$ satisfying the following conditions:
(a) $a_{i} \in\{0,1\}$ for all $1 \leq i \leq n^{2}+n$;
(b) $a_{i+1}+a_{i+2}+\ldots+a_{i+n}<a_{i+n+1}+a_{i+n+2}+\ldots+a_{i+2 n}$ for all $0 \leq i \leq n^{2}-n$.
(Serbia)
Answer. Such a sequence is unique. It can be defined as follows:

$$
a_{u+v n}=\left\{\begin{array}{ll}
0, & u+v \leq n, \tag{1}\\
1, & u+v \geq n+1
\end{array} \quad \text { for all } 1 \leq u \leq n \text { and } 0 \leq v \leq n .\right.
$$

The terms can be arranged into blocks of length n as

$$
(\underbrace{0 \ldots 0}_{n})(\underbrace{0 \ldots 0}_{n-1} 1)(\underbrace{0 \ldots 0}_{n-2} 11) \ldots(\underbrace{0 \ldots 0}_{n-v} \underbrace{1 \ldots 1}_{v}) \ldots(0 \underbrace{1 \ldots 1}_{n-1})(\underbrace{1 \ldots 1}_{n}) .
$$

Solution 1. Consider a sequence $\left(a_{i}\right)$ satisfying the conditions. For arbitrary integers $0 \leq$ $k \leq l \leq n^{2}+n$ denote $S(k, l]=a_{k+1}+\cdots+a_{l}$. (If $k=l$ then $S(k, l]=0$.) Then condition (b) can be rewritten as $S(i, i+n]<S(i+n, i+2 n]$ for all $0 \leq i \leq n^{2}-n$. Notice that for $0 \leq k \leq l \leq m \leq n^{2}+n$ we have $S(k, m]=S(k, l]+S(l, m]$.

By condition (b),

$$
0 \leq S(0, n]<S(n, 2 n]<\cdots<S\left(n^{2}, n^{2}+n\right] \leq n
$$

We have only $n+1$ distinct integers in the interval $[0, n]$; hence,

$$
\begin{equation*}
S(v n,(v+1) n]=v \quad \text { for all } 0 \leq v \leq n . \tag{2}
\end{equation*}
$$

In particular, $S(0, n]=0$ and $S\left(n^{2}, n^{2}+n\right]=n$, therefore

$$
\begin{align*}
a_{1} & =a_{2}=\ldots=a_{n}=0, \tag{3}\\
a_{n^{2}+1} & =a_{n^{2}+2}=\ldots=a_{n^{2}+n}=1 . \tag{4}
\end{align*}
$$

Subdivide sequence $\left(a_{i}\right)$ into $n+1$ blocks, each consisting of n consecutive terms, and number them from 0 to n. We show by induction on v that the v th blocks has the form

$$
(\underbrace{0 \ldots 0}_{n-v} \underbrace{1 \ldots 1}_{v}) .
$$

The base case $v=0$ is provided by (3).

Consider the v th block for $v>0$. By (2), it contains some "ones". Let the first "one" in this block be at the u th position (that is, $a_{u+v n}=1$). By the induction hypothesis, the $(v-1)$ th and v th blocks of $\left(a_{i}\right)$ have the form

$$
(\underbrace{0 \ldots \underbrace{0 \ldots 0}_{v-1}}_{n-v+1} \underbrace{1 \ldots 1}_{u-1})(\underbrace{0 \ldots 0}_{u-1} 1 * \ldots *),
$$

where each star can appear to be any binary digit. Observe that $u \leq n-v+1$, since the sum in this block is v. Then, the fragment of length n bracketed above has exactly $(v-1)+1$ ones, i. e. $S(u+(v-1) n, u+v n]=v$. Hence,

$$
v=S(u+(v-1) n, u+v n]<S(u+v n, u+(v+1) n]<\cdots<S\left(u+(n-1) n, u+n^{2}\right] \leq n
$$

we have $n-v+1$ distinct integers in the interval $[v, n]$, therefore $S(u+(t-1) n, u+t n]=t$ for each $t=v, \ldots, n$.

Thus, the end of sequence $\left(a_{i}\right)$ looks as following:
(each bracketed fragment contains n terms). Computing in two ways the sum of all digits above, we obtain $n-u=v-1$ and $u=n-v+1$. Then, the first $n-v$ terms in the v th block are zeroes, and the next v terms are ones, due to the sum of all terms in this block. The statement is proved.

We are left to check that the sequence obtained satisfies the condition. Notice that $a_{i} \leq a_{i+n}$ for all $1 \leq i \leq n^{2}$. Moreover, if $1 \leq u \leq n$ and $0 \leq v \leq n-1$, then $a_{u+v n}<a_{u+v n+n}$ exactly when $u+v=n$. In this case we have $u+v n=n+v(n-1)$.

Consider now an arbitrary index $0 \leq i \leq n^{2}-n$. Clearly, there exists an integer v such that $n+v(n-1) \in[i+1, i+n]$. Then, applying the above inequalities we obtain that condition (b) is valid.
Solution 2. Similarly to Solution 1, we introduce the notation $S(k, l]$ and obtain (2), (3), and (4) in the same way. The sum of all elements of the sequence can be computed as

$$
S\left(0, n^{2}+n\right]=S(0, n]+S(n, 2 n]+\ldots+S\left(n^{2}, n^{2}+n\right]=0+1+\ldots+n
$$

For an arbitrary integer $0 \leq u \leq n$, consider the numbers

$$
\begin{equation*}
S(u, u+n]<S(u+n, u+2 n]<\ldots<S\left(u+(n-1) n, u+n^{2}\right] . \tag{5}
\end{equation*}
$$

They are n distinct integers from the $n+1$ possible values $0,1,2, \ldots, n$. Denote by m the "missing" value which is not listed. We determine m from $S\left(0, n^{2}+n\right]$. Write this sum as
$S\left(0, n^{2}+n\right]=S(0, u]+S(u, u+n]+S(u+n, u+2 n]+\ldots+S\left(u+(n-1) n, u+n^{2}\right]+S\left(u+n^{2}, n^{2}+n\right]$.
Since $a_{1}=a_{2}=\ldots=a_{u}=0$ and $a_{u+n^{2}+1}=\ldots=a_{n^{2}+n}=1$, we have $S(0, u]=0$ and $S\left(u+n^{2}, n+n^{2}\right]=n-u$. Then

$$
0+1+\ldots+n=S\left(0, n^{2}+n\right]=0+((0+1+\ldots+n)-m)+(n-u)
$$

so $m=n-u$.
Hence, the numbers listed in (5) are $0,1, \ldots, n-u-1$ and $n-u+1, \ldots, n$, respectively, therefore

$$
S(u+v n, u+(v+1) n]=\left\{\begin{array}{ll}
v, & v \leq n-u-1, \tag{6}\\
v+1, & v \geq n-u
\end{array} \quad \text { for all } 0 \leq u \leq n, 0 \leq v \leq n-1\right.
$$

Conditions (6), together with (3), provide a system of linear equations in variables a_{i}. Now we solve this system and show that the solution is unique and satisfies conditions (a) and (b).

First, observe that any solution of the system (3), (6) satisfies the condition (b). By the construction, equations (6) immediately imply (5). On the other hand, all inequalities mentioned in condition (b) are included into the chain (5) for some value of u.

Next, note that the system (3), (6) is redundant. The numbers $S(k n,(k+1) n]$, where $1 \leq k \leq n-1$, appear twice in (6). For $u=0$ and $v=k$ we have $v \leq n-u-1$, and (6) gives $S(k n,(k+1) n]=v=k$. For $u=n$ and $v=k-1$ we have $v \geq n-u$ and we obtain the same value, $S(k n,(k+1) n]=v+1=k$. Therefore, deleting one equation from each redundant pair, we can make every sum $S(k, k+n]$ appear exactly once on the left-hand side in (6).

Now, from (3), (6), the sequence $\left(a_{i}\right)$ can be reconstructed inductively by
$a_{1}=a_{2}=\ldots=a_{n-1}=0, \quad a_{k+n}=S(k, k+n]-\left(a_{k+1}+a_{k+2}+\ldots+a_{k+n-1}\right) \quad\left(0 \leq k \leq n^{2}\right)$,
taking the values of $S(k, k+n]$ from (6). This means first that there exists at most one solution of our system. Conversely, the constructed sequence obviously satisfies all equations (3), (6) (the only missing equation is $a_{n}=0$, which follows from $S(0, n]=0$). Hence it satisfies condition (b), and we are left to check condition (a) only.

For arbitrary integers $1 \leq u, t \leq n$ we get

$$
\begin{aligned}
a_{u+t n}-a_{u+(t-1) n} & =S(u+(t-1) n, u+t n]-S((u-1)+(t-1) n,(u-1)+t n] \\
& = \begin{cases}(t-1)-(t-1)=0, & t \leq n-u \\
t-(t-1)=1, & t=n-u+1 \\
t-t=0, & t \geq n-u+2\end{cases}
\end{aligned}
$$

Since $a_{u}=0$, we have

$$
a_{u+v n}=a_{u+v n}-a_{u}=\sum_{t=1}^{v}\left(a_{u+t n}-a_{u+(t-1) n}\right)
$$

for all $1 \leq u, v \leq n$. If $v<n-u+1$ then all terms are 0 on the right-hand side. If $v \geq n-u+1$, then variable t attains the value $n-u+1$ once. Hence,

$$
a_{u+v n}= \begin{cases}0, & u+v \leq n \\ 1, & u+v \geq n+1\end{cases}
$$

according with (1). Note that the formula is valid for $v=0$ as well.
Finally, we presented the direct formula for $\left(a_{i}\right)$, and we have proved that it satisfies condition (a). So, the solution is complete.

C2. A unit square is dissected into $n>1$ rectangles such that their sides are parallel to the sides of the square. Any line, parallel to a side of the square and intersecting its interior, also intersects the interior of some rectangle. Prove that in this dissection, there exists a rectangle having no point on the boundary of the square.
(Japan)
Solution 1. Call the directions of the sides of the square horizontal and vertical. A horizontal or vertical line, which intersects the interior of the square but does not intersect the interior of any rectangle, will be called a splitting line. A rectangle having no point on the boundary of the square will be called an interior rectangle.

Suppose, to the contrary, that there exists a dissection of the square into more than one rectangle, such that no interior rectangle and no splitting line appear. Consider such a dissection with the least possible number of rectangles. Notice that this number of rectangles is greater than 2 , otherwise their common side provides a splitting line.

If there exist two rectangles having a common side, then we can replace them by their union (see Figure 1). The number of rectangles was greater than 2, so in a new dissection it is greater than 1. Clearly, in the new dissection, there is also no splitting line as well as no interior rectangle. This contradicts the choice of the original dissection.

Denote the initial square by $A B C D$, with A and B being respectively the lower left and lower right vertices. Consider those two rectangles a and b containing vertices A and B, respectively. (Note that $a \neq b$, otherwise its top side provides a splitting line.) We can assume that the height of a is not greater than that of b. Then consider the rectangle c neighboring to the lower right corner of a (it may happen that $c=b$). By aforementioned, the heights of a and c are distinct. Then two cases are possible.

Figure 1

Figure 2

Figure 3

Case 1. The height of c is less than that of a. Consider the rectangle d which is adjacent to both a and c, i.e. the one containing the angle marked in Figure 2. This rectangle has no common point with $B C$ (since a is not higher than b), as well as no common point with $A B$ or with $A D$ (obviously). Then d has a common point with $C D$, and its left side provides a splitting line. Contradiction.

Case 2. The height of c is greater than that of a. Analogously, consider the rectangle d containing the angle marked on Figure 3. It has no common point with $A D$ (otherwise it has a common side with a), as well as no common point with $A B$ or with $B C$ (obviously). Then d has a common point with $C D$. Hence its right side provides a splitting line, and we get the contradiction again.

Solution 2. Again, we suppose the contrary. Consider an arbitrary counterexample. Then we know that each rectangle is attached to at least one side of the square. Observe that a rectangle cannot be attached to two opposite sides, otherwise one of its sides lies on a splitting line.

We say that two rectangles are opposite if they are attached to opposite sides of $A B C D$. We claim that there exist two opposite rectangles having a common point.

Consider the union L of all rectangles attached to the left. Assume, to the contrary, that L has no common point with the rectangles attached to the right. Take a polygonal line p connecting the top and the bottom sides of the square and passing close from the right to the boundary of L (see Figure 4). Then all its points belong to the rectangles attached either to the top or to the bottom. Moreover, the upper end-point of p belongs to a rectangle attached to the top, and the lower one belongs to an other rectangle attached to the bottom. Hence, there is a point on p where some rectangles attached to the top and to the bottom meet each other. So, there always exists a pair of neighboring opposite rectangles.

Now, take two opposite neighboring rectangles a and b. We can assume that a is attached to the left and b is attached to the right. Let X be their common point. If X belongs to their horizontal sides (in particular, X may appear to be a common vertex of a and b), then these sides provide a splitting line (see Figure 5). Otherwise, X lies on the vertical sides. Let ℓ be the line containing these sides.

Since ℓ is not a splitting line, it intersects the interior of some rectangle. Let c be such a rectangle, closest to X; we can assume that c lies above X. Let Y be the common point of ℓ and the bottom side of c (see Figure 6). Then Y is also a vertex of two rectangles lying below c.

So, let Y be the upper-right and upper-left corners of the rectangles a^{\prime} and b^{\prime}, respectively. Then a^{\prime} and b^{\prime} are situated not lower than a and b, respectively (it may happen that $a=a^{\prime}$ or $b=b^{\prime}$). We claim that a^{\prime} is attached to the left. If $a=a^{\prime}$ then of course it is. If $a \neq a^{\prime}$ then a^{\prime} is above a, below c and to the left from b^{\prime}. Hence, it can be attached to the left only.

Analogously, b^{\prime} is attached to the right. Now, the top sides of these two rectangles pass through Y, hence they provide a splitting line again. This last contradiction completes the proof.

C3. Find all positive integers n, for which the numbers in the set $S=\{1,2, \ldots, n\}$ can be colored red and blue, with the following condition being satisfied: the set $S \times S \times S$ contains exactly 2007 ordered triples (x, y, z) such that (i) x, y, z are of the same color and (ii) $x+y+z$ is divisible by n.
(Netherlands)
Answer. $n=69$ and $n=84$.
Solution. Suppose that the numbers $1,2, \ldots, n$ are colored red and blue. Denote by R and B the sets of red and blue numbers, respectively; let $|R|=r$ and $|B|=b=n-r$. Call a triple $(x, y, z) \in S \times S \times S$ monochromatic if x, y, z have the same color, and bichromatic otherwise. Call a triple (x, y, z) divisible if $x+y+z$ is divisible by n. We claim that there are exactly $r^{2}-r b+b^{2}$ divisible monochromatic triples.

For any pair $(x, y) \in S \times S$ there exists a unique $z_{x, y} \in S$ such that the triple $\left(x, y, z_{x, y}\right)$ is divisible; so there are exactly n^{2} divisible triples. Furthermore, if a divisible triple (x, y, z) is bichromatic, then among x, y, z there are either one blue and two red numbers, or vice versa. In both cases, exactly one of the pairs $(x, y),(y, z)$ and (z, x) belongs to the set $R \times B$. Assign such pair to the triple (x, y, z).

Conversely, consider any pair $(x, y) \in R \times B$, and denote $z=z_{x, y}$. Since $x \neq y$, the triples $(x, y, z),(y, z, x)$ and (z, x, y) are distinct, and (x, y) is assigned to each of them. On the other hand, if (x, y) is assigned to some triple, then this triple is clearly one of those mentioned above. So each pair in $R \times B$ is assigned exactly three times.

Thus, the number of bichromatic divisible triples is three times the number of elements in $R \times B$, and the number of monochromatic ones is $n^{2}-3 r b=(r+b)^{2}-3 r b=r^{2}-r b+b^{2}$, as claimed.

So, to find all values of n for which the desired coloring is possible, we have to find all n, for which there exists a decomposition $n=r+b$ with $r^{2}-r b+b^{2}=2007$. Therefore, $9 \mid r^{2}-r b+b^{2}=(r+b)^{2}-3 r b$. From this it consequently follows that $3|r+b, 3| r b$, and then $3|r, 3| b$. Set $r=3 s, b=3 c$. We can assume that $s \geq c$. We have $s^{2}-s c+c^{2}=223$.

Furthermore,

$$
892=4\left(s^{2}-s c+c^{2}\right)=(2 c-s)^{2}+3 s^{2} \geq 3 s^{2} \geq 3 s^{2}-3 c(s-c)=3\left(s^{2}-s c+c^{2}\right)=669
$$

so $297 \geq s^{2} \geq 223$ and $17 \geq s \geq 15$. If $s=15$ then

$$
c(15-c)=c(s-c)=s^{2}-\left(s^{2}-s c+c^{2}\right)=15^{2}-223=2
$$

which is impossible for an integer c. In a similar way, if $s=16$ then $c(16-c)=33$, which is also impossible. Finally, if $s=17$ then $c(17-c)=66$, and the solutions are $c=6$ and $c=11$. Hence, $(r, b)=(51,18)$ or $(r, b)=(51,33)$, and the possible values of n are $n=51+18=69$ and $n=51+33=84$.
Comment. After the formula for the number of monochromatic divisible triples is found, the solution can be finished in various ways. The one presented is aimed to decrease the number of considered cases.
$\mathbf{C 4}$. Let $A_{0}=\left(a_{1}, \ldots, a_{n}\right)$ be a finite sequence of real numbers. For each $k \geq 0$, from the sequence $A_{k}=\left(x_{1}, \ldots, x_{n}\right)$ we construct a new sequence A_{k+1} in the following way.

1. We choose a partition $\{1, \ldots, n\}=I \cup J$, where I and J are two disjoint sets, such that the expression

$$
\left|\sum_{i \in I} x_{i}-\sum_{j \in J} x_{j}\right|
$$

attains the smallest possible value. (We allow the sets I or J to be empty; in this case the corresponding sum is 0 .) If there are several such partitions, one is chosen arbitrarily.
2. We set $A_{k+1}=\left(y_{1}, \ldots, y_{n}\right)$, where $y_{i}=x_{i}+1$ if $i \in I$, and $y_{i}=x_{i}-1$ if $i \in J$.

Prove that for some k, the sequence A_{k} contains an element x such that $|x| \geq n / 2$.
(Iran)

Solution.

Lemma. Suppose that all terms of the sequence $\left(x_{1}, \ldots, x_{n}\right)$ satisfy the inequality $\left|x_{i}\right|<a$. Then there exists a partition $\{1,2, \ldots, n\}=I \cup J$ into two disjoint sets such that

$$
\begin{equation*}
\left|\sum_{i \in I} x_{i}-\sum_{j \in J} x_{j}\right|<a \tag{1}
\end{equation*}
$$

Proof. Apply an induction on n. The base case $n=1$ is trivial. For the induction step, consider a sequence $\left(x_{1}, \ldots, x_{n}\right)(n>1)$. By the induction hypothesis there exists a splitting $\{1, \ldots, n-1\}=I^{\prime} \cup J^{\prime}$ such that

$$
\left|\sum_{i \in I^{\prime}} x_{i}-\sum_{j \in J^{\prime}} x_{j}\right|<a
$$

For convenience, suppose that $\sum_{i \in I^{\prime}} x_{i} \geq \sum_{j \in J^{\prime}} x_{j}$. If $x_{n} \geq 0$ then choose $I=I^{\prime}, J=J \cup\{n\}$; otherwise choose $I=I^{\prime} \cup\{n\}, J=J^{\prime}$. In both cases, we have $\sum_{i \in I^{\prime}} x_{i}-\sum_{j \in J^{\prime}} x_{j} \in[0, a)$ and $\left|x_{n}\right| \in[0, a)$; hence

$$
\sum_{i \in I} x_{i}-\sum_{j \in J} x_{j}=\sum_{i \in I^{\prime}} x_{i}-\sum_{j \in J^{\prime}} x_{j}-\left|x_{n}\right| \in(-a, a),
$$

as desired.
Let us turn now to the problem. To the contrary, assume that for all k, all the numbers in A_{k} lie in interval $(-n / 2, n / 2)$. Consider an arbitrary sequence $A_{k}=\left(b_{1}, \ldots, b_{n}\right)$. To obtain the term b_{i}, we increased and decreased number a_{i} by one several times. Therefore $b_{i}-a_{i}$ is always an integer, and there are not more than n possible values for b_{i}. So, there are not more than n^{n} distinct possible sequences A_{k}, and hence two of the sequences $A_{1}, A_{2}, \ldots, A_{n^{n}+1}$ should be identical, say $A_{p}=A_{q}$ for some $p<q$.

For any positive integer k, let S_{k} be the sum of squares of elements in A_{k}. Consider two consecutive sequences $A_{k}=\left(x_{1}, \ldots, x_{n}\right)$ and $A_{k+1}=\left(y_{1}, \ldots, y_{n}\right)$. Let $\{1,2, \ldots, n\}=I \cup J$ be the partition used in this step - that is, $y_{i}=x_{i}+1$ for all $i \in I$ and $y_{j}=x_{j}-1$ for all $j \in J$. Since the value of $\left|\sum_{i \in I} x_{i}-\sum_{j \in J} x_{j}\right|$ is the smallest possible, the Lemma implies that it is less than $n / 2$. Then we have
$S_{k+1}-S_{k}=\sum_{i \in I}\left(\left(x_{i}+1\right)^{2}-x_{i}^{2}\right)+\sum_{j \in J}\left(\left(x_{j}-1\right)^{2}-x_{j}^{2}\right)=n+2\left(\sum_{i \in I} x_{i}-\sum_{j \in J} x_{j}\right)>n-2 \cdot \frac{n}{2}=0$.
Thus we obtain $S_{q}>S_{q-1}>\cdots>S_{p}$. This is impossible since $A_{p}=A_{q}$ and hence $S_{p}=S_{q}$.

C5. In the Cartesian coordinate plane define the strip $S_{n}=\{(x, y) \mid n \leq x<n+1\}$ for every integer n. Assume that each strip S_{n} is colored either red or blue, and let a and b be two distinct positive integers. Prove that there exists a rectangle with side lengths a and b such that its vertices have the same color.
(Romania)
Solution. If S_{n} and S_{n+a} have the same color for some integer n, then we can choose the rectangle with vertices $(n, 0) \in S_{n},(n, b) \in S_{n},(n+a, 0) \in S_{n+a}$, and $(n+a, b) \in S_{n+a}$, and we are done. So it can be assumed that S_{n} and S_{n+a} have opposite colors for each n.

Similarly, it also can be assumed that S_{n} and S_{n+b} have opposite colors. Then, by induction on $|p|+|q|$, we obtain that for arbitrary integers p and q, strips S_{n} and $S_{n+p a+q b}$ have the same color if $p+q$ is even, and these two strips have opposite colors if $p+q$ is odd.

Let $d=\operatorname{gcd}(a, b), a_{1}=a / d$ and $b_{1}=b / d$. Apply the result above for $p=b_{1}$ and $q=-a_{1}$. The strips S_{0} and $S_{0+b_{1} a-a_{1} b}$ are identical and therefore they have the same color. Hence, $a_{1}+b_{1}$ is even. By the construction, a_{1} and b_{1} are coprime, so this is possible only if both are odd.

Without loss of generality, we can assume $a>b$. Then $a_{1}>b_{1} \geq 1$, so $a_{1} \geq 3$.
Choose integers k and ℓ such that $k a_{1}-\ell b_{1}=1$ and therefore $k a-\ell b=d$. Since a_{1} and b_{1} are odd, $k+\ell$ is odd as well. Hence, for every integer n, strips S_{n} and $S_{n+k a-\ell b}=S_{n+d}$ have opposite colors. This also implies that the coloring is periodic with period 2d, i.e. strips S_{n} and $S_{n+2 d}$ have the same color for every n.

Figure 1
We will construct the desired rectangle $A B C D$ with $A B=C D=a$ and $B C=A D=b$ in a position such that vertex A lies on the x-axis, and the projection of side $A B$ onto the x-axis is of length $2 d$ (see Figure 1). This is possible since $a=a_{1} d>2 d$. The coordinates of the vertices will have the forms

$$
A=(t, 0), \quad B=\left(t+2 d, y_{1}\right), \quad C=\left(u+2 d, y_{2}\right), \quad D=\left(u, y_{3}\right)
$$

Let $\varphi=\sqrt{a_{1}^{2}-4}$. By Pythagoras' theorem,

$$
y_{1}=B B_{0}=\sqrt{a^{2}-4 d^{2}}=d \sqrt{a_{1}^{2}-4}=d \varphi
$$

So, by the similar triangles $A D D_{0}$ and $B A B_{0}$, we have the constraint

$$
\begin{equation*}
u-t=A D_{0}=\frac{A D}{A B} \cdot B B_{0}=\frac{b d}{a} \varphi \tag{1}
\end{equation*}
$$

for numbers t and u. Computing the numbers y_{2} and y_{3} is not required since they have no effect to the colors.

Observe that the number φ is irrational, because φ^{2} is an integer, but φ is not: $a_{1}>\varphi \geq$ $\sqrt{a_{1}^{2}-2 a_{1}+2}>a_{1}-1$.

By the periodicity, points A and B have the same color; similarly, points C and D have the same color. Furthermore, these colors depend only on the values of t and u. So it is sufficient to choose numbers t and u such that vertices A and D have the same color.

Let w be the largest positive integer such that there exist w consecutive strips $S_{n_{0}}, S_{n_{0}+1}, \ldots$, $S_{n_{0}+w-1}$ with the same color, say red. (Since $S_{n_{0}+d}$ must be blue, we have $w \leq d$.) We will choose t from the interval $\left(n_{0}, n_{0}+w\right)$.

Figure 2
Consider the interval $I=\left(n_{0}+\frac{b d}{a} \varphi, n_{0}+\frac{b d}{a} \varphi+w\right)$ on the x-axis (see Figure 2). Its length is w, and the end-points are irrational. Therefore, this interval intersects $w+1$ consecutive strips. Since at most w consecutive strips may have the same color, interval I must contain both red and blue points. Choose $u \in I$ such that the line $x=u$ is red and set $t=u-\frac{b d}{a} \varphi$, according to the constraint (1). Then $t \in\left(n_{0}, n_{0}+w\right)$ and $A=(t, 0)$ is red as well as $D=\left(u, y_{3}\right)$.

Hence, variables u and t can be set such that they provide a rectangle with four red vertices.
Comment. The statement is false for squares, i.e. in the case $a=b$. If strips $S_{2 k a}, S_{2 k a+1}, \ldots$, $S_{(2 k+1) a-1}$ are red, and strips $S_{(2 k+1) a}, S_{(2 k+1) a+1}, \ldots, S_{(2 k+2) a-1}$ are blue for every integer k, then each square of size $a \times a$ has at least one red and at least one blue vertex as well.

C6. In a mathematical competition some competitors are friends; friendship is always mutual. Call a group of competitors a clique if each two of them are friends. The number of members in a clique is called its size.

It is known that the largest size of cliques is even. Prove that the competitors can be arranged in two rooms such that the largest size of cliques in one room is the same as the largest size of cliques in the other room.
(Russia)
Solution. We present an algorithm to arrange the competitors. Let the two rooms be Room A and Room B. We start with an initial arrangement, and then we modify it several times by sending one person to the other room. At any state of the algorithm, A and B denote the sets of the competitors in the rooms, and $c(A)$ and $c(B)$ denote the largest sizes of cliques in the rooms, respectively.
Step 1. Let M be one of the cliques of largest size, $|M|=2 m$. Send all members of M to Room A and all other competitors to Room B.

Since M is a clique of the largest size, we have $c(A)=|M| \geq c(B)$.
Step 2. While $c(A)>c(B)$, send one person from Room A to Room B.

Note that $c(A)>c(B)$ implies that Room A is not empty.
In each step, $c(A)$ decreases by one and $c(B)$ increases by at most one. So at the end we have $c(A) \leq c(B) \leq c(A)+1$.

We also have $c(A)=|A| \geq m$ at the end. Otherwise we would have at least $m+1$ members of M in Room B and at most $m-1$ in Room A, implying $c(B)-c(A) \geq(m+1)-(m-1)=2$.
Step 3. Let $k=c(A)$. If $c(B)=k$ then STOP.
If we reached $c(A)=c(B)=k$ then we have found the desired arrangement.
In all other cases we have $c(B)=k+1$.
From the estimate above we also know that $k=|A|=|A \cap M| \geq m$ and $|B \cap M| \leq m$.
Step 4. If there exists a competitor $x \in B \cap M$ and a clique $C \subset B$ such that $|C|=k+1$ and $x \notin C$, then move x to Room A and STOP.

After moving x back to Room A, we will have $k+1$ members of M in Room A, thus $c(A)=k+1$. Due to $x \notin C, c(B)=|C|$ is not decreased, and after this step we have $c(A)=c(B)=k+1$.

If there is no such competitor x, then in Room B, all cliques of size $k+1$ contain $B \cap M$ as a subset.
Step 5. While $c(B)=k+1$, choose a clique $C \subset B$ such that $|C|=k+1$ and move one member of $C \backslash M$ to Room A.

Note that $|C|=k+1>m \geq|B \cap M|$, so $C \backslash M$ cannot be empty.
Every time we move a single person from Room B to Room A, so $c(B)$ decreases by at most 1. Hence, at the end of this loop we have $c(B)=k$.

In Room A we have the clique $A \cap M$ with size $|A \cap M|=k$ thus $c(A) \geq k$. We prove that there is no clique of larger size there. Let $Q \subset A$ be an arbitrary clique. We show that $|Q| \leq k$.

In Room A, and specially in set Q, there can be two types of competitors:

- Some members of M. Since M is a clique, they are friends with all members of $B \cap M$.
- Competitors which were moved to Room A in Step 5. Each of them has been in a clique with $B \cap M$ so they are also friends with all members of $B \cap M$.

Hence, all members of Q are friends with all members of $B \cap M$. Sets Q and $B \cap M$ are cliques themselves, so $Q \cup(B \cap M)$ is also a clique. Since M is a clique of the largest size,

$$
|M| \geq|Q \cup(B \cap M)|=|Q|+|B \cap M|=|Q|+|M|-|A \cap M|,
$$

therefore

$$
|Q| \leq|A \cap M|=k
$$

Finally, after Step 5 we have $c(A)=c(B)=k$.
Comment. Obviously, the statement is false without the assumption that the largest clique size is even.

C7. Let $\alpha<\frac{3-\sqrt{5}}{2}$ be a positive real number. Prove that there exist positive integers n and $p>\alpha \cdot 2^{n}$ for which one can select $2 p$ pairwise distinct subsets $S_{1}, \ldots, S_{p}, T_{1}, \ldots, T_{p}$ of the set $\{1,2, \ldots, n\}$ such that $S_{i} \cap T_{j} \neq \varnothing$ for all $1 \leq i, j \leq p$.

Solution. Let k and m be positive integers (to be determined later) and set $n=k m$. Decompose the set $\{1,2, \ldots, n\}$ into k disjoint subsets, each of size m; denote these subsets by A_{1}, \ldots, A_{k}. Define the following families of sets:

$$
\begin{aligned}
\mathcal{S} & =\left\{S \subset\{1,2, \ldots, n\}: \forall i S \cap A_{i} \neq \varnothing\right\} \\
\mathcal{T}_{1} & =\left\{T \subset\{1,2, \ldots, n\}: \exists i A_{i} \subset T\right\}, \quad \mathcal{T}=\mathcal{T}_{1} \backslash \mathcal{S}
\end{aligned}
$$

For each set $T \in \mathcal{T} \subset \mathcal{T}_{1}$, there exists an index $1 \leq i \leq k$ such that $A_{i} \subset T$. Then for all $S \in \mathcal{S}$, $S \cap T \supset S \cap A_{i} \neq \varnothing$. Hence, each $S \in \mathcal{S}$ and each $T \in \mathcal{T}$ have at least one common element.

Below we show that the numbers m and k can be chosen such that $|\mathcal{S}|,|\mathcal{T}|>\alpha \cdot 2^{n}$. Then, choosing $p=\min \{|\mathcal{S}|,|\mathcal{T}|\}$, one can select the desired $2 p$ sets S_{1}, \ldots, S_{p} and T_{1}, \ldots, T_{p} from families \mathcal{S} and \mathcal{T}, respectively. Since families \mathcal{S} and \mathcal{T} are disjoint, sets S_{i} and T_{j} will be pairwise distinct.

To count the sets $S \in \mathcal{S}$, observe that each A_{i} has $2^{m}-1$ nonempty subsets so we have $2^{m}-1$ choices for $S \cap A_{i}$. These intersections uniquely determine set S, so

$$
\begin{equation*}
|\mathcal{S}|=\left(2^{m}-1\right)^{k} \tag{1}
\end{equation*}
$$

Similarly, if a set $H \subset\{1,2, \ldots, n\}$ does not contain a certain set A_{i} then we have $2^{m}-1$ choices for $H \cap A_{i}$: all subsets of A_{i}, except A_{i} itself. Therefore, the complement of \mathcal{T}_{1} contains $\left(2^{m}-1\right)^{k}$ sets and

$$
\begin{equation*}
\left|\mathcal{T}_{1}\right|=2^{k m}-\left(2^{m}-1\right)^{k} . \tag{2}
\end{equation*}
$$

Next consider the family $\mathcal{S} \backslash \mathcal{T}_{1}$. If a set S intersects all A_{i} but does not contain any of them, then there exists $2^{m}-2$ possible values for each $S \cap A_{i}$: all subsets of A_{i} except \varnothing and A_{i}. Therefore the number of such sets S is $\left(2^{m}-2\right)^{k}$, so

$$
\begin{equation*}
\left|\mathcal{S} \backslash \mathcal{T}_{1}\right|=\left(2^{m}-2\right)^{k} \tag{3}
\end{equation*}
$$

From (1), (2), and (3) we obtain

$$
|\mathcal{T}|=\left|\mathcal{T}_{1}\right|-\left|\mathcal{S} \cap \mathcal{T}_{1}\right|=\left|\mathcal{T}_{1}\right|-\left(|\mathcal{S}|-\left|\mathcal{S} \backslash \mathcal{T}_{1}\right|\right)=2^{k m}-2\left(2^{m}-1\right)^{k}+\left(2^{m}-2\right)^{k}
$$

Let $\delta=\frac{3-\sqrt{5}}{2}$ and $k=k(m)=\left[2^{m} \log \frac{1}{\delta}\right]$. Then

$$
\lim _{m \rightarrow \infty} \frac{|\mathcal{S}|}{2^{k m}}=\lim _{m \rightarrow \infty}\left(1-\frac{1}{2^{m}}\right)^{k}=\exp \left(-\lim _{m \rightarrow \infty} \frac{k}{2^{m}}\right)=\delta
$$

and similarly

$$
\lim _{m \rightarrow \infty} \frac{|\mathcal{T}|}{2^{k m}}=1-2 \lim _{m \rightarrow \infty}\left(1-\frac{1}{2^{m}}\right)^{k}+\lim _{m \rightarrow \infty}\left(1-\frac{2}{2^{m}}\right)^{k}=1-2 \delta+\delta^{2}=\delta
$$

Hence, if m is sufficiently large then $\frac{|\mathcal{S}|}{2^{m k}}$ and $\frac{|\mathcal{T}|}{2^{m k}}$ are greater than α (since $\alpha<\delta$). So $|\mathcal{S}|,|\mathcal{T}|>\alpha \cdot 2^{m k}=\alpha \cdot 2^{n}$.
Comment. It can be proved that the constant $\frac{3-\sqrt{5}}{2}$ is sharp. Actually, if $S_{1}, \ldots, S_{p}, T_{1}, \ldots, T_{p}$ are distinct subsets of $\{1,2, \ldots, n\}$ such that each S_{i} intersects each T_{j}, then $p<\frac{3-\sqrt{5}}{2} \cdot 2^{n}$.

C8. Given a convex n-gon P in the plane. For every three vertices of P, consider the triangle determined by them. Call such a triangle good if all its sides are of unit length.

Prove that there are not more than $\frac{2}{3} n$ good triangles.
(Ukraine)
Solution. Consider all good triangles containing a certain vertex A. The other two vertices of any such triangle lie on the circle ω_{A} with unit radius and center A. Since P is convex, all these vertices lie on an arc of angle less than 180°. Let $L_{A} R_{A}$ be the shortest such arc, oriented clockwise (see Figure 1). Each of segments $A L_{A}$ and $A R_{A}$ belongs to a unique good triangle. We say that the good triangle with side $A L_{A}$ is assigned counterclockwise to A, and the second one, with side $A R_{A}$, is assigned clockwise to A. In those cases when there is a single good triangle containing vertex A, this triangle is assigned to A twice.

There are at most two assignments to each vertex of the polygon. (Vertices which do not belong to any good triangle have no assignment.) So the number of assignments is at most $2 n$.

Consider an arbitrary good triangle $A B C$, with vertices arranged clockwise. We prove that $A B C$ is assigned to its vertices at least three times. Then, denoting the number of good triangles by t, we obtain that the number K of all assignments is at most $2 n$, while it is not less than $3 t$. Then $3 t \leq K \leq 2 n$, as required.

Actually, we prove that triangle $A B C$ is assigned either counterclockwise to C or clockwise to B. Then, by the cyclic symmetry of the vertices, we obtain that triangle $A B C$ is assigned either counterclockwise to A or clockwise to C, and either counterclockwise to B or clockwise to A, providing the claim.

Figure 1

Figure 2

Assume, to the contrary, that $L_{C} \neq A$ and $R_{B} \neq A$. Denote by $A^{\prime}, B^{\prime}, C^{\prime}$ the intersection points of circles ω_{A}, ω_{B} and ω_{C}, distinct from A, B, C (see Figure 2). Let $C L_{C} L_{C}^{\prime}$ be the good triangle containing $C L_{C}$. Observe that the angle of arc $L_{C} A$ is less than 120°. Then one of the points L_{C} and L_{C}^{\prime} belongs to arc $B^{\prime} A$ of ω_{C}; let this point be X. In the case when $L_{C}=B^{\prime}$ and $L_{C}^{\prime}=A$, choose $X=B^{\prime}$.

Analogously, considering the good triangle $B R_{B}^{\prime} R_{B}$ which contains $B R_{B}$ as an edge, we see that one of the points R_{B} and R_{B}^{\prime} lies on arc $A C^{\prime}$ of ω_{B}. Denote this point by $Y, Y \neq A$. Then angles $X A Y, Y A B, B A C$ and $C A X$ (oriented clockwise) are not greater than 180°. Hence, point A lies in quadrilateral $X Y B C$ (either in its interior or on segment $X Y$). This is impossible, since all these five points are vertices of P.

Hence, each good triangle has at least three assignments, and the statement is proved.
Comment 1. Considering a diameter $A B$ of the polygon, one can prove that every good triangle containing either A or B has at least four assignments. This observation leads to $t \leq\left\lfloor\frac{2}{3}(n-1)\right\rfloor$.

Comment 2. The result $t \leq\left\lfloor\frac{2}{3}(n-1)\right\rfloor$ is sharp. To construct a polygon with $n=3 k+1$ vertices and $t=2 k$ triangles, take a rhombus $A B_{1} C_{1} D_{1}$ with unit side length and $\angle B_{1}=60^{\circ}$. Then rotate it around A by small angles obtaining rhombi $A B_{2} C_{2} D_{2}, \ldots, A B_{k} C_{k} D_{k}$ (see Figure 3). The polygon $A B_{1} \ldots B_{k} C_{1} \ldots C_{k} D_{1} \ldots D_{k}$ has $3 k+1$ vertices and contains $2 k$ good triangles.

The construction for $n=3 k$ and $n=3 k-1$ can be obtained by deleting vertices D_{n} and D_{n-1}.

Figure 3

Geometry

G1. In triangle $A B C$, the angle bisector at vertex C intersects the circumcircle and the perpendicular bisectors of sides $B C$ and $C A$ at points R, P, and Q, respectively. The midpoints of $B C$ and $C A$ are S and T, respectively. Prove that triangles $R Q T$ and $R P S$ have the same area.
(Czech Republic)
Solution 1. If $A C=B C$ then triangle $A B C$ is isosceles, triangles $R Q T$ and $R P S$ are symmetric about the bisector $C R$ and the statement is trivial. If $A C \neq B C$ then it can be assumed without loss of generality that $A C<B C$.

Denote the circumcenter by O. The right triangles $C T Q$ and $C S P$ have equal angles at vertex C, so they are similar, $\angle C P S=\angle C Q T=\angle O Q P$ and

$$
\begin{equation*}
\frac{Q T}{P S}=\frac{C Q}{C P} \tag{1}
\end{equation*}
$$

Let ℓ be the perpendicular bisector of chord $C R$; of course, ℓ passes through the circumcenter O. Due to the equal angles at P and Q, triangle $O P Q$ is isosceles with $O P=O Q$. Then line ℓ is the axis of symmetry in this triangle as well. Therefore, points P and Q lie symmetrically on line segment $C R$,

$$
\begin{equation*}
R P=C Q \quad \text { and } \quad R Q=C P \tag{2}
\end{equation*}
$$

Triangles $R Q T$ and $R P S$ have equal angles at vertices Q and P, respectively. Then

$$
\frac{\operatorname{area}(R Q T)}{\operatorname{area}(R P S)}=\frac{\frac{1}{2} \cdot R Q \cdot Q T \cdot \sin \angle R Q T}{\frac{1}{2} \cdot R P \cdot P S \cdot \sin \angle R P S}=\frac{R Q}{R P} \cdot \frac{Q T}{P S}
$$

Substituting (1) and (2),

$$
\frac{\operatorname{area}(R Q T)}{\operatorname{area}(R P S)}=\frac{R Q}{R P} \cdot \frac{Q T}{P S}=\frac{C P}{C Q} \cdot \frac{C Q}{C P}=1
$$

Hence, area $(R Q T)=\operatorname{area}(R S P)$.

Solution 2. Assume again $A C<B C$. Denote the circumcenter by O, and let γ be the angle at C. Similarly to the first solution, from right triangles $C T Q$ and $C S P$ we obtain that $\angle O P Q=\angle O Q P=90^{\circ}-\frac{\gamma}{2}$. Then triangle $O P Q$ is isosceles, $O P=O Q$ and moreover $\angle P O Q=\gamma$.

As is well-known, point R is the midpoint of arc $A B$ and $\angle R O A=\angle B O R=\gamma$.

Consider the rotation around point O by angle γ. This transform moves A to R, R to B and Q to P; hence triangles $R Q A$ and $B P R$ are congruent and they have the same area.

Triangles $R Q T$ and $R Q A$ have $R Q$ as a common side, so the ratio between their areas is

$$
\frac{\operatorname{area}(R Q T)}{\operatorname{area}(R Q A)}=\frac{d(T, C R)}{d(A, C R)}=\frac{C T}{C A}=\frac{1}{2} .
$$

$(d(X, Y Z)$ denotes the distance between point X and line $Y Z)$.
It can be obtained similarly that

$$
\frac{\operatorname{area}(R P S)}{\operatorname{area}(B P R)}=\frac{C S}{C B}=\frac{1}{2}
$$

Now the proof can be completed as

$$
\operatorname{area}(R Q T)=\frac{1}{2} \operatorname{area}(R Q A)=\frac{1}{2} \operatorname{area}(B P R)=\operatorname{area}(R P S) .
$$

G2. Given an isosceles triangle $A B C$ with $A B=A C$. The midpoint of side $B C$ is denoted by M. Let X be a variable point on the shorter arc $M A$ of the circumcircle of triangle $A B M$. Let T be the point in the angle domain $B M A$, for which $\angle T M X=90^{\circ}$ and $T X=B X$. Prove that $\angle M T B-\angle C T M$ does not depend on X.
(Canada)
Solution 1. Let N be the midpoint of segment $B T$ (see Figure 1). Line $X N$ is the axis of symmetry in the isosceles triangle $B X T$, thus $\angle T N X=90^{\circ}$ and $\angle B X N=\angle N X T$. Moreover, in triangle $B C T$, line $M N$ is the midline parallel to $C T$; hence $\angle C T M=\angle N M T$.

Due to the right angles at points M and N, these points lie on the circle with diameter $X T$. Therefore,

$$
\angle M T B=\angle M T N=\angle M X N \quad \text { and } \quad \angle C T M=\angle N M T=\angle N X T=\angle B X N
$$

Hence

$$
\angle M T B-\angle C T M=\angle M X N-\angle B X N=\angle M X B=\angle M A B
$$

which does not depend on X.

Figure 1

Figure 2

Solution 2. Let S be the reflection of point T over M (see Figure 2). Then $X M$ is the perpendicular bisector of $T S$, hence $X B=X T=X S$, and X is the circumcenter of triangle $B S T$. Moreover, $\angle B S M=\angle C T M$ since they are symmetrical about M. Then

$$
\angle M T B-\angle C T M=\angle S T B-\angle B S T=\frac{\angle S X B-\angle B X T}{2} .
$$

Observe that $\angle S X B=\angle S X T-\angle B X T=2 \angle M X T-\angle B X T$, so

$$
\angle M T B-\angle C T M=\frac{2 \angle M X T-2 \angle B X T}{2}=\angle M X B=\angle M A B
$$

which is constant.

G3. The diagonals of a trapezoid $A B C D$ intersect at point P. Point Q lies between the parallel lines $B C$ and $A D$ such that $\angle A Q D=\angle C Q B$, and line $C D$ separates points P and Q. Prove that $\angle B Q P=\angle D A Q$.
(Ukraine)
Solution. Let $t=\frac{A D}{B C}$. Consider the homothety h with center P and scale $-t$. Triangles $P D A$ and $P B C$ are similar with ratio t, hence $h(B)=D$ and $h(C)=A$.

Let $Q^{\prime}=h(Q)$ (see Figure 1). Then points Q, P and Q^{\prime} are obviously collinear. Points Q and P lie on the same side of $A D$, as well as on the same side of $B C$; hence Q^{\prime} and P are also on the same side of $h(B C)=A D$, and therefore Q and Q^{\prime} are on the same side of $A D$. Moreover, points Q and C are on the same side of $B D$, while Q^{\prime} and A are on the opposite side (see Figure above).

By the homothety, $\angle A Q^{\prime} D=\angle C Q B=\angle A Q D$, hence quadrilateral $A Q^{\prime} Q D$ is cyclic. Then

$$
\angle D A Q=\angle D Q^{\prime} Q=\angle D Q^{\prime} P=\angle B Q P
$$

(the latter equality is valid by the homothety again).
Comment. The statement of the problem is a limit case of the following result.
In an arbitrary quadrilateral $A B C D$, let $P=A C \cap B D, I=A D \cap B C$, and let Q be an arbitrary point which is not collinear with any two of points A, B, C, D. Then $\angle A Q D=\angle C Q B$ if and only if $\angle B Q P=\angle I Q A$ (angles are oriented; see Figure below to the left).

In the special case of the trapezoid, I is an ideal point and $\angle D A Q=\angle I Q A=\angle B Q P$.

Let $a=Q A, b=Q B, c=Q C, d=Q D, i=Q I$ and $p=Q P$. Let line $Q A$ intersect lines $B C$ and $B D$ at points U and V, respectively. On lines $B C$ and $B D$ we have

$$
(a b c i)=(U B C I) \quad \text { and } \quad(b a d p)=(a b p d)=(V B P D)
$$

Projecting from A, we get

$$
(a b c i)=(U B C I)=(V B P D)=(b a d p)
$$

Suppose that $\angle A Q D=\angle C Q B$. Let line p^{\prime} be the reflection of line i about the bisector of angle $A Q B$. Then by symmetry we have $\left(b a d p^{\prime}\right)=(a b c i)=(b a d p)$. Hence $p=p^{\prime}$, as desired.

The converse statement can be proved analogously.

G4. Consider five points A, B, C, D, E such that $A B C D$ is a parallelogram and $B C E D$ is a cyclic quadrilateral. Let ℓ be a line passing through A, and let ℓ intersect segment $D C$ and line $B C$ at points F and G, respectively. Suppose that $E F=E G=E C$. Prove that ℓ is the bisector of angle $D A B$.
(Luxembourg)
Solution. If $C F=C G$, then $\angle F G C=\angle G F C$, hence $\angle G A B=\angle G F C=\angle F G C=\angle F A D$, and ℓ is a bisector.

Assume that $C F<G C$. Let $E K$ and $E L$ be the altitudes in the isosceles triangles $E C F$ and $E G C$, respectively. Then in the right triangles $E K F$ and $E L C$ we have $E F=E C$ and

$$
K F=\frac{C F}{2}<\frac{G C}{2}=L C
$$

so

$$
K E=\sqrt{E F^{2}-K F^{2}}>\sqrt{E C^{2}-L C^{2}}=L E .
$$

Since quadrilateral $B C E D$ is cyclic, we have $\angle E D C=\angle E B C$, so the right triangles $B E L$ and $D E K$ are similar. Then $K E>L E$ implies $D K>B L$, and hence

$$
D F=D K-K F>B L-L C=B C=A D .
$$

But triangles $A D F$ and $G C F$ are similar, so we have $1>\frac{A D}{D F}=\frac{G C}{C F}$; this contradicts our assumption.

The case $C F>G C$ is completely similar. We consequently obtain the converse inequalities $K F>L C, K E<L E, D K<B L, D F<A D$, hence $1<\frac{A D}{D F}=\frac{G C}{C F}$; a contradiction.

G5. Let $A B C$ be a fixed triangle, and let A_{1}, B_{1}, C_{1} be the midpoints of sides $B C, C A, A B$, respectively. Let P be a variable point on the circumcircle. Let lines $P A_{1}, P B_{1}, P C_{1}$ meet the circumcircle again at $A^{\prime}, B^{\prime}, C^{\prime}$ respectively. Assume that the points $A, B, C, A^{\prime}, B^{\prime}, C^{\prime}$ are distinct, and lines $A A^{\prime}, B B^{\prime}, C C^{\prime}$ form a triangle. Prove that the area of this triangle does not depend on P.
(United Kingdom)
Solution 1. Let A_{0}, B_{0}, C_{0} be the points of intersection of the lines $A A^{\prime}, B B^{\prime}$ and $C C^{\prime}$ (see Figure). We claim that area $\left(A_{0} B_{0} C_{0}\right)=\frac{1}{2}$ area $(A B C)$, hence it is constant.

Consider the inscribed hexagon $A B C C^{\prime} P A^{\prime}$. By Pascal's theorem, the points of intersection of its opposite sides (or of their extensions) are collinear. These points are $A B \cap C^{\prime} P=C_{1}$, $B C \cap P A^{\prime}=A_{1}, C C^{\prime} \cap A^{\prime} A=B_{0}$. So point B_{0} lies on the midline $A_{1} C_{1}$ of triangle $A B C$. Analogously, points A_{0} and C_{0} lie on lines $B_{1} C_{1}$ and $A_{1} B_{1}$, respectively.

Lines $A C$ and $A_{1} C_{1}$ are parallel, so triangles $B_{0} C_{0} A_{1}$ and $A C_{0} B_{1}$ are similar; hence we have

$$
\frac{B_{0} C_{0}}{A C_{0}}=\frac{A_{1} C_{0}}{B_{1} C_{0}} .
$$

Analogously, from $B C \| B_{1} C_{1}$ we obtain

$$
\frac{A_{1} C_{0}}{B_{1} C_{0}}=\frac{B C_{0}}{A_{0} C_{0}}
$$

Combining these equalities, we get

$$
\frac{B_{0} C_{0}}{A C_{0}}=\frac{B C_{0}}{A_{0} C_{0}}
$$

or

$$
A_{0} C_{0} \cdot B_{0} C_{0}=A C_{0} \cdot B C_{0}
$$

Hence we have

$$
\operatorname{area}\left(A_{0} B_{0} C_{0}\right)=\frac{1}{2} A_{0} C_{0} \cdot B_{0} C_{0} \sin \angle A_{0} C_{0} B_{0}=\frac{1}{2} A C_{0} \cdot B C_{0} \sin \angle A C_{0} B=\operatorname{area}\left(A B C_{0}\right) .
$$

Since C_{0} lies on the midline, we have $d\left(C_{0}, A B\right)=\frac{1}{2} d(C, A B)$ (we denote by $d(X, Y Z)$ the distance between point X and line $Y Z$). Then we obtain

$$
\operatorname{area}\left(A_{0} B_{0} C_{0}\right)=\operatorname{area}\left(A B C_{0}\right)=\frac{1}{2} A B \cdot d\left(C_{0}, A B\right)=\frac{1}{4} A B \cdot d(C, A B)=\frac{1}{2} \operatorname{area}(A B C) .
$$

Solution 2. Again, we prove that area $\left(A_{0} B_{0} C_{0}\right)=\frac{1}{2}$ area $(A B C)$.
We can assume that P lies on arc $A C$. Mark a point L on side $A C$ such that $\angle C B L=$ $\angle P B A$; then $\angle L B A=\angle C B A-\angle C B L=\angle C B A-\angle P B A=\angle C B P$. Note also that $\angle B A L=\angle B A C=\angle B P C$ and $\angle L C B=\angle A P B$. Hence, triangles $B A L$ and $B P C$ are similar, and so are triangles $L C B$ and $A P B$.

Analogously, mark points K and M respectively on the extensions of sides $C B$ and $A B$ beyond point B, such that $\angle K A B=\angle C A P$ and $\angle B C M=\angle P C A$. For analogous reasons, $\angle K A C=\angle B A P$ and $\angle A C M=\angle P C B$. Hence $\triangle A B K \sim \triangle A P C \sim \triangle M B C, \triangle A C K \sim$ $\triangle A P B$, and $\triangle M A C \sim \triangle B P C$. From these similarities, we have $\angle C M B=\angle K A B=\angle C A P$, while we have seen that $\angle C A P=\angle C B P=\angle L B A$. Hence, $A K\|B L\| C M$.

Let line $C C^{\prime}$ intersect $B L$ at point X. Note that $\angle L C X=\angle A C C^{\prime}=\angle A P C^{\prime}=\angle A P C_{1}$, and $P C_{1}$ is a median in triangle $A P B$. Since triangles $A P B$ and $L C B$ are similar, $C X$ is a median in triangle $L C B$, and X is a midpoint of $B L$. For the same reason, $A A^{\prime}$ passes through this midpoint, so $X=B_{0}$. Analogously, A_{0} and C_{0} are the midpoints of $A K$ and $C M$.

Now, from $A A_{0} \| C C_{0}$, we have

$$
\operatorname{area}\left(A_{0} B_{0} C_{0}\right)=\operatorname{area}\left(A C_{0} A_{0}\right)-\operatorname{area}\left(A B_{0} A_{0}\right)=\operatorname{area}\left(A C A_{0}\right)-\operatorname{area}\left(A B_{0} A_{0}\right)=\operatorname{area}\left(A C B_{0}\right) .
$$

Finally,

$$
\operatorname{area}\left(A_{0} B_{0} C_{0}\right)=\operatorname{area}\left(A C B_{0}\right)=\frac{1}{2} B_{0} L \cdot A C \sin A L B_{0}=\frac{1}{4} B L \cdot A C \sin A L B=\frac{1}{2} \operatorname{area}(A B C) .
$$

Comment 1. The equality area $\left(A_{0} B_{0} C_{0}\right)=\operatorname{area}\left(A C B_{0}\right)$ in Solution 2 does not need to be proved since the following fact is frequently known.

Suppose that the lines $K L$ and $M N$ are parallel, while the lines $K M$ and $L N$ intersect in a point E. Then $\operatorname{area}(K E N)=\operatorname{area}(M E L)$.
Comment 2. It follows immediately from both solutions that $A A_{0}\left\|B B_{0}\right\| C C_{0}$. These lines pass through an ideal point which is isogonally conjugate to P. It is known that they are parallel to the Simson line of point Q which is opposite to P on the circumcircle.
Comment 3. If $A=A^{\prime}$, then one can define the line $A A^{\prime}$ to be the tangent to the circumcircle at point A. Then the statement of the problem is also valid in this case.

G6. Determine the smallest positive real number k with the following property.
Let $A B C D$ be a convex quadrilateral, and let points A_{1}, B_{1}, C_{1} and D_{1} lie on sides $A B, B C$, $C D$ and $D A$, respectively. Consider the areas of triangles $A A_{1} D_{1}, B B_{1} A_{1}, C C_{1} B_{1}$, and $D D_{1} C_{1}$; let S be the sum of the two smallest ones, and let S_{1} be the area of quadrilateral $A_{1} B_{1} C_{1} D_{1}$. Then we always have $k S_{1} \geq S$.

Answer. $k=1$.
Solution. Throughout the solution, triangles $A A_{1} D_{1}, B B_{1} A_{1}, C C_{1} B_{1}$, and $D D_{1} C_{1}$ will be referred to as border triangles. We will denote by $[\mathcal{R}]$ the area of a region \mathcal{R}.

First, we show that $k \geq 1$. Consider a triangle $A B C$ with unit area; let A_{1}, B_{1}, K be the midpoints of its sides $A B, B C, A C$, respectively. Choose a point D on the extension of $B K$, close to K. Take points C_{1} and D_{1} on sides $C D$ and $D A$ close to D (see Figure 1). We have $\left[B B_{1} A_{1}\right]=\frac{1}{4}$. Moreover, as $C_{1}, D_{1}, D \rightarrow K$, we get $\left[A_{1} B_{1} C_{1} D_{1}\right] \rightarrow\left[A_{1} B_{1} K\right]=\frac{1}{4}$, $\left[A A_{1} D_{1}\right] \rightarrow\left[A A_{1} K\right]=\frac{1}{4},\left[C C_{1} B_{1}\right] \rightarrow\left[C K B_{1}\right]=\frac{1}{4}$ and $\left[D D_{1} C_{1}\right] \rightarrow 0$. Hence, the sum of the two smallest areas of border triangles tends to $\frac{1}{4}$, as well as $\left[A_{1} B_{1} C_{1} D_{1}\right]$; therefore, their ratio tends to 1 , and $k \geq 1$.

We are left to prove that $k=1$ satisfies the desired property.

Figure 1

Figure 2

Figure 3

Lemma. Let points A_{1}, B_{1}, C_{1} lie respectively on sides $B C, C A, A B$ of a triangle $A B C$. Then $\left[A_{1} B_{1} C_{1}\right] \geq \min \left\{\left[A C_{1} B_{1}\right],\left[B A_{1} C_{1}\right],\left[C B_{1} A_{1}\right]\right\}$.
Proof. Let $A^{\prime}, B^{\prime}, C^{\prime}$ be the midpoints of sides $B C, C A$ and $A B$, respectively.
Suppose that two of points A_{1}, B_{1}, C_{1} lie in one of triangles $A C^{\prime} B^{\prime}, B A^{\prime} C^{\prime}$ and $C B^{\prime} A^{\prime}$ (for convenience, let points B_{1} and C_{1} lie in triangle $A C^{\prime} B^{\prime}$; see Figure 2). Let segments $B_{1} C_{1}$ and $A A_{1}$ intersect at point X. Then X also lies in triangle $A C^{\prime} B^{\prime}$. Hence $A_{1} X \geq A X$, and we have

$$
\frac{\left[A_{1} B_{1} C_{1}\right]}{\left[A C_{1} B_{1}\right]}=\frac{\frac{1}{2} A_{1} X \cdot B_{1} C_{1} \cdot \sin \angle A_{1} X C_{1}}{\frac{1}{2} A X \cdot B_{1} C_{1} \cdot \sin \angle A X B_{1}}=\frac{A_{1} X}{A X} \geq 1
$$

as required.
Otherwise, each one of triangles $A C^{\prime} B^{\prime}, B A^{\prime} C^{\prime}, C B^{\prime} A^{\prime}$ contains exactly one of points A_{1}, B_{1}, C_{1}, and we can assume that $B A_{1}<B A^{\prime}, C B_{1}<C B^{\prime}, A C_{1}<A C^{\prime}$ (see Figure 3). Then lines $B_{1} A_{1}$ and $A B$ intersect at a point Y on the extension of $A B$ beyond point B, hence $\frac{\left[A_{1} B_{1} C_{1}\right]}{\left[A_{1} B_{1} C^{\prime}\right]}=\frac{C_{1} Y}{C^{\prime} Y}>1$; also, lines $A_{1} C^{\prime}$ and $C A$ intersect at a point Z on the extension of $C A$ beyond point A, hence $\frac{\left[A_{1} B_{1} C^{\prime}\right]}{\left[A_{1} B^{\prime} C^{\prime}\right]}=\frac{B_{1} Z}{B^{\prime} Z}>1$. Finally, since $A_{1} A^{\prime} \| B^{\prime} C^{\prime}$, we have $\left[A_{1} B_{1} C_{1}\right]>\left[A_{1} B_{1} C^{\prime}\right]>\left[A_{1} B^{\prime} C^{\prime}\right]=\left[A^{\prime} B^{\prime} C^{\prime}\right]=\frac{1}{4}[A B C]$.

Now, from $\left[A_{1} B_{1} C_{1}\right]+\left[A C_{1} B_{1}\right]+\left[B A_{1} C_{1}\right]+\left[C B_{1} A_{1}\right]=[A B C]$ we obtain that one of the remaining triangles $A C_{1} B_{1}, B A_{1} C_{1}, C B_{1} A_{1}$ has an area less than $\frac{1}{4}[A B C]$, so it is less than $\left[A_{1} B_{1} C_{1}\right]$.

Now we return to the problem. We say that triangle $A_{1} B_{1} C_{1}$ is small if $\left[A_{1} B_{1} C_{1}\right]$ is less than each of $\left[B B_{1} A_{1}\right]$ and $\left[C C_{1} B_{1}\right]$; otherwise this triangle is big (the similar notion is introduced for triangles $B_{1} C_{1} D_{1}, C_{1} D_{1} A_{1}, D_{1} A_{1} B_{1}$). If both triangles $A_{1} B_{1} C_{1}$ and $C_{1} D_{1} A_{1}$ are big, then $\left[A_{1} B_{1} C_{1}\right]$ is not less than the area of some border triangle, and $\left[C_{1} D_{1} A_{1}\right]$ is not less than the area of another one; hence, $S_{1}=\left[A_{1} B_{1} C_{1}\right]+\left[C_{1} D_{1} A_{1}\right] \geq S$. The same is valid for the pair of $B_{1} C_{1} D_{1}$ and $D_{1} A_{1} B_{1}$. So it is sufficient to prove that in one of these pairs both triangles are big.

Suppose the contrary. Then there is a small triangle in each pair. Without loss of generality, assume that triangles $A_{1} B_{1} C_{1}$ and $D_{1} A_{1} B_{1}$ are small. We can assume also that $\left[A_{1} B_{1} C_{1}\right] \leq$ [$D_{1} A_{1} B_{1}$]. Note that in this case ray $D_{1} C_{1}$ intersects line $B C$.

Consider two cases.

Figure 4

Figure 5

Case 1. Ray $C_{1} D_{1}$ intersects line $A B$ at some point K. Let ray $D_{1} C_{1}$ intersect line $B C$ at point L (see Figure 4). Then we have $\left[A_{1} B_{1} C_{1}\right]<\left[C C_{1} B_{1}\right]<\left[L C_{1} B_{1}\right],\left[A_{1} B_{1} C_{1}\right]<\left[B B_{1} A_{1}\right]$ (both - since $\left[A_{1} B_{1} C_{1}\right]$ is small), and $\left[A_{1} B_{1} C_{1}\right] \leq\left[D_{1} A_{1} B_{1}\right]<\left[A A_{1} D_{1}\right]<\left[K A_{1} D_{1}\right]<\left[K A_{1} C_{1}\right]$ (since triangle $D_{1} A_{1} B_{1}$ is small). This contradicts the Lemma, applied for triangle $A_{1} B_{1} C_{1}$ inside $L K B$.

Case 2. Ray $C_{1} D_{1}$ does not intersect $A B$. Then choose a "sufficiently far" point K on ray $B A$ such that $\left[K A_{1} C_{1}\right]>\left[A_{1} B_{1} C_{1}\right]$, and that ray $K C_{1}$ intersects line $B C$ at some point L (see Figure 5). Since ray $C_{1} D_{1}$ does not intersect line $A B$, the points A and D_{1} are on different sides of $K L$; then A and D are also on different sides, and C is on the same side as A and B. Then analogously we have $\left[A_{1} B_{1} C_{1}\right]<\left[C C_{1} B_{1}\right]<\left[L C_{1} B_{1}\right]$ and $\left[A_{1} B_{1} C_{1}\right]<\left[B B_{1} A_{1}\right]$ since triangle $A_{1} B_{1} C_{1}$ is small. This (together with $\left[A_{1} B_{1} C_{1}\right]<\left[K A_{1} C_{1}\right]$) contradicts the Lemma again.

G7. Given an acute triangle $A B C$ with angles α, β and γ at vertices A, B and C, respectively, such that $\beta>\gamma$. Point I is the incenter, and R is the circumradius. Point D is the foot of the altitude from vertex A. Point K lies on line $A D$ such that $A K=2 R$, and D separates A and K. Finally, lines $D I$ and $K I$ meet sides $A C$ and $B C$ at E and F, respectively.

Prove that if $I E=I F$ then $\beta \leq 3 \gamma$.

Solution 1. We first prove that

$$
\begin{equation*}
\angle K I D=\frac{\beta-\gamma}{2} \tag{1}
\end{equation*}
$$

even without the assumption that $I E=I F$. Then we will show that the statement of the problem is a consequence of this fact.

Denote the circumcenter by O. On the circumcircle, let P be the point opposite to A, and let the angle bisector $A I$ intersect the circle again at M. Since $A K=A P=2 R$, triangle $A K P$ is isosceles. It is known that $\angle B A D=\angle C A O$, hence $\angle D A I=\angle B A I-\angle B A D=\angle C A I-$ $\angle C A O=\angle O A I$, and $A M$ is the bisector line in triangle $A K P$. Therefore, points K and P are symmetrical about $A M$, and $\angle A M K=\angle A M P=90^{\circ}$. Thus, M is the midpoint of $K P$, and $A M$ is the perpendicular bisector of $K P$.

Denote the perpendicular feet of incenter I on lines $B C, A C$, and $A D$ by A_{1}, B_{1}, and T, respectively. Quadrilateral $D A_{1} I T$ is a rectangle, hence $T D=I A_{1}=I B_{1}$.

Due to the right angles at T and B_{1}, quadrilateral $A B_{1} I T$ is cyclic. Hence $\angle B_{1} T I=$ $\angle B_{1} A I=\angle C A M=\angle B A M=\angle B P M$ and $\angle I B_{1} T=\angle I A T=\angle M A K=\angle M A P=$ $\angle M B P$. Therefore, triangles $B_{1} T I$ and $B P M$ are similar and $\frac{I T}{I B_{1}}=\frac{M P}{M B}$.

It is well-known that $M B=M C=M I$. Then right triangles $I T D$ and $K M I$ are also
similar, because $\frac{I T}{T D}=\frac{I T}{I B_{1}}=\frac{M P}{M B}=\frac{K M}{M I}$. Hence, $\angle K I M=\angle I D T=\angle I D A$, and

$$
\angle K I D=\angle M I D-\angle K I M=(\angle I A D+\angle I D A)-\angle I D A=\angle I A D .
$$

Finally, from the right triangle $A D B$ we can compute

$$
\angle K I D=\angle I A D=\angle I A B-\angle D A B=\frac{\alpha}{2}-\left(90^{\circ}-\beta\right)=\frac{\alpha}{2}-\frac{\alpha+\beta+\gamma}{2}+\beta=\frac{\beta-\gamma}{2} .
$$

Now let us turn to the statement and suppose that $I E=I F$. Since $I A_{1}=I B_{1}$, the right triangles $I E B_{1}$ and $I F A_{1}$ are congruent and $\angle I E B_{1}=\angle I F A_{1}$. Since $\beta>\gamma, A_{1}$ lies in the interior of segment $C D$ and F lies in the interior of $A_{1} D$. Hence, $\angle I F C$ is acute. Then two cases are possible depending on the order of points A, C, B_{1} and E.

If point E lies between C and B_{1} then $\angle I F C=\angle I E A$, hence quadrilateral $C E I F$ is cyclic and $\angle F C E=180^{\circ}-\angle E I F=\angle K I D$. By (1), in this case we obtain $\angle F C E=\gamma=\angle K I D=$ $\frac{\beta-\gamma}{2}$ and $\beta=3 \gamma$.

Otherwise, if point E lies between A and B_{1}, quadrilateral CEIF is a deltoid such that $\angle I E C=\angle I F C<90^{\circ}$. Then we have $\angle F C E>180^{\circ}-\angle E I F=\angle K I D$. Therefore, $\angle F C E=\gamma>\angle K I D=\frac{\beta-\gamma}{2}$ and $\beta<3 \gamma$.
Comment 1. In the case when quadrilateral CEIF is a deltoid, one can prove the desired inequality without using (1). Actually, from $\angle I E C=\angle I F C<90^{\circ}$ it follows that $\angle A D I=90^{\circ}-\angle E D C<$ $\angle A E D-\angle E D C=\gamma$. Since the incircle lies inside triangle $A B C$, we have $A D>2 r$ (here r is the inradius), which implies $D T<T A$ and $D I<A I$; hence $\frac{\beta-\gamma}{2}=\angle I A D<\angle A D I<\gamma$.
Solution 2. We give a different proof for (1). Then the solution can be finished in the same way as above.

Define points M and P again; it can be proved in the same way that $A M$ is the perpendicular bisector of $K P$. Let J be the center of the excircle touching side $B C$. It is well-known that points B, C, I, J lie on a circle with center M; denote this circle by ω_{1}.

Let B^{\prime} be the reflection of point B about the angle bisector $A M$. By the symmetry, B^{\prime} is the second intersection point of circle ω_{1} and line $A C$. Triangles $P B A$ and $K B^{\prime} A$ are symmetrical
with respect to line $A M$, therefore $\angle K B^{\prime} A=\angle P B A=90^{\circ}$. By the right angles at D and B^{\prime}, points K, D, B^{\prime}, C are concyclic and

$$
A D \cdot A K=A B^{\prime} \cdot A C
$$

From the cyclic quadrilateral $I J C B^{\prime}$ we obtain $A B^{\prime} \cdot A C=A I \cdot A J$ as well, therefore

$$
A D \cdot A K=A B^{\prime} \cdot A C=A I \cdot A J
$$

and points I, J, K, D are also concyclic. Denote circle $I D K J$ by ω_{2}.

Let N be the point on circle ω_{2} which is opposite to K. Since $\angle N D K=90^{\circ}=\angle C D K$, point N lies on line $B C$. Point M, being the center of circle ω_{1}, is the midpoint of segment $I J$, and $K M$ is perpendicular to $I J$. Therefore, line $K M$ is the perpendicular bisector of $I J$ and hence it passes through N.

From the cyclic quadrilateral $I D K N$ we obtain

$$
\angle K I D=\angle K N D=90^{\circ}-\angle D K N=90^{\circ}-\angle A K M=\angle M A K=\frac{\beta-\gamma}{2} .
$$

Comment 2. The main difficulty in the solution is finding (1). If someone can guess this fact, he or she can compute it in a relatively short way.

One possible way is finding and applying the relation $A I^{2}=2 R\left(h_{a}-2 r\right)$, where $h_{a}=A D$ is the length of the altitude. Using this fact, one can see that triangles $A K I$ and $A I D^{\prime}$ are similar (here D^{\prime} is the point symmetrical to D about T). Hence, $\angle M I K=\angle D D^{\prime} I=\angle I D D^{\prime}$. The proof can be finished as in Solution 1.

G8. Point P lies on side $A B$ of a convex quadrilateral $A B C D$. Let ω be the incircle of triangle $C P D$, and let I be its incenter. Suppose that ω is tangent to the incircles of triangles $A P D$ and $B P C$ at points K and L, respectively. Let lines $A C$ and $B D$ meet at E, and let lines $A K$ and $B L$ meet at F. Prove that points E, I, and F are collinear.
(Poland)
Solution. Let Ω be the circle tangent to segment $A B$ and to rays $A D$ and $B C$; let J be its center. We prove that points E and F lie on line $I J$.

Denote the incircles of triangles $A D P$ and $B C P$ by ω_{A} and ω_{B}. Let h_{1} be the homothety with a negative scale taking ω to Ω. Consider this homothety as the composition of two homotheties: one taking ω to ω_{A} (with a negative scale and center K), and another one taking ω_{A} to Ω (with a positive scale and center A). It is known that in such a case the three centers of homothety are collinear (this theorem is also referred to as the theorem on the three similitude centers). Hence, the center of h_{1} lies on line $A K$. Analogously, it also lies on $B L$, so this center is F. Hence, F lies on the line of centers of ω and Ω, i. e. on $I J$ (if $I=J$, then $F=I$ as well, and the claim is obvious).

Consider quadrilateral $A P C D$ and mark the equal segments of tangents to ω and ω_{A} (see the figure below to the left). Since circles ω and ω_{A} have a common point of tangency with $P D$, one can easily see that $A D+P C=A P+C D$. So, quadrilateral $A P C D$ is circumscribed; analogously, circumscribed is also quadrilateral $B C D P$. Let Ω_{A} and Ω_{B} respectively be their incircles.

Consider the homothety h_{2} with a positive scale taking ω to Ω. Consider h_{2} as the composition of two homotheties: taking ω to Ω_{A} (with a positive scale and center C), and taking Ω_{A} to Ω (with a positive scale and center A), respectively. So the center of h_{2} lies on line $A C$. By analogous reasons, it lies also on $B D$, hence this center is E. Thus, E also lies on the line of centers $I J$, and the claim is proved.
Comment. In both main steps of the solution, there can be several different reasonings for the same claims. For instance, one can mostly use Desargues' theorem instead of the three homotheties theorem. Namely, if I_{A} and I_{B} are the centers of ω_{A} and ω_{B}, then lines $I_{A} I_{B}, K L$ and $A B$ are concurrent (by the theorem on three similitude centers applied to ω, ω_{A} and ω_{B}). Then Desargues' theorem, applied to triangles $A I_{A} K$ and $B I_{B} L$, yields that the points $J=A I_{A} \cap B I_{B}, I=I_{A} K \cap I_{B} L$ and $F=A K \cap B L$ are collinear.

For the second step, let J_{A} and J_{B} be the centers of Ω_{A} and Ω_{B}. Then lines $J_{A} J_{B}, A B$ and $C D$ are concurrent, since they appear to be the two common tangents and the line of centers of Ω_{A} and Ω_{B}. Applying Desargues' theorem to triangles $A J_{A} C$ and $B J_{B} D$, we obtain that the points $J=A J_{A} \cap B J_{B}$, $I=C J_{A} \cap D J_{B}$ and $E=A C \cap B D$ are collinear.

Number Theory

N1. Find all pairs (k, n) of positive integers for which $7^{k}-3^{n}$ divides $k^{4}+n^{2}$.
(Austria)
Answer. (2, 4).
Solution. Suppose that a pair (k, n) satisfies the condition of the problem. Since $7^{k}-3^{n}$ is even, $k^{4}+n^{2}$ is also even, hence k and n have the same parity. If k and n are odd, then $k^{4}+n^{2} \equiv 1+1=2(\bmod 4)$, while $7^{k}-3^{n} \equiv 7-3 \equiv 0(\bmod 4)$, so $k^{4}+n^{2}$ cannot be divisible by $7^{k}-3^{n}$. Hence, both k and n must be even.

Write $k=2 a, n=2 b$. Then $7^{k}-3^{n}=7^{2 a}-3^{2 b}=\frac{7^{a}-3^{b}}{2} \cdot 2\left(7^{a}+3^{b}\right)$, and both factors are integers. So $2\left(7^{a}+3^{b}\right) \mid 7^{k}-3^{n}$ and $7^{k}-3^{n} \mid k^{4}+n^{2}=2\left(8 a^{4}+2 b^{2}\right)$, hence

$$
\begin{equation*}
7^{a}+3^{b} \leq 8 a^{4}+2 b^{2} \tag{1}
\end{equation*}
$$

We prove by induction that $8 a^{4}<7^{a}$ for $a \geq 4,2 b^{2}<3^{b}$ for $b \geq 1$ and $2 b^{2}+9 \leq 3^{b}$ for $b \geq 3$. In the initial cases $a=4, b=1, b=2$ and $b=3$ we have $8 \cdot 4^{4}=2048<7^{4}=2401,2<3$, $2 \cdot 2^{2}=8<3^{2}=9$ and $2 \cdot 3^{2}+9=3^{3}=27$, respectively.

If $8 a^{4}<7^{a}(a \geq 4)$ and $2 b^{2}+9 \leq 3^{b}(b \geq 3)$, then

$$
\begin{aligned}
8(a+1)^{4} & =8 a^{4}\left(\frac{a+1}{a}\right)^{4}<7^{a}\left(\frac{5}{4}\right)^{4}=7^{a} \frac{625}{256}<7^{a+1} \quad \text { and } \\
2(b+1)^{2}+9 & <\left(2 b^{2}+9\right)\left(\frac{b+1}{b}\right)^{2} \leq 3^{b}\left(\frac{4}{3}\right)^{2}=3^{b} \frac{16}{9}<3^{b+1}
\end{aligned}
$$

as desired.
For $a \geq 4$ we obtain $7^{a}+3^{b}>8 a^{4}+2 b^{2}$ and inequality (1) cannot hold. Hence $a \leq 3$, and three cases are possible.

Case 1: $a=1$. Then $k=2$ and $8+2 b^{2} \geq 7+3^{b}$, thus $2 b^{2}+1 \geq 3^{b}$. This is possible only if $b \leq 2$. If $b=1$ then $n=2$ and $\frac{k^{4}+n^{2}}{7^{k}-3^{n}}=\frac{2^{4}+2^{2}}{7^{2}-3^{2}}=\frac{1}{2}$, which is not an integer. If $b=2$ then $n=4$ and $\frac{k^{4}+n^{2}}{7^{k}-3^{n}}=\frac{2^{4}+4^{2}}{7^{2}-3^{4}}=-1$, so $(k, n)=(2,4)$ is a solution.

Case 2: $a=2$. Then $k=4$ and $k^{4}+n^{2}=256+4 b^{2} \geq\left|7^{4}-3^{n}\right|=\left|49-3^{b}\right| \cdot\left(49+3^{b}\right)$. The smallest value of the first factor is 22 , attained at $b=3$, so $128+2 b^{2} \geq 11\left(49+3^{b}\right)$, which is impossible since $3^{b}>2 b^{2}$.

Case 3: $a=3$. Then $k=6$ and $k^{4}+n^{2}=1296+4 b^{2} \geq\left|7^{6}-3^{n}\right|=\left|343-3^{b}\right| \cdot\left(343+3^{b}\right)$. Analogously, $\left|343-3^{b}\right| \geq 100$ and we have $324+b^{2} \geq 25\left(343+3^{b}\right)$, which is impossible again.

We find that there exists a unique solution $(k, n)=(2,4)$.

N2. Let $b, n>1$ be integers. Suppose that for each $k>1$ there exists an integer a_{k} such that $b-a_{k}^{n}$ is divisible by k. Prove that $b=A^{n}$ for some integer A.
(Canada)
Solution. Let the prime factorization of b be $b=p_{1}^{\alpha_{1}} \ldots p_{s}^{\alpha_{s}}$, where p_{1}, \ldots, p_{s} are distinct primes. Our goal is to show that all exponents α_{i} are divisible by n, then we can set $A=p_{1}^{\alpha_{1} / n} \ldots p_{s}^{\alpha_{s} / n}$.

Apply the condition for $k=b^{2}$. The number $b-a_{k}^{n}$ is divisible by b^{2} and hence, for each $1 \leq i \leq s$, it is divisible by $p_{i}^{2 \alpha_{i}}>p_{i}^{\alpha_{i}}$ as well. Therefore

$$
a_{k}^{n} \equiv b \equiv 0 \quad\left(\bmod p_{i}^{\alpha_{i}}\right)
$$

and

$$
a_{k}^{n} \equiv b \not \equiv 0 \quad\left(\bmod p_{i}^{\alpha_{i}+1}\right),
$$

which implies that the largest power of p_{i} dividing a_{k}^{n} is $p_{i}^{\alpha_{i}}$. Since a_{k}^{n} is a complete nth power, this implies that α_{i} is divisible by n.
Comment. If $n=8$ and $b=16$, then for each prime p there exists an integer a_{p} such that $b-a_{p}^{n}$ is divisible by p. Actually, the congruency $x^{8}-16 \equiv 0(\bmod p)$ expands as

$$
\left(x^{2}-2\right)\left(x^{2}+2\right)\left(x^{2}-2 x+2\right)\left(x^{2}+2 x+2\right) \equiv 0 \quad(\bmod p) .
$$

Hence, if -1 is a quadratic residue modulo p, then congruency $x^{2}+2 x+2=(x+1)^{2}+1 \equiv 0$ has a solution. Otherwise, one of congruencies $x^{2} \equiv 2$ and $x^{2} \equiv-2$ has a solution.

Thus, the solution cannot work using only prime values of k.

N3. Let X be a set of 10000 integers, none of them is divisible by 47. Prove that there exists a 2007-element subset Y of X such that $a-b+c-d+e$ is not divisible by 47 for any $a, b, c, d, e \in Y$.
(Netherlands)
Solution. Call a set M of integers good if $47 \nmid a-b+c-d+e$ for any $a, b, c, d, e \in M$.
Consider the set $J=\{-9,-7,-5,-3,-1,1,3,5,7,9\}$. We claim that J is good. Actually, for any $a, b, c, d, e \in J$ the number $a-b+c-d+e$ is odd and

$$
-45=(-9)-9+(-9)-9+(-9) \leq a-b+c-d+e \leq 9-(-9)+9-(-9)+9=45
$$

But there is no odd number divisible by 47 between -45 and 45 .
For any $k=1, \ldots, 46$ consider the set

$$
A_{k}=\{x \in X \mid \exists j \in J: \quad k x \equiv j(\bmod 47)\} .
$$

If A_{k} is not good, then $47 \mid a-b+c-d+e$ for some $a, b, c, d, e \in A_{k}$, hence $47 \mid k a-k b+$ $k c-k d+k e$. But set J contains numbers with the same residues modulo 47, so J also is not good. This is a contradiction; therefore each A_{k} is a good subset of X.

Then it suffices to prove that there exists a number k such that $\left|A_{k}\right| \geq 2007$. Note that each $x \in X$ is contained in exactly 10 sets A_{k}. Then

$$
\sum_{k=1}^{46}\left|A_{k}\right|=10|X|=100000
$$

hence for some value of k we have

$$
\left|A_{k}\right| \geq \frac{100000}{46}>2173>2007
$$

This completes the proof.
Comment. For the solution, it is essential to find a good set consisting of 10 different residues. Actually, consider a set X containing almost uniform distribution of the nonzero residues (i.e. each residue occurs 217 or 218 times). Let $Y \subset X$ be a good subset containing 2007 elements. Then the set K of all residues appearing in Y contains not less than 10 residues, and obviously this set is good.

On the other hand, there is no good set K consisting of 11 different residues. The CauchyDavenport theorem claims that for any sets A, B of residues modulo a prime p,

$$
|A+B| \geq \min \{p,|A|+|B|-1\} .
$$

Hence, if $|K| \geq 11$, then $|K+K| \geq 21,|K+K+K| \geq 31>47-|K+K|$, hence $\mid K+K+K+$ $(-K)+(-K) \mid=47$, and $0 \equiv a+c+e-b-d(\bmod 47)$ for some $a, b, c, d, e \in K$.

From the same reasoning, one can see that a good set K containing 10 residues should satisfy equalities $|K+K|=19=2|K|-1$ and $|K+K+K|=28=|K+K|+|K|-1$. It can be proved that in this case set K consists of 10 residues forming an arithmetic progression. As an easy consequence, one obtains that set K has the form $a J$ for some nonzero residue a.
$\mathbf{N} 4$. For every integer $k \geq 2$, prove that $2^{3 k}$ divides the number

$$
\begin{equation*}
\binom{2^{k+1}}{2^{k}}-\binom{2^{k}}{2^{k-1}} \tag{1}
\end{equation*}
$$

but $2^{3 k+1}$ does not.
(Poland)
Solution. We use the notation $(2 n-1)!!=1 \cdot 3 \cdots(2 n-1)$ and $(2 n)!!=2 \cdot 4 \cdots(2 n)=2^{n} n!$ for any positive integer n. Observe that $(2 n)!=(2 n)!!(2 n-1)!!=2^{n} n!(2 n-1)!!$.

For any positive integer n we have

$$
\begin{aligned}
& \binom{4 n}{2 n}=\frac{(4 n)!}{(2 n)!^{2}}=\frac{2^{2 n}(2 n)!(4 n-1)!!}{(2 n)!^{2}}=\frac{2^{2 n}}{(2 n)!}(4 n-1)!!, \\
& \binom{2 n}{n}=\frac{1}{(2 n)!}\left(\frac{(2 n)!}{n!}\right)^{2}=\frac{1}{(2 n)!}\left(2^{n}(2 n-1)!!\right)^{2}=\frac{2^{2 n}}{(2 n)!}(2 n-1)!^{2} .
\end{aligned}
$$

Then expression (1) can be rewritten as follows:

$$
\begin{align*}
\binom{2^{k+1}}{2^{k}} & -\binom{2^{k}}{2^{k-1}}=\frac{2^{2^{k}}}{\left(2^{k}\right)!}\left(2^{k+1}-1\right)!!-\frac{2^{2^{k}}}{\left(2^{k}\right)!}\left(2^{k}-1\right)!!^{2} \\
& =\frac{2^{2^{k}}\left(2^{k}-1\right)!!}{\left(2^{k}\right)!} \cdot\left(\left(2^{k}+1\right)\left(2^{k}+3\right) \ldots\left(2^{k}+2^{k}-1\right)-\left(2^{k}-1\right)\left(2^{k}-3\right) \ldots\left(2^{k}-2^{k}+1\right)\right) \tag{2}
\end{align*}
$$

We compute the exponent of 2 in the prime decomposition of each factor (the first one is a rational number but not necessarily an integer; it is not important).

First, we show by induction on n that the exponent of 2 in $\left(2^{n}\right)!$ is $2^{n}-1$. The base case $n=1$ is trivial. Suppose that $\left(2^{n}\right)!=2^{2^{n}-1}(2 d+1)$ for some integer d. Then we have

$$
\left(2^{n+1}\right)!=2^{2^{n}}\left(2^{n}\right)!\left(2^{n+1}-1\right)!!=2^{2^{n}} 2^{2^{n}-1} \cdot(2 d+1)\left(2^{n+1}-1\right)!!=2^{2^{n+1}-1} \cdot(2 q+1)
$$

for some integer q. This finishes the induction step.
Hence, the exponent of 2 in the first factor in (2) is $2^{k}-\left(2^{k}-1\right)=1$.
The second factor in (2) can be considered as the value of the polynomial

$$
\begin{equation*}
P(x)=(x+1)(x+3) \ldots\left(x+2^{k}-1\right)-(x-1)(x-3) \ldots\left(x-2^{k}+1\right) . \tag{3}
\end{equation*}
$$

at $x=2^{k}$. Now we collect some information about $P(x)$.
Observe that $P(-x)=-P(x)$, since $k \geq 2$. So $P(x)$ is an odd function, and it has nonzero coefficients only at odd powers of x. Hence $P(x)=x^{3} Q(x)+c x$, where $Q(x)$ is a polynomial with integer coefficients.

Compute the exponent of 2 in c. We have

$$
\begin{aligned}
c & =2\left(2^{k}-1\right)!!\sum_{i=1}^{2^{k-1}} \frac{1}{2 i-1}=\left(2^{k}-1\right)!!\sum_{i=1}^{2^{k-1}}\left(\frac{1}{2 i-1}+\frac{1}{2^{k}-2 i+1}\right) \\
& =\left(2^{k}-1\right)!!\sum_{i=1}^{2^{k-1}} \frac{2^{k}}{(2 i-1)\left(2^{k}-2 i+1\right)}=2^{k} \sum_{i=1}^{2^{k-1}} \frac{\left(2^{k}-1\right)!!}{(2 i-1)\left(2^{k}-2 i+1\right)}=2^{k} S
\end{aligned}
$$

For any integer $i=1, \ldots, 2^{k-1}$, denote by $a_{2 i-1}$ the residue inverse to $2 i-1$ modulo 2^{k}. Clearly, when $2 i-1$ runs through all odd residues, so does $a_{2 i-1}$, hence

$$
\begin{aligned}
S=\sum_{i=1}^{2^{k-1}} \frac{\left(2^{k}-1\right)!!}{(2 i-1)\left(2^{k}-2 i+1\right)} \equiv-\sum_{i=1}^{2^{k-1}} \frac{\left(2^{k}-1\right)!!}{(2 i-1)^{2}} \equiv-\sum_{i=1}^{2^{k-1}}\left(2^{k}-1\right)!!a_{2 i-1}^{2} \\
=-\left(2^{k}-1\right)!!\sum_{i=1}^{2^{k-1}}(2 i-1)^{2}=-\left(2^{k}-1\right)!!\frac{2^{k-1}\left(2^{2 k}-1\right)}{3} \quad\left(\bmod 2^{k}\right)
\end{aligned}
$$

Therefore, the exponent of 2 in S is $k-1$, so $c=2^{k} S=2^{2 k-1}(2 t+1)$ for some integer t.
Finally we obtain that

$$
P\left(2^{k}\right)=2^{3 k} Q\left(2^{k}\right)+2^{k} c=2^{3 k} Q\left(2^{k}\right)+2^{3 k-1}(2 t+1)
$$

which is divisible exactly by $2^{3 k-1}$. Thus, the exponent of 2 in (2) is $1+(3 k-1)=3 k$.
Comment. The fact that (1) is divisible by $2^{2 k}$ is known; but it does not help in solving this problem.

N5. Find all surjective functions $f: \mathbb{N} \rightarrow \mathbb{N}$ such that for every $m, n \in \mathbb{N}$ and every prime p, the number $f(m+n)$ is divisible by p if and only if $f(m)+f(n)$ is divisible by p.
(\mathbb{N} is the set of all positive integers.)
(Iran)
Answer. $f(n)=n$.
Solution. Suppose that function $f: \mathbb{N} \rightarrow \mathbb{N}$ satisfies the problem conditions.
Lemma. For any prime p and any $x, y \in \mathbb{N}$, we have $x \equiv y(\bmod p)$ if and only if $f(x) \equiv f(y)$ $(\bmod p)$. Moreover, $p \mid f(x)$ if and only if $p \mid x$.
Proof. Consider an arbitrary prime p. Since f is surjective, there exists some $x \in \mathbb{N}$ such that $p \mid f(x)$. Let

$$
d=\min \{x \in \mathbb{N}: p \mid f(x)\} .
$$

By induction on k, we obtain that $p \mid f(k d)$ for all $k \in \mathbb{N}$. The base is true since $p \mid f(d)$. Moreover, if $p \mid f(k d)$ and $p \mid f(d)$ then, by the problem condition, $p \mid f(k d+d)=f((k+1) d)$ as required.

Suppose that there exists an $x \in \mathbb{N}$ such that $d \nmid x$ but $p \mid f(x)$. Let

$$
y=\min \{x \in \mathbb{N}: d \nmid x, p \mid f(x)\} .
$$

By the choice of d, we have $y>d$, and $y-d$ is a positive integer not divisible by d. Then $p \nmid f(y-d)$, while $p \mid f(d)$ and $p \mid f(d+(y-d))=f(y)$. This contradicts the problem condition. Hence, there is no such x, and

$$
\begin{equation*}
p|f(x) \Longleftrightarrow d| x \tag{1}
\end{equation*}
$$

Take arbitrary $x, y \in \mathbb{N}$ such that $x \equiv y(\bmod d)$. We have $p \mid f(x+(2 x d-x))=f(2 x d)$; moreover, since $d \mid 2 x d+(y-x)=y+(2 x d-x)$, we get $p \mid f(y+(2 x d-x))$. Then by the problem condition $p|f(x)+f(2 x d-x), p| f(y)+f(2 x d-x)$, and hence $f(x) \equiv-f(2 x d-x) \equiv f(y)$ $(\bmod p)$.

On the other hand, assume that $f(x) \equiv f(y)(\bmod p)$. Again we have $p \mid f(x)+f(2 x d-x)$ which by our assumption implies that $p \mid f(x)+f(2 x d-x)+(f(y)-f(x))=f(y)+f(2 x d-x)$. Hence by the problem condition $p \mid f(y+(2 x d-x))$. Using (1) we get $0 \equiv y+(2 x d-x) \equiv y-x$ $(\bmod d)$.

Thus, we have proved that

$$
\begin{equation*}
x \equiv y \quad(\bmod d) \Longleftrightarrow f(x) \equiv f(y) \quad(\bmod p) \tag{2}
\end{equation*}
$$

We are left to show that $p=d$: in this case (1) and (2) provide the desired statements.
The numbers $1,2, \ldots, d$ have distinct residues modulo d. By (2), numbers $f(1), f(2), \ldots$, $f(d)$ have distinct residues modulo p; hence there are at least d distinct residues, and $p \geq d$. On the other hand, by the surjectivity of f, there exist $x_{1}, \ldots, x_{p} \in \mathbb{N}$ such that $f\left(x_{i}\right)=i$ for any $i=1,2, \ldots, p$. By (2), all these x_{i} 's have distinct residues modulo d. For the same reasons, $d \geq p$. Hence, $d=p$.

Now we prove that $f(n)=n$ by induction on n. If $n=1$ then, by the Lemma, $p \nmid f(1)$ for any prime p, so $f(1)=1$, and the base is established. Suppose that $n>1$ and denote $k=f(n)$. Note that there exists a prime $q \mid n$, so by the Lemma $q \mid k$ and $k>1$.

If $k>n$ then $k-n+1>1$, and there exists a prime $p \mid k-n+1$; we have $k \equiv n-1$ $(\bmod p)$. By the induction hypothesis we have $f(n-1)=n-1 \equiv k=f(n)(\bmod p)$. Now, by the Lemma we obtain $n-1 \equiv n(\bmod p)$ which cannot be true.

Analogously, if $k<n$, then $f(k-1)=k-1$ by induction hypothesis. Moreover, $n-k+1>1$, so there exists a prime $p \mid n-k+1$ and $n \equiv k-1(\bmod p)$. By the Lemma again, $k=f(n) \equiv$ $f(k-1)=k-1(\bmod p)$, which is also false. The only remaining case is $k=n$, so $f(n)=n$.

Finally, the function $f(n)=n$ obviously satisfies the condition.

N6. Let k be a positive integer. Prove that the number $\left(4 k^{2}-1\right)^{2}$ has a positive divisor of the form $8 k n-1$ if and only if k is even.
(United Kingdom)
Solution. The statement follows from the following fact.
Lemma. For arbitrary positive integers x and y, the number $4 x y-1$ divides $\left(4 x^{2}-1\right)^{2}$ if and only if $x=y$.
Proof. If $x=y$ then $4 x y-1=4 x^{2}-1$ obviously divides $\left(4 x^{2}-1\right)^{2}$ so it is sufficient to consider the opposite direction.

Call a pair (x, y) of positive integers bad if $4 x y-1$ divides $\left(4 x^{2}-1\right)^{2}$ but $x \neq y$. In order to prove that bad pairs do not exist, we present two properties of them which provide an infinite descent.
Property (i). If (x, y) is a bad pair and $x<y$ then there exists a positive integer $z<x$ such that (x, z) is also bad.
Let $r=\frac{\left(4 x^{2}-1\right)^{2}}{4 x y-1}$. Then

$$
r=-r \cdot(-1) \equiv-r(4 x y-1)=-\left(4 x^{2}-1\right)^{2} \equiv-1 \quad(\bmod 4 x)
$$

and $r=4 x z-1$ with some positive integer z. From $x<y$ we obtain that

$$
4 x z-1=\frac{\left(4 x^{2}-1\right)^{2}}{4 x y-1}<4 x^{2}-1
$$

and therefore $z<x$. By the construction, the number $4 x z-1$ is a divisor of $\left(4 x^{2}-1\right)^{2}$ so (x, z) is a bad pair.
Property (ii). If (x, y) is a bad pair then (y, x) is also bad.
Since $1=1^{2} \equiv(4 x y)^{2}(\bmod 4 x y-1)$, we have

$$
\left(4 y^{2}-1\right)^{2} \equiv\left(4 y^{2}-(4 x y)^{2}\right)^{2}=16 y^{4}\left(4 x^{2}-1\right)^{2} \equiv 0 \quad(\bmod 4 x y-1)
$$

Hence, the number $4 x y-1$ divides $\left(4 y^{2}-1\right)^{2}$ as well.
Now suppose that there exists at least one bad pair. Take a bad pair (x, y) such that $2 x+y$ attains its smallest possible value. If $x<y$ then property (i) provides a bad pair (x, z) with $z<y$ and thus $2 x+z<2 x+y$. Otherwise, if $y<x$, property (ii) yields that pair (y, x) is also bad while $2 y+x<2 x+y$. Both cases contradict the assumption that $2 x+y$ is minimal; the Lemma is proved.

To prove the problem statement, apply the Lemma for $x=k$ and $y=2 n$; the number $8 k n-1$ divides $\left(4 k^{2}-1\right)^{2}$ if and only if $k=2 n$. Hence, there is no such n if k is odd and $n=k / 2$ is the only solution if k is even.
Comment. The constant 4 in the Lemma can be replaced with an arbitrary integer greater than 1 : if $a>1$ and $a x y-1$ divides $\left(a x^{2}-1\right)^{2}$ then $x=y$.

N7. For a prime p and a positive integer n, denote by $\nu_{p}(n)$ the exponent of p in the prime factorization of n !. Given a positive integer d and a finite set $\left\{p_{1}, \ldots, p_{k}\right\}$ of primes. Show that there are infinitely many positive integers n such that $d \mid \nu_{p_{i}}(n)$ for all $1 \leq i \leq k$.
(India)
Solution 1. For arbitrary prime p and positive integer n, denote by $\operatorname{ord}_{p}(n)$ the exponent of p in n. Thus,

$$
\nu_{p}(n)=\operatorname{ord}_{p}(n!)=\sum_{i=1}^{n} \operatorname{ord}_{p}(i)
$$

Lemma. Let p be a prime number, q be a positive integer, k and r be positive integers such that $p^{k}>r$. Then $\nu_{p}\left(q p^{k}+r\right)=\nu_{p}\left(q p^{k}\right)+\nu_{p}(r)$.
Proof. We claim that $\operatorname{ord}_{p}\left(q p^{k}+i\right)=\operatorname{ord}_{p}(i)$ for all $0<i<p^{k}$. Actually, if $d=\operatorname{ord}_{p}(i)$ then $d<k$, so $q p^{k}+i$ is divisible by p^{d}, but only the first term is divisible by p^{d+1}; hence the sum is not.

Using this claim, we obtain

$$
\nu_{p}\left(q p^{k}+r\right)=\sum_{i=1}^{q p^{k}} \operatorname{ord}_{p}(i)+\sum_{i=q p^{k}+1}^{q p^{k}+r} \operatorname{ord}_{p}(i)=\sum_{i=1}^{q p^{k}} \operatorname{ord}_{p}(i)+\sum_{i=1}^{r} \operatorname{ord}_{p}(i)=\nu_{p}\left(q p^{k}\right)+\nu_{p}(r)
$$

For any integer a, denote by \bar{a} its residue modulo d. The addition of residues will also be performed modulo d, i. e. $\bar{a}+\bar{b}=\overline{a+b}$. For any positive integer n, let $f(n)=\left(f_{1}(n), \ldots, f_{k}(n)\right)$, where $f_{i}(n)=\overline{\nu_{p_{i}}(n)}$.

Define the sequence $n_{1}=1, n_{\ell+1}=\left(p_{1} p_{2} \ldots p_{k}\right)^{n_{\ell}}$. We claim that

$$
f\left(n_{\ell_{1}}+n_{\ell_{2}}+\ldots+n_{\ell_{m}}\right)=f\left(n_{\ell_{1}}\right)+f\left(n_{\ell_{2}}\right)+\ldots+f\left(n_{\ell_{m}}\right)
$$

for any $\ell_{1}<\ell_{2}<\ldots<\ell_{m}$. (The addition of k-tuples is componentwise.) The base case $m=1$ is trivial.

Suppose that $m>1$. By the construction of the sequence, $p_{i}^{n_{\ell_{1}}}$ divides $n_{\ell_{2}}+\ldots+n_{\ell_{m}}$; clearly, $p_{i}^{n_{\ell_{1}}}>n_{\ell_{1}}$ for all $1 \leq i \leq k$. Therefore the Lemma can be applied for $p=p_{i}, k=r=n_{\ell_{1}}$ and $q p^{k}=n_{\ell_{2}}+\ldots+n_{\ell_{m}}$ to obtain

$$
f_{i}\left(n_{\ell_{1}}+n_{\ell_{2}}+\ldots+n_{\ell_{m}}\right)=f_{i}\left(n_{\ell_{1}}\right)+f_{i}\left(n_{\ell_{2}}+\ldots+n_{\ell_{m}}\right) \quad \text { for all } 1 \leq i \leq k
$$

and hence

$$
f\left(n_{\ell_{1}}+n_{\ell_{2}}+\ldots+n_{\ell_{m}}\right)=f\left(n_{\ell_{1}}\right)+f\left(n_{\ell_{2}}+\ldots+n_{\ell_{m}}\right)=f\left(n_{\ell_{1}}\right)+f\left(n_{\ell_{2}}\right)+\ldots+f\left(n_{\ell_{m}}\right)
$$

by the induction hypothesis.
Now consider the values $f\left(n_{1}\right), f\left(n_{2}\right), \ldots$ There exist finitely many possible values of f. Hence, there exists an infinite sequence of indices $\ell_{1}<\ell_{2}<\ldots$ such that $f\left(n_{\ell_{1}}\right)=f\left(n_{\ell_{2}}\right)=\ldots$. and thus

$$
f\left(n_{\ell_{m+1}}+n_{\ell_{m+2}}+\ldots+n_{\ell_{m+d}}\right)=f\left(n_{\ell_{m+1}}\right)+\ldots+f\left(n_{\ell_{m+d}}\right)=d \cdot f\left(n_{\ell_{1}}\right)=(\overline{0}, \ldots, \overline{0})
$$

for all m. We have found infinitely many suitable numbers.

Solution 2. We use the same Lemma and definition of the function f.
Let $S=\{f(n): n \in \mathbb{N}\}$. Obviously, set S is finite. For every $s \in S$ choose the minimal n_{s} such that $f\left(n_{s}\right)=s$. Denote $N=\max _{s \in S} n_{s}$. Moreover, let g be an integer such that $p_{i}^{g}>N$ for each $i=1,2, \ldots, k$. Let $P=\left(p_{1} p_{2} \ldots p_{k}\right)^{g}$.

We claim that

$$
\begin{equation*}
\{f(n) \mid n \in[m P, m P+N]\}=S \tag{1}
\end{equation*}
$$

for every positive integer m. In particular, since $(\overline{0}, \ldots, \overline{0})=f(1) \in S$, it follows that for an arbitrary m there exists $n \in[m P, m P+N]$ such that $f(n)=(\overline{0}, \ldots, \overline{0})$. So there are infinitely many suitable numbers.

To prove (1), let $a_{i}=f_{i}(m P)$. Consider all numbers of the form $n_{m, s}=m P+n_{s}$ with $s=\left(s_{1}, \ldots, s_{k}\right) \in S$ (clearly, all $n_{m, s}$ belong to $\left.[m P, m P+N]\right)$. Since $n_{s} \leq N<p_{i}^{g}$ and $p_{i}^{g} \mid m P$, we can apply the Lemma for the values $p=p_{i}, r=n_{s}, k=g, q p^{k}=m P$ to obtain

$$
f_{i}\left(n_{m, s}\right)=f_{i}(m P)+f_{i}\left(n_{s}\right)=a_{i}+s_{i} ;
$$

hence for distinct $s, t \in S$ we have $f\left(n_{m, s}\right) \neq f\left(n_{m, t}\right)$.
Thus, the function f attains at least $|S|$ distinct values in $[m P, m P+N]$. Since all these values belong to S, f should attain all possible values in $[m P, m P+N]$.

Comment. Both solutions can be extended to prove the following statements.
Claim 1. For any K there exist infinitely many n divisible by K, such that $d \mid \nu_{p_{i}}(n)$ for each i.
Claim 2. For any $s \in S$, there exist infinitely many $n \in \mathbb{N}$ such that $f(n)=s$.

$4(c)=$

nternotional

 Moinemoitcol - Iyraplolel
$49^{\text {th }}$ International Mathematical Olympiad Spain 2008

Shortlisted Problems with Solutions

Contents

Contributing Countries \& Problem Selection Committee 5
Algebra 7
Problem A1 7
Problem A2 9
Problem A3 11
Problem A4 12
Problem A5 14
Problem A6 15
Problem A7 17
Combinatorics 21
Problem C1 21
Problem C2 23
Problem C3 24
Problem C4 25
Problem C5 26
Problem C6 27
Geometry 29
Problem G1 29
Problem G2 31
Problem G3 32
Problem G4 34
Problem G5 36
Problem G6 37
Problem G7 40
Number Theory 43
Problem N1 43
Problem N2 45
Problem N3 46
Problem N4 47
Problem N5 49
Problem N6 50

Contributing Countries

Australia, Austria, Belgium, Bulgaria, Canada, Colombia, Croatia, Czech Republic, Estonia, France, Germany, Greece, Hong Kong, India, Iran, Ireland, Japan, Korea (North), Korea (South), Lithuania, Luxembourg, Mexico, Moldova, Netherlands, Pakistan, Peru, Poland, Romania, Russia, Serbia, Slovakia, South Africa, Sweden, Ukraine, United Kingdom, United States of America

Problem Selection Committee

Vicente Muñoz Velázquez
Juan Manuel Conde Calero
Géza Kós
Marcin Kuczma
Daniel Lasaosa Medarde
Ignasi Mundet i Riera
Svetoslav Savchev

Algebra

A1. Find all functions $f:(0, \infty) \rightarrow(0, \infty)$ such that

$$
\frac{f(p)^{2}+f(q)^{2}}{f\left(r^{2}\right)+f\left(s^{2}\right)}=\frac{p^{2}+q^{2}}{r^{2}+s^{2}}
$$

for all $p, q, r, s>0$ with $p q=r s$.
Solution. Let f satisfy the given condition. Setting $p=q=r=s=1$ yields $f(1)^{2}=f(1)$ and hence $f(1)=1$. Now take any $x>0$ and set $p=x, q=1, r=s=\sqrt{x}$ to obtain

$$
\frac{f(x)^{2}+1}{2 f(x)}=\frac{x^{2}+1}{2 x} .
$$

This recasts into

$$
\begin{gathered}
x f(x)^{2}+x=x^{2} f(x)+f(x), \\
(x f(x)-1)(f(x)-x)=0 .
\end{gathered}
$$

And thus,

$$
\begin{equation*}
\text { for every } x>0 \text {, either } f(x)=x \text { or } f(x)=\frac{1}{x} \tag{1}
\end{equation*}
$$

Obviously, if

$$
\begin{equation*}
f(x)=x \quad \text { for all } x>0 \quad \text { or } \quad f(x)=\frac{1}{x} \quad \text { for all } x>0 \tag{2}
\end{equation*}
$$

then the condition of the problem is satisfied. We show that actually these two functions are the only solutions.

So let us assume that there exists a function f satisfying the requirement, other than those in (2). Then $f(a) \neq a$ and $f(b) \neq 1 / b$ for some $a, b>0$. By (1), these values must be $f(a)=1 / a, f(b)=b$. Applying now the equation with $p=a, q=b, r=s=\sqrt{a b}$ we obtain $\left(a^{-2}+b^{2}\right) / 2 f(a b)=\left(a^{2}+b^{2}\right) / 2 a b ;$ equivalently,

$$
\begin{equation*}
f(a b)=\frac{a b\left(a^{-2}+b^{2}\right)}{a^{2}+b^{2}} \tag{3}
\end{equation*}
$$

We know however (see (1)) that $f(a b)$ must be either $a b$ or $1 / a b$. If $f(a b)=a b$ then by (3) $a^{-2}+b^{2}=a^{2}+b^{2}$, so that $a=1$. But, as $f(1)=1$, this contradicts the relation $f(a) \neq a$. Likewise, if $f(a b)=1 / a b$ then (3) gives $a^{2} b^{2}\left(a^{-2}+b^{2}\right)=a^{2}+b^{2}$, whence $b=1$, in contradiction to $f(b) \neq 1 / b$. Thus indeed the functions listed in (2) are the only two solutions.

Comment. The equation has as many as four variables with only one constraint $p q=r s$, leaving three degrees of freedom and providing a lot of information. Various substitutions force various useful properties of the function searched. We sketch one more method to reach conclusion (1); certainly there are many others.

Noticing that $f(1)=1$ and setting, first, $p=q=1, r=\sqrt{x}, s=1 / \sqrt{x}$, and then $p=x, q=1 / x$, $r=s=1$, we obtain two relations, holding for every $x>0$,

$$
\begin{equation*}
f(x)+f\left(\frac{1}{x}\right)=x+\frac{1}{x} \quad \text { and } \quad f(x)^{2}+f\left(\frac{1}{x}\right)^{2}=x^{2}+\frac{1}{x^{2}} . \tag{4}
\end{equation*}
$$

Squaring the first and subtracting the second gives $2 f(x) f(1 / x)=2$. Subtracting this from the second relation of (4) leads to

$$
\left(f(x)-f\left(\frac{1}{x}\right)\right)^{2}=\left(x-\frac{1}{x}\right)^{2} \quad \text { or } \quad f(x)-f\left(\frac{1}{x}\right)= \pm\left(x-\frac{1}{x}\right) .
$$

The last two alternatives combined with the first equation of (4) imply the two alternatives of (1).

A2. (a) Prove the inequality

$$
\frac{x^{2}}{(x-1)^{2}}+\frac{y^{2}}{(y-1)^{2}}+\frac{z^{2}}{(z-1)^{2}} \geq 1
$$

for real numbers $x, y, z \neq 1$ satisfying the condition $x y z=1$.
(b) Show that there are infinitely many triples of rational numbers x, y, z for which this inequality turns into equality.

Solution 1. (a) We start with the substitution

$$
\frac{x}{x-1}=a, \quad \frac{y}{y-1}=b, \quad \frac{z}{z-1}=c, \quad \text { i.e., } \quad x=\frac{a}{a-1}, \quad y=\frac{b}{b-1}, \quad z=\frac{c}{c-1} .
$$

The inequality to be proved reads $a^{2}+b^{2}+c^{2} \geq 1$. The new variables are subject to the constraints $a, b, c \neq 1$ and the following one coming from the condition $x y z=1$,

$$
(a-1)(b-1)(c-1)=a b c .
$$

This is successively equivalent to

$$
\begin{aligned}
a+b+c-1 & =a b+b c+c a \\
2(a+b+c-1) & =(a+b+c)^{2}-\left(a^{2}+b^{2}+c^{2}\right) \\
a^{2}+b^{2}+c^{2}-2 & =(a+b+c)^{2}-2(a+b+c), \\
a^{2}+b^{2}+c^{2}-1 & =(a+b+c-1)^{2}
\end{aligned}
$$

Thus indeed $a^{2}+b^{2}+c^{2} \geq 1$, as desired.
(b) From the equation $a^{2}+b^{2}+c^{2}-1=(a+b+c-1)^{2}$ we see that the proposed inequality becomes an equality if and only if both sums $a^{2}+b^{2}+c^{2}$ and $a+b+c$ have value 1 . The first of them is equal to $(a+b+c)^{2}-2(a b+b c+c a)$. So the instances of equality are described by the system of two equations

$$
a+b+c=1, \quad a b+b c+c a=0
$$

plus the constraint $a, b, c \neq 1$. Elimination of c leads to $a^{2}+a b+b^{2}=a+b$, which we regard as a quadratic equation in b,

$$
b^{2}+(a-1) b+a(a-1)=0
$$

with discriminant

$$
\Delta=(a-1)^{2}-4 a(a-1)=(1-a)(1+3 a)
$$

We are looking for rational triples (a, b, c); it will suffice to have a rational such that $1-a$ and $1+3 a$ are both squares of rational numbers (then Δ will be so too). Set $a=k / m$. We want $m-k$ and $m+3 k$ to be squares of integers. This is achieved for instance by taking $m=k^{2}-k+1$ (clearly nonzero); then $m-k=(k-1)^{2}, m+3 k=(k+1)^{2}$. Note that distinct integers k yield distinct values of $a=k / m$.

And thus, if k is any integer and $m=k^{2}-k+1, a=k / m$ then $\Delta=\left(k^{2}-1\right)^{2} / m^{2}$ and the quadratic equation has rational roots $b=\left(m-k \pm k^{2} \mp 1\right) /(2 m)$. Choose e.g. the larger root,

$$
b=\frac{m-k+k^{2}-1}{2 m}=\frac{m+(m-2)}{2 m}=\frac{m-1}{m} .
$$

Computing c from $a+b+c=1$ then gives $c=(1-k) / m$. The condition $a, b, c \neq 1$ eliminates only $k=0$ and $k=1$. Thus, as k varies over integers greater than 1 , we obtain an infinite family of rational triples (a, b, c)-and coming back to the original variables $(x=a /(a-1)$ etc.) -an infinite family of rational triples (x, y, z) with the needed property. (A short calculation shows that the resulting triples are $x=-k /(k-1)^{2}, y=k-k^{2}, z=(k-1) / k^{2}$; but the proof was complete without listing them.)

Comment 1. There are many possible variations in handling the equation system $a^{2}+b^{2}+c^{2}=1$, $a+b+c=1(a, b, c \neq 1)$ which of course describes a circle in the (a, b, c)-space (with three points excluded), and finding infinitely many rational points on it.

Also the initial substitution $x=a /(a-1)$ (etc.) can be successfully replaced by other similar substitutions, e.g. $x=1-1 / \alpha$ (etc.); or $x=x^{\prime}-1$ (etc.); or $1-y z=u$ (etc.)-eventually reducing the inequality to $(\cdots)^{2} \geq 0$, the expression in the parentheses depending on the actual substitution.

Depending on the method chosen, one arrives at various sequences of rational triples (x, y, z) as needed; let us produce just one more such example: $x=(2 r-2) /(r+1)^{2}, y=(2 r+2) /(r-1)^{2}$, $z=\left(r^{2}-1\right) / 4$ where r can be any rational number different from 1 or -1 .

Solution 2 (an outline). (a) Without changing variables, just setting $z=1 / x y$ and clearing fractions, the proposed inequality takes the form

$$
(x y-1)^{2}\left(x^{2}(y-1)^{2}+y^{2}(x-1)^{2}\right)+(x-1)^{2}(y-1)^{2} \geq(x-1)^{2}(y-1)^{2}(x y-1)^{2} .
$$

With the notation $p=x+y, q=x y$ this becomes, after lengthy routine manipulation and a lot of cancellation

$$
q^{4}-6 q^{3}+2 p q^{2}+9 q^{2}-6 p q+p^{2} \geq 0
$$

It is not hard to notice that the expression on the left is just $\left(q^{2}-3 q+p\right)^{2}$, hence nonnegative.
(Without introducing p and q, one is of course led with some more work to the same expression, just written in terms of x and y; but then it is not that easy to see that it is a square.)
(b) To have equality, one needs $q^{2}-3 q+p=0$. Note that x and y are the roots of the quadratic trinomial (in a formal variable t): $t^{2}-p t+q$. When $q^{2}-3 q+p=0$, the discriminant equals

$$
\delta=p^{2}-4 q=\left(3 q-q^{2}\right)^{2}-4 q=q(q-1)^{2}(q-4)
$$

Now it suffices to have both q and $q-4$ squares of rational numbers (then $p=3 q-q^{2}$ and $\sqrt{\delta}$ are also rational, and so are the roots of the trinomial). On setting $q=(n / m)^{2}=4+(l / m)^{2}$ the requirement becomes $4 m^{2}+l^{2}=n^{2}$ (with l, m, n being integers). This is just the Pythagorean equation, known to have infinitely many integer solutions.

Comment 2. Part (a) alone might also be considered as a possible contest problem (in the category of easy problems).

A3. Let $S \subseteq \mathbb{R}$ be a set of real numbers. We say that a pair (f, g) of functions from S into S is a Spanish Couple on S, if they satisfy the following conditions:
(i) Both functions are strictly increasing, i.e. $f(x)<f(y)$ and $g(x)<g(y)$ for all $x, y \in S$ with $x<y$;
(ii) The inequality $f(g(g(x)))<g(f(x))$ holds for all $x \in S$.

Decide whether there exists a Spanish Couple
(a) on the set $S=\mathbb{N}$ of positive integers;
(b) on the set $S=\{a-1 / b: a, b \in \mathbb{N}\}$.

Solution. We show that the answer is NO for part (a), and YES for part (b).
(a) Throughout the solution, we will use the notation $g_{k}(x)=\overbrace{g(g(\ldots g}^{k}(x) \ldots))$, including $g_{0}(x)=x$ as well.

Suppose that there exists a Spanish Couple (f, g) on the set \mathbb{N}. From property (i) we have $f(x) \geq x$ and $g(x) \geq x$ for all $x \in \mathbb{N}$.

We claim that $g_{k}(x) \leq f(x)$ for all $k \geq 0$ and all positive integers x. The proof is done by induction on k. We already have the base case $k=0$ since $x \leq f(x)$. For the induction step from k to $k+1$, apply the induction hypothesis on $g_{2}(x)$ instead of x, then apply (ii):

$$
g\left(g_{k+1}(x)\right)=g_{k}\left(g_{2}(x)\right) \leq f\left(g_{2}(x)\right)<g(f(x)) .
$$

Since g is increasing, it follows that $g_{k+1}(x)<f(x)$. The claim is proven.
If $g(x)=x$ for all $x \in \mathbb{N}$ then $f(g(g(x)))=f(x)=g(f(x))$, and we have a contradiction with (ii). Therefore one can choose an $x_{0} \in S$ for which $x_{0}<g\left(x_{0}\right)$. Now consider the sequence x_{0}, x_{1}, \ldots where $x_{k}=g_{k}\left(x_{0}\right)$. The sequence is increasing. Indeed, we have $x_{0}<g\left(x_{0}\right)=x_{1}$, and $x_{k}<x_{k+1}$ implies $x_{k+1}=g\left(x_{k}\right)<g\left(x_{k+1}\right)=x_{k+2}$.

Hence, we obtain a strictly increasing sequence $x_{0}<x_{1}<\ldots$ of positive integers which on the other hand has an upper bound, namely $f\left(x_{0}\right)$. This cannot happen in the set \mathbb{N} of positive integers, thus no Spanish Couple exists on \mathbb{N}.
(b) We present a Spanish Couple on the set $S=\{a-1 / b: a, b \in \mathbb{N}\}$.

Let

$$
\begin{aligned}
f(a-1 / b) & =a+1-1 / b, \\
g(a-1 / b) & =a-1 /\left(b+3^{a}\right) .
\end{aligned}
$$

These functions are clearly increasing. Condition (ii) holds, since

$$
f(g(g(a-1 / b)))=(a+1)-1 /\left(b+2 \cdot 3^{a}\right)<(a+1)-1 /\left(b+3^{a+1}\right)=g(f(a-1 / b)) .
$$

Comment. Another example of a Spanish couple is $f(a-1 / b)=3 a-1 / b, g(a-1 / b)=a-1 /(a+b)$. More generally, postulating $f(a-1 / b)=h(a)-1 / b, \quad g(a-1 / b)=a-1 / G(a, b)$ with h increasing and G increasing in both variables, we get that $f \circ g \circ g<g \circ f$ holds if $G(a, G(a, b))<G(h(a), b)$. A search just among linear functions $h(a)=C a, G(a, b)=A a+B b$ results in finding that any integers $A>0, C>2$ and $B=1$ produce a Spanish couple (in the example above, $A=1, C=3$). The proposer's example results from taking $h(a)=a+1, G(a, b)=3^{a}+b$.

A4. For an integer m, denote by $t(m)$ the unique number in $\{1,2,3\}$ such that $m+t(m)$ is a multiple of 3. A function $f: \mathbb{Z} \rightarrow \mathbb{Z}$ satisfies $f(-1)=0, f(0)=1, f(1)=-1$ and

$$
f\left(2^{n}+m\right)=f\left(2^{n}-t(m)\right)-f(m) \quad \text { for all integers } m, n \geq 0 \text { with } 2^{n}>m .
$$

Prove that $f(3 p) \geq 0$ holds for all integers $p \geq 0$.
Solution. The given conditions determine f uniquely on the positive integers. The signs of $f(1), f(2), \ldots$ seem to change quite erratically. However values of the form $f\left(2^{n}-t(m)\right)$ are sufficient to compute directly any functional value. Indeed, let $n>0$ have base 2 representation $n=2^{a_{0}}+2^{a_{1}}+\cdots+2^{a_{k}}, a_{0}>a_{1}>\cdots>a_{k} \geq 0$, and let $n_{j}=2^{a_{j}}+2^{a_{j-1}}+\cdots+2^{a_{k}}, j=0, \ldots, k$. Repeated applications of the recurrence show that $f(n)$ is an alternating sum of the quantities $f\left(2^{a_{j}}-t\left(n_{j+1}\right)\right)$ plus $(-1)^{k+1}$. (The exact formula is not needed for our proof.)

So we focus attention on the values $f\left(2^{n}-1\right), f\left(2^{n}-2\right)$ and $f\left(2^{n}-3\right)$. Six cases arise; more specifically,
$t\left(2^{2 k}-3\right)=2, t\left(2^{2 k}-2\right)=1, t\left(2^{2 k}-1\right)=3, t\left(2^{2 k+1}-3\right)=1, t\left(2^{2 k+1}-2\right)=3, t\left(2^{2 k+1}-1\right)=2$.
Claim. For all integers $k \geq 0$ the following equalities hold:

$$
\begin{array}{lll}
f\left(2^{2 k+1}-3\right)=0, & f\left(2^{2 k+1}-2\right)=3^{k}, & f\left(2^{2 k+1}-1\right)=-3^{k}, \\
f\left(2^{2 k+2}-3\right)=-3^{k}, & f\left(2^{2 k+2}-2\right)=-3^{k}, & f\left(2^{2 k+2}-1\right)=2 \cdot 3^{k} .
\end{array}
$$

Proof. By induction on k. The base $k=0$ comes down to checking that $f(2)=-1$ and $f(3)=2$; the given values $f(-1)=0, f(0)=1, f(1)=-1$ are also needed. Suppose the claim holds for $k-1$. For $f\left(2^{2 k+1}-t(m)\right)$, the recurrence formula and the induction hypothesis yield

$$
\begin{aligned}
& f\left(2^{2 k+1}-3\right)=f\left(2^{2 k}+\left(2^{2 k}-3\right)\right)=f\left(2^{2 k}-2\right)-f\left(2^{2 k}-3\right)=-3^{k-1}+3^{k-1}=0, \\
& f\left(2^{2 k+1}-2\right)=f\left(2^{2 k}+\left(2^{2 k}-2\right)\right)=f\left(2^{2 k}-1\right)-f\left(2^{2 k}-2\right)=2 \cdot 3^{k-1}+3^{k-1}=3^{k}, \\
& f\left(2^{2 k+1}-1\right)=f\left(2^{2 k}+\left(2^{2 k}-1\right)\right)=f\left(2^{2 k}-3\right)-f\left(2^{2 k}-1\right)=-3^{k-1}-2 \cdot 3^{k-1}=-3^{k} .
\end{aligned}
$$

For $f\left(2^{2 k+2}-t(m)\right)$ we use the three equalities just established:

$$
\begin{aligned}
& f\left(2^{2 k+2}-3\right)=f\left(2^{2 k+1}+\left(2^{2 k+1}-3\right)\right)=f\left(2^{2 k+1}-1\right)-f\left(2^{2 k+1}-3\right)=-3^{k}-0=-3^{k}, \\
& f\left(2^{2 k+2}-2\right)=f\left(2^{2 k+1}+\left(2^{2 k+1}-2\right)\right)=f\left(2^{2 k+1}-3\right)-f\left(2^{2 k}-2\right)=0-3^{k}=-3^{k}, \\
& f\left(2^{2 k+2}-1\right)=f\left(2^{2 k+1}+\left(2^{2 k+1}-1\right)\right)=f\left(2^{2 k+1}-2\right)-f\left(2^{2 k+1}-1\right)=3^{k}+3^{k}=2 \cdot 3^{k} .
\end{aligned}
$$

The claim follows.
A closer look at the six cases shows that $f\left(2^{n}-t(m)\right) \geq 3^{(n-1) / 2}$ if $2^{n}-t(m)$ is divisible by 3 , and $f\left(2^{n}-t(m)\right) \leq 0$ otherwise. On the other hand, note that $2^{n}-t(m)$ is divisible by 3 if and only if $2^{n}+m$ is. Therefore, for all nonnegative integers m and n,
(i) $f\left(2^{n}-t(m)\right) \geq 3^{(n-1) / 2}$ if $2^{n}+m$ is divisible by 3 ;
(ii) $f\left(2^{n}-t(m)\right) \leq 0$ if $2^{n}+m$ is not divisible by 3 .

One more (direct) consequence of the claim is that $\left|f\left(2^{n}-t(m)\right)\right| \leq \frac{2}{3} \cdot 3^{n / 2}$ for all $m, n \geq 0$.
The last inequality enables us to find an upper bound for $|f(m)|$ for m less than a given power of 2 . We prove by induction on n that $|f(m)| \leq 3^{n / 2}$ holds true for all integers $m, n \geq 0$ with $2^{n}>m$.

The base $n=0$ is clear as $f(0)=1$. For the inductive step from n to $n+1$, let m and n satisfy $2^{n+1}>m$. If $m<2^{n}$, we are done by the inductive hypothesis. If $m \geq 2^{n}$ then $m=2^{n}+k$ where $2^{n}>k \geq 0$. Now, by $\left|f\left(2^{n}-t(k)\right)\right| \leq \frac{2}{3} \cdot 3^{n / 2}$ and the inductive assumption,

$$
|f(m)|=\left|f\left(2^{n}-t(k)\right)-f(k)\right| \leq\left|f\left(2^{n}-t(k)\right)\right|+|f(k)| \leq \frac{2}{3} \cdot 3^{n / 2}+3^{n / 2}<3^{(n+1) / 2}
$$

The induction is complete.
We proceed to prove that $f(3 p) \geq 0$ for all integers $p \geq 0$. Since $3 p$ is not a power of 2 , its binary expansion contains at least two summands. Hence one can write $3 p=2^{a}+2^{b}+c$ where $a>b$ and $2^{b}>c \geq 0$. Applying the recurrence formula twice yields

$$
f(3 p)=f\left(2^{a}+2^{b}+c\right)=f\left(2^{a}-t\left(2^{b}+c\right)\right)-f\left(2^{b}-t(c)\right)+f(c) .
$$

Since $2^{a}+2^{b}+c$ is divisible by 3 , we have $f\left(2^{a}-t\left(2^{b}+c\right)\right) \geq 3^{(a-1) / 2}$ by (i). Since $2^{b}+c$ is not divisible by 3 , we have $f\left(2^{b}-t(c)\right) \leq 0$ by (ii). Finally $|f(c)| \leq 3^{b / 2}$ as $2^{b}>c \geq 0$, so that $f(c) \geq-3^{b / 2}$. Therefore $f(3 p) \geq 3^{(a-1) / 2}-3^{b / 2}$ which is nonnegative because $a>b$.

A5. Let a, b, c, d be positive real numbers such that

$$
a b c d=1 \quad \text { and } \quad a+b+c+d>\frac{a}{b}+\frac{b}{c}+\frac{c}{d}+\frac{d}{a}
$$

Prove that

$$
a+b+c+d<\frac{b}{a}+\frac{c}{b}+\frac{d}{c}+\frac{a}{d}
$$

Solution. We show that if $a b c d=1$, the sum $a+b+c+d$ cannot exceed a certain weighted mean of the expressions $\frac{a}{b}+\frac{b}{c}+\frac{c}{d}+\frac{d}{a}$ and $\frac{b}{a}+\frac{c}{b}+\frac{d}{c}+\frac{a}{d}$.

By applying the AM-GM inequality to the numbers $\frac{a}{b}, \frac{a}{b}, \frac{b}{c}$ and $\frac{a}{d}$, we obtain

$$
a=\sqrt[4]{\frac{a^{4}}{a b c d}}=\sqrt[4]{\frac{a}{b} \cdot \frac{a}{b} \cdot \frac{b}{c} \cdot \frac{a}{d}} \leq \frac{1}{4}\left(\frac{a}{b}+\frac{a}{b}+\frac{b}{c}+\frac{a}{d}\right)
$$

Analogously,

$$
b \leq \frac{1}{4}\left(\frac{b}{c}+\frac{b}{c}+\frac{c}{d}+\frac{b}{a}\right), \quad c \leq \frac{1}{4}\left(\frac{c}{d}+\frac{c}{d}+\frac{d}{a}+\frac{c}{b}\right) \quad \text { and } \quad d \leq \frac{1}{4}\left(\frac{d}{a}+\frac{d}{a}+\frac{a}{b}+\frac{d}{c}\right) .
$$

Summing up these estimates yields

$$
a+b+c+d \leq \frac{3}{4}\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{d}+\frac{d}{a}\right)+\frac{1}{4}\left(\frac{b}{a}+\frac{c}{b}+\frac{d}{c}+\frac{a}{d}\right) .
$$

In particular, if $a+b+c+d>\frac{a}{b}+\frac{b}{c}+\frac{c}{d}+\frac{d}{a}$ then $a+b+c+d<\frac{b}{a}+\frac{c}{b}+\frac{d}{c}+\frac{a}{d}$.
Comment. The estimate in the above solution was obtained by applying the AM-GM inequality to each column of the 4×4 array

$$
\begin{array}{llll}
a / b & b / c & c / d & d / a \\
a / b & b / c & c / d & d / a \\
b / c & c / d & d / a & a / b \\
a / d & b / a & c / b & d / c
\end{array}
$$

and adding up the resulting inequalities. The same table yields a stronger bound: If $a, b, c, d>0$ and $a b c d=1$ then

$$
\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{d}+\frac{d}{a}\right)^{3}\left(\frac{b}{a}+\frac{c}{b}+\frac{d}{c}+\frac{a}{d}\right) \geq(a+b+c+d)^{4}
$$

It suffices to apply Hölder's inequality to the sequences in the four rows, with weights $1 / 4$:

$$
\begin{gathered}
\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{d}+\frac{d}{a}\right)^{1 / 4}\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{d}+\frac{d}{a}\right)^{1 / 4}\left(\frac{b}{c}+\frac{c}{d}+\frac{d}{a}+\frac{a}{b}\right)^{1 / 4}\left(\frac{a}{d}+\frac{b}{a}+\frac{c}{b}+\frac{d}{c}\right)^{1 / 4} \\
\geq\left(\frac{a a b a}{b b c d}\right)^{1 / 4}+\left(\frac{b b c b}{c c d a}\right)^{1 / 4}+\left(\frac{c c d c}{d d a b}\right)^{1 / 4}+\left(\frac{d d a d}{a a b c}\right)^{1 / 4}=a+b+c+d
\end{gathered}
$$

A6. Let $f: \mathbb{R} \rightarrow \mathbb{N}$ be a function which satisfies

$$
\begin{equation*}
f\left(x+\frac{1}{f(y)}\right)=f\left(y+\frac{1}{f(x)}\right) \quad \text { for all } x, y \in \mathbb{R} \tag{1}
\end{equation*}
$$

Prove that there is a positive integer which is not a value of f.
Solution. Suppose that the statement is false and $f(\mathbb{R})=\mathbb{N}$. We prove several properties of the function f in order to reach a contradiction.

To start with, observe that one can assume $f(0)=1$. Indeed, let $a \in \mathbb{R}$ be such that $f(a)=1$, and consider the function $g(x)=f(x+a)$. By substituting $x+a$ and $y+a$ for x and y in (1), we have

$$
g\left(x+\frac{1}{g(y)}\right)=f\left(x+a+\frac{1}{f(y+a)}\right)=f\left(y+a+\frac{1}{f(x+a)}\right)=g\left(y+\frac{1}{g(x)}\right)
$$

So g satisfies the functional equation (1), with the additional property $g(0)=1$. Also, g and f have the same set of values: $g(\mathbb{R})=f(\mathbb{R})=\mathbb{N}$. Henceforth we assume $f(0)=1$.
Claim 1. For an arbitrary fixed $c \in \mathbb{R}$ we have $\left\{f\left(c+\frac{1}{n}\right): n \in \mathbb{N}\right\}=\mathbb{N}$.
Proof. Equation (1) and $f(\mathbb{R})=\mathbb{N}$ imply
$f(\mathbb{R})=\left\{f\left(x+\frac{1}{f(c)}\right): x \in \mathbb{R}\right\}=\left\{f\left(c+\frac{1}{f(x)}\right): x \in \mathbb{R}\right\} \subset\left\{f\left(c+\frac{1}{n}\right): n \in \mathbb{N}\right\} \subset f(\mathbb{R})$.
The claim follows.
We will use Claim 1 in the special cases $c=0$ and $c=1 / 3$:

$$
\begin{equation*}
\left\{f\left(\frac{1}{n}\right): n \in \mathbb{N}\right\}=\left\{f\left(\frac{1}{3}+\frac{1}{n}\right): n \in \mathbb{N}\right\}=\mathbb{N} . \tag{2}
\end{equation*}
$$

Claim 2. If $f(u)=f(v)$ for some $u, v \in \mathbb{R}$ then $f(u+q)=f(v+q)$ for all nonnegative rational q. Furthermore, if $f(q)=1$ for some nonnegative rational q then $f(k q)=1$ for all $k \in \mathbb{N}$.
Proof. For all $x \in \mathbb{R}$ we have by (1)

$$
f\left(u+\frac{1}{f(x)}\right)=f\left(x+\frac{1}{f(u)}\right)=f\left(x+\frac{1}{f(v)}\right)=f\left(v+\frac{1}{f(x)}\right) .
$$

Since $f(x)$ attains all positive integer values, this yields $f(u+1 / n)=f(v+1 / n)$ for all $n \in \mathbb{N}$. Let $q=k / n$ be a positive rational number. Then k repetitions of the last step yield

$$
f(u+q)=f\left(u+\frac{k}{n}\right)=f\left(v+\frac{k}{n}\right)=f(v+q) .
$$

Now let $f(q)=1$ for some nonnegative rational q, and let $k \in \mathbb{N}$. As $f(0)=1$, the previous conclusion yields successively $f(q)=f(2 q), f(2 q)=f(3 q), \ldots, f((k-1) q)=f(k q)$, as needed.
Claim 3. The equality $f(q)=f(q+1)$ holds for all nonnegative rational q.
Proof. Let m be a positive integer such that $f(1 / m)=1$. Such an m exists by (2). Applying the second statement of Claim 2 with $q=1 / m$ and $k=m$ yields $f(1)=1$.

Given that $f(0)=f(1)=1$, the first statement of Claim 2 implies $f(q)=f(q+1)$ for all nonnegative rational q.

Claim 4. The equality $f\left(\frac{1}{n}\right)=n$ holds for every $n \in \mathbb{N}$.
Proof. For a nonnegative rational q we set $x=q, y=0$ in (1) and use Claim 3 to obtain

$$
f\left(\frac{1}{f(q)}\right)=f\left(q+\frac{1}{f(0)}\right)=f(q+1)=f(q)
$$

By (2), for each $n \in \mathbb{N}$ there exists a $k \in \mathbb{N}$ such that $f(1 / k)=n$. Applying the last equation with $q=1 / k$, we have

$$
n=f\left(\frac{1}{k}\right)=f\left(\frac{1}{f(1 / k)}\right)=f\left(\frac{1}{n}\right) .
$$

Now we are ready to obtain a contradiction. Let $n \in \mathbb{N}$ be such that $f(1 / 3+1 / n)=1$. Such an n exists by (2). Let $1 / 3+1 / n=s / t$, where $s, t \in \mathbb{N}$ are coprime. Observe that $t>1$ as $1 / 3+1 / n$ is not an integer. Choose $k, l \in \mathbb{N}$ so that that $k s-l t=1$.

Because $f(0)=f(s / t)=1$, Claim 2 implies $f(k s / t)=1$. Now $f(k s / t)=f(1 / t+l)$; on the other hand $f(1 / t+l)=f(1 / t)$ by l successive applications of Claim 3. Finally, $f(1 / t)=t$ by Claim 4, leading to the impossible $t=1$. The solution is complete.

A7. Prove that for any four positive real numbers a, b, c, d the inequality

$$
\frac{(a-b)(a-c)}{a+b+c}+\frac{(b-c)(b-d)}{b+c+d}+\frac{(c-d)(c-a)}{c+d+a}+\frac{(d-a)(d-b)}{d+a+b} \geq 0
$$

holds. Determine all cases of equality.
Solution 1. Denote the four terms by

$$
A=\frac{(a-b)(a-c)}{a+b+c}, \quad B=\frac{(b-c)(b-d)}{b+c+d}, \quad C=\frac{(c-d)(c-a)}{c+d+a}, \quad D=\frac{(d-a)(d-b)}{d+a+b} .
$$

The expression $2 A$ splits into two summands as follows,

$$
2 A=A^{\prime}+A^{\prime \prime} \quad \text { where } \quad A^{\prime}=\frac{(a-c)^{2}}{a+b+c}, \quad A^{\prime \prime}=\frac{(a-c)(a-2 b+c)}{a+b+c}
$$

this is easily verified. We analogously represent $2 B=B^{\prime}+B^{\prime \prime}, 2 C=C^{\prime}+C^{\prime \prime}, 2 B=D^{\prime}+D^{\prime \prime}$ and examine each of the sums $A^{\prime}+B^{\prime}+C^{\prime}+D^{\prime}$ and $A^{\prime \prime}+B^{\prime \prime}+C^{\prime \prime}+D^{\prime \prime}$ separately.

Write $s=a+b+c+d$; the denominators become $s-d, s-a, s-b, s-c$. By the CauchySchwarz inequality,

$$
\begin{aligned}
& \left(\frac{|a-c|}{\sqrt{s-d}} \cdot \sqrt{s-d}+\frac{|b-d|}{\sqrt{s-a}} \cdot \sqrt{s-a}+\frac{|c-a|}{\sqrt{s-b}} \cdot \sqrt{s-b}+\frac{|d-b|}{\sqrt{s-c}} \cdot \sqrt{s-c}\right)^{2} \\
& \quad \leq\left(\frac{(a-c)^{2}}{s-d}+\frac{(b-d)^{2}}{s-a}+\frac{(c-a)^{2}}{s-b}+\frac{(d-b)^{2}}{s-c}\right)(4 s-s)=3 s\left(A^{\prime}+B^{\prime}+C^{\prime}+D^{\prime}\right)
\end{aligned}
$$

Hence

$$
\begin{equation*}
A^{\prime}+B^{\prime}+C^{\prime}+D^{\prime} \geq \frac{(2|a-c|+2|b-d|)^{2}}{3 s} \geq \frac{16 \cdot|a-c| \cdot|b-d|}{3 s} . \tag{1}
\end{equation*}
$$

Next we estimate the absolute value of the other sum. We couple $A^{\prime \prime}$ with $C^{\prime \prime}$ to obtain

$$
\begin{aligned}
A^{\prime \prime}+C^{\prime \prime} & =\frac{(a-c)(a+c-2 b)}{s-d}+\frac{(c-a)(c+a-2 d)}{s-b} \\
& =\frac{(a-c)(a+c-2 b)(s-b)+(c-a)(c+a-2 d)(s-d)}{(s-d)(s-b)} \\
& =\frac{(a-c)(-2 b(s-b)-b(a+c)+2 d(s-d)+d(a+c))}{s(a+c)+b d} \\
& =\frac{3(a-c)(d-b)(a+c)}{M}, \quad \text { with } \quad M=s(a+c)+b d .
\end{aligned}
$$

Hence by cyclic shift

$$
B^{\prime \prime}+D^{\prime \prime}=\frac{3(b-d)(a-c)(b+d)}{N}, \quad \text { with } \quad N=s(b+d)+c a .
$$

Thus

$$
\begin{equation*}
A^{\prime \prime}+B^{\prime \prime}+C^{\prime \prime}+D^{\prime \prime}=3(a-c)(b-d)\left(\frac{b+d}{N}-\frac{a+c}{M}\right)=\frac{3(a-c)(b-d) W}{M N} \tag{2}
\end{equation*}
$$

where

$$
\begin{equation*}
W=(b+d) M-(a+c) N=b d(b+d)-a c(a+c) . \tag{3}
\end{equation*}
$$

Note that

$$
\begin{equation*}
M N>(a c(a+c)+b d(b+d)) s \geq|W| \cdot s \tag{4}
\end{equation*}
$$

Now (2) and (4) yield

$$
\begin{equation*}
\left|A^{\prime \prime}+B^{\prime \prime}+C^{\prime \prime}+D^{\prime \prime}\right| \leq \frac{3 \cdot|a-c| \cdot|b-d|}{s} \tag{5}
\end{equation*}
$$

Combined with (1) this results in

$$
\begin{aligned}
2(A+B & +C+D)=\left(A^{\prime}+B^{\prime}+C^{\prime}+D^{\prime}\right)+\left(A^{\prime \prime}+B^{\prime \prime}+C^{\prime \prime}+D^{\prime \prime}\right) \\
& \geq \frac{16 \cdot|a-c| \cdot|b-d|}{3 s}-\frac{3 \cdot|a-c| \cdot|b-d|}{s}=\frac{7 \cdot|a-c| \cdot|b-d|}{3(a+b+c+d)} \geq 0
\end{aligned}
$$

This is the required inequality. From the last line we see that equality can be achieved only if either $a=c$ or $b=d$. Since we also need equality in (1), this implies that actually $a=c$ and $b=d$ must hold simultaneously, which is obviously also a sufficient condition.

Solution 2. We keep the notations A, B, C, D, s, and also M, N, W from the preceding solution; the definitions of M, N, W and relations (3), (4) in that solution did not depend on the foregoing considerations. Starting from

$$
2 A=\frac{(a-c)^{2}+3(a+c)(a-c)}{a+b+c}-2 a+2 c
$$

we get

$$
\begin{aligned}
2(A & +C)=(a-c)^{2}\left(\frac{1}{s-d}+\frac{1}{s-b}\right)+3(a+c)(a-c)\left(\frac{1}{s-d}-\frac{1}{s-b}\right) \\
& =(a-c)^{2} \frac{2 s-b-d}{M}+3(a+c)(a-c) \cdot \frac{d-b}{M}=\frac{p(a-c)^{2}-3(a+c)(a-c)(b-d)}{M}
\end{aligned}
$$

where $p=2 s-b-d=s+a+c$. Similarly, writing $q=s+b+d$ we have

$$
2(B+D)=\frac{q(b-d)^{2}-3(b+d)(b-d)(c-a)}{N} ;
$$

specific grouping of terms in the numerators has its aim. Note that $p q>2 s^{2}$. By adding the fractions expressing $2(A+C)$ and $2(B+D)$,

$$
2(A+B+C+D)=\frac{p(a-c)^{2}}{M}+\frac{3(a-c)(b-d) W}{M N}+\frac{q(b-d)^{2}}{N}
$$

with W defined by (3).
Substitution $x=(a-c) / M, y=(b-d) / N$ brings the required inequality to the form

$$
\begin{equation*}
2(A+B+C+D)=M p x^{2}+3 W x y+N q y^{2} \geq 0 \tag{6}
\end{equation*}
$$

It will be enough to verify that the discriminant $\Delta=9 W^{2}-4 M N p q$ of the quadratic trinomial $M p t^{2}+3 W t+N q$ is negative; on setting $t=x / y$ one then gets (6). The first inequality in (4) together with $p q>2 s^{2}$ imply $4 M N p q>8 s^{3}(a c(a+c)+b d(b+d))$. Since

$$
(a+c) s^{3}>(a+c)^{4} \geq 4 a c(a+c)^{2} \quad \text { and likewise } \quad(b+d) s^{3}>4 b d(b+d)^{2}
$$

the estimate continues as follows,

$$
4 M N p q>8\left(4(a c)^{2}(a+c)^{2}+4(b d)^{2}(b+d)^{2}\right)>32(b d(b+d)-a c(a+c))^{2}=32 W^{2} \geq 9 W^{2}
$$

Thus indeed $\Delta<0$. The desired inequality (6) hence results. It becomes an equality if and only if $x=y=0$; equivalently, if and only if $a=c$ and simultaneously $b=d$.

Comment. The two solutions presented above do not differ significantly; large portions overlap. The properties of the number W turn out to be crucial in both approaches. The Cauchy-Schwarz inequality, applied in the first solution, is avoided in the second, which requires no knowledge beyond quadratic trinomials.

The estimates in the proof of $\Delta<0$ in the second solution seem to be very wasteful. However, they come close to sharp when the terms in one of the pairs $(a, c),(b, d)$ are equal and much bigger than those in the other pair.

In attempts to prove the inequality by just considering the six cases of arrangement of the numbers a, b, c, d on the real line, one soon discovers that the cases which create real trouble are precisely those in which a and c are both greater or both smaller than b and d.

Solution 3.

$$
\begin{gathered}
(a-b)(a-c)(a+b+d)(a+c+d)(b+c+d)= \\
=((a-b)(a+b+d))((a-c)(a+c+d))(b+c+d)= \\
=\left(a^{2}+a d-b^{2}-b d\right)\left(a^{2}+a d-c^{2}-c d\right)(b+c+d)= \\
=\left(a^{4}+2 a^{3} d-a^{2} b^{2}-a^{2} b d-a^{2} c^{2}-a^{2} c d+a^{2} d^{2}-a b^{2} d-a b d^{2}-a c^{2} d-a c d^{2}+b^{2} c^{2}+b^{2} c d+b c^{2} d+b c d^{2}\right)(b+c+d)= \\
=a^{4} b+a^{4} c+a^{4} d+\left(b^{3} c^{2}+a^{2} d^{3}\right)-a^{2} c^{3}+\left(2 a^{3} d^{2}-b^{3} a^{2}+c^{3} b^{2}\right)+ \\
+\left(b^{3} c d-c^{3} d a-d^{3} a b\right)+\left(2 a^{3} b d+c^{3} d b-d^{3} a c\right)+\left(2 a^{3} c d-b^{3} d a+d^{3} b c\right) \\
+\left(-a^{2} b^{2} c+3 b^{2} c^{2} d-2 a c^{2} d^{2}\right)+\left(-2 a^{2} b^{2} d+2 b c^{2} d^{2}\right)+\left(-a^{2} b c^{2}-2 a^{2} c^{2} d-2 a b^{2} d^{2}+2 b^{2} c d^{2}\right)+ \\
+\left(-2 a^{2} b c d-a b^{2} c d-a b c^{2} d-2 a b c d^{2}\right)
\end{gathered}
$$

Introducing the notation $S_{x y z w}=\sum_{c y c} a^{x} b^{y} c^{z} d^{w}$, one can write

$$
\begin{gathered}
\sum_{c y c}(a-b)(a-c)(a+b+d)(a+c+d)(b+c+d)= \\
=S_{4100}+S_{4010}+S_{4001}+2 S_{3200}-S_{3020}+2 S_{3002}-S_{3110}+2 S_{3101}+2 S_{3011}-3 S_{2120}-6 S_{2111}= \\
+\left(S_{4100}+S_{4001}+\frac{1}{2} S_{3110}+\frac{1}{2} S_{3011}-3 S_{2120}\right)+ \\
+\left(S_{4010}-S_{3020}-\frac{3}{2} S_{3110}+\frac{3}{2} S_{3011}+\frac{9}{16} S_{2210}+\frac{9}{16} S_{2201}-\frac{9}{8} S_{2111}\right)+ \\
+\frac{9}{16}\left(S_{3200}-S_{2210}-S_{2201}+S_{3002}\right)+\frac{23}{16}\left(S_{3200}-2 S_{3101}+S_{3002}\right)+\frac{39}{8}\left(S_{3101}-S_{2111}\right),
\end{gathered}
$$

where the expressions

$$
\begin{gathered}
S_{4100}+S_{4001}+\frac{1}{2} S_{3110}+\frac{1}{2} S_{3011}-3 S_{2120}=\sum_{c y c}\left(a^{4} b+b c^{4}+\frac{1}{2} a^{3} b c+\frac{1}{2} a b c^{3}-3 a^{2} b c^{2}\right), \\
S_{4010}-S_{3020}-\frac{3}{2} S_{3110}+\frac{3}{2} S_{3011}+\frac{9}{16} S_{2210}+\frac{9}{16} S_{2201}-\frac{9}{8} S_{2111}=\sum_{c y c} a^{2} c\left(a-c-\frac{3}{4} b+\frac{3}{4} d\right)^{2}, \\
S_{3200}-S_{2210}-S_{2201}+S_{3002}=\sum_{c y c} b^{2}\left(a^{3}-a^{2} c-a c^{2}+c^{3}\right)=\sum_{c y c} b^{2}(a+c)(a-c)^{2},
\end{gathered}
$$

$$
S_{3200}-2 S_{3101}+S_{3002}=\sum_{c y c} a^{3}(b-d)^{2} \quad \text { and } \quad S_{3101}-S_{2111}=\frac{1}{3} \sum_{c y c} b d\left(2 a^{3}+c^{3}-3 a^{2} c\right)
$$

are all nonnegative.

Combinatorics

C1. In the plane we consider rectangles whose sides are parallel to the coordinate axes and have positive length. Such a rectangle will be called a box. Two boxes intersect if they have a common point in their interior or on their boundary.

Find the largest n for which there exist n boxes B_{1}, \ldots, B_{n} such that B_{i} and B_{j} intersect if and only if $i \not \equiv j \pm 1(\bmod n)$.

Solution. The maximum number of such boxes is 6 . One example is shown in the figure.

Now we show that 6 is the maximum. Suppose that boxes B_{1}, \ldots, B_{n} satisfy the condition. Let the closed intervals I_{k} and J_{k} be the projections of B_{k} onto the x - and y-axis, for $1 \leq k \leq n$.

If B_{i} and B_{j} intersect, with a common point (x, y), then $x \in I_{i} \cap I_{j}$ and $y \in J_{i} \cap J_{j}$. So the intersections $I_{i} \cap I_{j}$ and $J_{i} \cap J_{j}$ are nonempty. Conversely, if $x \in I_{i} \cap I_{j}$ and $y \in J_{i} \cap J_{j}$ for some real numbers x, y, then (x, y) is a common point of B_{i} and B_{j}. Putting it around, B_{i} and B_{j} are disjoint if and only if their projections on at least one coordinate axis are disjoint.

For brevity we call two boxes or intervals adjacent if their indices differ by 1 modulo n, and nonadjacent otherwise.

The adjacent boxes B_{k} and B_{k+1} do not intersect for each $k=1, \ldots, n$. Hence (I_{k}, I_{k+1}) or (J_{k}, J_{k+1}) is a pair of disjoint intervals, $1 \leq k \leq n$. So there are at least n pairs of disjoint intervals among $\left(I_{1}, I_{2}\right), \ldots,\left(I_{n-1}, I_{n}\right),\left(I_{n}, I_{1}\right) ;\left(J_{1}, J_{2}\right), \ldots,\left(J_{n-1}, J_{n}\right),\left(J_{n}, J_{1}\right)$.

Next, every two nonadjacent boxes intersect, hence their projections on both axes intersect, too. Then the claim below shows that at most 3 pairs among $\left(I_{1}, I_{2}\right), \ldots,\left(I_{n-1}, I_{n}\right),\left(I_{n}, I_{1}\right)$ are disjoint, and the same holds for $\left(J_{1}, J_{2}\right), \ldots,\left(J_{n-1}, J_{n}\right),\left(J_{n}, J_{1}\right)$. Consequently $n \leq 3+3=6$, as stated. Thus we are left with the claim and its justification.
Claim. Let $\Delta_{1}, \Delta_{2}, \ldots, \Delta_{n}$ be intervals on a straight line such that every two nonadjacent intervals intersect. Then Δ_{k} and Δ_{k+1} are disjoint for at most three values of $k=1, \ldots, n$.
Proof. Denote $\Delta_{k}=\left[a_{k}, b_{k}\right], 1 \leq k \leq n$. Let $\alpha=\max \left(a_{1}, \ldots, a_{n}\right)$ be the rightmost among the left endpoints of $\Delta_{1}, \ldots, \Delta_{n}$, and let $\beta=\min \left(b_{1}, \ldots, b_{n}\right)$ be the leftmost among their right endpoints. Assume that $\alpha=a_{2}$ without loss of generality.

If $\alpha \leq \beta$ then $a_{i} \leq \alpha \leq \beta \leq b_{i}$ for all i. Every Δ_{i} contains α, and thus no disjoint pair $\left(\Delta_{i}, \Delta_{i+1}\right)$ exists.

If $\beta<\alpha$ then $\beta=b_{i}$ for some i such that $a_{i}<b_{i}=\beta<\alpha=a_{2}<b_{2}$, hence Δ_{2} and Δ_{i} are disjoint. Now Δ_{2} intersects all remaining intervals except possibly Δ_{1} and Δ_{3}, so Δ_{2} and Δ_{i} can be disjoint only if $i=1$ or $i=3$. Suppose by symmetry that $i=3$; then $\beta=b_{3}$. Since each of the intervals $\Delta_{4}, \ldots, \Delta_{n}$ intersects Δ_{2}, we have $a_{i} \leq \alpha \leq b_{i}$ for $i=4, \ldots, n$. Therefore $\alpha \in \Delta_{4} \cap \ldots \cap \Delta_{n}$, in particular $\Delta_{4} \cap \ldots \cap \Delta_{n} \neq \emptyset$. Similarly, $\Delta_{5}, \ldots, \Delta_{n}, \Delta_{1}$ all intersect Δ_{3}, so that $\Delta_{5} \cap \ldots \cap \Delta_{n} \cap \Delta_{1} \neq \emptyset$ as $\beta \in \Delta_{5} \cap \ldots \cap \Delta_{n} \cap \Delta_{1}$. This leaves $\left(\Delta_{1}, \Delta_{2}\right),\left(\Delta_{2}, \Delta_{3}\right)$ and $\left(\Delta_{3}, \Delta_{4}\right)$ as the only candidates for disjoint interval pairs, as desired.

Comment. The problem is a two-dimensional version of the original proposal which is included below. The extreme shortage of easy and appropriate submissions forced the Problem Selection Committee to shortlist a simplified variant. The same one-dimensional Claim is used in both versions.
Original proposal. We consider parallelepipeds in three-dimensional space, with edges parallel to the coordinate axes and of positive length. Such a parallelepiped will be called a box. Two boxes intersect if they have a common point in their interior or on their boundary.

Find the largest n for which there exist n boxes B_{1}, \ldots, B_{n} such that B_{i} and B_{j} intersect if and only if $i \not \equiv j \pm 1(\bmod n)$.

The maximum number of such boxes is 9 . Suppose that boxes B_{1}, \ldots, B_{n} satisfy the condition. Let the closed intervals I_{k}, J_{k} and K_{k} be the projections of box B_{k} onto the x-, y and z-axis, respectively, for $1 \leq k \leq n$. As before, B_{i} and B_{j} are disjoint if and only if their projections on at least one coordinate axis are disjoint.

We call again two boxes or intervals adjacent if their indices differ by 1 modulo n, and nonadjacent otherwise.

The adjacent boxes B_{i} and B_{i+1} do not intersect for each $i=1, \ldots, n$. Hence at least one of the pairs $\left(I_{i}, I_{i+1}\right),\left(J_{i}, J_{i+1}\right)$ and $\left(K_{i}, K_{i+1}\right)$ is a pair of disjoint intervals. So there are at least n pairs of disjoint intervals among $\left(I_{i}, I_{i+1}\right),\left(J_{i}, J_{i+1}\right),\left(K_{i}, K_{i+1}\right), 1 \leq i \leq n$.

Next, every two nonadjacent boxes intersect, hence their projections on the three axes intersect, too. Referring to the Claim in the solution of the two-dimensional version, we cocnclude that at most 3 pairs among $\left(I_{1}, I_{2}\right), \ldots,\left(I_{n-1}, I_{n}\right),\left(I_{n}, I_{1}\right)$ are disjoint; the same holds for $\left(J_{1}, J_{2}\right), \ldots,\left(J_{n-1}, J_{n}\right),\left(J_{n}, J_{1}\right)$ and $\left(K_{1}, K_{2}\right), \ldots,\left(K_{n-1}, K_{n}\right),\left(K_{n}, K_{1}\right)$. Consequently $n \leq 3+3+3=9$, as stated.

For $n=9$, the desired system of boxes exists. Consider the intervals in the following table:

i	I_{i}	J_{i}	K_{i}
1	$[1,4]$	$[1,6]$	$[3,6]$
2	$[5,6]$	$[1,6]$	$[1,6]$
3	$[1,2]$	$[1,6]$	$[1,6]$
4	$[3,6]$	$[1,4]$	$[1,6]$
5	$[1,6]$	$[5,6]$	$[1,6]$
6	$[1,6]$	$[1,2]$	$[1,6]$
7	$[1,6]$	$[3,6]$	$[1,4]$
8	$[1,6]$	$[1,6]$	$[5,6]$
9	$[1,6]$	$[1,6]$	$[1,2]$

We have $I_{1} \cap I_{2}=I_{2} \cap I_{3}=I_{3} \cap I_{4}=\emptyset, J_{4} \cap J_{5}=J_{5} \cap J_{6}=J_{6} \cap J_{7}=\emptyset$, and finally $K_{7} \cap K_{8}=K_{8} \cap K_{9}=K_{9} \cap K_{1}=\emptyset$. The intervals in each column intersect in all other cases. It follows that the boxes $B_{i}=I_{i} \times J_{i} \times K_{i}, i=1, \ldots, 9$, have the stated property.

C2. For every positive integer n determine the number of permutations $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ of the set $\{1,2, \ldots, n\}$ with the following property:

$$
2\left(a_{1}+a_{2}+\cdots+a_{k}\right) \quad \text { is divisible by } k \text { for } k=1,2, \ldots, n \text {. }
$$

Solution. For each n let F_{n} be the number of permutations of $\{1,2, \ldots, n\}$ with the required property; call them nice. For $n=1,2,3$ every permutation is nice, so $F_{1}=1, F_{2}=2, F_{3}=6$.

Take an $n>3$ and consider any nice permutation $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ of $\{1,2, \ldots, n\}$. Then $n-1$ must be a divisor of the number

$$
\begin{aligned}
& 2\left(a_{1}+a_{2}+\cdots+a_{n-1}\right)=2\left((1+2+\cdots+n)-a_{n}\right) \\
& \quad=n(n+1)-2 a_{n}=(n+2)(n-1)+\left(2-2 a_{n}\right)
\end{aligned}
$$

So $2 a_{n}-2$ must be divisible by $n-1$, hence equal to 0 or $n-1$ or $2 n-2$. This means that

$$
a_{n}=1 \quad \text { or } \quad a_{n}=\frac{n+1}{2} \quad \text { or } \quad a_{n}=n
$$

Suppose that $a_{n}=(n+1) / 2$. Since the permutation is nice, taking $k=n-2$ we get that $n-2$ has to be a divisor of

$$
\begin{aligned}
2\left(a_{1}+a_{2}+\right. & \left.\cdots+a_{n-2}\right)=2\left((1+2+\cdots+n)-a_{n}-a_{n-1}\right) \\
& =n(n+1)-(n+1)-2 a_{n-1}=(n+2)(n-2)+\left(3-2 a_{n-1}\right)
\end{aligned}
$$

So $2 a_{n-1}-3$ should be divisible by $n-2$, hence equal to 0 or $n-2$ or $2 n-4$. Obviously 0 and $2 n-4$ are excluded because $2 a_{n-1}-3$ is odd. The remaining possibility ($2 a_{n-1}-3=n-2$) leads to $a_{n-1}=(n+1) / 2=a_{n}$, which also cannot hold. This eliminates $(n+1) / 2$ as a possible value of a_{n}. Consequently $a_{n}=1$ or $a_{n}=n$.

If $a_{n}=n$ then $\left(a_{1}, a_{2}, \ldots, a_{n-1}\right)$ is a nice permutation of $\{1,2, \ldots, n-1\}$. There are F_{n-1} such permutations. Attaching n to any one of them at the end creates a nice permutation of $\{1,2, \ldots, n\}$.

If $a_{n}=1$ then $\left(a_{1}-1, a_{2}-1, \ldots, a_{n-1}-1\right)$ is a permutation of $\{1,2, \ldots, n-1\}$. It is also nice because the number

$$
2\left(\left(a_{1}-1\right)+\cdots+\left(a_{k}-1\right)\right)=2\left(a_{1}+\cdots+a_{k}\right)-2 k
$$

is divisible by k, for any $k \leq n-1$. And again, any one of the F_{n-1} nice permutations $\left(b_{1}, b_{2}, \ldots, b_{n-1}\right)$ of $\{1,2, \ldots, n-1\}$ gives rise to a nice permutation of $\{1,2, \ldots, n\}$ whose last term is 1 , namely $\left(b_{1}+1, b_{2}+1, \ldots, b_{n-1}+1,1\right)$.

The bijective correspondences established in both cases show that there are F_{n-1} nice permutations of $\{1,2, \ldots, n\}$ with the last term 1 and also F_{n-1} nice permutations of $\{1,2, \ldots, n\}$ with the last term n. Hence follows the recurrence $F_{n}=2 F_{n-1}$. With the base value $F_{3}=6$ this gives the outcome formula $F_{n}=3 \cdot 2^{n-2}$ for $n \geq 3$.

C3. In the coordinate plane consider the set S of all points with integer coordinates. For a positive integer k, two distinct points $A, B \in S$ will be called k-friends if there is a point $C \in S$ such that the area of the triangle $A B C$ is equal to k. A set $T \subset S$ will be called a k-clique if every two points in T are k-friends. Find the least positive integer k for which there exists a k-clique with more than 200 elements.

Solution. To begin, let us describe those points $B \in S$ which are k-friends of the point $(0,0)$. By definition, $B=(u, v)$ satisfies this condition if and only if there is a point $C=(x, y) \in S$ such that $\frac{1}{2}|u y-v x|=k$. (This is a well-known formula expressing the area of triangle $A B C$ when A is the origin.)

To say that there exist integers x, y for which $|u y-v x|=2 k$, is equivalent to saying that the greatest common divisor of u and v is also a divisor of $2 k$. Summing up, a point $B=(u, v) \in S$ is a k-friend of $(0,0)$ if and only if $\operatorname{gcd}(u, v)$ divides $2 k$.

Translation by a vector with integer coordinates does not affect k-friendship; if two points are k-friends, so are their translates. It follows that two points $A, B \in S, A=(s, t), B=(u, v)$, are k-friends if and only if the point $(u-s, v-t)$ is a k-friend of $(0,0)$; i.e., if $\operatorname{gcd}(u-s, v-t) \mid 2 k$.

Let n be a positive integer which does not divide $2 k$. We claim that a k-clique cannot have more than n^{2} elements.

Indeed, all points $(x, y) \in S$ can be divided into n^{2} classes determined by the remainders that x and y leave in division by n. If a set T has more than n^{2} elements, some two points $A, B \in T, A=(s, t), B=(u, v)$, necessarily fall into the same class. This means that $n \mid u-s$ and $n \mid v-t$. Hence $n \mid d$ where $d=\operatorname{gcd}(u-s, v-t)$. And since n does not divide $2 k$, also d does not divide $2 k$. Thus A and B are not k-friends and the set T is not a k-clique.

Now let $M(k)$ be the least positive integer which does not divide $2 k$. Write $M(k)=m$ for the moment and consider the set T of all points (x, y) with $0 \leq x, y<m$. There are m^{2} of them. If $A=(s, t), B=(u, v)$ are two distinct points in T then both differences $|u-s|,|v-t|$ are integers less than m and at least one of them is positive. By the definition of m, every positive integer less than m divides $2 k$. Therefore $u-s$ (if nonzero) divides $2 k$, and the same is true of $v-t$. So $2 k$ is divisible by $\operatorname{gcd}(u-s, v-t)$, meaning that A, B are k-friends. Thus T is a k-clique.

It follows that the maximum size of a k-clique is $M(k)^{2}$, with $M(k)$ defined as above. We are looking for the minimum k such that $M(k)^{2}>200$.

By the definition of $M(k), 2 k$ is divisible by the numbers $1,2, \ldots, M(k)-1$, but not by $M(k)$ itself. If $M(k)^{2}>200$ then $M(k) \geq 15$. Trying to hit $M(k)=15$ we get a contradiction immediately ($2 k$ would have to be divisible by 3 and 5 , but not by 15).

So let us try $M(k)=16$. Then $2 k$ is divisible by the numbers $1,2, \ldots, 15$, hence also by their least common multiple L, but not by 16 . And since L is not a multiple of 16 , we infer that $k=L / 2$ is the least k with $M(k)=16$.

Finally, observe that if $M(k) \geq 17$ then $2 k$ must be divisible by the least common multiple of $1,2, \ldots, 16$, which is equal to $2 L$. Then $2 k \geq 2 L$, yielding $k>L / 2$.

In conclusion, the least k with the required property is equal to $L / 2=180180$.

C4. Let n and k be fixed positive integers of the same parity, $k \geq n$. We are given $2 n$ lamps numbered 1 through $2 n$; each of them can be on or off. At the beginning all lamps are off. We consider sequences of k steps. At each step one of the lamps is switched (from off to on or from on to off).

Let N be the number of k-step sequences ending in the state: lamps $1, \ldots, n$ on, lamps $n+1, \ldots, 2 n$ off.

Let M be the number of k-step sequences leading to the same state and not touching lamps $n+1, \ldots, 2 n$ at all.

Find the ratio N / M.
Solution. A sequence of k switches ending in the state as described in the problem statement (lamps $1, \ldots, n$ on, lamps $n+1, \ldots, 2 n$ off) will be called an admissible process. If, moreover, the process does not touch the lamps $n+1, \ldots, 2 n$, it will be called restricted. So there are N admissible processes, among which M are restricted.

In every admissible process, restricted or not, each one of the lamps $1, \ldots, n$ goes from off to on, so it is switched an odd number of times; and each one of the lamps $n+1, \ldots, 2 n$ goes from off to off, so it is switched an even number of times.

Notice that $M>0$; i.e., restricted admissible processes do exist (it suffices to switch each one of the lamps $1, \ldots, n$ just once and then choose one of them and switch it $k-n$ times, which by hypothesis is an even number).

Consider any restricted admissible process \mathbf{p}. Take any lamp $\ell, 1 \leq \ell \leq n$, and suppose that it was switched k_{ℓ} times. As noticed, k_{ℓ} must be odd. Select arbitrarily an even number of these k_{ℓ} switches and replace each of them by the switch of lamp $n+\ell$. This can be done in $2^{k_{\ell}-1}$ ways (because a k_{ℓ}-element set has $2^{k_{\ell}-1}$ subsets of even cardinality). Notice that $k_{1}+\cdots+k_{n}=k$.

These actions are independent, in the sense that the action involving lamp ℓ does not affect the action involving any other lamp. So there are $2^{k_{1}-1} \cdot 2^{k_{2}-1} \cdots 2^{k_{n}-1}=2^{k-n}$ ways of combining these actions. In any of these combinations, each one of the lamps $n+1, \ldots, 2 n$ gets switched an even number of times and each one of the lamps $1, \ldots, n$ remains switched an odd number of times, so the final state is the same as that resulting from the original process \mathbf{p}.

This shows that every restricted admissible process \mathbf{p} can be modified in 2^{k-n} ways, giving rise to 2^{k-n} distinct admissible processes (with all lamps allowed).

Now we show that every admissible process \mathbf{q} can be achieved in that way. Indeed, it is enough to replace every switch of a lamp with a label $\ell>n$ that occurs in \mathbf{q} by the switch of the corresponding lamp $\ell-n$; in the resulting process \mathbf{p} the lamps $n+1, \ldots, 2 n$ are not involved.

Switches of each lamp with a label $\ell>n$ had occurred in \mathbf{q} an even number of times. So the performed replacements have affected each lamp with a label $\ell \leq n$ also an even number of times; hence in the overall effect the final state of each lamp has remained the same. This means that the resulting process \mathbf{p} is admissible - and clearly restricted, as the lamps $n+1, \ldots, 2 n$ are not involved in it any more.

If we now take process \mathbf{p} and reverse all these replacements, then we obtain process \mathbf{q}. These reversed replacements are nothing else than the modifications described in the foregoing paragraphs.

Thus there is a one - to $-\left(2^{k-n}\right)$ correspondence between the M restricted admissible processes and the total of N admissible processes. Therefore $N / M=2^{k-n}$.

C5. Let $S=\left\{x_{1}, x_{2}, \ldots, x_{k+\ell}\right\}$ be a $(k+\ell)$-element set of real numbers contained in the interval $[0,1] ; k$ and ℓ are positive integers. A k-element subset $A \subset S$ is called nice if

$$
\left|\frac{1}{k} \sum_{x_{i} \in A} x_{i}-\frac{1}{\ell} \sum_{x_{j} \in S \backslash A} x_{j}\right| \leq \frac{k+\ell}{2 k \ell} .
$$

Prove that the number of nice subsets is at least $\frac{2}{k+\ell}\binom{k+\ell}{k}$.
Solution. For a k-element subset $A \subset S$, let $f(A)=\frac{1}{k} \sum_{x_{i} \in A} x_{i}-\frac{1}{\ell} \sum_{x_{j} \in S \backslash A} x_{j}$. Denote $\frac{k+\ell}{2 k \ell}=d$. By definition a subset A is nice if $|f(A)| \leq d$.

To each permutation $\left(y_{1}, y_{2}, \ldots, y_{k+\ell}\right)$ of the set $S=\left\{x_{1}, x_{2}, \ldots, x_{k+\ell}\right\}$ we assign $k+\ell$ subsets of S with k elements each, namely $A_{i}=\left\{y_{i}, y_{i+1}, \ldots, y_{i+k-1}\right\}, i=1,2, \ldots, k+\ell$. Indices are taken modulo $k+\ell$ here and henceforth. In other words, if $y_{1}, y_{2}, \ldots, y_{k+\ell}$ are arranged around a circle in this order, the sets in question are all possible blocks of k consecutive elements.
Claim. At least two nice sets are assigned to every permutation of S.
Proof. Adjacent sets A_{i} and A_{i+1} differ only by the elements y_{i} and $y_{i+k}, i=1, \ldots, k+\ell$. By the definition of f, and because $y_{i}, y_{i+k} \in[0,1]$,

$$
\left|f\left(A_{i+1}\right)-f\left(A_{i}\right)\right|=\left|\left(\frac{1}{k}+\frac{1}{\ell}\right)\left(y_{i+k}-y_{i}\right)\right| \leq \frac{1}{k}+\frac{1}{\ell}=2 d
$$

Each element $y_{i} \in S$ belongs to exactly k of the sets $A_{1}, \ldots, A_{k+\ell}$. Hence in k of the expressions $f\left(A_{1}\right), \ldots, f\left(A_{k+\ell}\right)$ the coefficient of y_{i} is $1 / k$; in the remaining ℓ expressions, its coefficient is $-1 / \ell$. So the contribution of y_{i} to the sum of all $f\left(A_{i}\right)$ equals $k \cdot 1 / k-\ell \cdot 1 / \ell=0$. Since this holds for all i, it follows that $f\left(A_{1}\right)+\cdots+f\left(A_{k+\ell}\right)=0$.

If $f\left(A_{p}\right)=\min f\left(A_{i}\right), f\left(A_{q}\right)=\max f\left(A_{i}\right)$, we obtain in particular $f\left(A_{p}\right) \leq 0, f\left(A_{q}\right) \geq 0$. Let $p<q$ (the case $p>q$ is analogous; and the claim is true for $p=q$ as $f\left(A_{i}\right)=0$ for all i).

We are ready to prove that at least two of the sets $A_{1}, \ldots, A_{k+\ell}$ are nice. The interval $[-d, d]$ has length $2 d$, and we saw that adjacent numbers in the circular arrangement $f\left(A_{1}\right), \ldots, f\left(A_{k+\ell}\right)$ differ by at most $2 d$. Suppose that $f\left(A_{p}\right)<-d$ and $f\left(A_{q}\right)>d$. Then one of the numbers $f\left(A_{p+1}\right), \ldots, f\left(A_{q-1}\right)$ lies in $[-d, d]$, and also one of the numbers $f\left(A_{q+1}\right), \ldots, f\left(A_{p-1}\right)$ lies there. Consequently, one of the sets A_{p+1}, \ldots, A_{q-1} is nice, as well as one of the sets A_{q+1}, \ldots, A_{p-1}. If $-d \leq f\left(A_{p}\right)$ and $f\left(A_{q}\right) \leq d$ then A_{p} and A_{q} are nice.

Let now $f\left(A_{p}\right)<-d$ and $f\left(A_{q}\right) \leq d$. Then $f\left(A_{p}\right)+f\left(A_{q}\right)<0$, and since $\sum f\left(A_{i}\right)=0$, there is an $r \neq q$ such that $f\left(A_{r}\right)>0$. We have $0<f\left(A_{r}\right) \leq f\left(A_{q}\right) \leq d$, so the sets $f\left(A_{r}\right)$ and $f\left(A_{q}\right)$ are nice. The only case remaining, $-d \leq f\left(A_{p}\right)$ and $d<f\left(A_{q}\right)$, is analogous.

Apply the claim to each of the $(k+\ell)$! permutations of $S=\left\{x_{1}, x_{2}, \ldots, x_{k+\ell}\right\}$. This gives at least $2(k+\ell)$! nice sets, counted with repetitions: each nice set is counted as many times as there are permutations to which it is assigned.

On the other hand, each k-element set $A \subset S$ is assigned to exactly $(k+\ell) k!\ell!$ permutations. Indeed, such a permutation $\left(y_{1}, y_{2}, \ldots, y_{k+\ell}\right)$ is determined by three independent choices: an in$\operatorname{dex} i \in\{1,2, \ldots, k+\ell\}$ such that $A=\left\{y_{i}, y_{i+1}, \ldots, y_{i+k-1}\right\}$, a permutation $\left(y_{i}, y_{i+1}, \ldots, y_{i+k-1}\right)$ of the set A, and a permutation $\left(y_{i+k}, y_{i+k+1}, \ldots, y_{i-1}\right)$ of the set $S \backslash A$.

In summary, there are at least $\frac{2(k+\ell)!}{(k+\ell) k!\ell!}=\frac{2}{k+\ell}\binom{k+\ell}{k}$ nice sets.

C6. For $n \geq 2$, let $S_{1}, S_{2}, \ldots, S_{2^{n}}$ be 2^{n} subsets of $A=\left\{1,2,3, \ldots, 2^{n+1}\right\}$ that satisfy the following property: There do not exist indices a and b with $a<b$ and elements $x, y, z \in A$ with $x<y<z$ such that $y, z \in S_{a}$ and $x, z \in S_{b}$. Prove that at least one of the sets $S_{1}, S_{2}, \ldots, S_{2^{n}}$ contains no more than $4 n$ elements.

Solution 1. We prove that there exists a set S_{a} with at most $3 n+1$ elements.
Given a $k \in\{1, \ldots, n\}$, we say that an element $z \in A$ is k-good to a set S_{a} if $z \in S_{a}$ and S_{a} contains two other elements x and y with $x<y<z$ such that $z-y<2^{k}$ and $z-x \geq 2^{k}$. Also, $z \in A$ will be called good to S_{a} if z is k-good to S_{a} for some $k=1, \ldots, n$.

We claim that each $z \in A$ can be k-good to at most one set S_{a}. Indeed, suppose on the contrary that z is k-good simultaneously to S_{a} and S_{b}, with $a<b$. Then there exist $y_{a} \in S_{a}$, $y_{a}<z$, and $x_{b} \in S_{b}, x_{b}<z$, such that $z-y_{a}<2^{k}$ and $z-x_{b} \geq 2^{k}$. On the other hand, since $z \in S_{a} \cap S_{b}$, by the condition of the problem there is no element of S_{a} strictly between x_{b} and z. Hence $y_{a} \leq x_{b}$, implying $z-y_{a} \geq z-x_{b}$. However this contradicts $z-y_{a}<2^{k}$ and $z-x_{b} \geq 2^{k}$. The claim follows.

As a consequence, a fixed $z \in A$ can be good to at most n of the given sets (no more than one of them for each $k=1, \ldots, n$).

Furthermore, let $u_{1}<u_{2}<\cdots<u_{m}<\cdots<u_{p}$ be all elements of a fixed set S_{a} that are not good to S_{a}. We prove that $u_{m}-u_{1}>2\left(u_{m-1}-u_{1}\right)$ for all $m \geq 3$.

Indeed, assume that $u_{m}-u_{1} \leq 2\left(u_{m-1}-u_{1}\right)$ holds for some $m \geq 3$. This inequality can be written as $2\left(u_{m}-u_{m-1}\right) \leq u_{m}-u_{1}$. Take the unique k such that $2^{k} \leq u_{m}-u_{1}<2^{k+1}$. Then $2\left(u_{m}-u_{m-1}\right) \leq u_{m}-u_{1}<2^{k+1}$ yields $u_{m}-u_{m-1}<2^{k}$. However the elements $z=u_{m}, x=u_{1}$, $y=u_{m-1}$ of S_{a} then satisfy $z-y<2^{k}$ and $z-x \geq 2^{k}$, so that $z=u_{m}$ is k-good to S_{a}.

Thus each term of the sequence $u_{2}-u_{1}, u_{3}-u_{1}, \ldots, u_{p}-u_{1}$ is more than twice the previous one. Hence $u_{p}-u_{1}>2^{p-1}\left(u_{2}-u_{1}\right) \geq 2^{p-1}$. But $u_{p} \in\left\{1,2,3, \ldots, 2^{n+1}\right\}$, so that $u_{p} \leq 2^{n+1}$. This yields $p-1 \leq n$, i. e. $p \leq n+1$.

In other words, each set S_{a} contains at most $n+1$ elements that are not good to it.
To summarize the conclusions, mark with red all elements in the sets S_{a} that are good to the respective set, and with blue the ones that are not good. Then the total number of red elements, counting multiplicities, is at most $n \cdot 2^{n+1}$ (each $z \in A$ can be marked red in at most n sets). The total number of blue elements is at most $(n+1) 2^{n}$ (each set S_{a} contains at most $n+1$ blue elements). Therefore the sum of cardinalities of $S_{1}, S_{2}, \ldots, S_{2^{n}}$ does not exceed $(3 n+1) 2^{n}$. By averaging, the smallest set has at most $3 n+1$ elements.

Solution 2. We show that one of the sets S_{a} has at most $2 n+1$ elements. In the sequel $|\cdot|$ denotes the cardinality of a (finite) set.
Claim. For $n \geq 2$, suppose that k subsets S_{1}, \ldots, S_{k} of $\left\{1,2, \ldots, 2^{n}\right\}$ (not necessarily different) satisfy the condition of the problem. Then

$$
\sum_{i=1}^{k}\left(\left|S_{i}\right|-n\right) \leq(2 n-1) 2^{n-2}
$$

Proof. Observe that if the sets $S_{i}(1 \leq i \leq k)$ satisfy the condition then so do their arbitrary subsets $T_{i}(1 \leq i \leq k)$. The condition also holds for the sets $t+S_{i}=\left\{t+x \mid x \in S_{i}\right\}$ where t is arbitrary.

Note also that a set may occur more than once among S_{1}, \ldots, S_{k} only if its cardinality is less than 3 , in which case its contribution to the sum $\sum_{i=1}^{k}\left(\left|S_{i}\right|-n\right)$ is nonpositive (as $n \geq 2$).

The proof is by induction on n. In the base case $n=2$ we have subsets S_{i} of $\{1,2,3,4\}$. Only the ones of cardinality 3 and 4 need to be considered by the remark above; each one of
them occurs at most once among S_{1}, \ldots, S_{k}. If $S_{i}=\{1,2,3,4\}$ for some i then no S_{j} is a 3 -element subset in view of the condition, hence $\sum_{i=1}^{k}\left(\left|S_{i}\right|-2\right) \leq 2$. By the condition again, it is impossible that $S_{i}=\{1,3,4\}$ and $S_{j}=\{2,3,4\}$ for some i, j. So if $\left|S_{i}\right| \leq 3$ for all i then at most 3 summands $\left|S_{i}\right|-2$ are positive, corresponding to 3 -element subsets. This implies $\sum_{i=1}^{k}\left(\left|S_{i}\right|-2\right) \leq 3$, therefore the conclusion is true for $n=2$.

Suppose that the claim holds for some $n \geq 2$, and let the sets $S_{1}, \ldots, S_{k} \subseteq\left\{1,2, \ldots, 2^{n+1}\right\}$ satisfy the given property. Denote $U_{i}=S_{i} \cap\left\{1,2, \ldots, 2^{n}\right\}, V_{i}=S_{i} \cap\left\{2^{n}+1, \ldots, 2^{n+1}\right\}$. Let

$$
I=\left\{i\left|1 \leq i \leq k,\left|U_{i}\right| \neq 0\right\}, \quad J=\{1, \ldots, k\} \backslash I\right.
$$

The sets S_{j} with $j \in J$ are all contained in $\left\{2^{n}+1, \ldots, 2^{n+1}\right\}$, so the induction hypothesis applies to their translates $-2^{n}+S_{j}$ which have the same cardinalities. Consequently, this gives $\sum_{j \in J}\left(\left|S_{j}\right|-n\right) \leq(2 n-1) 2^{n-2}$, so that

$$
\begin{equation*}
\sum_{j \in J}\left(\left|S_{j}\right|-(n+1)\right) \leq \sum_{j \in J}\left(\left|S_{j}\right|-n\right) \leq(2 n-1) 2^{n-2} \tag{1}
\end{equation*}
$$

For $i \in I$, denote by v_{i} the least element of V_{i}. Observe that if V_{a} and V_{b} intersect, with $a<b$, $a, b \in I$, then v_{a} is their unique common element. Indeed, let $z \in V_{a} \cap V_{b} \subseteq S_{a} \cap S_{b}$ and let m be the least element of S_{b}. Since $b \in I$, we have $m \leq 2^{n}$. By the condition, there is no element of S_{a} strictly between $m \leq 2^{n}$ and $z>2^{n}$, which implies $z=v_{a}$.

It follows that if the element v_{i} is removed from each V_{i}, a family of pairwise disjoint sets $W_{i}=V_{i} \backslash\left\{v_{i}\right\}$ is obtained, $i \in I$ (we assume $W_{i}=\emptyset$ if $V_{i}=\emptyset$). As $W_{i} \subseteq\left\{2^{n}+1, \ldots, 2^{n+1}\right\}$ for all i, we infer that $\sum_{i \in I}\left|W_{i}\right| \leq 2^{n}$. Therefore $\sum_{i \in I}\left(\left|V_{i}\right|-1\right) \leq \sum_{i \in I}\left|W_{i}\right| \leq 2^{n}$.

On the other hand, the induction hypothesis applies directly to the sets $U_{i}, i \in I$, so that $\sum_{i \in \mathcal{I}}\left(\left|U_{i}\right|-n\right) \leq(2 n-1) 2^{n-2}$. In summary,

$$
\begin{equation*}
\sum_{i \in I}\left(\left|S_{i}\right|-(n+1)\right)=\sum_{i \in I}\left(\left|U_{i}\right|-n\right)+\sum_{i \in I}\left(\left|V_{i}\right|-1\right) \leq(2 n-1) 2^{n-2}+2^{n} \tag{2}
\end{equation*}
$$

The estimates (1) and (2) are sufficient to complete the inductive step:

$$
\begin{aligned}
\sum_{i=1}^{k}\left(\left|S_{i}\right|-(n+1)\right) & =\sum_{i \in I}\left(\left|S_{i}\right|-(n+1)\right)+\sum_{j \in J}\left(\left|S_{j}\right|-(n+1)\right) \\
& \leq(2 n-1) 2^{n-2}+2^{n}+(2 n-1) 2^{n-2}=(2 n+1) 2^{n-1}
\end{aligned}
$$

Returning to the problem, consider $k=2^{n}$ subsets $S_{1}, S_{2}, \ldots, S_{2^{n}}$ of $\left\{1,2,3, \ldots, 2^{n+1}\right\}$. If they satisfy the given condition, the claim implies $\sum_{i=1}^{2^{n}}\left(\left|S_{i}\right|-(n+1)\right) \leq(2 n+1) 2^{n-1}$. By averaging again, we see that the smallest set has at most $2 n+1$ elements.

Comment. It can happen that each set S_{i} has cardinality at least $n+1$. Here is an example by the proposer.

For $i=1, \ldots, 2^{n}$, let $S_{i}=\left\{i+2^{k} \mid 0 \leq k \leq n\right\}$. Then $\left|S_{i}\right|=n+1$ for all i. Suppose that there exist $a<b$ and $x<y<z$ such that $y, z \in S_{a}$ and $x, z \in S_{b}$. Hence $z=a+2^{k}=b+2^{l}$ for some $k>l$. Since $y \in S_{a}$ and $y<z$, we have $y \leq a+2^{k-1}$. So the element $x \in S_{b}$ satisfies

$$
x<y \leq a+2^{k-1}=z-2^{k-1} \leq z-2^{l}=b .
$$

However the least element of S_{b} is $b+1$, a contradiction.

Geometry

G1. In an acute-angled triangle $A B C$, point H is the orthocentre and A_{0}, B_{0}, C_{0} are the midpoints of the sides $B C, C A, A B$, respectively. Consider three circles passing through $H: \quad \omega_{a}$ around A_{0}, ω_{b} around B_{0} and ω_{c} around C_{0}. The circle ω_{a} intersects the line $B C$ at A_{1} and $A_{2} ; \omega_{b}$ intersects $C A$ at B_{1} and $B_{2} ; \omega_{c}$ intersects $A B$ at C_{1} and C_{2}. Show that the points $A_{1}, A_{2}, B_{1}, B_{2}, C_{1}, C_{2}$ lie on a circle.

Solution 1. The perpendicular bisectors of the segments $A_{1} A_{2}, B_{1} B_{2}, C_{1} C_{2}$ are also the perpendicular bisectors of $B C, C A, A B$. So they meet at O, the circumcentre of $A B C$. Thus O is the only point that can possibly be the centre of the desired circle.

From the right triangle $O A_{0} A_{1}$ we get

$$
\begin{equation*}
O A_{1}^{2}=O A_{0}^{2}+A_{0} A_{1}^{2}=O A_{0}^{2}+A_{0} H^{2} . \tag{1}
\end{equation*}
$$

Let K be the midpoint of $A H$ and let L be the midpoint of $C H$. Since A_{0} and B_{0} are the midpoints of $B C$ and $C A$, we see that $A_{0} L \| B H$ and $B_{0} L \| A H$. Thus the segments $A_{0} L$ and $B_{0} L$ are perpendicular to $A C$ and $B C$, hence parallel to $O B_{0}$ and $O A_{0}$, respectively. Consequently $O A_{0} L B_{0}$ is a parallelogram, so that $O A_{0}$ and $B_{0} L$ are equal and parallel. Also, the midline $B_{0} L$ of triangle $A H C$ is equal and parallel to $A K$ and $K H$.

It follows that $A K A_{0} O$ and $H A_{0} O K$ are parallelograms. The first one gives $A_{0} K=O A=R$, where R is the circumradius of $A B C$. From the second one we obtain

$$
\begin{equation*}
2\left(O A_{0}^{2}+A_{0} H^{2}\right)=O H^{2}+A_{0} K^{2}=O H^{2}+R^{2} \tag{2}
\end{equation*}
$$

(In a parallelogram, the sum of squares of the diagonals equals the sum of squares of the sides).
From (1) and (2) we get $O A_{1}^{2}=\left(O H^{2}+R^{2}\right) / 2$. By symmetry, the same holds for the distances $O A_{2}, O B_{1}, O B_{2}, O C_{1}$ and $O C_{2}$. Thus $A_{1}, A_{2}, B_{1}, B_{2}, C_{1}, C_{2}$ all lie on a circle with centre at O and radius $\left(O H^{2}+R^{2}\right) / 2$.

Solution 2. We are going to show again that the circumcentre O is equidistant from the six points in question.

Let A^{\prime} be the second intersection point of ω_{b} and ω_{c}. The line $B_{0} C_{0}$, which is the line of centers of circles ω_{b} and ω_{c}, is a midline in triangle $A B C$, parallel to $B C$ and perpendicular to the altitude $A H$. The points A^{\prime} and H are symmetric with respect to the line of centers. Therefore A^{\prime} lies on the line $A H$.

From the two circles ω_{b} and ω_{c} we obtain $A C_{1} \cdot A C_{2}=A A^{\prime} \cdot A H=A B_{1} \cdot A B_{2}$. So the quadrilateral $B_{1} B_{2} C_{1} C_{2}$ is cyclic. The perpendicular bisectors of the sides $B_{1} B_{2}$ and $C_{1} C_{2}$ meet at O. Hence O is the circumcentre of $B_{1} B_{2} C_{1} C_{2}$ and so $O B_{1}=O B_{2}=O C_{1}=O C_{2}$.

Analogous arguments yield $O A_{1}=O A_{2}=O B_{1}=O B_{2}$ and $O A_{1}=O A_{2}=O C_{1}=O C_{2}$. Thus $A_{1}, A_{2}, B_{1}, B_{2}, C_{1}, C_{2}$ lie on a circle centred at O.

Comment. The problem can be solved without much difficulty in many ways by calculation, using trigonometry, coordinate geometry or complex numbers. As an example we present a short proof using vectors.

Solution 3. Let again O and R be the circumcentre and circumradius. Consider the vectors

$$
\overrightarrow{O A}=\mathbf{a}, \quad \overrightarrow{O B}=\mathbf{b}, \quad \overrightarrow{O C}=\mathbf{c}, \quad \text { where } \quad \mathbf{a}^{2}=\mathbf{b}^{2}=\mathbf{c}^{2}=R^{2}
$$

It is well known that $\overrightarrow{O H}=\mathbf{a}+\mathbf{b}+\mathbf{c}$. Accordingly,

$$
\overrightarrow{A_{0} H}=\overrightarrow{O H}-\overrightarrow{O A_{0}}=(\mathbf{a}+\mathbf{b}+\mathbf{c})-\frac{\mathbf{b}+\mathbf{c}}{2}=\frac{2 \mathbf{a}+\mathbf{b}+\mathbf{c}}{2}
$$

and

$$
\begin{gathered}
O A_{1}^{2}=O A_{0}^{2}+A_{0} A_{1}^{2}=O A_{0}^{2}+A_{0} H^{2}=\left(\frac{\mathbf{b}+\mathbf{c}}{2}\right)^{2}+\left(\frac{2 \mathbf{a}+\mathbf{b}+\mathbf{c}}{2}\right)^{2} \\
=\frac{1}{4}\left(\mathbf{b}^{2}+2 \mathbf{b} \mathbf{c}+\mathbf{c}^{2}\right)+\frac{1}{4}\left(4 \mathbf{a}^{2}+4 \mathbf{a b}+4 \mathbf{a} \mathbf{c}+\mathbf{b}^{2}+2 \mathbf{b} \mathbf{c}+\mathbf{c}^{2}\right)=2 R^{2}+(\mathbf{a b}+\mathbf{a c}+\mathbf{b c}) ;
\end{gathered}
$$

here $\mathbf{a b}, \mathbf{b c}$, etc. denote dot products of vectors. We get the same for the distances $O A_{2}, O B_{1}$, $O B_{2}, O C_{1}$ and $O C_{2}$.

G2. Given trapezoid $A B C D$ with parallel sides $A B$ and $C D$, assume that there exist points E on line $B C$ outside segment $B C$, and F inside segment $A D$, such that $\angle D A E=\angle C B F$. Denote by I the point of intersection of $C D$ and $E F$, and by J the point of intersection of $A B$ and $E F$. Let K be the midpoint of segment $E F$; assume it does not lie on line $A B$.

Prove that I belongs to the circumcircle of $A B K$ if and only if K belongs to the circumcircle of $C D J$.

Solution. Assume that the disposition of points is as in the diagram.
Since $\angle E B F=180^{\circ}-\angle C B F=180^{\circ}-\angle E A F$ by hypothesis, the quadrilateral $A E B F$ is cyclic. Hence $A J \cdot J B=F J \cdot J E$. In view of this equality, I belongs to the circumcircle of $A B K$ if and only if $I J \cdot J K=F J \cdot J E$. Expressing $I J=I F+F J, J E=F E-F J$, and $J K=\frac{1}{2} F E-F J$, we find that I belongs to the circumcircle of $A B K$ if and only if

$$
F J=\frac{I F \cdot F E}{2 I F+F E}
$$

Since $A E B F$ is cyclic and $A B, C D$ are parallel, $\angle F E C=\angle F A B=180^{\circ}-\angle C D F$. Then $C D F E$ is also cyclic, yielding $I D \cdot I C=I F \cdot I E$. It follows that K belongs to the circumcircle of $C D J$ if and only if $I J \cdot I K=I F \cdot I E$. Expressing $I J=I F+F J, I K=I F+\frac{1}{2} F E$, and $I E=I F+F E$, we find that K is on the circumcircle of $C D J$ if and only if

$$
F J=\frac{I F \cdot F E}{2 I F+F E}
$$

The conclusion follows.

Comment. While the figure shows B inside segment $C E$, it is possible that C is inside segment $B E$. Consequently, I would be inside segment $E F$ and J outside segment $E F$. The position of point K on line $E F$ with respect to points I, J may also vary.

Some case may require that an angle φ be replaced by $180^{\circ}-\varphi$, and in computing distances, a sum may need to become a difference. All these cases can be covered by the proposed solution if it is clearly stated that signed distances and angles are used.

G3. Let $A B C D$ be a convex quadrilateral and let P and Q be points in $A B C D$ such that $P Q D A$ and $Q P B C$ are cyclic quadrilaterals. Suppose that there exists a point E on the line segment $P Q$ such that $\angle P A E=\angle Q D E$ and $\angle P B E=\angle Q C E$. Show that the quadrilateral $A B C D$ is cyclic.

Solution 1. Let F be the point on the line $A D$ such that $E F \| P A$. By hypothesis, the quadrilateral $P Q D A$ is cyclic. So if F lies between A and D then $\angle E F D=\angle P A D=180^{\circ}-\angle E Q D$; the points F and Q are on distinct sides of the line $D E$ and we infer that $E F D Q$ is a cyclic quadrilateral. And if D lies between A and F then a similar argument shows that $\angle E F D=\angle E Q D$; but now the points F and Q lie on the same side of $D E$, so that $E D F Q$ is a cyclic quadrilateral.

In either case we obtain the equality $\angle E F Q=\angle E D Q=\angle P A E$ which implies that $F Q \| A E$. So the triangles $E F Q$ and $P A E$ are either homothetic or parallel-congruent. More specifically, triangle $E F Q$ is the image of $P A E$ under the mapping f which carries the points P, E respectively to E, Q and is either a homothety or translation by a vector. Note that f is uniquely determined by these conditions and the position of the points P, E, Q alone.

Let now G be the point on the line $B C$ such that $E G \| P B$. The same reasoning as above applies to points B, C in place of A, D, implying that the triangle $E G Q$ is the image of $P B E$ under the same mapping f. So f sends the four points A, P, B, E respectively to F, E, G, Q.

If $P E \neq Q E$, so that f is a homothety with a centre X, then the lines $A F, P E, B G$-i.e. the lines $A D, P Q, B C$-are concurrent at X. And since $P Q D A$ and $Q P B C$ are cyclic quadrilaterals, the equalities $X A \cdot X D=X P \cdot X Q=X B \cdot X C$ hold, showing that the quadrilateral $A B C D$ is cyclic.

Finally, if $P E=Q E$, so that f is a translation, then $A D\|P Q\| B C$. Thus $P Q D A$ and $Q P B C$ are isosceles trapezoids. Then also $A B C D$ is an isosceles trapezoid, hence a cyclic quadrilateral.

Solution 2. Here is another way to reach the conclusion that the lines $A D, B C$ and $P Q$ are either concurrent or parallel. From the cyclic quadrilateral $P Q D A$ we get

$$
\angle P A D=180^{\circ}-\angle P Q D=\angle Q D E+\angle Q E D=\angle P A E+\angle Q E D .
$$

Hence $\angle Q E D=\angle P A D-\angle P A E=\angle E A D$. This in view of the tangent-chord theorem means that the circumcircle of triangle $E A D$ is tangent to the line $P Q$ at E. Analogously, the circumcircle of triangle $E B C$ is tangent to $P Q$ at E.

Suppose that the line $A D$ intersects $P Q$ at X. Since $X E$ is tangent to the circle $(E A D)$, $X E^{2}=X A \cdot X D$. Also, $X A \cdot X D=X P \cdot X Q$ because P, Q, D, A lie on a circle. Therefore $X E^{2}=X P \cdot X Q$.

It is not hard to see that this equation determines the position of the point X on the line $P Q$ uniquely. Thus, if $B C$ also cuts $P Q$, say at Y, then the analogous equation for Y yields $X=Y$, meaning that the three lines indeed concur. In this case, as well as in the case where $A D\|P Q\| B C$, the concluding argument is the same as in the first solution.

It remains to eliminate the possibility that e.g. $A D$ meets $P Q$ at X while $B C \| P Q$. Indeed, $Q P B C$ would then be an isosceles trapezoid and the angle equality $\angle P B E=\angle Q C E$ would force that E is the midpoint of $P Q$. So the length of $X E$, which is the geometric mean of the lengths of $X P$ and $X Q$, should also be their arithmetic mean-impossible, as $X P \neq X Q$. The proof is now complete.

Comment. After reaching the conclusion that the circles (EDA) and (EBC) are tangent to $P Q$ one may continue as follows. Denote the circles (PQDA), (EDA), (EBC), (QPBC) by $\omega_{1}, \omega_{2}, \omega_{3}, \omega_{4}$ respectively. Let $\ell_{i j}$ be the radical axis of the pair $\left(\omega_{i}, \omega_{j}\right)$ for $i<j$. As is well-known, the lines $\ell_{12}, \ell_{13}, \ell_{23}$ concur, possibly at infinity (let this be the meaning of the word concur in this comment). So do the lines $\ell_{12}, \ell_{14}, \ell_{24}$. Note however that ℓ_{23} and ℓ_{14} both coincide with the line $P Q$. Hence the pair $\ell_{12}, P Q$ is in both triples; thus the four lines $\ell_{12}, \ell_{13}, \ell_{24}$ and $P Q$ are concurrent.

Similarly, $\ell_{13}, \ell_{14}, \ell_{34}$ concur, $\ell_{23}, \ell_{24}, \ell_{34}$ concur, and since $\ell_{14}=\ell_{23}=P Q$, the four lines $\ell_{13}, \ell_{24}, \ell_{34}$ and $P Q$ are concurrent. The lines ℓ_{13} and ℓ_{24} are present in both quadruples, therefore all the lines $\ell_{i j}$ are concurrent. Hence the result.

G4. In an acute triangle $A B C$ segments $B E$ and $C F$ are altitudes. Two circles passing through the points A and F are tangent to the line $B C$ at the points P and Q so that B lies between C and Q. Prove that the lines $P E$ and $Q F$ intersect on the circumcircle of triangle $A E F$.

Solution 1. To approach the desired result we need some information about the slopes of the lines $P E$ and $Q F$; this information is provided by formulas (1) and (2) which we derive below.

The tangents $B P$ and $B Q$ to the two circles passing through A and F are equal, as $B P^{2}=B A \cdot B F=B Q^{2}$. Consider the altitude $A D$ of triangle $A B C$ and its orthocentre H. From the cyclic quadrilaterals $C D F A$ and $C D H E$ we get $B A \cdot B F=B C \cdot B D=B E \cdot B H$. Thus $B P^{2}=B E \cdot B H$, or $B P / B H=B E / B P$, implying that the triangles $B P H$ and $B E P$ are similar. Hence

$$
\begin{equation*}
\angle B P E=\angle B H P . \tag{1}
\end{equation*}
$$

The point P lies between D and C; this follows from the equality $B P^{2}=B C \cdot B D$. In view of this equality, and because $B P=B Q$,

$$
D P \cdot D Q=(B P-B D) \cdot(B P+B D)=B P^{2}-B D^{2}=B D \cdot(B C-B D)=B D \cdot D C
$$

Also $A D \cdot D H=B D \cdot D C$, as is seen from the similar triangles $B D H$ and $A D C$. Combining these equalities we obtain $A D \cdot D H=D P \cdot D Q$. Therefore $D H / D P=D Q / D A$, showing that the triangles $H D P$ and $Q D A$ are similar. Hence $\angle H P D=\angle Q A D$, which can be rewritten as $\angle B P H=\angle B A D+\angle B A Q$. And since $B Q$ is tangent to the circumcircle of triangle $F A Q$,

$$
\begin{equation*}
\angle B Q F=\angle B A Q=\angle B P H-\angle B A D \tag{2}
\end{equation*}
$$

From (1) and (2) we deduce

$$
\begin{aligned}
\angle B P E+\angle B Q F & =(\angle B H P+\angle B P H)-\angle B A D
\end{aligned}=\left(180^{\circ}-\angle P B H\right)-\angle B A D .
$$

Thus $\angle B P E+\angle B Q F<180^{\circ}$, which means that the rays $P E$ and $Q F$ meet. Let S be the point of intersection. Then $\angle P S Q=180^{\circ}-(\angle B P E+\angle B Q F)=\angle C A B=\angle E A F$.

If S lies between P and E then $\angle P S Q=180^{\circ}-\angle E S F$; and if E lies between P and S then $\angle P S Q=\angle E S F$. In either case the equality $\angle P S Q=\angle E A F$ which we have obtained means that S lies on the circumcircle of triangle $A E F$.

Solution 2. Let H be the orthocentre of triangle $A B C$ and let ω be the circle with diameter $A H$, passing through E and F. Introduce the points of intersection of ω with the following lines emanating from $P: P A \cap \omega=\{A, U\}, P H \cap \omega=\{H, V\}, P E \cap \omega=\{E, S\}$. The altitudes of triangle $A H P$ are contained in the lines $A V, H U, B C$, meeting at its orthocentre Q^{\prime}.

By Pascal's theorem applied to the (tied) hexagon $A E S F H V$, the points $A E \cap F H=C$, $E S \cap H V=P$ and $S F \cap V A$ are collinear, so $F S$ passes through Q^{\prime}.

Denote by ω_{1} and ω_{2} the circles with diameters $B C$ and $P Q^{\prime}$, respectively. Let D be the foot of the altitude from A in triangle $A B C$. Suppose that $A D$ meets the circles ω_{1} and ω_{2} at the respective points K and L.

Since H is the orthocentre of $A B C$, the triangles $B D H$ and $A D C$ are similar, and so $D A \cdot D H=D B \cdot D C=D K^{2}$; the last equality holds because $B K C$ is a right triangle. Since H is the orthocentre also in triangle $A Q^{\prime} P$, we analogously have $D L^{2}=D A \cdot D H$. Therefore $D K=D L$ and $K=L$.

Also, $B D \cdot B C=B A \cdot B F$, from the similar triangles $A B D, C B F$. In the right triangle $B K C$ we have $B K^{2}=B D \cdot B C$. Hence, and because $B A \cdot B F=B P^{2}=B Q^{2}$ (by the definition of P and Q in the problem statement), we obtain $B K=B P=B Q$. It follows that B is the centre of ω_{2} and hence $Q^{\prime}=Q$. So the lines $P E$ and $Q F$ meet at the point S lying on the circumcircle of triangle $A E F$.

Comment 1. If T is the point defined by $P F \cap \omega=\{F, T\}$, Pascal's theorem for the hexagon $A F T E H V$ will analogously lead to the conclusion that the line $E T$ goes through Q^{\prime}. In other words, the lines $P F$ and $Q E$ also concur on ω.

Comment 2. As is known from algebraic geometry, the points of the circle ω form a commutative groups with the operation defined as follows. Choose any point $0 \in \omega$ (to be the neutral element of the group) and a line ℓ exterior to the circle. For $X, Y \in \omega$, draw the line from the point $X Y \cap \ell$ through 0 to its second intersection with ω and define this point to be $X+Y$.

In our solution we have chosen H to be the neutral element in this group and line $B C$ to be ℓ. The fact that the lines $A V, H U, E T, F S$ are concurrent can be deduced from the identities $A+A=0$, $F=E+A, \quad V=U+A=S+E=T+F$.

Comment 3. The problem was submitted in the following equivalent formulation:
Let $B E$ and $C F$ be altitudes of an acute triangle $A B C$. We choose P on the side $B C$ and Q on the extension of $C B$ beyond B such that $B Q^{2}=B P^{2}=B F \cdot A B$. If $Q F$ and $P E$ intersect at S, prove that ESAF is cyclic.

G5. Let k and n be integers with $0 \leq k \leq n-2$. Consider a set L of n lines in the plane such that no two of them are parallel and no three have a common point. Denote by I the set of intersection points of lines in L. Let O be a point in the plane not lying on any line of L.

A point $X \in I$ is colored red if the open line segment $O X$ intersects at most k lines in L. Prove that I contains at least $\frac{1}{2}(k+1)(k+2)$ red points.

Solution. There are at least $\frac{1}{2}(k+1)(k+2)$ points in the intersection set I in view of the condition $n \geq k+2$.

For each point $P \in I$, define its order as the number of lines that intersect the open line segment $O P$. By definition, P is red if its order is at most k. Note that there is always at least one point $X \in I$ of order 0 . Indeed, the lines in L divide the plane into regions, bounded or not, and O belongs to one of them. Clearly any corner of this region is a point of I with order 0 .
Claim. Suppose that two points $P, Q \in I$ lie on the same line of L, and no other line of L intersects the open line segment $P Q$. Then the orders of P and Q differ by at most 1 .
Proof. Let P and Q have orders p and q, respectively, with $p \geq q$. Consider triangle $O P Q$. Now p equals the number of lines in L that intersect the interior of side $O P$. None of these lines intersects the interior of side $P Q$, and at most one can pass through Q. All remaining lines must intersect the interior of side $O Q$, implying that $q \geq p-1$. The conclusion follows.

We prove the main result by induction on k. The base $k=0$ is clear since there is a point of order 0 which is red. Assuming the statement true for $k-1$, we pass on to the inductive step. Select a point $P \in I$ of order 0 , and consider one of the lines $\ell \in L$ that pass through P. There are $n-1$ intersection points on ℓ, one of which is P. Out of the remaining $n-2$ points, the k closest to P have orders not exceeding k by the Claim. It follows that there are at least $k+1$ red points on ℓ.

Let us now consider the situation with ℓ removed (together with all intersection points it contains). By hypothesis of induction, there are at least $\frac{1}{2} k(k+1)$ points of order not exceeding $k-1$ in the resulting configuration. Restoring ℓ back produces at most one new intersection point on each line segment joining any of these points to O, so their order is at most k in the original configuration. The total number of points with order not exceeding k is therefore at least $(k+1)+\frac{1}{2} k(k+1)=\frac{1}{2}(k+1)(k+2)$. This completes the proof.

Comment. The steps of the proof can be performed in reverse order to obtain a configuration of n lines such that equality holds simultaneously for all $0 \leq k \leq n-2$. Such a set of lines is illustrated in the Figure.

G6. There is given a convex quadrilateral $A B C D$. Prove that there exists a point P inside the quadrilateral such that

$$
\begin{equation*}
\angle P A B+\angle P D C=\angle P B C+\angle P A D=\angle P C D+\angle P B A=\angle P D A+\angle P C B=90^{\circ} \tag{1}
\end{equation*}
$$

if and only if the diagonals $A C$ and $B D$ are perpendicular.
Solution 1. For a point P in $A B C D$ which satisfies (1), let K, L, M, N be the feet of perpendiculars from P to lines $A B, B C, C D, D A$, respectively. Note that K, L, M, N are interior to the sides as all angles in (1) are acute. The cyclic quadrilaterals $A K P N$ and $D N P M$ give

$$
\angle P A B+\angle P D C=\angle P N K+\angle P N M=\angle K N M
$$

Analogously, $\angle P B C+\angle P A D=\angle L K N$ and $\angle P C D+\angle P B A=\angle M L K$. Hence the equalities (1) imply $\angle K N M=\angle L K N=\angle M L K=90^{\circ}$, so that $K L M N$ is a rectangle. The converse also holds true, provided that K, L, M, N are interior to sides $A B, B C, C D, D A$.
(i) Suppose that there exists a point P in $A B C D$ such that $K L M N$ is a rectangle. We show that $A C$ and $B D$ are parallel to the respective sides of $K L M N$.

Let O_{A} and O_{C} be the circumcentres of the cyclic quadrilaterals $A K P N$ and $C M P L$. Line $O_{A} O_{C}$ is the common perpendicular bisector of $L M$ and $K N$, therefore $O_{A} O_{C}$ is parallel to $K L$ and $M N$. On the other hand, $O_{A} O_{C}$ is the midline in the triangle $A C P$ that is parallel to $A C$. Therefore the diagonal $A C$ is parallel to the sides $K L$ and $M N$ of the rectangle. Likewise, $B D$ is parallel to $K N$ and $L M$. Hence $A C$ and $B D$ are perpendicular.

(ii) Suppose that $A C$ and $B D$ are perpendicular and meet at R. If $A B C D$ is a rhombus, P can be chosen to be its centre. So assume that $A B C D$ is not a rhombus, and let $B R<D R$ without loss of generality.

Denote by U_{A} and U_{C} the circumcentres of the triangles $A B D$ and $C D B$, respectively. Let $A V_{A}$ and $C V_{C}$ be the diameters through A and C of the two circumcircles. Since $A R$ is an altitude in triangle $A D B$, lines $A C$ and $A V_{A}$ are isogonal conjugates, i. e. $\angle D A V_{A}=\angle B A C$. Now $B R<D R$ implies that ray $A U_{A}$ lies in $\angle D A C$. Similarly, ray $C U_{C}$ lies in $\angle D C A$. Both diameters $A V_{A}$ and $C V_{C}$ intersect $B D$ as the angles at B and D of both triangles are acute. Also $U_{A} U_{C}$ is parallel to $A C$ as it is the perpendicular bisector of $B D$. Hence $V_{A} V_{C}$ is parallel to $A C$, too. We infer that $A V_{A}$ and $C V_{C}$ intersect at a point P inside triangle $A C D$, hence inside $A B C D$.

Construct points K, L, M, N, O_{A} and O_{C} in the same way as in the introduction. It follows from the previous paragraph that K, L, M, N are interior to the respective sides. Now $O_{A} O_{C}$ is a midline in triangle $A C P$ again. Therefore lines $A C, O_{A} O_{C}$ and $U_{A} U_{C}$ are parallel.

The cyclic quadrilateral $A K P N$ yields $\angle N K P=\angle N A P$. Since $\angle N A P=\angle D A U_{A}=$ $\angle B A C$, as specified above, we obtain $\angle N K P=\angle B A C$. Because $P K$ is perpendicular to $A B$, it follows that $N K$ is perpendicular to $A C$, hence parallel to $B D$. Likewise, $L M$ is parallel to $B D$.

Consider the two homotheties with centres A and C which transform triangles $A B D$ and $C D B$ into triangles $A K N$ and $C M L$, respectively. The images of points U_{A} and U_{C} are O_{A} and O_{C}, respectively. Since $U_{A} U_{C}$ and $O_{A} O_{C}$ are parallel to $A C$, the two ratios of homothety are the same, equal to $\lambda=A N / A D=A K / A B=A O_{A} / A U_{A}=C O_{C} / C U_{C}=C M / C D=C L / C B$. It is now straightforward that $D N / D A=D M / D C=B K / B A=B L / B C=1-\lambda$. Hence $K L$ and $M N$ are parallel to $A C$, implying that $K L M N$ is a rectangle and completing the proof.

Solution 2. For a point P distinct from A, B, C, D, let circles $(A P D)$ and ($B P C$) intersect again at $Q(Q=P$ if the circles are tangent). Next, let circles $(A Q B)$ and $(C Q D)$ intersect again at R. We show that if P lies in $A B C D$ and satisfies (1) then $A C$ and $B D$ intersect at R and are perpendicular; the converse is also true. It is convenient to use directed angles. Let $\measuredangle(U V, X Y)$ denote the angle of counterclockwise rotation that makes line $U V$ parallel to line $X Y$. Recall that four noncollinear points U, V, X, Y are concyclic if and only if $\measuredangle(U X, V X)=\measuredangle(U Y, V Y)$.

The definitions of points P, Q and R imply

$$
\begin{aligned}
\measuredangle(A R, B R) & =\measuredangle(A Q, B Q)=\measuredangle(A Q, P Q)+\measuredangle(P Q, B Q)=\measuredangle(A D, P D)+\measuredangle(P C, B C), \\
\measuredangle(C R, D R) & =\measuredangle(C Q, D Q)=\measuredangle(C Q, P Q)+\measuredangle(P Q, D Q)=\measuredangle(C B, P B)+\measuredangle(P A, D A), \\
\measuredangle(B R, C R) & =\measuredangle(B R, R Q)+\measuredangle(R Q, C R)=\measuredangle(B A, A Q)+\measuredangle(D Q, C D) \\
& =\measuredangle(B A, A P)+\measuredangle(A P, A Q)+\measuredangle(D Q, D P)+\measuredangle(D P, C D) \\
& =\measuredangle(B A, A P)+\measuredangle(D P, C D) .
\end{aligned}
$$

Observe that the whole construction is reversible. One may start with point R, define Q as the second intersection of circles $(A R B)$ and $(C R D)$, and then define P as the second intersection of circles $(A Q D)$ and $(B Q C)$. The equalities above will still hold true.

Assume in addition that P is interior to $A B C D$. Then

$$
\begin{gathered}
\measuredangle(A D, P D)=\angle P D A, \measuredangle(P C, B C)=\angle P C B, \measuredangle(C B, P B)=\angle P B C, \measuredangle(P A, D A)=\angle P A D, \\
\measuredangle(B A, A P)=\angle P A B, \measuredangle(D P, C D)=\angle P D C .
\end{gathered}
$$

(i) Suppose that P lies in $A B C D$ and satisfies (1). Then $\measuredangle(A R, B R)=\angle P D A+\angle P C B=90^{\circ}$ and similarly $\measuredangle(B R, C R)=\measuredangle(C R, D R)=90^{\circ}$. It follows that R is the common point of lines $A C$ and $B D$, and that these lines are perpendicular.
(ii) Suppose that $A C$ and $B D$ are perpendicular and intersect at R. We show that the point P defined by the reverse construction (starting with R and ending with P) lies in $A B C D$. This is enough to finish the solution, because then the angle equalities above will imply (1).

One can assume that Q, the second common point of circles $(A B R)$ and $(C D R)$, lies in $\angle A R D$. Then in fact Q lies in triangle $A D R$ as angles $A Q R$ and $D Q R$ are obtuse. Hence $\angle A Q D$ is obtuse, too, so that B and C are outside circle $(A D Q)(\angle A B D$ and $\angle A C D$ are acute).

Now $\angle C A B+\angle C D B=\angle B Q R+\angle C Q R=\angle C Q B$ implies $\angle C A B<\angle C Q B$ and $\angle C D B<$ $\angle C Q B$. Hence A and D are outside circle ($B C Q$). In conclusion, the second common point P of circles $(A D Q)$ and $(B C Q)$ lies on their arcs $A D Q$ and $B C Q$.

We can assume that P lies in $\angle C Q D$. Since

$$
\begin{gathered}
\angle Q P C+\angle Q P D=\left(180^{\circ}-\angle Q B C\right)+\left(180^{\circ}-\angle Q A D\right)= \\
=360^{\circ}-(\angle R B C+\angle Q B R)-(\angle R A D-\angle Q A R)=360^{\circ}-\angle R B C-\angle R A D>180^{\circ},
\end{gathered}
$$

point P lies in triangle $C D Q$, and hence in $A B C D$. The proof is complete.

G7. Let $A B C D$ be a convex quadrilateral with $A B \neq B C$. Denote by ω_{1} and ω_{2} the incircles of triangles $A B C$ and $A D C$. Suppose that there exists a circle ω inscribed in angle $A B C$, tangent to the extensions of line segments $A D$ and $C D$. Prove that the common external tangents of ω_{1} and ω_{2} intersect on ω.

Solution. The proof below is based on two known facts.
Lemma 1. Given a convex quadrilateral $A B C D$, suppose that there exists a circle which is inscribed in angle $A B C$ and tangent to the extensions of line segments $A D$ and $C D$. Then $A B+A D=C B+C D$.
Proof. The circle in question is tangent to each of the lines $A B, B C, C D, D A$, and the respective points of tangency K, L, M, N are located as with circle ω in the figure. Then

$$
A B+A D=(B K-A K)+(A N-D N), \quad C B+C D=(B L-C L)+(C M-D M)
$$

Also $B K=B L, D N=D M, A K=A N, C L=C M$ by equalities of tangents. It follows that $A B+A D=C B+C D$.

For brevity, in the sequel we write "excircle $A C$ " for the excircle of a triangle with side $A C$ which is tangent to line segment $A C$ and the extensions of the other two sides.
Lemma 2. The incircle of triangle $A B C$ is tangent to its side $A C$ at P. Let $P P^{\prime}$ be the diameter of the incircle through P, and let line $B P^{\prime}$ intersect $A C$ at Q. Then Q is the point of tangency of side $A C$ and excircle $A C$.

Proof. Let the tangent at P^{\prime} to the incircle ω_{1} meet $B A$ and $B C$ at A^{\prime} and C^{\prime}. Now ω_{1} is the excircle $A^{\prime} C^{\prime}$ of triangle $A^{\prime} B C^{\prime}$, and it touches side $A^{\prime} C^{\prime}$ at P^{\prime}. Since $A^{\prime} C^{\prime} \| A C$, the homothety with centre B and ratio $B Q / B P^{\prime}$ takes ω_{1} to the excircle $A C$ of triangle $A B C$. Because this homothety takes P^{\prime} to Q, the lemma follows.

Recall also that if the incircle of a triangle touches its side $A C$ at P, then the tangency point Q of the same side and excircle $A C$ is the unique point on line segment $A C$ such that $A P=C Q$.

We pass on to the main proof. Let ω_{1} and ω_{2} touch $A C$ at P and Q, respectively; then $A P=(A C+A B-B C) / 2, C Q=(C A+C D-A D) / 2$. Since $A B-B C=C D-A D$ by Lemma 1, we obtain $A P=C Q$. It follows that in triangle $A B C$ side $A C$ and excircle $A C$ are tangent at Q. Likewise, in triangle $A D C$ side $A C$ and excircle $A C$ are tangent at P. Note that $P \neq Q$ as $A B \neq B C$.

Let $P P^{\prime}$ and $Q Q^{\prime}$ be the diameters perpendicular to $A C$ of ω_{1} and ω_{2}, respectively. Then Lemma 2 shows that points B, P^{\prime} and Q are collinear, and so are points D, Q^{\prime} and P.

Consider the diameter of ω perpendicular to $A C$ and denote by T its endpoint that is closer to $A C$. The homothety with centre B and ratio $B T / B P^{\prime}$ takes ω_{1} to ω. Hence B, P^{\prime} and T are collinear. Similarly, D, Q^{\prime} and T are collinear since the homothety with centre D and ratio $-D T / D Q^{\prime}$ takes ω_{2} to ω.

We infer that points T, P^{\prime} and Q are collinear, as well as T, Q^{\prime} and P. Since $P P^{\prime} \| Q Q^{\prime}$, line segments $P P^{\prime}$ and $Q Q^{\prime}$ are then homothetic with centre T. The same holds true for circles ω_{1} and ω_{2} because they have $P P^{\prime}$ and $Q Q^{\prime}$ as diameters. Moreover, it is immediate that T lies on the same side of line $P P^{\prime}$ as Q and Q^{\prime}, hence the ratio of homothety is positive. In particular ω_{1} and ω_{2} are not congruent.

In summary, T is the centre of a homothety with positive ratio that takes circle ω_{1} to circle ω_{2}. This completes the solution, since the only point with the mentioned property is the intersection of the the common external tangents of ω_{1} and ω_{2}.

Number Theory

N1. Let n be a positive integer and let p be a prime number. Prove that if a, b, c are integers (not necessarily positive) satisfying the equations

$$
a^{n}+p b=b^{n}+p c=c^{n}+p a,
$$

then $a=b=c$.
Solution 1. If two of a, b, c are equal, it is immediate that all the three are equal. So we may assume that $a \neq b \neq c \neq a$. Subtracting the equations we get $a^{n}-b^{n}=-p(b-c)$ and two cyclic copies of this equation, which upon multiplication yield

$$
\begin{equation*}
\frac{a^{n}-b^{n}}{a-b} \cdot \frac{b^{n}-c^{n}}{b-c} \cdot \frac{c^{n}-a^{n}}{c-a}=-p^{3} . \tag{1}
\end{equation*}
$$

If n is odd then the differences $a^{n}-b^{n}$ and $a-b$ have the same sign and the product on the left is positive, while $-p^{3}$ is negative. So n must be even.

Let d be the greatest common divisor of the three differences $a-b, b-c, c-a$, so that $a-b=d u, \quad b-c=d v, c-a=d w ; \quad \operatorname{ccd}(u, v, w)=1, u+v+w=0$.

From $a^{n}-b^{n}=-p(b-c)$ we see that $(a-b) \mid p(b-c)$, i.e., $u \mid p v$; and cyclically $v|p w, w| p u$. As $\operatorname{gcd}(u, v, w)=1$ and $u+v+w=0$, at most one of u, v, w can be divisible by p. Supposing that the prime p does not divide any one of them, we get $u|v, v| w, w \mid u$, whence $|u|=|v|=|w|=1$; but this quarrels with $u+v+w=0$.

Thus p must divide exactly one of these numbers. Let e.g. $p \mid u$ and write $u=p u_{1}$. Now we obtain, similarly as before, $u_{1}|v, v| w, w \mid u_{1}$ so that $\left|u_{1}\right|=|v|=|w|=1$. The equation $p u_{1}+v+w=0$ forces that the prime p must be even; i.e. $p=2$. Hence $v+w=-2 u_{1}= \pm 2$, implying $v=w(= \pm 1)$ and $u=-2 v$. Consequently $a-b=-2(b-c)$.

Knowing that n is even, say $n=2 k$, we rewrite the equation $a^{n}-b^{n}=-p(b-c)$ with $p=2$ in the form

$$
\left(a^{k}+b^{k}\right)\left(a^{k}-b^{k}\right)=-2(b-c)=a-b .
$$

The second factor on the left is divisible by $a-b$, so the first factor $\left(a^{k}+b^{k}\right)$ must be ± 1. Then exactly one of a and b must be odd; yet $a-b=-2(b-c)$ is even. Contradiction ends the proof.

Solution 2. The beginning is as in the first solution. Assuming that a, b, c are not all equal, hence are all distinct, we derive equation (1) with the conclusion that n is even. Write $n=2 k$.

Suppose that p is odd. Then the integer

$$
\frac{a^{n}-b^{n}}{a-b}=a^{n-1}+a^{n-2} b+\cdots+b^{n-1}
$$

which is a factor in (1), must be odd as well. This sum of $n=2 k$ summands is odd only if a and b have different parities. The same conclusion holding for b, c and for c, a, we get that a, b, c, a alternate in their parities, which is clearly impossible.

Thus $p=2$. The original system shows that a, b, c must be of the same parity. So we may divide (1) by p^{3}, i.e. 2^{3}, to obtain the following product of six integer factors:

$$
\begin{equation*}
\frac{a^{k}+b^{k}}{2} \cdot \frac{a^{k}-b^{k}}{a-b} \cdot \frac{b^{k}+c^{k}}{2} \cdot \frac{b^{k}-c^{k}}{b-c} \cdot \frac{c^{k}+a^{k}}{2} \cdot \frac{c^{k}-a^{k}}{c-a}=-1 \tag{2}
\end{equation*}
$$

Each one of the factors must be equal to ± 1. In particular, $a^{k}+b^{k}= \pm 2$. If k is even, this becomes $a^{k}+b^{k}=2$ and yields $|a|=|b|=1$, whence $a^{k}-b^{k}=0$, contradicting (2).

Let now k be odd. Then the sum $a^{k}+b^{k}$, with value ± 2, has $a+b$ as a factor. Since a and b are of the same parity, this means that $a+b= \pm 2$; and cyclically, $b+c= \pm 2, c+a= \pm 2$. In some two of these equations the signs must coincide, hence some two of a, b, c are equal. This is the desired contradiction.

Comment. Having arrived at the equation (1) one is tempted to write down all possible decompositions of $-p^{3}$ (cube of a prime) into a product of three integers. This leads to cumbersome examination of many cases, some of which are unpleasant to handle. One may do that just for $p=2$, having earlier in some way eliminated odd primes from consideration.

However, the second solution shows that the condition of p being a prime is far too strong. What is actually being used in that solution, is that p is either a positive odd integer or $p=2$.

N2. Let $a_{1}, a_{2}, \ldots, a_{n}$ be distinct positive integers, $n \geq 3$. Prove that there exist distinct indices i and j such that $a_{i}+a_{j}$ does not divide any of the numbers $3 a_{1}, 3 a_{2}, \ldots, 3 a_{n}$.

Solution. Without loss of generality, let $0<a_{1}<a_{2}<\cdots<a_{n}$. One can also assume that $a_{1}, a_{2}, \ldots, a_{n}$ are coprime. Otherwise division by their greatest common divisor reduces the question to the new sequence whose terms are coprime integers.

Suppose that the claim is false. Then for each $i<n$ there exists a j such that $a_{n}+a_{i}$ divides $3 a_{j}$. If $a_{n}+a_{i}$ is not divisible by 3 then $a_{n}+a_{i}$ divides a_{j} which is impossible as $0<a_{j} \leq a_{n}<a_{n}+a_{i}$. Thus $a_{n}+a_{i}$ is a multiple of 3 for $i=1, \ldots, n-1$, so that $a_{1}, a_{2}, \ldots, a_{n-1}$ are all congruent (to $-a_{n}$) modulo 3 .

Now a_{n} is not divisible by 3 or else so would be all remaining a_{i} 's, meaning that $a_{1}, a_{2}, \ldots, a_{n}$ are not coprime. Hence $a_{n} \equiv r(\bmod 3)$ where $r \in\{1,2\}$, and $a_{i} \equiv 3-r(\bmod 3)$ for all $i=1, \ldots, n-1$.

Consider a sum $a_{n-1}+a_{i}$ where $1 \leq i \leq n-2$. There is at least one such sum as $n \geq 3$. Let j be an index such that $a_{n-1}+a_{i}$ divides $3 a_{j}$. Observe that $a_{n-1}+a_{i}$ is not divisible by 3 since $a_{n-1}+a_{i} \equiv 2 a_{i} \not \equiv 0(\bmod 3)$. It follows that $a_{n-1}+a_{i}$ divides a_{j}, in particular $a_{n-1}+a_{i} \leq a_{j}$. Hence $a_{n-1}<a_{j} \leq a_{n}$, implying $j=n$. So a_{n} is divisible by all sums $a_{n-1}+a_{i}, 1 \leq i \leq n-2$. In particular $a_{n-1}+a_{i} \leq a_{n}$ for $i=1, \ldots, n-2$.

Let j be such that $a_{n}+a_{n-1}$ divides $3 a_{j}$. If $j \leq n-2$ then $a_{n}+a_{n-1} \leq 3 a_{j}<a_{j}+2 a_{n-1}$. This yields $a_{n}<a_{n-1}+a_{j}$; however $a_{n-1}+a_{j} \leq a_{n}$ for $j \leq n-2$. Therefore $j=n-1$ or $j=n$.

For $j=n-1$ we obtain $3 a_{n-1}=k\left(a_{n}+a_{n-1}\right)$ with k an integer, and it is straightforward that $k=1\left(k \leq 0\right.$ and $k \geq 3$ contradict $0<a_{n-1}<a_{n} ; k=2$ leads to $\left.a_{n-1}=2 a_{n}>a_{n-1}\right)$. Thus $3 a_{n-1}=a_{n}+a_{n-1}$, i. e. $a_{n}=2 a_{n-1}$.

Similarly, if $j=n$ then $3 a_{n}=k\left(a_{n}+a_{n-1}\right)$ for some integer k, and only $k=2$ is possible. Hence $a_{n}=2 a_{n-1}$ holds true in both cases remaining, $j=n-1$ and $j=n$.

Now $a_{n}=2 a_{n-1}$ implies that the sum $a_{n-1}+a_{1}$ is strictly between $a_{n} / 2$ and a_{n}. But a_{n-1} and a_{1} are distinct as $n \geq 3$, so it follows from the above that $a_{n-1}+a_{1}$ divides a_{n}. This provides the desired contradiction.

N3. Let $a_{0}, a_{1}, a_{2}, \ldots$ be a sequence of positive integers such that the greatest common divisor of any two consecutive terms is greater than the preceding term; in symbols, $\operatorname{gcd}\left(a_{i}, a_{i+1}\right)>a_{i-1}$. Prove that $a_{n} \geq 2^{n}$ for all $n \geq 0$.

Solution. Since $a_{i} \geq \operatorname{gcd}\left(a_{i}, a_{i+1}\right)>a_{i-1}$, the sequence is strictly increasing. In particular $a_{0} \geq 1, a_{1} \geq 2$. For each $i \geq 1$ we also have $a_{i+1}-a_{i} \geq \operatorname{gcd}\left(a_{i}, a_{i+1}\right)>a_{i-1}$, and consequently $a_{i+1} \geq a_{i}+a_{i-1}+1$. Hence $a_{2} \geq 4$ and $a_{3} \geq 7$. The equality $a_{3}=7$ would force equalities in the previous estimates, leading to $\operatorname{gcd}\left(a_{2}, a_{3}\right)=\operatorname{gcd}(4,7)>a_{1}=2$, which is false. Thus $a_{3} \geq 8$; the result is valid for $n=0,1,2,3$. These are the base cases for a proof by induction.

Take an $n \geq 3$ and assume that $a_{i} \geq 2^{i}$ for $i=0,1, \ldots, n$. We must show that $a_{n+1} \geq 2^{n+1}$. Let $\operatorname{gcd}\left(a_{n}, a_{n+1}\right)=d$. We know that $d>a_{n-1}$. The induction claim is reached immediately in the following cases:

$$
\begin{aligned}
& \text { if } a_{n+1} \geq 4 d \text { then } a_{n+1}>4 a_{n-1} \geq 4 \cdot 2^{n-1}=2^{n+1} \text {; } \\
& \text { if } a_{n} \geq 3 d \text { then } a_{n+1} \geq a_{n}+d \geq 4 d>4 a_{n-1} \geq 4 \cdot 2^{n-1}=2^{n+1} \text {; } \\
& \text { if } a_{n}=d \quad \text { then } a_{n+1} \geq a_{n}+d=2 a_{n} \geq 2 \cdot 2^{n}=2^{n+1} \text {. }
\end{aligned}
$$

The only remaining possibility is that $a_{n}=2 d$ and $a_{n+1}=3 d$, which we assume for the sequel. So $a_{n+1}=\frac{3}{2} a_{n}$.

Let now $\operatorname{gcd}\left(a_{n-1}, a_{n}\right)=d^{\prime}$; then $d^{\prime}>a_{n-2}$. Write $a_{n}=m d^{\prime} \quad$ (m an integer). Keeping in mind that $d^{\prime} \leq a_{n-1}<d$ and $a_{n}=2 d$, we get that $m \geq 3$. Also $a_{n-1}<d=\frac{1}{2} m d^{\prime}$, $a_{n+1}=\frac{3}{2} m d^{\prime}$. Again we single out the cases which imply the induction claim immediately:

$$
\begin{aligned}
& \text { if } m \geq 6 \quad \text { then } a_{n+1}=\frac{3}{2} m d^{\prime} \geq 9 d^{\prime}>9 a_{n-2} \geq 9 \cdot 2^{n-2}>2^{n+1} ; \\
& \text { if } 3 \leq m \leq 4 \text { then } a_{n-1}<\frac{1}{2} \cdot 4 d^{\prime}, \text { and hence } a_{n-1}=d^{\prime}, \\
& \qquad a_{n+1}=\frac{3}{2} m a_{n-1} \geq \frac{3}{2} \cdot 3 a_{n-1} \geq \frac{9}{2} \cdot 2^{n-1}>2^{n+1} .
\end{aligned}
$$

So we are left with the case $m=5$, which means that $a_{n}=5 d^{\prime}, \quad a_{n+1}=\frac{15}{2} d^{\prime}, \quad a_{n-1}<d=\frac{5}{2} d^{\prime}$. The last relation implies that a_{n-1} is either d^{\prime} or $2 d^{\prime}$. Anyway, $a_{n-1} \mid 2 d^{\prime}$.

The same pattern repeats once more. We denote $\operatorname{gcd}\left(a_{n-2}, a_{n-1}\right)=d^{\prime \prime}$; then $d^{\prime \prime}>a_{n-3}$. Because $d^{\prime \prime}$ is a divisor of a_{n-1}, hence also of $2 d^{\prime}$, we may write $2 d^{\prime}=m^{\prime} d^{\prime \prime}$ (m^{\prime} an integer). Since $d^{\prime \prime} \leq a_{n-2}<d^{\prime}$, we get $m^{\prime} \geq 3$. Also, $a_{n-2}<d^{\prime}=\frac{1}{2} m^{\prime} d^{\prime \prime}, a_{n+1}=\frac{15}{2} d^{\prime}=\frac{15}{4} m^{\prime} d^{\prime \prime}$. As before, we consider the cases:

$$
\begin{aligned}
& \text { if } m^{\prime} \geq 5 \quad \text { then } a_{n+1}=\frac{15}{4} m^{\prime} d^{\prime \prime} \geq \frac{75}{4} d^{\prime \prime}>\frac{75}{4} a_{n-3} \geq \frac{75}{4} \cdot 2^{n-3}>2^{n+1} ; \\
& \text { if } 3 \leq m^{\prime} \leq 4 \text { then } a_{n-2}<\frac{1}{2} \cdot 4 d^{\prime \prime}, \text { and hence } a_{n-2}=d^{\prime \prime} \\
& \qquad a_{n+1}=\frac{15}{4} m^{\prime} a_{n-2} \geq \frac{15}{4} \cdot 3 a_{n-2} \geq \frac{45}{4} \cdot 2^{n-2}>2^{n+1} .
\end{aligned}
$$

Both of them have produced the induction claim. But now there are no cases left. Induction is complete; the inequality $a_{n} \geq 2^{n}$ holds for all n.
$\mathbf{N} 4$. Let n be a positive integer. Show that the numbers

$$
\binom{2^{n}-1}{0}, \quad\binom{2^{n}-1}{1}, \quad\binom{2^{n}-1}{2}, \quad \ldots, \quad\binom{2^{n}-1}{2^{n-1}-1}
$$

are congruent modulo 2^{n} to $1,3,5, \ldots, 2^{n}-1$ in some order.
Solution 1. It is well-known that all these numbers are odd. So the assertion that their remainders $\left(\bmod 2^{n}\right)$ make up a permutation of $\left\{1,3, \ldots, 2^{n}-1\right\}$ is equivalent just to saying that these remainders are all distinct. We begin by showing that

$$
\begin{equation*}
\binom{2^{n}-1}{2 k}+\binom{2^{n}-1}{2 k+1} \equiv 0\left(\bmod 2^{n}\right) \quad \text { and } \quad\binom{2^{n}-1}{2 k} \equiv(-1)^{k}\binom{2^{n-1}-1}{k} \quad\left(\bmod 2^{n}\right) \tag{1}
\end{equation*}
$$

The first relation is immediate, as the sum on the left is equal to $\binom{2^{n}}{2 k+1}=\frac{2^{n}}{2 k+1}\binom{2^{n}-1}{2 k}$, hence is divisible by 2^{n}. The second relation:

$$
\binom{2^{n}-1}{2 k}=\prod_{j=1}^{2 k} \frac{2^{n}-j}{j}=\prod_{i=1}^{k} \frac{2^{n}-(2 i-1)}{2 i-1} \cdot \prod_{i=1}^{k} \frac{2^{n-1}-i}{i} \equiv(-1)^{k}\binom{2^{n-1}-1}{k} \quad\left(\bmod 2^{n}\right)
$$

This prepares ground for a proof of the required result by induction on n. The base case $n=1$ is obvious. Assume the assertion is true for $n-1$ and pass to n, denoting $a_{k}=\binom{2^{n-1}-1}{k}$, $b_{m}=\binom{2^{n}-1}{m}$. The induction hypothesis is that all the numbers $a_{k}\left(0 \leq k<2^{n-2}\right)$ are distinct $\left(\bmod 2^{n-1}\right)$; the claim is that all the numbers $b_{m}\left(0 \leq m<2^{n-1}\right)$ are distinct $\left(\bmod 2^{n}\right)$.

The congruence relations (1) are restated as

$$
\begin{equation*}
b_{2 k} \equiv(-1)^{k} a_{k} \equiv-b_{2 k+1} \quad\left(\bmod 2^{n}\right) \tag{2}
\end{equation*}
$$

Shifting the exponent in the first relation of (1) from n to $n-1$ we also have the congruence $a_{2 i+1} \equiv-a_{2 i}\left(\bmod 2^{n-1}\right)$. We hence conclude:

If, for some $j, k<2^{n-2}, a_{k} \equiv-a_{j}\left(\bmod 2^{n-1}\right)$, then $\{j, k\}=\{2 i, 2 i+1\}$ for some i.
This is so because in the sequence ($a_{k}: k<2^{n-2}$) each term a_{j} is complemented to $0\left(\bmod 2^{n-1}\right)$ by only one other term a_{k}, according to the induction hypothesis.

From (2) we see that $b_{4 i} \equiv a_{2 i}$ and $b_{4 i+3} \equiv a_{2 i+1}\left(\bmod 2^{n}\right)$. Let

$$
M=\left\{m: 0 \leq m<2^{n-1}, m \equiv 0 \text { or } 3(\bmod 4)\right\}, \quad L=\left\{l: 0 \leq l<2^{n-1}, l \equiv 1 \text { or } 2(\bmod 4)\right\} .
$$

The last two congruences take on the unified form

$$
\begin{equation*}
b_{m} \equiv a_{\lfloor m / 2\rfloor} \quad\left(\bmod 2^{n}\right) \quad \text { for all } \quad m \in M \tag{4}
\end{equation*}
$$

Thus all the numbers b_{m} for $m \in M$ are distinct $\left(\bmod 2^{n}\right)$ because so are the numbers a_{k} (they are distinct $\left(\bmod 2^{n-1}\right)$, hence also $\left(\bmod 2^{n}\right)$).

Every $l \in L$ is paired with a unique $m \in M$ into a pair of the form $\{2 k, 2 k+1\}$. So (2) implies that also all the b_{l} for $l \in L$ are distinct $\left(\bmod 2^{n}\right)$. It remains to eliminate the possibility that $b_{m} \equiv b_{l}\left(\bmod 2^{n}\right)$ for some $m \in M, l \in L$.

Suppose that such a situation occurs. Let $m^{\prime} \in M$ be such that $\left\{m^{\prime}, l\right\}$ is a pair of the form $\{2 k, 2 k+1\}$, so that $($ see $(2)) b_{m^{\prime}} \equiv-b_{l}\left(\bmod 2^{n}\right)$. Hence $b_{m^{\prime}} \equiv-b_{m}\left(\bmod 2^{n}\right)$. Since both m^{\prime} and m are in M, we have by (4) $b_{m^{\prime}} \equiv a_{j}, b_{m} \equiv a_{k}\left(\bmod 2^{n}\right)$ for $j=\left\lfloor m^{\prime} / 2\right\rfloor, k=\lfloor m / 2\rfloor$.

Then $a_{j} \equiv-a_{k}\left(\bmod 2^{n}\right)$. Thus, according to (3), $j=2 i, k=2 i+1$ for some i (or vice versa). The equality $a_{2 i+1} \equiv-a_{2 i}\left(\bmod 2^{n}\right)$ now means that $\binom{2^{n-1}-1}{2 i}+\binom{2^{n-1}-1}{2 i+1} \equiv 0\left(\bmod 2^{n}\right)$. However, the sum on the left is equal to $\binom{2^{n-1}}{2 i+1}$. A number of this form cannot be divisible by 2^{n}. This is a contradiction which concludes the induction step and proves the result.

Solution 2. We again proceed by induction, writing for brevity $N=2^{n-1}$ and keeping notation $a_{k}=\binom{N-1}{k}, b_{m}=\binom{2 N-1}{m}$. Assume that the result holds for the sequence $\left(a_{0}, a_{1}, a_{2}, \ldots, a_{N / 2-1}\right)$. In view of the symmetry $a_{N-1-k}=a_{k}$ this sequence is a permutation of $\left(a_{0}, a_{2}, a_{4}, \ldots, a_{N-2}\right)$. So the induction hypothesis says that this latter sequence, $\operatorname{taken}(\bmod N)$, is a permutation of $(1,3,5, \ldots, N-1)$. Similarly, the induction claim is that $\left(b_{0}, b_{2}, b_{4}, \ldots, b_{2 N-2}\right)$, taken $(\bmod 2 N)$, is a permutation of $(1,3,5, \ldots, 2 N-1)$.

In place of the congruence relations (2) we now use the following ones,

$$
\begin{equation*}
b_{4 i} \equiv a_{2 i} \quad(\bmod N) \quad \text { and } \quad b_{4 i+2} \equiv b_{4 i}+N \quad(\bmod 2 N) \tag{5}
\end{equation*}
$$

Given this, the conclusion is immediate: the first formula of (5) together with the induction hypothesis tells us that $\left(b_{0}, b_{4}, b_{8}, \ldots, b_{2 N-4}\right)(\bmod N)$ is a permutation of $(1,3,5, \ldots, N-1)$. Then the second formula of (5) shows that $\left(b_{2}, b_{6}, b_{10}, \ldots, b_{2 N-2}\right)(\bmod N)$ is exactly the same permutation; moreover, this formula distinguishes $(\bmod 2 N)$ each $b_{4 i}$ from $b_{4 i+2}$.

Consequently, these two sequences combined represent $(\bmod 2 N)$ a permutation of the sequence $(1,3,5, \ldots, N-1, N+1, N+3, N+5, \ldots, N+N-1)$, and this is precisely the induction claim.

Now we prove formulas (5); we begin with the second one. Since $b_{m+1}=b_{m} \cdot \frac{2 N-m-1}{m+1}$,

$$
b_{4 i+2}=b_{4 i} \cdot \frac{2 N-4 i-1}{4 i+1} \cdot \frac{2 N-4 i-2}{4 i+2}=b_{4 i} \cdot \frac{2 N-4 i-1}{4 i+1} \cdot \frac{N-2 i-1}{2 i+1} .
$$

The desired congruence $b_{4 i+2} \equiv b_{4 i}+N$ may be multiplied by the odd number $(4 i+1)(2 i+1)$, giving rise to a chain of successively equivalent congruences:

$$
\begin{array}{rlrl}
b_{4 i}(2 N-4 i-1)(N-2 i-1) & \equiv\left(b_{4 i}+N\right)(4 i+1)(2 i+1) & (\bmod 2 N), \\
b_{4 i}(2 i+1-N) & \equiv\left(b_{4 i}+N\right)(2 i+1) & & (\bmod 2 N), \\
\left(b_{4 i}+2 i+1\right) N & \equiv 0 & & (\bmod 2 N) ;
\end{array}
$$

and the last one is satisfied, as $b_{4 i}$ is odd. This settles the second relation in (5).
The first one is proved by induction on i. It holds for $i=0$. Assume $b_{4 i} \equiv a_{2 i}(\bmod 2 N)$ and consider $i+1$:

$$
b_{4 i+4}=b_{4 i+2} \cdot \frac{2 N-4 i-3}{4 i+3} \cdot \frac{2 N-4 i-4}{4 i+4} ; \quad a_{2 i+2}=a_{2 i} \cdot \frac{N-2 i-1}{2 i+1} \cdot \frac{N-2 i-2}{2 i+2} .
$$

Both expressions have the fraction $\frac{N-2 i-2}{2 i+2}$ as the last factor. Since $2 i+2<N=2^{n-1}$, this fraction reduces to ℓ / m with ℓ and m odd. In showing that $b_{4 i+4} \equiv a_{2 i+2}(\bmod 2 N)$, we may ignore this common factor ℓ / m. Clearing other odd denominators reduces the claim to

$$
b_{4 i+2}(2 N-4 i-3)(2 i+1) \equiv a_{2 i}(N-2 i-1)(4 i+3) \quad(\bmod 2 N) .
$$

By the inductive assumption (saying that $b_{4 i} \equiv a_{2 i}(\bmod 2 N)$) and by the second relation of (5), this is equivalent to

$$
\left(b_{4 i}+N\right)(2 i+1) \equiv b_{4 i}(2 i+1-N) \quad(\bmod 2 N)
$$

a congruence which we have already met in the preceding proof a few lines above. This completes induction (on i) and the proof of (5), hence also the whole solution.

Comment. One can avoid the words congruent modulo in the problem statement by rephrasing the assertion into: Show that these numbers leave distinct remainders in division by 2^{n}.

N5. For every $n \in \mathbb{N}$ let $d(n)$ denote the number of (positive) divisors of n. Find all functions $f: \mathbb{N} \rightarrow \mathbb{N}$ with the following properties:
(i) $d(f(x))=x$ for all $x \in \mathbb{N}$;
(ii) $f(x y)$ divides $(x-1) y^{x y-1} f(x)$ for all $x, y \in \mathbb{N}$.

Solution. There is a unique solution: the function $f: \mathbb{N} \rightarrow \mathbb{N}$ defined by $f(1)=1$ and

$$
\begin{equation*}
f(n)=p_{1}^{p_{1}^{a_{1}}-1} p_{2}^{p_{2}^{a_{2}}-1} \cdots p_{k}^{p_{k}^{a_{k}}-1} \text { where } n=p_{1}^{a_{1}} p_{2}^{a_{2}} \cdots p_{k}^{a_{k}} \text { is the prime factorization of } n>1 \tag{1}
\end{equation*}
$$

Direct verification shows that this function meets the requirements.
Conversely, let $f: \mathbb{N} \rightarrow \mathbb{N}$ satisfy (i) and (ii). Applying (i) for $x=1$ gives $d(f(1))=1$, so $f(1)=1$. In the sequel we prove that (1) holds for all $n>1$. Notice that $f(m)=f(n)$ implies $m=n$ in view of (i). The formula $d\left(p_{1}^{b_{1}} \cdots p_{k}^{b_{k}}\right)=\left(b_{1}+1\right) \cdots\left(b_{k}+1\right)$ will be used throughout.

Let p be a prime. Since $d(f(p))=p$, the formula just mentioned yields $f(p)=q^{p-1}$ for some prime q; in particular $f(2)=q^{2-1}=q$ is a prime. We prove that $f(p)=p^{p-1}$ for all primes p.

Suppose that p is odd and $f(p)=q^{p-1}$ for a prime q. Applying (ii) first with $x=2$, $y=p$ and then with $x=p, y=2$ shows that $f(2 p)$ divides both $(2-1) p^{2 p-1} f(2)=p^{2 p-1} f(2)$ and $(p-1) 2^{2 p-1} f(p)=(p-1) 2^{2 p-1} q^{p-1}$. If $q \neq p$ then the odd prime p does not divide $(p-1) 2^{2 p-1} q^{p-1}$, hence the greatest common divisor of $p^{2 p-1} f(2)$ and $(p-1) 2^{2 p-1} q^{p-1}$ is a divisor of $f(2)$. Thus $f(2 p)$ divides $f(2)$ which is a prime. As $f(2 p)>1$, we obtain $f(2 p)=f(2)$ which is impossible. So $q=p$, i. e. $f(p)=p^{p-1}$.

For $p=2$ the same argument with $x=2, y=3$ and $x=3, y=2$ shows that $f(6)$ divides both $3^{5} f(2)$ and $2^{6} f(3)=2^{6} 3^{2}$. If the prime $f(2)$ is odd then $f(6)$ divides $3^{2}=9$, so $f(6) \in\{1,3,9\}$. However then $6=d(f(6)) \in\{d(1), d(3), d(9)\}=\{1,2,3\}$ which is false. In conclusion $f(2)=2$.

Next, for each $n>1$ the prime divisors of $f(n)$ are among the ones of n. Indeed, let p be the least prime divisor of n. Apply (ii) with $x=p$ and $y=n / p$ to obtain that $f(n)$ divides $(p-1) y^{n-1} f(p)=(p-1) y^{n-1} p^{p-1}$. Write $f(n)=\ell P$ where ℓ is coprime to n and P is a product of primes dividing n. Since ℓ divides $(p-1) y^{n-1} p^{p-1}$ and is coprime to $y^{n-1} p^{p-1}$, it divides $p-1$; hence $d(\ell) \leq \ell<p$. But (i) gives $n=d(f(n))=d(\ell P)$, and $d(\ell P)=d(\ell) d(P)$ as ℓ and P are coprime. Therefore $d(\ell)$ is a divisor of n less than p, meaning that $\ell=1$ and proving the claim.

Now (1) is immediate for prime powers. If p is a prime and $a \geq 1$, by the above the only prime factor of $f\left(p^{a}\right)$ is p (a prime factor does exist as $f\left(p^{a}\right)>1$). So $f\left(p^{a}\right)=p^{b}$ for some $b \geq 1$, and (i) yields $p^{a}=d\left(f\left(p^{a}\right)\right)=d\left(p^{b}\right)=b+1$. Hence $f\left(p^{a}\right)=p^{p^{a}-1}$, as needed.

Let us finally show that (1) is true for a general $n>1$ with prime factorization $n=p_{1}^{a_{1}} \cdots p_{k}^{a_{k}}$. We saw that the prime factorization of $f(n)$ has the form $f(n)=p_{1}^{b_{1}} \cdots p_{k}^{b_{k}}$. For $i=1, \ldots, k$, set $x=p_{i}^{a_{i}}$ and $y=n / x$ in (ii) to infer that $f(n)$ divides $\left(p_{i}^{a_{i}}-1\right) y^{n-1} f\left(p_{i}^{a_{i}}\right)$. Hence $p_{i}^{b_{i}}$ divides $\left(p_{i}^{a_{i}}-1\right) y^{n-1} f\left(p_{i}^{a_{i}}\right)$, and because $p_{i}^{b_{i}}$ is coprime to $\left(p_{i}^{a_{i}}-1\right) y^{n-1}$, it follows that $p_{i}^{b_{i}}$ divides $f\left(p_{i}^{a_{i}}\right)=p_{i}^{p_{i}^{a_{i}}-1}$. So $b_{i} \leq p_{i}^{a_{i}}-1$ for all $i=1, \ldots, k$. Combined with (i), these conclusions imply

$$
p_{1}^{a_{1}} \cdots p_{k}^{a_{k}}=n=d(f(n))=d\left(p_{1}^{b_{1}} \cdots p_{k}^{b_{k}}\right)=\left(b_{1}+1\right) \cdots\left(b_{k}+1\right) \leq p_{1}^{a_{1}} \cdots p_{k}^{a_{k}}
$$

Hence all inequalities $b_{i} \leq p_{i}^{a_{i}}-1$ must be equalities, $i=1, \ldots, k$, implying that (1) holds true. The proof is complete.

N6. Prove that there exist infinitely many positive integers n such that $n^{2}+1$ has a prime divisor greater than $2 n+\sqrt{2 n}$.

Solution. Let $p \equiv 1(\bmod 8)$ be a prime. The congruence $x^{2} \equiv-1(\bmod p)$ has two solutions in $[1, p-1]$ whose sum is p. If n is the smaller one of them then p divides $n^{2}+1$ and $n \leq(p-1) / 2$. We show that $p>2 n+\sqrt{10 n}$.

Let $n=(p-1) / 2-\ell$ where $\ell \geq 0$. Then $n^{2} \equiv-1(\bmod p)$ gives

$$
\left(\frac{p-1}{2}-\ell\right)^{2} \equiv-1 \quad(\bmod p) \quad \text { or } \quad(2 \ell+1)^{2}+4 \equiv 0 \quad(\bmod p) .
$$

Thus $(2 \ell+1)^{2}+4=r p$ for some $r \geq 0$. As $(2 \ell+1)^{2} \equiv 1 \equiv p(\bmod 8)$, we have $r \equiv 5(\bmod 8)$, so that $r \geq 5$. Hence $(2 \ell+1)^{2}+4 \geq 5 p$, implying $\ell \geq(\sqrt{5 p-4}-1) / 2$. Set $\sqrt{5 p-4}=u$ for clarity; then $\ell \geq(u-1) / 2$. Therefore

$$
n=\frac{p-1}{2}-\ell \leq \frac{1}{2}(p-u) .
$$

Combined with $p=\left(u^{2}+4\right) / 5$, this leads to $u^{2}-5 u-10 n+4 \geq 0$. Solving this quadratic inequality with respect to $u \geq 0$ gives $u \geq(5+\sqrt{40 n+9}) / 2$. So the estimate $n \leq(p-u) / 2$ leads to

$$
p \geq 2 n+u \geq 2 n+\frac{1}{2}(5+\sqrt{40 n+9})>2 n+\sqrt{10 n}
$$

Since there are infinitely many primes of the form $8 k+1$, it follows easily that there are also infinitely many n with the stated property.

Comment. By considering the prime factorization of the product $\prod_{n=1}^{N}\left(n^{2}+1\right)$, it can be obtained that its greatest prime divisor is at least $c N \log N$. This could improve the statement as $p>n \log n$.

However, the proof applies some advanced information about the distribution of the primes of the form $4 k+1$, which is inappropriate for high schools contests.

International Mathematical Olympiad

Bremen Germany 2009

10 to 22. July 2009

Problem Shortist with solutions

Problem Shortlist with Solutions

The Problem Selection Committee

We insistently ask everybody to consider the following IMO Regulations rule:

These Shortlist Problems have to be kept strictly confidential until IMO 2010.

The Problem Selection Committee

Konrad Engel, Karl Fegert, Andreas Felgenhauer, Hans-Dietrich Gronau, Roger Labahn, Bernd Mulansky, Jürgen Prestin, Christian Reiher, Peter Scholze, Eckard Specht, Robert Strich, Martin Welk
gratefully received
132 problem proposals submitted by 39 countries:
Algeria, Australia, Austria, Belarus, Belgium, Bulgaria, Colombia, Croatia, Czech Republic, El Salvador, Estonia, Finland, France, Greece, Hong Kong, Hungary, India, Ireland, Islamic Republic of Iran, Japan, Democratic People's Republic of Korea, Lithuania, Luxembourg, The former Yugoslav Republic of Macedonia, Mongolia, Netherlands, New Zealand, Pakistan, Peru, Poland, Romania, Russian Federation, Slovenia, South Africa, Taiwan, Turkey, Ukraine, United Kingdom, United States of America.

Layout: Roger Labahn with $\mathrm{ET}_{\mathrm{E}} \mathrm{X} \& \mathrm{~T}_{\mathrm{E}} \mathrm{X}$
Drawings: Eckard Specht with nicefig 2.0

The Problem Selection Committee

Contents

Problem Shortlist 4
Algebra 12
Combinatorics 26
Geometry 47
Number Theory 69

Algebra

A1 CZE (Czech Republic)

Find the largest possible integer k, such that the following statement is true:
Let 2009 arbitrary non-degenerated triangles be given. In every triangle the three sides are colored, such that one is blue, one is red and one is white. Now, for every color separately, let us sort the lengths of the sides. We obtain

$$
\begin{array}{rlrl}
b_{1} & \leq b_{2} & \leq \ldots \leq b_{2009} & \\
& \text { the lengths of the blue sides, } \\
r_{1} & \leq r_{2} & \leq \ldots \leq r_{2009} \quad \text { the lengths of the red sides, } \\
\text { and } \quad w_{1} & \leq w_{2} & \leq \ldots \leq w_{2009} \quad \text { the lengths of the white sides. }
\end{array}
$$

Then there exist k indices j such that we can form a non-degenerated triangle with side lengths b_{j}, r_{j}, w_{j}.

A2 EST (Estonia)

Let a, b, c be positive real numbers such that $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=a+b+c$. Prove that

$$
\frac{1}{(2 a+b+c)^{2}}+\frac{1}{(2 b+c+a)^{2}}+\frac{1}{(2 c+a+b)^{2}} \leq \frac{3}{16} .
$$

A3 FRA (France)

Determine all functions f from the set of positive integers into the set of positive integers such that for all x and y there exists a non degenerated triangle with sides of lengths

$$
x, \quad f(y) \quad \text { and } \quad f(y+f(x)-1) .
$$

A4 BLR (Belarus)

Let a, b, c be positive real numbers such that $a b+b c+c a \leq 3 a b c$. Prove that

$$
\sqrt{\frac{a^{2}+b^{2}}{a+b}}+\sqrt{\frac{b^{2}+c^{2}}{b+c}}+\sqrt{\frac{c^{2}+a^{2}}{c+a}}+3 \leq \sqrt{2}(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a})
$$

A5 BLR (Belarus)

Let f be any function that maps the set of real numbers into the set of real numbers. Prove that there exist real numbers x and y such that

$$
f(x-f(y))>y f(x)+x .
$$

A6 USA (United States of America)

Suppose that $s_{1}, s_{2}, s_{3}, \ldots$ is a strictly increasing sequence of positive integers such that the subsequences

$$
s_{s_{1}}, s_{s_{2}}, s_{s_{3}}, \ldots \quad \text { and } \quad s_{s_{1}+1}, s_{s_{2}+1}, s_{s_{3}+1}, \ldots
$$

are both arithmetic progressions. Prove that $s_{1}, s_{2}, s_{3}, \ldots$ is itself an arithmetic progression.

A7 JPN (Japan)

Find all functions f from the set of real numbers into the set of real numbers which satisfy for all real x, y the identity

$$
f(x f(x+y))=f(y f(x))+x^{2}
$$

Combinatorics

C1 NZL (New Zealand)

Consider 2009 cards, each having one gold side and one black side, lying in parallel on a long table. Initially all cards show their gold sides. Two players, standing by the same long side of the table, play a game with alternating moves. Each move consists of choosing a block of 50 consecutive cards, the leftmost of which is showing gold, and turning them all over, so those which showed gold now show black and vice versa. The last player who can make a legal move wins.
(a) Does the game necessarily end?
(b) Does there exist a winning strategy for the starting player?

C2 ROU (Romania)

For any integer $n \geq 2$, let $N(n)$ be the maximal number of triples $\left(a_{i}, b_{i}, c_{i}\right), i=1, \ldots, N(n)$, consisting of nonnegative integers a_{i}, b_{i} and c_{i} such that the following two conditions are satisfied:
(1) $a_{i}+b_{i}+c_{i}=n$ for all $i=1, \ldots, N(n)$,
(2) If $i \neq j$, then $a_{i} \neq a_{j}, b_{i} \neq b_{j}$ and $c_{i} \neq c_{j}$.

Determine $N(n)$ for all $n \geq 2$.

Comment. The original problem was formulated for m-tuples instead for triples. The numbers $N(m, n)$ are then defined similarly to $N(n)$ in the case $m=3$. The numbers $N(3, n)$ and $N(n, n)$ should be determined. The case $m=3$ is the same as in the present problem. The upper bound for $N(n, n)$ can be proved by a simple generalization. The construction of a set of triples attaining the bound can be easily done by induction from n to $n+2$.

C3 RUS (Russian Federation)

Let n be a positive integer. Given a sequence $\varepsilon_{1}, \ldots, \varepsilon_{n-1}$ with $\varepsilon_{i}=0$ or $\varepsilon_{i}=1$ for each $i=1, \ldots, n-1$, the sequences a_{0}, \ldots, a_{n} and b_{0}, \ldots, b_{n} are constructed by the following rules:

$$
\begin{gathered}
a_{0}=b_{0}=1, \quad a_{1}=b_{1}=7, \\
a_{i+1}=\left\{\begin{array}{ll}
2 a_{i-1}+3 a_{i}, & \text { if } \varepsilon_{i}=0, \\
3 a_{i-1}+a_{i}, & \text { if } \varepsilon_{i}=1,
\end{array} \text { for each } i=1, \ldots, n-1,\right. \\
b_{i+1}=\left\{\begin{array}{ll}
2 b_{i-1}+3 b_{i}, & \text { if } \varepsilon_{n-i}=0, \\
3 b_{i-1}+b_{i}, & \text { if } \varepsilon_{n-i}=1,
\end{array} \text { for each } i=1, \ldots, n-1 .\right.
\end{gathered}
$$

Prove that $a_{n}=b_{n}$.

C4 NLD (Netherlands)

For an integer $m \geq 1$, we consider partitions of a $2^{m} \times 2^{m}$ chessboard into rectangles consisting of cells of the chessboard, in which each of the 2^{m} cells along one diagonal forms a separate rectangle of side length 1 . Determine the smallest possible sum of rectangle perimeters in such a partition.

C5 NLD (Netherlands)

Five identical empty buckets of 2-liter capacity stand at the vertices of a regular pentagon. Cinderella and her wicked Stepmother go through a sequence of rounds: At the beginning of every round, the Stepmother takes one liter of water from the nearby river and distributes it arbitrarily over the five buckets. Then Cinderella chooses a pair of neighboring buckets, empties them into the river, and puts them back. Then the next round begins. The Stepmother's goal is to make one of these buckets overflow. Cinderella's goal is to prevent this. Can the wicked Stepmother enforce a bucket overflow?

C6 BGR (Bulgaria)

On a 999×999 board a limp rook can move in the following way: From any square it can move to any of its adjacent squares, i.e. a square having a common side with it, and every move must be a turn, i.e. the directions of any two consecutive moves must be perpendicular. A nonintersecting route of the limp rook consists of a sequence of pairwise different squares that the limp rook can visit in that order by an admissible sequence of moves. Such a non-intersecting route is called cyclic, if the limp rook can, after reaching the last square of the route, move directly to the first square of the route and start over.
How many squares does the longest possible cyclic, non-intersecting route of a limp rook visit?

C7 RUS (Russian Federation)

Variant 1. A grasshopper jumps along the real axis. He starts at point 0 and makes 2009 jumps to the right with lengths $1,2, \ldots, 2009$ in an arbitrary order. Let M be a set of 2008 positive integers less than $1005 \cdot 2009$. Prove that the grasshopper can arrange his jumps in such a way that he never lands on a point from M.

Variant 2. Let n be a nonnegative integer. A grasshopper jumps along the real axis. He starts at point 0 and makes $n+1$ jumps to the right with pairwise different positive integral lengths $a_{1}, a_{2}, \ldots, a_{n+1}$ in an arbitrary order. Let M be a set of n positive integers in the interval $(0, s)$, where $s=a_{1}+a_{2}+\cdots+a_{n+1}$. Prove that the grasshopper can arrange his jumps in such a way that he never lands on a point from M.

C8 AUT (Austria)

For any integer $n \geq 2$, we compute the integer $h(n)$ by applying the following procedure to its decimal representation. Let r be the rightmost digit of n.
(1) If $r=0$, then the decimal representation of $h(n)$ results from the decimal representation of n by removing this rightmost digit 0 .
(2) If $1 \leq r \leq 9$ we split the decimal representation of n into a maximal right part R that solely consists of digits not less than r and into a left part L that either is empty or ends with a digit strictly smaller than r. Then the decimal representation of $h(n)$ consists of the decimal representation of L, followed by two copies of the decimal representation of $R-1$. For instance, for the number $n=17,151,345,543$, we will have $L=17,151, R=345,543$ and $h(n)=17,151,345,542,345,542$.
Prove that, starting with an arbitrary integer $n \geq 2$, iterated application of h produces the integer 1 after finitely many steps.

Geometry

G1 BEL (Belgium)

Let $A B C$ be a triangle with $A B=A C$. The angle bisectors of A and B meet the sides $B C$ and $A C$ in D and E, respectively. Let K be the incenter of triangle $A D C$. Suppose that $\angle B E K=45^{\circ}$. Find all possible values of $\angle B A C$.

G2 RUS (Russian Federation)

Let $A B C$ be a triangle with circumcenter O. The points P and Q are interior points of the sides $C A$ and $A B$, respectively. The circle k passes through the midpoints of the segments $B P$, $C Q$, and $P Q$. Prove that if the line $P Q$ is tangent to circle k then $O P=O Q$.

G3 IRN (Islamic Republic of Iran)

Let $A B C$ be a triangle. The incircle of $A B C$ touches the sides $A B$ and $A C$ at the points Z and Y, respectively. Let G be the point where the lines $B Y$ and $C Z$ meet, and let R and S be points such that the two quadrilaterals $B C Y R$ and $B C S Z$ are parallelograms.
Prove that $G R=G S$.

G4 UNK (United Kingdom)

Given a cyclic quadrilateral $A B C D$, let the diagonals $A C$ and $B D$ meet at E and the lines $A D$ and $B C$ meet at F. The midpoints of $A B$ and $C D$ are G and H, respectively. Show that $E F$ is tangent at E to the circle through the points E, G, and H.

G5 POL (Poland)

Let P be a polygon that is convex and symmetric to some point O. Prove that for some parallelogram R satisfying $P \subset R$ we have

$$
\frac{|R|}{|P|} \leq \sqrt{2}
$$

where $|R|$ and $|P|$ denote the area of the sets R and P, respectively.

G6 UKR (Ukraine)

Let the sides $A D$ and $B C$ of the quadrilateral $A B C D$ (such that $A B$ is not parallel to $C D$) intersect at point P. Points O_{1} and O_{2} are the circumcenters and points H_{1} and H_{2} are the orthocenters of triangles $A B P$ and $D C P$, respectively. Denote the midpoints of segments $O_{1} H_{1}$ and $O_{2} H_{2}$ by E_{1} and E_{2}, respectively. Prove that the perpendicular from E_{1} on $C D$, the perpendicular from E_{2} on $A B$ and the line $H_{1} H_{2}$ are concurrent.

G7 IRN (Islamic Republic of Iran)

Let $A B C$ be a triangle with incenter I and let X, Y and Z be the incenters of the triangles $B I C, C I A$ and $A I B$, respectively. Let the triangle $X Y Z$ be equilateral. Prove that $A B C$ is equilateral too.

G8 BGR (Bulgaria)

Let $A B C D$ be a circumscribed quadrilateral. Let g be a line through A which meets the segment $B C$ in M and the line $C D$ in N. Denote by I_{1}, I_{2}, and I_{3} the incenters of $\triangle A B M$, $\triangle M N C$, and $\triangle N D A$, respectively. Show that the orthocenter of $\triangle I_{1} I_{2} I_{3}$ lies on g.

Number Theory

N1 AUS (Australia)

A social club has n members. They have the membership numbers $1,2, \ldots, n$, respectively. From time to time members send presents to other members, including items they have already received as presents from other members. In order to avoid the embarrassing situation that a member might receive a present that he or she has sent to other members, the club adds the following rule to its statutes at one of its annual general meetings:
"A member with membership number a is permitted to send a present to a member with membership number b if and only if $a(b-1)$ is a multiple of n."
Prove that, if each member follows this rule, none will receive a present from another member that he or she has already sent to other members.

Alternative formulation: Let G be a directed graph with n vertices $v_{1}, v_{2}, \ldots, v_{n}$, such that there is an edge going from v_{a} to v_{b} if and only if a and b are distinct and $a(b-1)$ is a multiple of n. Prove that this graph does not contain a directed cycle.

N2 PER (Peru)

A positive integer N is called balanced, if $N=1$ or if N can be written as a product of an even number of not necessarily distinct primes. Given positive integers a and b, consider the polynomial P defined by $P(x)=(x+a)(x+b)$.
(a) Prove that there exist distinct positive integers a and b such that all the numbers $P(1), P(2)$, $\ldots, P(50)$ are balanced.
(b) Prove that if $P(n)$ is balanced for all positive integers n, then $a=b$.

N3 EST (Estonia)

Let f be a non-constant function from the set of positive integers into the set of positive integers, such that $a-b$ divides $f(a)-f(b)$ for all distinct positive integers a, b. Prove that there exist infinitely many primes p such that p divides $f(c)$ for some positive integer c.

N4 PRK (Democratic People's Republic of Korea)

Find all positive integers n such that there exists a sequence of positive integers $a_{1}, a_{2}, \ldots, a_{n}$ satisfying

$$
a_{k+1}=\frac{a_{k}^{2}+1}{a_{k-1}+1}-1
$$

for every k with $2 \leq k \leq n-1$.

N5 HUN (Hungary)

Let $P(x)$ be a non-constant polynomial with integer coefficients. Prove that there is no function T from the set of integers into the set of integers such that the number of integers x with $T^{n}(x)=x$ is equal to $P(n)$ for every $n \geq 1$, where T^{n} denotes the n-fold application of T.

N6 TUR (Turkey)

Let k be a positive integer. Show that if there exists a sequence a_{0}, a_{1}, \ldots of integers satisfying the condition

$$
a_{n}=\frac{a_{n-1}+n^{k}}{n} \quad \text { for all } n \geq 1
$$

then $k-2$ is divisible by 3 .

N7 MNG (Mongolia)

Let a and b be distinct integers greater than 1 . Prove that there exists a positive integer n such that $\left(a^{n}-1\right)\left(b^{n}-1\right)$ is not a perfect square.

Algebra

A1 CZE (Czech Republic)

Find the largest possible integer k, such that the following statement is true:
Let 2009 arbitrary non-degenerated triangles be given. In every triangle the three sides are colored, such that one is blue, one is red and one is white. Now, for every color separately, let us sort the lengths of the sides. We obtain

$$
\begin{array}{rlrl}
b_{1} & \leq b_{2} & \leq \ldots \leq b_{2009} & \\
& \text { the lengths of the blue sides, } \\
r_{1} & \leq r_{2} \leq \ldots \leq r_{2009} & & \text { the lengths of the red sides, } \\
\text { and } & w_{1} & \leq w_{2} \leq \ldots \leq w_{2009} & \text { the lengths of the white sides. }
\end{array}
$$

Then there exist k indices j such that we can form a non-degenerated triangle with side lengths b_{j}, r_{j}, w_{j}.

Solution. We will prove that the largest possible number k of indices satisfying the given condition is one.

Firstly we prove that $b_{2009}, r_{2009}, w_{2009}$ are always lengths of the sides of a triangle. Without loss of generality we may assume that $w_{2009} \geq r_{2009} \geq b_{2009}$. We show that the inequality $b_{2009}+r_{2009}>w_{2009}$ holds. Evidently, there exists a triangle with side lengths w, b, r for the white, blue and red side, respectively, such that $w_{2009}=w$. By the conditions of the problem we have $b+r>w, b_{2009} \geq b$ and $r_{2009} \geq r$. From these inequalities it follows

$$
b_{2009}+r_{2009} \geq b+r>w=w_{2009} .
$$

Secondly we will describe a sequence of triangles for which w_{j}, b_{j}, r_{j} with $j<2009$ are not the lengths of the sides of a triangle. Let us define the sequence $\Delta_{j}, j=1,2, \ldots, 2009$, of triangles, where Δ_{j} has
a blue side of length $2 j$,
a red side of length j for all $j \leq 2008$ and 4018 for $j=2009$,
and a white side of length $j+1$ for all $j \leq 2007$, 4018 for $j=2008$ and 1 for $j=2009$.
Since

$$
\begin{array}{rlll}
(j+1)+j>2 j & \geq j+1>j, & \text { if } \quad j \leq 2007, \\
2 j+j>4018>2 j \quad>j, & \text { if } \quad j=2008 \\
4018+1>2 j & =4018>1, & \text { if } \quad j=2009
\end{array}
$$

such a sequence of triangles exists. Moreover, $w_{j}=j, r_{j}=j$ and $b_{j}=2 j$ for $1 \leq j \leq 2008$. Then

$$
w_{j}+r_{j}=j+j=2 j=b_{j},
$$

i.e., b_{j}, r_{j} and w_{j} are not the lengths of the sides of a triangle for $1 \leq j \leq 2008$.

A2 EST (Estonia)

Let a, b, c be positive real numbers such that $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=a+b+c$. Prove that

$$
\frac{1}{(2 a+b+c)^{2}}+\frac{1}{(2 b+c+a)^{2}}+\frac{1}{(2 c+a+b)^{2}} \leq \frac{3}{16} .
$$

Solution 1. For positive real numbers x, y, z, from the arithmetic-geometric-mean inequality,

$$
2 x+y+z=(x+y)+(x+z) \geq 2 \sqrt{(x+y)(x+z)}
$$

we obtain

$$
\frac{1}{(2 x+y+z)^{2}} \leq \frac{1}{4(x+y)(x+z)}
$$

Applying this to the left-hand side terms of the inequality to prove, we get

$$
\begin{align*}
\frac{1}{(2 a+b+c)^{2}} & +\frac{1}{(2 b+c+a)^{2}}+\frac{1}{(2 c+a+b)^{2}} \\
& \leq \frac{1}{4(a+b)(a+c)}+\frac{1}{4(b+c)(b+a)}+\frac{1}{4(c+a)(c+b)} \\
& =\frac{(b+c)+(c+a)+(a+b)}{4(a+b)(b+c)(c+a)}=\frac{a+b+c}{2(a+b)(b+c)(c+a)} . \tag{1}
\end{align*}
$$

A second application of the inequality of the arithmetic-geometric mean yields

$$
a^{2} b+a^{2} c+b^{2} a+b^{2} c+c^{2} a+c^{2} b \geq 6 a b c
$$

or, equivalently,

$$
\begin{equation*}
9(a+b)(b+c)(c+a) \geq 8(a+b+c)(a b+b c+c a) \tag{2}
\end{equation*}
$$

The supposition $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=a+b+c$ can be written as

$$
\begin{equation*}
a b+b c+c a=a b c(a+b+c) \tag{3}
\end{equation*}
$$

Applying the arithmetic-geometric-mean inequality $x^{2} y^{2}+x^{2} z^{2} \geq 2 x^{2} y z$ thrice, we get

$$
a^{2} b^{2}+b^{2} c^{2}+c^{2} a^{2} \geq a^{2} b c+a b^{2} c+a b c^{2}
$$

which is equivalent to

$$
\begin{equation*}
(a b+b c+c a)^{2} \geq 3 a b c(a+b+c) \tag{4}
\end{equation*}
$$

Combining (1), (2), (3), and (4), we will finish the proof:

$$
\begin{aligned}
\frac{a+b+c}{2(a+b)(b+c)(c+a)} & =\frac{(a+b+c)(a b+b c+c a)}{2(a+b)(b+c)(c+a)} \cdot \frac{a b+b c+c a}{a b c(a+b+c)} \cdot \frac{a b c(a+b+c)}{(a b+b c+c a)^{2}} \\
& \leq \frac{9}{2 \cdot 8} \cdot 1 \cdot \frac{1}{3}=\frac{3}{16}
\end{aligned}
$$

Solution 2. Equivalently, we prove the homogenized inequality

$$
\frac{(a+b+c)^{2}}{(2 a+b+c)^{2}}+\frac{(a+b+c)^{2}}{(a+2 b+c)^{2}}+\frac{(a+b+c)^{2}}{(a+b+2 c)^{2}} \leq \frac{3}{16}(a+b+c)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)
$$

for all positive real numbers a, b, c. Without loss of generality we choose $a+b+c=1$. Thus, the problem is equivalent to prove for all $a, b, c>0$, fulfilling this condition, the inequality

$$
\begin{equation*}
\frac{1}{(1+a)^{2}}+\frac{1}{(1+b)^{2}}+\frac{1}{(1+c)^{2}} \leq \frac{3}{16}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right) \tag{5}
\end{equation*}
$$

Applying JENSEN's inequality to the function $f(x)=\frac{x}{(1+x)^{2}}$, which is concave for $0 \leq x \leq 2$ and increasing for $0 \leq x \leq 1$, we obtain

$$
\alpha \frac{a}{(1+a)^{2}}+\beta \frac{b}{(1+b)^{2}}+\gamma \frac{c}{(1+c)^{2}} \leq(\alpha+\beta+\gamma) \frac{A}{(1+A)^{2}}, \quad \text { where } \quad A=\frac{\alpha a+\beta b+\gamma c}{\alpha+\beta+\gamma} .
$$

Choosing $\alpha=\frac{1}{a}, \beta=\frac{1}{b}$, and $\gamma=\frac{1}{c}$, we can apply the harmonic-arithmetic-mean inequality

$$
A=\frac{3}{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}} \leq \frac{a+b+c}{3}=\frac{1}{3}<1 .
$$

Finally we prove (5):

$$
\begin{aligned}
\frac{1}{(1+a)^{2}}+\frac{1}{(1+b)^{2}}+\frac{1}{(1+c)^{2}} & \leq\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right) \frac{A}{(1+A)^{2}} \\
& \leq\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right) \frac{\frac{1}{3}}{\left(1+\frac{1}{3}\right)^{2}}=\frac{3}{16}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)
\end{aligned}
$$

A3 FRA (France)

Determine all functions f from the set of positive integers into the set of positive integers such that for all x and y there exists a non degenerated triangle with sides of lengths

$$
x, \quad f(y) \quad \text { and } \quad f(y+f(x)-1) .
$$

Solution. The identity function $f(x)=x$ is the only solution of the problem.
If $f(x)=x$ for all positive integers x, the given three lengths are $x, y=f(y)$ and $z=$ $f(y+f(x)-1)=x+y-1$. Because of $x \geq 1, y \geq 1$ we have $z \geq \max \{x, y\}>|x-y|$ and $z<x+y$. From this it follows that a triangle with these side lengths exists and does not degenerate. We prove in several steps that there is no other solution.

Step 1. We show $f(1)=1$.
If we had $f(1)=1+m>1$ we would conclude $f(y)=f(y+m)$ for all y considering the triangle with the side lengths $1, f(y)$ and $f(y+m)$. Thus, f would be m-periodic and, consequently, bounded. Let B be a bound, $f(x) \leq B$. If we choose $x>2 B$ we obtain the contradiction $x>2 B \geq f(y)+f(y+f(x)-1)$.

Step 2. For all positive integers z, we have $f(f(z))=z$.
Setting $x=z$ and $y=1$ this follows immediately from Step 1 .

Step 3. For all integers $z \geq 1$, we have $f(z) \leq z$.
Let us show, that the contrary leads to a contradiction. Assume $w+1=f(z)>z$ for some z. From Step 1 we know that $w \geq z \geq 2$. Let $M=\max \{f(1), f(2), \ldots, f(w)\}$ be the largest value of f for the first w integers. First we show, that no positive integer t exists with

$$
\begin{equation*}
f(t)>\frac{z-1}{w} \cdot t+M \tag{1}
\end{equation*}
$$

otherwise we decompose the smallest value t as $t=w r+s$ where r is an integer and $1 \leq s \leq w$. Because of the definition of M, we have $t>w$. Setting $x=z$ and $y=t-w$ we get from the triangle inequality

$$
z+f(t-w)>f((t-w)+f(z)-1)=f(t-w+w)=f(t)
$$

Hence,

$$
f(t-w) \geq f(t)-(z-1)>\frac{z-1}{w}(t-w)+M
$$

a contradiction to the minimality of t.
Therefore the inequality (1) fails for all $t \geq 1$, we have proven

$$
\begin{equation*}
f(t) \leq \frac{z-1}{w} \cdot t+M \tag{2}
\end{equation*}
$$

instead.

Now, using (2), we finish the proof of Step 3. Because of $z \leq w$ we have $\frac{z-1}{w}<1$ and we can choose an integer t sufficiently large to fulfill the condition

$$
\left(\frac{z-1}{w}\right)^{2} t+\left(\frac{z-1}{w}+1\right) M<t .
$$

Applying (2) twice we get

$$
f(f(t)) \leq \frac{z-1}{w} f(t)+M \leq \frac{z-1}{w}\left(\frac{z-1}{w} t+M\right)+M<t
$$

in contradiction to Step 2, which proves Step 3.

Final step. Thus, following Step 2 and Step 3, we obtain

$$
z=f(f(z)) \leq f(z) \leq z
$$

and $f(z)=z$ for all positive integers z is proven.

A4 BLR (Belarus)

Let a, b, c be positive real numbers such that $a b+b c+c a \leq 3 a b c$. Prove that

$$
\sqrt{\frac{a^{2}+b^{2}}{a+b}}+\sqrt{\frac{b^{2}+c^{2}}{b+c}}+\sqrt{\frac{c^{2}+a^{2}}{c+a}}+3 \leq \sqrt{2}(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a})
$$

Solution. Starting with the terms of the right-hand side, the quadratic-arithmetic-mean inequality yields

$$
\begin{aligned}
\sqrt{2} \sqrt{a+b} & =2 \sqrt{\frac{a b}{a+b}} \sqrt{\frac{1}{2}\left(2+\frac{a^{2}+b^{2}}{a b}\right)} \\
& \geq 2 \sqrt{\frac{a b}{a+b}} \cdot \frac{1}{2}\left(\sqrt{2}+\sqrt{\frac{a^{2}+b^{2}}{a b}}\right)=\sqrt{\frac{2 a b}{a+b}}+\sqrt{\frac{a^{2}+b^{2}}{a+b}}
\end{aligned}
$$

and, analogously,

$$
\sqrt{2} \sqrt{b+c} \geq \sqrt{\frac{2 b c}{b+c}}+\sqrt{\frac{b^{2}+c^{2}}{b+c}}, \quad \sqrt{2} \sqrt{c+a} \geq \sqrt{\frac{2 c a}{c+a}}+\sqrt{\frac{c^{2}+a^{2}}{c+a}}
$$

Applying the inequality between the arithmetic mean and the squared harmonic mean will finish the proof:

$$
\sqrt{\frac{2 a b}{a+b}}+\sqrt{\frac{2 b c}{b+c}}+\sqrt{\frac{2 c a}{c+a}} \geq 3 \cdot \sqrt{\frac{3}{{\sqrt{\frac{a+b}{2 a b}^{2}}+\sqrt{\frac{b+c}{2 b c}}+\sqrt{\frac{c+a}{2 c a}}}^{2}}}=3 \cdot \sqrt{\frac{3 a b c}{a b+b c+c a}} \geq 3
$$

A5 BLR (Belarus)

Let f be any function that maps the set of real numbers into the set of real numbers. Prove that there exist real numbers x and y such that

$$
f(x-f(y))>y f(x)+x .
$$

Solution 1. Assume that

$$
\begin{equation*}
f(x-f(y)) \leq y f(x)+x \quad \text { for all real } x, y \tag{1}
\end{equation*}
$$

Let $a=f(0)$. Setting $y=0$ in (1) gives $f(x-a) \leq x$ for all real x and, equivalently,

$$
\begin{equation*}
f(y) \leq y+a \quad \text { for all real } y \tag{2}
\end{equation*}
$$

Setting $x=f(y)$ in (1) yields in view of (2)

$$
a=f(0) \leq y f(f(y))+f(y) \leq y f(f(y))+y+a .
$$

This implies $0 \leq y(f(f(y))+1)$ and thus

$$
\begin{equation*}
f(f(y)) \geq-1 \quad \text { for all } y>0 . \tag{3}
\end{equation*}
$$

From (2) and (3) we obtain $-1 \leq f(f(y)) \leq f(y)+a$ for all $y>0$, so

$$
\begin{equation*}
f(y) \geq-a-1 \quad \text { for all } y>0 . \tag{4}
\end{equation*}
$$

Now we show that

$$
\begin{equation*}
f(x) \leq 0 \quad \text { for all real } x \tag{5}
\end{equation*}
$$

Assume the contrary, i.e. there is some x such that $f(x)>0$. Take any y such that

$$
y<x-a \quad \text { and } \quad y<\frac{-a-x-1}{f(x)} .
$$

Then in view of (2)

$$
x-f(y) \geq x-(y+a)>0
$$

and with (1) and (4) we obtain

$$
y f(x)+x \geq f(x-f(y)) \geq-a-1,
$$

whence

$$
y \geq \frac{-a-x-1}{f(x)}
$$

contrary to our choice of y. Thereby, we have established (5).
Setting $x=0$ in (5) leads to $a=f(0) \leq 0$ and (2) then yields

$$
\begin{equation*}
f(x) \leq x \quad \text { for all real } x \tag{6}
\end{equation*}
$$

Now choose y such that $y>0$ and $y>-f(-1)-1$ and set $x=f(y)-1$. From (1), (5) and
(6) we obtain

$$
f(-1)=f(x-f(y)) \leq y f(x)+x=y f(f(y)-1)+f(y)-1 \leq y(f(y)-1)-1 \leq-y-1,
$$

i.e. $y \leq-f(-1)-1$, a contradiction to the choice of y.

Solution 2. Assume that

$$
\begin{equation*}
f(x-f(y)) \leq y f(x)+x \quad \text { for all real } x, y \tag{7}
\end{equation*}
$$

Let $a=f(0)$. Setting $y=0$ in (7) gives $f(x-a) \leq x$ for all real x and, equivalently,

$$
\begin{equation*}
f(y) \leq y+a \quad \text { for all real } y \tag{8}
\end{equation*}
$$

Now we show that

$$
\begin{equation*}
f(z) \geq 0 \quad \text { for all } z \geq 1 \tag{9}
\end{equation*}
$$

Let $z \geq 1$ be fixed, set $b=f(z)$ and assume that $b<0$. Setting $x=w+b$ and $y=z$ in (7) gives

$$
\begin{equation*}
f(w)-z f(w+b) \leq w+b \quad \text { for all real } w \tag{10}
\end{equation*}
$$

Applying (10) to $w, w+b, \ldots, w+(n-1) b$, where $n=1,2, \ldots$, leads to

$$
\begin{aligned}
& f(w)-z^{n} f(w+n b)=(f(w)-z f(w+b))+z(f(w+b)-z f(w+2 b)) \\
&+\cdots+z^{n-1}(f(w+(n-1) b)-z f(w+n b)) \\
& \leq(w+b)+z(w+2 b)+\cdots+z^{n-1}(w+n b)
\end{aligned}
$$

From (8) we obtain

$$
f(w+n b) \leq w+n b+a
$$

and, thus, we have for all positive integers n

$$
\begin{equation*}
f(w) \leq\left(1+z+\cdots+z^{n-1}+z^{n}\right) w+\left(1+2 z+\cdots+n z^{n-1}+n z^{n}\right) b+z^{n} a . \tag{11}
\end{equation*}
$$

With $w=0$ we get

$$
\begin{equation*}
a \leq\left(1+2 z+\cdots+n z^{n-1}+n z^{n}\right) b+a z^{n} . \tag{12}
\end{equation*}
$$

In view of the assumption $b<0$ we find some n such that

$$
\begin{equation*}
a>(n b+a) z^{n} \tag{13}
\end{equation*}
$$

because the right hand side tends to $-\infty$ as $n \rightarrow \infty$. Now (12) and (13) give the desired contradiction and (9) is established. In addition, we have for $z=1$ the strict inequality

$$
\begin{equation*}
f(1)>0 \text {. } \tag{14}
\end{equation*}
$$

Indeed, assume that $f(1)=0$. Then setting $w=-1$ and $z=1$ in (11) leads to

$$
f(-1) \leq-(n+1)+a
$$

which is false if n is sufficiently large.
To complete the proof we set $t=\min \{-a,-2 / f(1)\}$. Setting $x=1$ and $y=t$ in (7) gives

$$
\begin{equation*}
f(1-f(t)) \leq t f(1)+1 \leq-2+1=-1 . \tag{15}
\end{equation*}
$$

On the other hand, by (8) and the choice of t we have $f(t) \leq t+a \leq 0$ and hence $1-f(t) \geq 1$. The inequality (9) yields

$$
f(1-f(t)) \geq 0
$$

which contradicts (15).

A6 USA (United States of America)

Suppose that $s_{1}, s_{2}, s_{3}, \ldots$ is a strictly increasing sequence of positive integers such that the subsequences

$$
s_{s_{1}}, s_{s_{2}}, s_{s_{3}}, \ldots \quad \text { and } \quad s_{s_{1}+1}, s_{s_{2}+1}, s_{s_{3}+1}, \ldots
$$

are both arithmetic progressions. Prove that $s_{1}, s_{2}, s_{3}, \ldots$ is itself an arithmetic progression.

Solution 1. Let D be the common difference of the progression $s_{s_{1}}, s_{s_{2}}, \ldots$. Let for $n=$ $1,2, \ldots$

$$
d_{n}=s_{n+1}-s_{n} .
$$

We have to prove that d_{n} is constant. First we show that the numbers d_{n} are bounded. Indeed, by supposition $d_{n} \geq 1$ for all n. Thus, we have for all n

$$
d_{n}=s_{n+1}-s_{n} \leq d_{s_{n}}+d_{s_{n}+1}+\cdots+d_{s_{n+1}-1}=s_{s_{n+1}}-s_{s_{n}}=D .
$$

The boundedness implies that there exist

$$
m=\min \left\{d_{n}: n=1,2, \ldots\right\} \quad \text { and } \quad M=\max \left\{d_{n}: n=1,2, \ldots\right\} .
$$

It suffices to show that $m=M$. Assume that $m<M$. Choose n such that $d_{n}=m$. Considering a telescoping sum of $m=d_{n}=s_{n+1}-s_{n}$ items not greater than M leads to

$$
\begin{equation*}
D=s_{s_{n+1}}-s_{s_{n}}=s_{s_{n}+m}-s_{s_{n}}=d_{s_{n}}+d_{s_{n}+1}+\cdots+d_{s_{n}+m-1} \leq m M \tag{1}
\end{equation*}
$$

and equality holds if and only if all items of the sum are equal to M. Now choose n such that $d_{n}=M$. In the same way, considering a telescoping sum of M items not less than m we obtain

$$
\begin{equation*}
D=s_{s_{n+1}}-s_{s_{n}}=s_{s_{n}+M}-s_{s_{n}}=d_{s_{n}}+d_{s_{n}+1}+\cdots+d_{s_{n}+M-1} \geq M m \tag{2}
\end{equation*}
$$

and equality holds if and only if all items of the sum are equal to m. The inequalities (1) and (2) imply that $D=M m$ and that

$$
\begin{array}{cl}
d_{s_{n}}=d_{s_{n}+1}=\cdots=d_{s_{n+1}-1}=M & \text { if } d_{n}=m \\
d_{s_{n}}=d_{s_{n}+1}=\cdots=d_{s_{n+1}-1}=m & \text { if } d_{n}=M
\end{array}
$$

Hence, $d_{n}=m$ implies $d_{s_{n}}=M$. Note that $s_{n} \geq s_{1}+(n-1) \geq n$ for all n and moreover $s_{n}>n$ if $d_{n}=n$, because in the case $s_{n}=n$ we would have $m=d_{n}=d_{s_{n}}=M$ in contradiction to the assumption $m<M$. In the same way $d_{n}=M$ implies $d_{s_{n}}=m$ and $s_{n}>n$. Consequently, there is a strictly increasing sequence n_{1}, n_{2}, \ldots such that

$$
d_{s_{n_{1}}}=M, \quad d_{s_{n_{2}}}=m, \quad d_{s_{n_{3}}}=M, \quad d_{s_{n_{4}}}=m, \quad \ldots
$$

The sequence $d_{s_{1}}, d_{s_{2}}, \ldots$ is the sequence of pairwise differences of $s_{s_{1}+1}, s_{s_{2}+1}, \ldots$ and $s_{s_{1}}, s_{s_{2}}, \ldots$, hence also an arithmetic progression. Thus $m=M$.

Solution 2. Let the integers D and E be the common differences of the progressions $s_{s_{1}}, s_{s_{2}}, \ldots$ and $s_{s_{1}+1}, s_{s_{2}+1}, \ldots$, respectively. Let briefly $A=s_{s_{1}}-D$ and $B=s_{s_{1}+1}-E$. Then, for all positive integers n,

$$
s_{s_{n}}=A+n D, \quad s_{s_{n}+1}=B+n E
$$

Since the sequence s_{1}, s_{2}, \ldots is strictly increasing, we have for all positive integers n

$$
s_{s_{n}}<s_{s_{n}+1} \leq s_{s_{n+1}},
$$

which implies

$$
A+n D<B+n E \leq A+(n+1) D
$$

and thereby

$$
0<B-A+n(E-D) \leq D
$$

which implies $D-E=0$ and thus

$$
\begin{equation*}
0 \leq B-A \leq D \tag{3}
\end{equation*}
$$

Let $m=\min \left\{s_{n+1}-s_{n}: n=1,2, \ldots\right\}$. Then

$$
\begin{equation*}
B-A=\left(s_{s_{1}+1}-E\right)-\left(s_{s_{1}}-D\right)=s_{s_{1}+1}-s_{s_{1}} \geq m \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
D=A+\left(s_{1}+1\right) D-\left(A+s_{1} D\right)=s_{s_{s_{1}+1}}-s_{s_{s_{1}}}=s_{B+D}-s_{A+D} \geq m(B-A) . \tag{5}
\end{equation*}
$$

From (3) we consider two cases.
Case 1. $B-A=D$.
Then, for each positive integer $n, s_{s_{n}+1}=B+n D=A+(n+1) D=s_{s_{n+1}}$, hence $s_{n+1}=s_{n}+1$ and s_{1}, s_{2}, \ldots is an arithmetic progression with common difference 1 .

Case 2. $B-A<D$. Choose some positive integer N such that $s_{N+1}-s_{N}=m$. Then

$$
\begin{aligned}
m(A-B+D-1) & =m((A+(N+1) D)-(B+N D+1)) \\
& \leq s_{A+(N+1) D}-s_{B+N D+1}=s_{s_{s_{N+1}}}-s_{s_{s_{N}+1}+1} \\
& =\left(A+s_{N+1} D\right)-\left(B+\left(s_{N}+1\right) D\right)=\left(s_{N+1}-s_{N}\right) D+A-B-D \\
& =m D+A-B-D,
\end{aligned}
$$

i.e.,

$$
\begin{equation*}
(B-A-m)+(D-m(B-A)) \leq 0 . \tag{6}
\end{equation*}
$$

The inequalities (4)-(6) imply that

$$
B-A=m \quad \text { and } \quad D=m(B-A) .
$$

Assume that there is some positive integer n such that $s_{n+1}>s_{n}+m$. Then $\left.m(m+1) \leq m\left(s_{n+1}-s_{n}\right) \leq s_{s_{n+1}}-s_{s_{n}}=(A+(n+1) D)-(A+n D)\right)=D=m(B-A)=m^{2}$, a contradiction. Hence s_{1}, s_{2}, \ldots is an arithmetic progression with common difference m.

A7 JPN (Japan)

Find all functions f from the set of real numbers into the set of real numbers which satisfy for all real x, y the identity

$$
f(x f(x+y))=f(y f(x))+x^{2}
$$

Solution 1. It is no hard to see that the two functions given by $f(x)=x$ and $f(x)=-x$ for all real x respectively solve the functional equation. In the sequel, we prove that there are no further solutions.
Let f be a function satisfying the given equation. It is clear that f cannot be a constant. Let us first show that $f(0)=0$. Suppose that $f(0) \neq 0$. For any real t, substituting $(x, y)=\left(0, \frac{t}{f(0)}\right)$ into the given functional equation, we obtain

$$
\begin{equation*}
f(0)=f(t) \tag{1}
\end{equation*}
$$

contradicting the fact that f is not a constant function. Therefore, $f(0)=0$. Next for any t, substituting $(x, y)=(t, 0)$ and $(x, y)=(t,-t)$ into the given equation, we get

$$
f(t f(t))=f(0)+t^{2}=t^{2}
$$

and

$$
f(t f(0))=f(-t f(t))+t^{2}
$$

respectively. Therefore, we conclude that

$$
\begin{equation*}
f(t f(t))=t^{2}, \quad f(-t f(t))=-t^{2}, \quad \text { for every real } t \tag{2}
\end{equation*}
$$

Consequently, for every real v, there exists a real u, such that $f(u)=v$. We also see that if $f(t)=0$, then $0=f(t f(t))=t^{2}$ so that $t=0$, and thus 0 is the only real number satisfying $f(t)=0$.
We next show that for any real number s,

$$
\begin{equation*}
f(-s)=-f(s) \tag{3}
\end{equation*}
$$

This is clear if $f(s)=0$. Suppose now $f(s)<0$, then we can find a number t for which $f(s)=-t^{2}$. As $t \neq 0$ implies $f(t) \neq 0$, we can also find number a such that $a f(t)=s$. Substituting $(x, y)=(t, a)$ into the given equation, we get

$$
f(t f(t+a))=f(a f(t))+t^{2}=f(s)+t^{2}=0
$$

and therefore, $t f(t+a)=0$, which implies $t+a=0$, and hence $s=-t f(t)$. Consequently, $f(-s)=f(t f(t))=t^{2}=-\left(-t^{2}\right)=-f(s)$ holds in this case.
Finally, suppose $f(s)>0$ holds. Then there exists a real number $t \neq 0$ for which $f(s)=t^{2}$. Choose a number a such that $t f(a)=s$. Substituting $(x, y)=(t, a-t)$ into the given equation, we get $f(s)=f(t f(a))=f((a-t) f(t))+t^{2}=f((a-t) f(t))+f(s)$. So we have $f((a-t) f(t))=0$, from which we conclude that $(a-t) f(t)=0$. Since $f(t) \neq 0$, we get $a=t$ so that $s=t f(t)$ and thus we see $f(-s)=f(-t f(t))=-t^{2}=-f(s)$ holds in this case also. This observation finishes the proof of (3).
By substituting $(x, y)=(s, t),(x, y)=(t,-s-t)$ and $(x, y)=(-s-t, s)$ into the given equation,
we obtain

$$
\begin{array}{r}
f(s f(s+t)))=f(t f(s))+s^{2} \\
f(t f(-s))=f((-s-t) f(t))+t^{2}
\end{array}
$$

and

$$
f((-s-t) f(-t))=f(s f(-s-t))+(s+t)^{2}
$$

respectively. Using the fact that $f(-x)=-f(x)$ holds for all x to rewrite the second and the third equation, and rearranging the terms, we obtain

$$
\begin{aligned}
f(t f(s))-f(s f(s+t)) & =-s^{2}, \\
f(t f(s))-f((s+t) f(t)) & =-t^{2}, \\
f((s+t) f(t))+f(s f(s+t)) & =(s+t)^{2} .
\end{aligned}
$$

Adding up these three equations now yields $2 f(t f(s))=2 t s$, and therefore, we conclude that $f(t f(s))=t s$ holds for every pair of real numbers s, t. By fixing s so that $f(s)=1$, we obtain $f(x)=s x$. In view of the given equation, we see that $s= \pm 1$. It is easy to check that both functions $f(x)=x$ and $f(x)=-x$ satisfy the given functional equation, so these are the desired solutions.

Solution 2. As in Solution 1 we obtain (1), (2) and (3).
Now we prove that f is injective. For this purpose, let us assume that $f(r)=f(s)$ for some $r \neq s$. Then, by (2)

$$
r^{2}=f(r f(r))=f(r f(s))=f((s-r) f(r))+r^{2}
$$

where the last statement follows from the given functional equation with $x=r$ and $y=s-r$. Hence, $h=(s-r) f(r)$ satisfies $f(h)=0$ which implies $h^{2}=f(h f(h))=f(0)=0$, i.e., $h=0$. Then, by $s \neq r$ we have $f(r)=0$ which implies $r=0$, and finally $f(s)=f(r)=f(0)=0$. Analogously, it follows that $s=0$ which gives the contradiction $r=s$.

To prove $|f(1)|=1$ we apply (2) with $t=1$ and also with $t=f(1)$ and obtain $f(f(1))=1$ and $(f(1))^{2}=f(f(1) \cdot f(f(1)))=f(f(1))=1$.
Now we choose $\eta \in\{-1,1\}$ with $f(1)=\eta$. Using that f is odd and the given equation with $x=1, y=z$ (second equality) and with $x=-1, y=z+2$ (fourth equality) we obtain

$$
\begin{align*}
& f(z)+2 \eta=\eta(f(z \eta)+2)=\eta(f(f(z+1))+1)=\eta(-f(-f(z+1))+1) \\
& =-\eta f((z+2) f(-1))=-\eta f((z+2)(-\eta))=\eta f((z+2) \eta)=f(z+2) . \tag{4}
\end{align*}
$$

Hence,

$$
f(z+2 \eta)=\eta f(\eta z+2)=\eta(f(\eta z)+2 \eta)=f(z)+2 .
$$

Using this argument twice we obtain

$$
f(z+4 \eta)=f(z+2 \eta)+2=f(z)+4
$$

Substituting $z=2 f(x)$ we have

$$
f(2 f(x))+4=f(2 f(x)+4 \eta)=f(2 f(x+2)),
$$

where the last equality follows from (4). Applying the given functional equation we proceed to

$$
f(2 f(x+2))=f(x f(2))+4=f(2 \eta x)+4
$$

where the last equality follows again from (4) with $z=0$, i.e., $f(2)=2 \eta$. Finally, $f(2 f(x))=$ $f(2 \eta x)$ and by injectivity of f we get $2 f(x)=2 \eta x$ and hence the two solutions.

Combinatorics

C1 NZL (New Zealand)

Consider 2009 cards, each having one gold side and one black side, lying in parallel on a long table. Initially all cards show their gold sides. Two players, standing by the same long side of the table, play a game with alternating moves. Each move consists of choosing a block of 50 consecutive cards, the leftmost of which is showing gold, and turning them all over, so those which showed gold now show black and vice versa. The last player who can make a legal move wins.
(a) Does the game necessarily end?
(b) Does there exist a winning strategy for the starting player?

Solution. (a) We interpret a card showing black as the digit 0 and a card showing gold as the digit 1. Thus each position of the 2009 cards, read from left to right, corresponds bijectively to a nonnegative integer written in binary notation of 2009 digits, where leading zeros are allowed. Each move decreases this integer, so the game must end.
(b) We show that there is no winning strategy for the starting player. We label the cards from right to left by $1, \ldots, 2009$ and consider the set S of cards with labels $50 i, i=1,2, \ldots, 40$. Let g_{n} be the number of cards from S showing gold after n moves. Obviously, $g_{0}=40$. Moreover, $\left|g_{n}-g_{n+1}\right|=1$ as long as the play goes on. Thus, after an odd number of moves, the nonstarting player finds a card from S showing gold and hence can make a move. Consequently, this player always wins.

C2 ROU (Romania)

For any integer $n \geq 2$, let $N(n)$ be the maximal number of triples $\left(a_{i}, b_{i}, c_{i}\right), i=1, \ldots, N(n)$, consisting of nonnegative integers a_{i}, b_{i} and c_{i} such that the following two conditions are satisfied:
(1) $a_{i}+b_{i}+c_{i}=n$ for all $i=1, \ldots, N(n)$,
(2) If $i \neq j$, then $a_{i} \neq a_{j}, b_{i} \neq b_{j}$ and $c_{i} \neq c_{j}$.

Determine $N(n)$ for all $n \geq 2$.

Comment. The original problem was formulated for m-tuples instead for triples. The numbers $N(m, n)$ are then defined similarly to $N(n)$ in the case $m=3$. The numbers $N(3, n)$ and $N(n, n)$ should be determined. The case $m=3$ is the same as in the present problem. The upper bound for $N(n, n)$ can be proved by a simple generalization. The construction of a set of triples attaining the bound can be easily done by induction from n to $n+2$.

Solution. Let $n \geq 2$ be an integer and let $\left\{T_{1}, \ldots, T_{N}\right\}$ be any set of triples of nonnegative integers satisfying the conditions (1) and (2). Since the a-coordinates are pairwise distinct we have

$$
\sum_{i=1}^{N} a_{i} \geq \sum_{i=1}^{N}(i-1)=\frac{N(N-1)}{2}
$$

Analogously,

$$
\sum_{i=1}^{N} b_{i} \geq \frac{N(N-1)}{2} \quad \text { and } \quad \sum_{i=1}^{N} c_{i} \geq \frac{N(N-1)}{2}
$$

Summing these three inequalities and applying (1) yields

$$
3 \frac{N(N-1)}{2} \leq \sum_{i=1}^{N} a_{i}+\sum_{i=1}^{N} b_{i}+\sum_{i=1}^{N} c_{i}=\sum_{i=1}^{N}\left(a_{i}+b_{i}+c_{i}\right)=n N,
$$

hence $3 \frac{N-1}{2} \leq n$ and, consequently,

$$
N \leq\left\lfloor\frac{2 n}{3}\right\rfloor+1
$$

By constructing examples, we show that this upper bound can be attained, so $N(n)=\left\lfloor\frac{2 n}{3}\right\rfloor+1$.

We distinguish the cases $n=3 k-1, n=3 k$ and $n=3 k+1$ for $k \geq 1$ and present the extremal examples in form of a table.

$n=3 k-1$		
$\left\lfloor\frac{2 n}{3}\right\rfloor+1=2 k$		
a_{i}	b_{i}	c_{i}
0	$k+1$	$2 k-2$
1	$k+2$	$2 k-4$
\vdots	\vdots	\vdots
$k-1$	$2 k$	0
k	0	$2 k-1$
$k+1$	1	$2 k-3$
\vdots	\vdots	\vdots
$2 k-1$	$k-1$	1

$n=3 k$		
$\left\lfloor\frac{2 n}{3}\right\rfloor+1=2 k+1$		
a_{i}	b_{i}	c_{i}
0	k	$2 k$
1	$k+1$	$2 k-2$
\vdots	\vdots	\vdots
k	$2 k$	0
$k+1$	0	$2 k-1$
$k+2$	1	$2 k-3$
\vdots	\vdots	\vdots
$2 k$	$k-1$	1

$n=3 k+1$		
$\rfloor+1=2 k+1$		
a_{i}	b_{i}	c_{i}
0	k	$2 k+1$
1	$k+1$	$2 k-1$
\vdots	\vdots	\vdots
k	$2 k$	1
$k+1$	0	$2 k$
$k+2$	1	$2 k-2$
\vdots	\vdots	\vdots
$2 k$	$k-1$	2

It can be easily seen that the conditions (1) and (2) are satisfied and that we indeed have $\left\lfloor\frac{2 n}{3}\right\rfloor+1$ triples in each case.

Comment. A cute combinatorial model is given by an equilateral triangle, partitioned into n^{2} congruent equilateral triangles by $n-1$ equidistant parallels to each of its three sides. Two chess-like bishops placed at any two vertices of the small triangles are said to menace one another if they lie on a same parallel. The problem is to determine the largest number of bishops that can be placed so that none menaces another. A bishop may be assigned three coordinates a, b, c, namely the numbers of sides of small triangles they are off each of the sides of the big triangle. It is readily seen that the sum of these coordinates is always n, therefore fulfilling the requirements.

C3 RUS (Russian Federation)

Let n be a positive integer. Given a sequence $\varepsilon_{1}, \ldots, \varepsilon_{n-1}$ with $\varepsilon_{i}=0$ or $\varepsilon_{i}=1$ for each $i=1, \ldots, n-1$, the sequences a_{0}, \ldots, a_{n} and b_{0}, \ldots, b_{n} are constructed by the following rules:

$$
\begin{gathered}
a_{0}=b_{0}=1, \quad a_{1}=b_{1}=7, \\
a_{i+1}=\left\{\begin{array}{ll}
2 a_{i-1}+3 a_{i}, & \text { if } \varepsilon_{i}=0, \\
3 a_{i-1}+a_{i}, & \text { if } \varepsilon_{i}=1,
\end{array} \text { for each } i=1, \ldots, n-1,\right. \\
b_{i+1}=\left\{\begin{array}{ll}
2 b_{i-1}+3 b_{i}, & \text { if } \varepsilon_{n-i}=0, \\
3 b_{i-1}+b_{i}, & \text { if } \varepsilon_{n-i}=1,
\end{array} \text { for each } i=1, \ldots, n-1 .\right.
\end{gathered}
$$

Prove that $a_{n}=b_{n}$.

Solution. For a binary word $w=\sigma_{1} \ldots \sigma_{n}$ of length n and a letter $\sigma \in\{0,1\}$ let $w \sigma=$ $\sigma_{1} \ldots \sigma_{n} \sigma$ and $\sigma w=\sigma \sigma_{1} \ldots \sigma_{n}$. Moreover let $\bar{w}=\sigma_{n} \ldots \sigma_{1}$ and let \emptyset be the empty word (of length 0 and with $\bar{\emptyset}=\emptyset)$. Let (u, v) be a pair of two real numbers. For binary words w we define recursively the numbers $(u, v)^{w}$ as follows:

$$
\begin{gathered}
(u, v)^{\emptyset}=v, \quad(u, v)^{0}=2 u+3 v, \quad(u, v)^{1}=3 u+v, \\
(u, v)^{w \sigma \varepsilon}= \begin{cases}2(u, v)^{w}+3(u, v)^{w \sigma}, & \text { if } \varepsilon=0, \\
3(u, v)^{w}+(u, v)^{w \sigma}, & \text { if } \varepsilon=1 .\end{cases}
\end{gathered}
$$

It easily follows by induction on the length of w that for all real numbers $u_{1}, v_{1}, u_{2}, v_{2}, \lambda_{1}$ and λ_{2}

$$
\begin{equation*}
\left(\lambda_{1} u_{1}+\lambda_{2} u_{2}, \lambda_{1} v_{1}+\lambda_{2} v_{2}\right)^{w}=\lambda_{1}\left(u_{1}, v_{1}\right)^{w}+\lambda_{2}\left(u_{2}, v_{2}\right)^{w} \tag{1}
\end{equation*}
$$

and that for $\varepsilon \in\{0,1\}$

$$
\begin{equation*}
(u, v)^{\varepsilon w}=\left(v,(u, v)^{\varepsilon}\right)^{w} \text {. } \tag{2}
\end{equation*}
$$

Obviously, for $n \geq 1$ and $w=\varepsilon_{1} \ldots \varepsilon_{n-1}$, we have $a_{n}=(1,7)^{w}$ and $b_{n}=(1,7)^{\bar{w}}$. Thus it is sufficient to prove that

$$
\begin{equation*}
(1,7)^{w}=(1,7)^{\bar{w}} \tag{3}
\end{equation*}
$$

for each binary word w. We proceed by induction on the length of w. The assertion is obvious if w has length 0 or 1 . Now let $w \sigma \varepsilon$ be a binary word of length $n \geq 2$ and suppose that the assertion is true for all binary words of length at most $n-1$.
Note that $(2,1)^{\sigma}=7=(1,7)^{\emptyset}$ for $\sigma \in\{0,1\},(1,7)^{0}=23$, and $(1,7)^{1}=10$.
First let $\varepsilon=0$. Then in view of the induction hypothesis and the equalities (1) and (2), we obtain

$$
\begin{aligned}
&(1,7)^{w \sigma 0}=2(1,7)^{w}+3(1,7)^{w \sigma}=2(1,7)^{\bar{w}}+3(1,7)^{\sigma \bar{w}}=2(2,1)^{\sigma \bar{w}}+3(1,7)^{\sigma \bar{w}} \\
&=(7,23)^{\sigma \bar{w}}=(1,7)^{0 \sigma \bar{w}}
\end{aligned}
$$

Now let $\varepsilon=1$. Analogously, we obtain

$$
\begin{aligned}
&(1,7)^{w \sigma 1}=3(1,7)^{w}+(1,7)^{w \sigma}=3(1,7)^{\bar{w}}+(1,7)^{\sigma \bar{w}}=3(2,1)^{\sigma \bar{w}}+(1,7)^{\sigma \bar{w}} \\
&=(7,10)^{\sigma \bar{w}}=(1,7)^{1 \sigma \bar{w}}
\end{aligned}
$$

Thus the induction step is complete, (3) and hence also $a_{n}=b_{n}$ are proved.

Comment. The original solution uses the relation

$$
(1,7)^{\alpha \beta w}=\left((1,7)^{w},(1,7)^{\beta w}\right)^{\alpha}, \quad \alpha, \beta \in\{0,1\},
$$

which can be proved by induction on the length of w. Then (3) also follows by induction on the length of w :

$$
(1,7)^{\alpha \beta w}=\left((1,7)^{w},(1,7)^{\beta w}\right)^{\alpha}=\left((1,7)^{\bar{w}},(1,7)^{\bar{w} \beta}\right)^{\alpha}=(1,7)^{\bar{w} \beta \alpha} .
$$

Here w may be the empty word.

C4 NLD (Netherlands)

For an integer $m \geq 1$, we consider partitions of a $2^{m} \times 2^{m}$ chessboard into rectangles consisting of cells of the chessboard, in which each of the 2^{m} cells along one diagonal forms a separate rectangle of side length 1 . Determine the smallest possible sum of rectangle perimeters in such a partition.

Solution 1. For a $k \times k$ chessboard, we introduce in a standard way coordinates of the vertices of the cells and assume that the cell $C_{i j}$ in row i and column j has vertices $(i-1, j-1),(i-$ $1, j),(i, j-1),(i, j)$, where $i, j \in\{1, \ldots, k\}$. Without loss of generality assume that the cells $C_{i i}$, $i=1, \ldots, k$, form a separate rectangle. Then we may consider the boards $B_{k}=\bigcup_{1 \leq i<j \leq k} C_{i j}$ below that diagonal and the congruent board $B_{k}^{\prime}=\bigcup_{1 \leq j<i \leq k} C_{i j}$ above that diagonal separately because no rectangle can simultaneously cover cells from B_{k} and B_{k}^{\prime}. We will show that for $k=2^{m}$ the smallest total perimeter of a rectangular partition of B_{k} is $m 2^{m+1}$. Then the overall answer to the problem is $2 \cdot m 2^{m+1}+4 \cdot 2^{m}=(m+1) 2^{m+2}$.
First we inductively construct for $m \geq 1$ a partition of $B_{2^{m}}$ with total perimeter $m 2^{m+1}$. If $m=0$, the board $B_{2^{m}}$ is empty and the total perimeter is 0 . For $m \geq 0$, the board $B_{2^{m+1}}$ consists of a $2^{m} \times 2^{m}$ square in the lower right corner with vertices $\left(2^{m}, 2^{m}\right),\left(2^{m}, 2^{m+1}\right),\left(2^{m+1}, 2^{m}\right)$, $\left(2^{m+1}, 2^{m+1}\right)$ to which two boards congruent to $B_{2^{m}}$ are glued along the left and the upper margin. The square together with the inductive partitions of these two boards yield a partition with total perimeter $4 \cdot 2^{m}+2 \cdot m 2^{m+1}=(m+1) 2^{m+2}$ and the induction step is complete.
Let

$$
D_{k}=2 k \log _{2} k
$$

Note that $D_{k}=m 2^{m+1}$ if $k=2^{m}$. Now we show by induction on k that the total perimeter of a rectangular partition of B_{k} is at least D_{k}. The case $k=1$ is trivial (see $m=0$ from above). Let the assertion be true for all positive integers less than k. We investigate a fixed rectangular partition of B_{k} that attains the minimal total perimeter. Let R be the rectangle that covers the cell $C_{1 k}$ in the lower right corner. Let (i, j) be the upper left corner of R. First we show that $i=j$. Assume that $i<j$. Then the line from (i, j) to $(i+1, j)$ or from (i, j) to $(i, j-1)$ must belong to the boundary of some rectangle in the partition. Without loss of generality assume that this is the case for the line from (i, j) to $(i+1, j)$.
Case 1. No line from (i, l) to $(i+1, l)$ where $j<l<k$ belongs to the boundary of some rectangle of the partition.
Then there is some rectangle R^{\prime} of the partition that has with R the common side from (i, j) to (i, k). If we join these two rectangles to one rectangle we get a partition with smaller total perimeter, a contradiction.

Case 2. There is some l such that $j<l<k$ and the line from (i, l) to $(i+1, l)$ belongs to the boundary of some rectangle of the partition.
Then we replace the upper side of R by the line $(i+1, j)$ to $(i+1, k)$ and for the rectangles whose lower side belongs to the line from (i, j) to (i, k) we shift the lower side upwards so that the new lower side belongs to the line from $(i+1, j)$ to $(i+1, k)$. In such a way we obtain a rectangular partition of B_{k} with smaller total perimeter, a contradiction.
Now the fact that the upper left corner of R has the coordinates (i, i) is established. Consequently, the partition consists of R, of rectangles of a partition of a board congruent to B_{i} and of rectangles of a partition of a board congruent to B_{k-i}. By the induction hypothesis, its total
perimeter is at least

$$
\begin{equation*}
2(k-i)+2 i+D_{i}+D_{k-i} \geq 2 k+2 i \log _{2} i+2(k-i) \log _{2}(k-i) . \tag{1}
\end{equation*}
$$

Since the function $f(x)=2 x \log _{2} x$ is convex for $x>0$, Jensen's inequality immediately shows that the minimum of the right hand sight of (1) is attained for $i=k / 2$. Hence the total perimeter of the optimal partition of B_{k} is at least $2 k+2 k / 2 \log _{2} k / 2+2(k / 2) \log _{2}(k / 2)=D_{k}$.

Solution 2. We start as in Solution 1 and present another proof that $m 2^{m+1}$ is a lower bound for the total perimeter of a partition of $B_{2^{m}}$ into n rectangles. Let briefly $M=2^{m}$. For $1 \leq i \leq M$, let r_{i} denote the number of rectangles in the partition that cover some cell from row i and let c_{j} be the number of rectangles that cover some cell from column j. Note that the total perimeter p of all rectangles in the partition is

$$
p=2\left(\sum_{i=1}^{M} r_{i}+\sum_{i=1}^{M} c_{i}\right) .
$$

No rectangle can simultaneously cover cells from row i and from column i since otherwise it would also cover the cell $C_{i i}$. We classify subsets S of rectangles of the partition as follows. We say that S is of type $i, 1 \leq i \leq M$, if S contains all r_{i} rectangles that cover some cell from row i, but none of the c_{i} rectangles that cover some cell from column i. Altogether there are $2^{n-r_{i}-c_{i}}$ subsets of type i. Now we show that no subset S can be simultaneously of type i and of type j if $i \neq j$. Assume the contrary and let without loss of generality $i<j$. The cell $C_{i j}$ must be covered by some rectangle R. The subset S is of type i, hence R is contained in S. S is of type j, thus R does not belong to S, a contradiction. Since there are 2^{n} subsets of rectangles of the partition, we infer

$$
\begin{equation*}
2^{n} \geq \sum_{i=1}^{M} 2^{n-r_{i}-c_{i}}=2^{n} \sum_{i=1}^{M} 2^{-\left(r_{i}+c_{i}\right)} \tag{2}
\end{equation*}
$$

By applying Jensen's inequality to the convex function $f(x)=2^{-x}$ we derive

$$
\begin{equation*}
\frac{1}{M} \sum_{i=1}^{M} 2^{-\left(r_{i}+c_{i}\right)} \geq 2^{-\frac{1}{M} \sum_{i=1}^{M}\left(r_{i}+c_{i}\right)}=2^{-\frac{p}{2 M}} \tag{3}
\end{equation*}
$$

From (2) and (3) we obtain

$$
1 \geq M 2^{-\frac{p}{2 M}}
$$

and equivalently

$$
p \geq m 2^{m+1}
$$

C5 NLD (Netherlands)

Five identical empty buckets of 2-liter capacity stand at the vertices of a regular pentagon. Cinderella and her wicked Stepmother go through a sequence of rounds: At the beginning of every round, the Stepmother takes one liter of water from the nearby river and distributes it arbitrarily over the five buckets. Then Cinderella chooses a pair of neighboring buckets, empties them into the river, and puts them back. Then the next round begins. The Stepmother's goal is to make one of these buckets overflow. Cinderella's goal is to prevent this. Can the wicked Stepmother enforce a bucket overflow?

Solution 1. No, the Stepmother cannot enforce a bucket overflow and Cinderella can keep playing forever. Throughout we denote the five buckets by $B_{0}, B_{1}, B_{2}, B_{3}$, and B_{4}, where B_{k} is adjacent to bucket B_{k-1} and $B_{k+1}(k=0,1,2,3,4)$ and all indices are taken modulo 5 . Cinderella enforces that the following three conditions are satisfied at the beginning of every round:
(1) Two adjacent buckets (say B_{1} and B_{2}) are empty.
(2) The two buckets standing next to these adjacent buckets (here B_{0} and B_{3}) have total contents at most 1.
(3) The remaining bucket (here B_{4}) has contents at most 1 .

These conditions clearly hold at the beginning of the first round, when all buckets are empty.
Assume that Cinderella manages to maintain them until the beginning of the r-th round ($r \geq 1$). Denote by $x_{k}(k=0,1,2,3,4)$ the contents of bucket B_{k} at the beginning of this round and by y_{k} the corresponding contents after the Stepmother has distributed her liter of water in this round.
By the conditions, we can assume $x_{1}=x_{2}=0, x_{0}+x_{3} \leq 1$ and $x_{4} \leq 1$. Then, since the Stepmother adds one liter, we conclude $y_{0}+y_{1}+y_{2}+y_{3} \leq 2$. This inequality implies $y_{0}+y_{2} \leq 1$ or $y_{1}+y_{3} \leq 1$. For reasons of symmetry, we only consider the second case.
Then Cinderella empties buckets B_{0} and B_{4}.
At the beginning of the next round B_{0} and B_{4} are empty (condition (1) is fulfilled), due to $y_{1}+y_{3} \leq 1$ condition (2) is fulfilled and finally since $x_{2}=0$ we also must have $y_{2} \leq 1$ (condition (3) is fulfilled).

Therefore, Cinderella can indeed manage to maintain the three conditions (1)-(3) also at the beginning of the $(r+1)$-th round. By induction, she thus manages to maintain them at the beginning of every round. In particular she manages to keep the contents of every single bucket at most 1 liter. Therefore, the buckets of 2-liter capacity will never overflow.

Solution 2. We prove that Cinderella can maintain the following two conditions and hence she can prevent the buckets from overflow:
(1') Every two non-adjacent buckets contain a total of at most 1.
(2') The total contents of all five buckets is at most $\frac{3}{2}$.
We use the same notations as in the first solution. The two conditions again clearly hold at the beginning. Assume that Cinderella maintained these two conditions until the beginning of the r-th round. A pair of non-neighboring buckets $\left(B_{i}, B_{i+2}\right), i=0,1,2,3,4$ is called critical
if $y_{i}+y_{i+2}>1$. By condition $\left(2^{\prime}\right)$, after the Stepmother has distributed her water we have $y_{0}+y_{1}+y_{2}+y_{3}+y_{4} \leq \frac{5}{2}$. Therefore,

$$
\left(y_{0}+y_{2}\right)+\left(y_{1}+y_{3}\right)+\left(y_{2}+y_{4}\right)+\left(y_{3}+y_{0}\right)+\left(y_{4}+y_{1}\right)=2\left(y_{0}+y_{1}+y_{2}+y_{3}+y_{4}\right) \leq 5
$$

and hence there is a pair of non-neighboring buckets which is not critical, say $\left(B_{0}, B_{2}\right)$. Now, if both of the pairs $\left(B_{3}, B_{0}\right)$ and $\left(B_{2}, B_{4}\right)$ are critical, we must have $y_{1}<\frac{1}{2}$ and Cinderella can empty the buckets B_{3} and B_{4}. This clearly leaves no critical pair of buckets and the total contents of all the buckets is then $y_{1}+\left(y_{0}+y_{2}\right) \leq \frac{3}{2}$. Therefore, conditions $\left(1^{\prime}\right)$ and $\left(2^{\prime}\right)$ are fulfilled.

Now suppose that without loss of generality the pair $\left(B_{3}, B_{0}\right)$ is not critical. If in this case $y_{0} \leq \frac{1}{2}$, then one of the inequalities $y_{0}+y_{1}+y_{2} \leq \frac{3}{2}$ and $y_{0}+y_{3}+y_{4} \leq \frac{3}{2}$ must hold. But then Cinderella can empty B_{3} and B_{4} or B_{1} and B_{2}, respectively and clearly fulfill the conditions.
Finally consider the case $y_{0}>\frac{1}{2}$. By $y_{0}+y_{1}+y_{2}+y_{3}+y_{4} \leq \frac{5}{2}$, at least one of the pairs (B_{1}, B_{3}) and $\left(B_{2}, B_{4}\right)$ is not critical. Without loss of generality let this be the pair $\left(B_{1}, B_{3}\right)$. Since the pair $\left(B_{3}, B_{0}\right)$ is not critical and $y_{0}>\frac{1}{2}$, we must have $y_{3} \leq \frac{1}{2}$. But then, as before, Cinderella can maintain the two conditions at the beginning of the next round by either emptying B_{1} and B_{2} or B_{4} and B_{0}.

Comments on GREEDY approaches. A natural approach for Cinderella would be a GREEDY strategy as for example: Always remove as much water as possible from the system. It is straightforward to prove that GREEDY can avoid buckets of capacity $\frac{5}{2}$ from overflowing: If before the Stepmothers move one has $x_{0}+x_{1}+x_{2}+x_{3}+x_{4} \leq \frac{3}{2}$ then after her move the inequality $Y=y_{0}+y_{1}+y_{2}+y_{3}+y_{4} \leq \frac{5}{2}$ holds. If now Cinderella removes the two adjacent buckets with maximum total contents she removes at least $\frac{2 Y}{5}$ and thus the remaining buckets contain at most $\frac{3}{5} \cdot Y \leq \frac{3}{2}$.
But GREEDY is in general not strong enough to settle this problem as can be seen in the following example:

- In an initial phase, the Stepmother brings all the buckets (after her move) to contents of at least $\frac{1}{2}-2 \epsilon$, where ϵ is an arbitrary small positive number. This can be done by always splitting the 1 liter she has to distribute so that all buckets have the same contents. After her r-th move the total contents of each of the buckets is then c_{r} with $c_{1}=1$ and $c_{r+1}=1+\frac{3}{5} \cdot c_{r}$ and hence $c_{r}=\frac{5}{2}-\frac{3}{2} \cdot\left(\frac{3}{5}\right)^{r-1}$. So the contents of each single bucket indeed approaches $\frac{1}{2}$ (from below). In particular, any two adjacent buckets have total contents strictly less than 1 which enables the Stepmother to always refill the buckets that Cinderella just emptied and then distribute the remaining water evenly over all buckets.
- After that phase GREEDY faces a situation like this ($\frac{1}{2}-2 \epsilon, \frac{1}{2}-2 \epsilon, \frac{1}{2}-2 \epsilon, \frac{1}{2}-2 \epsilon, \frac{1}{2}-2 \epsilon$) and leaves a situation of the form $\left(x_{0}, x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(\frac{1}{2}-2 \epsilon, \frac{1}{2}-2 \epsilon, \frac{1}{2}-2 \epsilon, 0,0\right)$.
- Then the Stepmother can add the amounts $\left(0, \frac{1}{4}+\epsilon, \epsilon, \frac{3}{4}-2 \epsilon, 0\right)$ to achieve a situation like this: $\left(y_{0}, y_{1}, y_{2}, y_{3}, y_{4}\right)=\left(\frac{1}{2}-2 \epsilon, \frac{3}{4}-\epsilon, \frac{1}{2}-\epsilon, \frac{3}{4}-2 \epsilon, 0\right)$.
- Now B_{1} and B_{2} are the adjacent buckets with the maximum total contents and thus GREEDY empties them to yield $\left(x_{0}, x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(\frac{1}{2}-2 \epsilon, 0,0, \frac{3}{4}-2 \epsilon, 0\right)$.
- Then the Stepmother adds $\left(\frac{5}{8}, 0,0, \frac{3}{8}, 0\right)$, which yields $\left(\frac{9}{8}-2 \epsilon, 0,0, \frac{9}{8}-2 \epsilon, 0\right)$.
- Now GREEDY can only empty one of the two nonempty buckets and in the next step the Stepmother adds her liter to the other bucket and brings it to $\frac{17}{8}-2 \epsilon$, i.e. an overflow.

A harder variant. Five identical empty buckets of capacity b stand at the vertices of a regular pentagon. Cinderella and her wicked Stepmother go through a sequence of rounds: At the beginning of every round, the Stepmother takes one liter of water from the nearby river and distributes it arbitrarily over the five buckets. Then Cinderella chooses a pair of neighboring buckets, empties them into the river, and puts them back. Then the next round begins. The Stepmother's goal is to make one of these buckets overflow. Cinderella's goal is to prevent this. Determine all bucket capacities b for which the Stepmother can enforce a bucket to overflow.

Solution to the harder variant. The answer is $b<2$.
The previous proof shows that for all $b \geq 2$ the Stepmother cannot enforce overflowing. Now if $b<2$, let R be a positive integer such that $b<2-2^{1-R}$. In the first R rounds the Stepmother now ensures that at least one of the (nonadjacent) buckets B_{1} and B_{3} have contents of at least $1-2^{1-r}$ at the beginning of round $r(r=1,2, \ldots, R)$. This is trivial for $r=1$ and if it holds at the beginning of round r, she can fill the bucket which contains at least $1-2^{1-r}$ liters with another 2^{-r} liters and put the rest of her water - $1-2^{-r}$ liters - in the other bucket. As Cinderella now can remove the water of at most one of the two buckets, the other bucket carries its contents into the next round.

At the beginning of the R-th round there are $1-2^{1-R}$ liters in B_{1} or B_{3}. The Stepmother puts the entire liter into that bucket and produces an overflow since $b<2-2^{1-R}$.

C6 BGR (Bulgaria)

On a 999×999 board a limp rook can move in the following way: From any square it can move to any of its adjacent squares, i.e. a square having a common side with it, and every move must be a turn, i.e. the directions of any two consecutive moves must be perpendicular. A nonintersecting route of the limp rook consists of a sequence of pairwise different squares that the limp rook can visit in that order by an admissible sequence of moves. Such a non-intersecting route is called cyclic, if the limp rook can, after reaching the last square of the route, move directly to the first square of the route and start over.
How many squares does the longest possible cyclic, non-intersecting route of a limp rook visit?

Solution. The answer is $998^{2}-4=4 \cdot\left(499^{2}-1\right)$ squares.
First we show that this number is an upper bound for the number of cells a limp rook can visit. To do this we color the cells with four colors A, B, C and D in the following way: for $(i, j) \equiv(0,0) \bmod 2$ use A, for $(i, j) \equiv(0,1) \bmod 2$ use B, for $(i, j) \equiv(1,0) \bmod 2$ use C and for $(i, j) \equiv(1,1) \bmod 2$ use D. From an A-cell the rook has to move to a B-cell or a C-cell. In the first case, the order of the colors of the cells visited is given by $A, B, D, C, A, B, D, C, A, \ldots$, in the second case it is $A, C, D, B, A, C, D, B, A, \ldots$ Since the route is closed it must contain the same number of cells of each color. There are only $499^{2} A$-cells. In the following we will show that the rook cannot visit all the A-cells on its route and hence the maximum possible number of cells in a route is $4 \cdot\left(499^{2}-1\right)$.
Assume that the route passes through every single A-cell. Color the A-cells in black and white in a chessboard manner, i.e. color any two A-cells at distance 2 in different color. Since the number of A-cells is odd the rook cannot always alternate between visiting black and white A-cells along its route. Hence there are two A-cells of the same color which are four rook-steps apart that are visited directly one after the other. Let these two A-cells have row and column numbers (a, b) and $(a+2, b+2)$ respectively.

There is up to reflection only one way the rook can take from (a, b) to $(a+2, b+2)$. Let this way be $(a, b) \rightarrow(a, b+1) \rightarrow(a+1, b+1) \rightarrow(a+1, b+2) \rightarrow(a+2, b+2)$. Also let without loss of generality the color of the cell $(a, b+1)$ be B (otherwise change the roles of columns and rows).
Now consider the A-cell $(a, b+2)$. The only way the rook can pass through it is via $(a-1, b+2) \rightarrow$ $(a, b+2) \rightarrow(a, b+3)$ in this order, since according to our assumption after every A-cell the rook passes through a B-cell. Hence, to connect these two parts of the path, there must be
a path connecting the cell $(a, b+3)$ and (a, b) and also a path connecting $(a+2, b+2)$ and $(a-1, b+2)$.

But these four cells are opposite vertices of a convex quadrilateral and the paths are outside of that quadrilateral and hence they must intersect. This is due to the following fact:

The path from (a, b) to $(a, b+3)$ together with the line segment joining these two cells form a closed loop that has one of the cells $(a-1, b+2)$ and $(a+2, b+2)$ in its inside and the other one on the outside. Thus the path between these two points must cross the previous path.
But an intersection is only possible if a cell is visited twice. This is a contradiction.
Hence the number of cells visited is at most $4 \cdot\left(499^{2}-1\right)$.
The following picture indicates a recursive construction for all $n \times n$-chessboards with $n \equiv 3$ $\bmod 4$ which clearly yields a path that misses exactly one A-cell (marked with a dot, the center cell of the 15×15-chessboard) and hence, in the case of $n=999$ crosses exactly $4 \cdot\left(499^{2}-1\right)$ cells.

C7 RUS (Russian Federation)

Variant 1. A grasshopper jumps along the real axis. He starts at point 0 and makes 2009 jumps to the right with lengths $1,2, \ldots, 2009$ in an arbitrary order. Let M be a set of 2008 positive integers less than $1005 \cdot 2009$. Prove that the grasshopper can arrange his jumps in such a way that he never lands on a point from M.

Variant 2. Let n be a nonnegative integer. A grasshopper jumps along the real axis. He starts at point 0 and makes $n+1$ jumps to the right with pairwise different positive integral lengths $a_{1}, a_{2}, \ldots, a_{n+1}$ in an arbitrary order. Let M be a set of n positive integers in the interval $(0, s)$, where $s=a_{1}+a_{2}+\cdots+a_{n+1}$. Prove that the grasshopper can arrange his jumps in such a way that he never lands on a point from M.

Solution of Variant 1. We construct the set of landing points of the grasshopper.
Case 1. M does not contain numbers divisible by 2009.
We fix the numbers $2009 k$ as landing points, $k=1,2, \ldots, 1005$. Consider the open intervals $I_{k}=(2009(k-1), 2009 k), k=1,2, \ldots, 1005$. We show that we can choose exactly one point outside of M as a landing point in 1004 of these intervals such that all lengths from 1 to 2009 are realized. Since there remains one interval without a chosen point, the length 2009 indeed will appear. Each interval has length 2009, hence a new landing point in an interval yields with a length d also the length $2009-d$. Thus it is enough to implement only the lengths from $D=\{1,2, \ldots, 1004\}$. We will do this in a greedy way. Let $n_{k}, k=1,2, \ldots, 1005$, be the number of elements of M that belong to the interval I_{k}. We order these numbers in a decreasing way, so let $p_{1}, p_{2}, \ldots, p_{1005}$ be a permutation of $\{1,2, \ldots, 1005\}$ such that $n_{p_{1}} \geq n_{p_{2}} \geq \cdots \geq n_{p_{1005}}$. In $I_{p_{1}}$ we do not choose a landing point. Assume that landing points have already been chosen in the intervals $I_{p_{2}}, \ldots, I_{p_{m}}$ and the lengths d_{2}, \ldots, d_{m} from D are realized, $m=1, \ldots, 1004$. We show that there is some $d \in D \backslash\left\{d_{2}, \ldots, d_{m}\right\}$ that can be implemented with a new landing point in $I_{p_{m+1}}$. Assume the contrary. Then the $1004-(m-1)$ other lengths are obstructed by the $n_{p_{m+1}}$ points of M in $I_{p_{m+1}}$. Each length d can be realized by two landing points, namely $2009\left(p_{m+1}-1\right)+d$ and $2009 p_{m+1}-d$, hence

$$
\begin{equation*}
n_{p_{m+1}} \geq 2(1005-m) \tag{1}
\end{equation*}
$$

Moreover, since $|M|=2008=n_{1}+\cdots+n_{1005}$,

$$
\begin{equation*}
2008 \geq n_{p_{1}}+n_{p_{2}}+\cdots+n_{p_{m+1}} \geq(m+1) n_{p_{m+1}} \tag{2}
\end{equation*}
$$

Consequently, by (1) and (2),

$$
2008 \geq 2(m+1)(1005-m)
$$

The right hand side of the last inequality obviously attains its minimum for $m=1004$ and this minimum value is greater than 2008, a contradiction.
Case 2. M does contain a number μ divisible by 2009.
By the pigeonhole principle there exists some $r \in\{1, \ldots, 2008\}$ such that M does not contain numbers with remainder r modulo 2009. We fix the numbers $2009(k-1)+r$ as landing points, $k=1,2, \ldots, 1005$. Moreover, $1005 \cdot 2009$ is a landing point. Consider the open intervals
$I_{k}=(2009(k-1)+r, 2009 k+r), k=1,2, \ldots, 1004$. Analogously to Case 1 , it is enough to show that we can choose in 1003 of these intervals exactly one landing point outside of $M \backslash\{\mu\}$ such that each of the lengths of $D=\{1,2, \ldots, 1004\} \backslash\{r\}$ are implemented. Note that r and $2009-r$ are realized by the first and last jump and that choosing μ would realize these two differences again. Let $n_{k}, k=1,2, \ldots, 1004$, be the number of elements of $M \backslash\{\mu\}$ that belong to the interval I_{k} and $p_{1}, p_{2}, \ldots, p_{1004}$ be a permutation of $\{1,2, \ldots, 1004\}$ such that $n_{p_{1}} \geq n_{p_{2}} \geq \cdots \geq n_{p_{1004}}$. With the same reasoning as in Case 1 we can verify that a greedy choice of the landing points in $I_{p_{2}}, I_{p_{3}}, \ldots, I_{p_{1004}}$ is possible. We only have to replace (1) by

$$
n_{p_{m+1}} \geq 2(1004-m)
$$

(D has one element less) and (2) by

$$
2007 \geq n_{p_{1}}+n_{p_{2}}+\cdots+n_{p_{m+1}} \geq(m+1) n_{p_{m+1}}
$$

Comment. The cardinality 2008 of M in the problem is the maximum possible value. For $M=\{1,2, \ldots, 2009\}$, the grasshopper necessarily lands on a point from M.

Solution of Variant 2. First of all we remark that the statement in the problem implies a strengthening of itself: Instead of $|M|=n$ it is sufficient to suppose that $|M \cap(0, s-\bar{a}]| \leq n$, where $\bar{a}=\min \left\{a_{1}, a_{2}, \ldots, a_{n+1}\right\}$. This fact will be used in the proof.
We prove the statement by induction on n. The case $n=0$ is obvious. Let $n>0$ and let the assertion be true for all nonnegative integers less than n. Moreover let $a_{1}, a_{2}, \ldots, a_{n+1}, s$ and M be given as in the problem. Without loss of generality we may assume that $a_{n+1}<a_{n}<$ $\cdots<a_{2}<a_{1}$. Set

$$
T_{k}=\sum_{i=1}^{k} a_{i} \quad \text { for } k=0,1, \ldots, n+1
$$

Note that $0=T_{0}<T_{1}<\cdots<T_{n+1}=s$. We will make use of the induction hypothesis as follows:

Claim 1. It suffices to show that for some $m \in\{1,2, \ldots, n+1\}$ the grasshopper is able to do at least m jumps without landing on a point of M and, in addition, after these m jumps he has jumped over at least m points of M.
Proof. Note that $m=n+1$ is impossible by $|M|=n$. Now set $n^{\prime}=n-m$. Then $0 \leq n^{\prime}<n$. The remaining $n^{\prime}+1$ jumps can be carried out without landing on one of the remaining at most n^{\prime} forbidden points by the induction hypothesis together with a shift of the origin. This proves the claim.
An integer $k \in\{1,2, \ldots, n+1\}$ is called smooth, if the grasshopper is able to do k jumps with the lengths $a_{1}, a_{2}, \ldots, a_{k}$ in such a way that he never lands on a point of M except for the very last jump, when he may land on a point of M.
Obviously, 1 is smooth. Thus there is a largest number k^{*}, such that all the numbers $1,2, \ldots, k^{*}$ are smooth. If $k^{*}=n+1$, the proof is complete. In the following let $k^{*} \leq n$.
Claim 2. We have

$$
\begin{equation*}
T_{k^{*}} \in M \quad \text { and } \quad\left|M \cap\left(0, T_{k^{*}}\right)\right| \geq k^{*} . \tag{3}
\end{equation*}
$$

Proof. In the case $T_{k^{*}} \notin M$ any sequence of jumps that verifies the smoothness of k^{*} can be extended by appending $a_{k^{*}+1}$, which is a contradiction to the maximality of k^{*}. Therefore we have $T_{k^{*}} \in M$. If $\left|M \cap\left(0, T_{k^{*}}\right)\right|<k^{*}$, there exists an $l \in\left\{1,2, \ldots, k^{*}\right\}$ with $T_{k^{*}+1}-a_{l} \notin M$. By the induction hypothesis with $k^{*}-1$ instead of n, the grasshopper is able to reach $T_{k^{*}+1}-a_{l}$
with k^{*} jumps of lengths from $\left\{a_{1}, a_{2}, \ldots, a_{k^{*}+1}\right\} \backslash\left\{a_{l}\right\}$ without landing on any point of M. Therefore $k^{*}+1$ is also smooth, which is a contradiction to the maximality of k^{*}. Thus Claim 2 is proved.
Now, by Claim 2, there exists a smallest integer $\bar{k} \in\left\{1,2, \ldots, k^{*}\right\}$ with

$$
T_{\bar{k}} \in M \quad \text { and } \quad\left|M \cap\left(0, T_{\bar{k}}\right)\right| \geq \bar{k} .
$$

Claim 3. It is sufficient to consider the case

$$
\begin{equation*}
\left|M \cap\left(0, T_{\bar{k}-1}\right]\right| \leq \bar{k}-1 \tag{4}
\end{equation*}
$$

Proof. If $\bar{k}=1$, then (4) is clearly satisfied. In the following let $\bar{k}>1$. If $T_{\bar{k}-1} \in M$, then (4) follows immediately by the minimality of \bar{k}. If $T_{\bar{k}-1} \notin M$, by the smoothness of $\bar{k}-1$, we obtain a situation as in Claim 1 with $m=\bar{k}-1$ provided that $\left|M \cap\left(0, T_{\bar{k}-1}\right]\right| \geq \bar{k}-1$. Hence, we may even restrict ourselves to $\left|M \cap\left(0, T_{\bar{k}-1}\right]\right| \leq \bar{k}-2$ in this case and Claim 3 is proved.
Choose an integer $v \geq 0$ with $\left|M \cap\left(0, T_{\bar{k}}\right)\right|=\bar{k}+v$. Let $r_{1}>r_{2}>\cdots>r_{l}$ be exactly those indices r from $\{\bar{k}+1, \bar{k}+2, \ldots, n+1\}$ for which $T_{\bar{k}}+a_{r} \notin M$. Then

$$
n=|M|=\left|M \cap\left(0, T_{\bar{k}}\right)\right|+1+\left|M \cap\left(T_{\bar{k}}, s\right)\right| \geq \bar{k}+v+1+(n+1-\bar{k}-l)
$$

and consequently $l \geq v+2$. Note that
$T_{\bar{k}}+a_{r_{1}}-a_{1}<T_{\bar{k}}+a_{r_{1}}-a_{2}<\cdots<T_{\bar{k}}+a_{r_{1}}-a_{\bar{k}}<T_{\bar{k}}+a_{r_{2}}-a_{\bar{k}}<\cdots<T_{\bar{k}}+a_{r_{v+2}}-a_{\bar{k}}<T_{\bar{k}}$
and that this are $\bar{k}+v+1$ numbers from $\left(0, T_{\bar{k}}\right)$. Therefore we find some $r \in\{\bar{k}+1, \bar{k}+$ $2, \ldots, n+1\}$ and some $s \in\{1,2, \ldots, k\}$ with $T_{\bar{k}}+a_{r} \notin M$ and $T_{\bar{k}}+a_{r}-a_{s} \notin M$. Consider the set of jump lengths $B=\left\{a_{1}, a_{2}, \ldots, a_{\bar{k}}, a_{r}\right\} \backslash\left\{a_{s}\right\}$. We have

$$
\sum_{x \in B} x=T_{\bar{k}}+a_{r}-a_{s}
$$

and

$$
T_{\bar{k}}+a_{r}-a_{s}-\min (B)=T_{\bar{k}}-a_{s} \leq T_{\bar{k}-1} .
$$

By (4) and the strengthening, mentioned at the very beginning with $\bar{k}-1$ instead of n, the grasshopper is able to reach $T_{\bar{k}}+a_{r}-a_{s}$ by \bar{k} jumps with lengths from B without landing on any point of M. From there he is able to jump to $T_{\bar{k}}+a_{r}$ and therefore we reach a situation as in Claim 1 with $m=\bar{k}+1$, which completes the proof.

C8 AUT (Austria)

For any integer $n \geq 2$, we compute the integer $h(n)$ by applying the following procedure to its decimal representation. Let r be the rightmost digit of n.
(1) If $r=0$, then the decimal representation of $h(n)$ results from the decimal representation of n by removing this rightmost digit 0 .
(2) If $1 \leq r \leq 9$ we split the decimal representation of n into a maximal right part R that solely consists of digits not less than r and into a left part L that either is empty or ends with a digit strictly smaller than r. Then the decimal representation of $h(n)$ consists of the decimal representation of L, followed by two copies of the decimal representation of $R-1$. For instance, for the number $n=17,151,345,543$, we will have $L=17,151, R=345,543$ and $h(n)=17,151,345,542,345,542$.
Prove that, starting with an arbitrary integer $n \geq 2$, iterated application of h produces the integer 1 after finitely many steps.

Solution 1. We identify integers $n \geq 2$ with the digit-strings, briefly strings, of their decimal representation and extend the definition of h to all non-empty strings with digits from 0 to 9. We recursively define ten functions f_{0}, \ldots, f_{9} that map some strings into integers for $k=$ $9,8, \ldots, 1,0$. The function f_{9} is only defined on strings x (including the empty string ε) that entirely consist of nines. If x consists of m nines, then $f_{9}(x)=m+1, m=0,1, \ldots$. For $k \leq 8$, the domain of $f_{k}(x)$ is the set of all strings consisting only of digits that are $\geq k$. We write x in the form $x_{0} k x_{1} k x_{2} k \ldots x_{m-1} k x_{m}$ where the strings x_{s} only consist of digits $\geq k+1$. Note that some of these strings might equal the empty string ε and that $m=0$ is possible, i.e. the digit k does not appear in x. Then we define

$$
f_{k}(x)=\sum_{s=0}^{m} 4^{f_{k+1}\left(x_{s}\right)}
$$

We will use the following obvious fact:
Fact 1. If x does not contain digits smaller than k, then $f_{i}(x)=4^{f_{i+1}(x)}$ for all $i=0, \ldots, k-1$. In particular, $f_{i}(\varepsilon)=4^{9-i}$ for all $i=0,1, \ldots, 9$.
Moreover, by induction on $k=9,8, \ldots, 0$ it follows easily:
Fact 2. If the nonempty string x does not contain digits smaller than k, then $f_{i}(x)>f_{i}(\varepsilon)$ for all $i=0, \ldots, k$.
We will show the essential fact:
Fact 3. $f_{0}(n)>f_{0}(h(n))$.
Then the empty string will necessarily be reached after a finite number of applications of h. But starting from a string without leading zeros, ε can only be reached via the strings $1 \rightarrow 00 \rightarrow 0 \rightarrow \varepsilon$. Hence also the number 1 will appear after a finite number of applications of h.
Proof of Fact 3. If the last digit r of n is 0 , then we write $n=x_{0} 0 \ldots 0 x_{m-1} 0 \varepsilon$ where the x_{i} do not contain the digit 0 . Then $h(n)=x_{0} 0 \ldots 0 x_{m-1}$ and $f_{0}(n)-f_{0}(h(n))=f_{0}(\varepsilon)>0$.
So let the last digit r of n be at least 1 . Let $L=y k$ and $R=z r$ be the corresponding left and right parts where y is some string, $k \leq r-1$ and the string z consists only of digits not less
than r. Then $n=y k z r$ and $h(n)=y k z(r-1) z(r-1)$. Let $d(y)$ be the smallest digit of y. We consider two cases which do not exclude each other.

Case 1. $d(y) \geq k$.
Then

$$
f_{k}(n)-f_{k}(h(n))=f_{k}(z r)-f_{k}(z(r-1) z(r-1)) .
$$

In view of Fact 1 this difference is positive if and only if

$$
f_{r-1}(z r)-f_{r-1}(z(r-1) z(r-1))>0 .
$$

We have, using Fact 2,

$$
f_{r-1}(z r)=4^{f_{r}(z r)}=4^{f_{r}(z)+4^{f_{r+1}(z)}} \geq 4 \cdot 4^{f_{r}(z)}>4^{f_{r}(z)}+4^{f_{r}(z)}+4^{f_{r}(\varepsilon)}=f_{r-1}(z(r-1) z(r-1)) .
$$

Here we use the additional definition $f_{10}(\varepsilon)=0$ if $r=9$. Consequently, $f_{k}(n)-f_{k}(h(n))>0$ and according to Fact $1, f_{0}(n)-f_{0}(h(n))>0$.
Case 2. $d(y) \leq k$.
We prove by induction on $d(y)=k, k-1, \ldots, 0$ that $f_{i}(n)-f_{i}(h(n))>0$ for all $i=0, \ldots, d(y)$. By Fact 1, it suffices to do so for $i=d(y)$. The initialization $d(y)=k$ was already treated in Case 1. Let $t=d(y)<k$. Write y in the form utv where v does not contain digits $\leq t$. Then, in view of the induction hypothesis,

$$
f_{t}(n)-f_{t}(h(n))=f_{t}(v k z r)-f_{t}(v k z(r-1) z(r-1))=4^{f_{t+1}(v k z r)}-4^{f_{t+1}(v k z(r-1) z(r-1))}>0 .
$$

Thus the inequality $f_{d(y)}(n)-f_{d(y)}(h(n))>0$ is established and from Fact 1 it follows that $f_{0}(n)-f_{0}(h(n))>0$.

Solution 2. We identify integers $n \geq 2$ with the digit-strings, briefly strings, of their decimal representation and extend the definition of h to all non-empty strings with digits from 0 to 9. Moreover, let us define that the empty string, ε, is being mapped to the empty string. In the following all functions map the set of strings into the set of strings. For two functions f and g let $g \circ f$ be defined by $(g \circ f)(x)=g(f(x))$ for all strings x and let, for non-negative integers n, f^{n} denote the n-fold application of f. For any string x let $s(x)$ be the smallest digit of x, and for the empty string let $s(\varepsilon)=\infty$. We define nine functions g_{1}, \ldots, g_{9} as follows: Let $k \in\{1, \ldots, 9\}$ and let x be a string. If $x=\varepsilon$ then $g_{k}(x)=\varepsilon$. Otherwise, write x in the form $x=y z r$ where y is either the empty string or ends with a digit smaller than $k, s(z) \geq k$ and r is the rightmost digit of x. Then $g_{k}(x)=z r$.
Lemma 1. We have $g_{k} \circ h=g_{k} \circ h \circ g_{k}$ for all $k=1, \ldots, 9$.
Proof of Lemma 1. Let $x=y z r$ be as in the definition of g_{k}. If $y=\varepsilon$, then $g_{k}(x)=x$, whence

$$
\begin{equation*}
g_{k}(h(x))=g_{k}\left(h\left(g_{k}(x)\right) .\right. \tag{1}
\end{equation*}
$$

So let $y \neq \varepsilon$.
Case 1. z contains a digit smaller than r.
Let $z=u a v$ where $a<r$ and $s(v) \geq r$. Then

$$
h(x)= \begin{cases}\text { yuav } & \text { if } r=0, \\ \operatorname{yuav}(r-1) v(r-1) & \text { if } r>0\end{cases}
$$

and

$$
h\left(g_{k}(x)\right)=h(z r)=h(\text { uavr })= \begin{cases}\operatorname{uav} & \text { if } r=0, \\ \operatorname{uav}(r-1) v(r-1) & \text { if } r>0\end{cases}
$$

Since y ends with a digit smaller than k,(1) is obviously true.
Case 2. z does not contain a digit smaller than r.
Let $y=u v$ where u is either the empty string or ends with a digit smaller than r and $s(v) \geq r$. We have

$$
h(x)= \begin{cases}u v z & \text { if } r=0 \\ u v z(r-1) v z(r-1) & \text { if } r>0\end{cases}
$$

and

$$
h\left(g_{k}(x)\right)=h(z r)= \begin{cases}z & \text { if } r=0 \\ z(r-1) z(r-1) & \text { if } r>0\end{cases}
$$

Recall that y and hence v ends with a digit smaller than k, but all digits of v are at least r. Now if $r>k$, then $v=\varepsilon$, whence the terminal digit of u is smaller than k, which entails

$$
g_{k}(h(x))=z(r-1) z(r-1)=g_{k}\left(h\left(g_{k}(x)\right)\right) .
$$

If $r \leq k$, then

$$
g_{k}(h(x))=z(r-1)=g_{k}\left(h\left(g_{k}(x)\right)\right),
$$

so that in both cases (1) is true. Thus Lemma 1 is proved.
Lemma 2. Let $k \in\{1, \ldots, 9\}$, let x be a non-empty string and let n be a positive integer. If $h^{n}(x)=\varepsilon$ then $\left(g_{k} \circ h\right)^{n}(x)=\varepsilon$.
Proof of Lemma 2. We proceed by induction on n. If $n=1$ we have

$$
\varepsilon=h(x)=g_{k}(h(x))=\left(g_{k} \circ h\right)(x) .
$$

Now consider the step from $n-1$ to n where $n \geq 2$. Let $h^{n}(x)=\varepsilon$ and let $y=h(x)$. Then $h^{n-1}(y)=\varepsilon$ and by the induction hypothesis $\left(g_{k} \circ h\right)^{n-1}(y)=\varepsilon$. In view of Lemma 1,

$$
\begin{aligned}
& \varepsilon=\left(g_{k} \circ h\right)^{n-2}\left(\left(g_{k} \circ h\right)(y)\right)=\left(g_{k} \circ h\right)^{n-2}\left(g_{k}(h(y))\right. \\
&=\left(g_{k} \circ h\right)^{n-2}\left(g_{k}\left(h\left(g_{k}(y)\right)\right)=\left(g_{k} \circ h\right)^{n-2}\left(g_{k}\left(h\left(g_{k}(h(x))\right)\right)=\left(g_{k} \circ h\right)^{n}(x) .\right.\right.
\end{aligned}
$$

Thus the induction step is complete and Lemma 2 is proved.
We say that the non-empty string x terminates if $h^{n}(x)=\varepsilon$ for some non-negative integer n.
Lemma 3. Let $x=y z r$ where $s(y) \geq k, s(z) \geq k, y$ ends with the digit k and z is possibly empty. If y and $z r$ terminate then also x terminates.
Proof of Lemma 3. Suppose that y and $z r$ terminate. We proceed by induction on k. Let $k=0$. Obviously, $h(y w)=y h(w)$ for any non-empty string w. Let $h^{n}(z r)=\epsilon$. It follows easily by induction on m that $h^{m}(y z r)=y h^{m}(z r)$ for $m=1, \ldots, n$. Consequently, $h^{n}(y z r)=y$. Since y terminates, also $x=y z r$ terminates.
Now let the assertion be true for all nonnegative integers less than k and let us prove it for k where $k \geq 1$. It turns out that it is sufficient to prove that $y g_{k}(h(z r))$ terminates. Indeed:
Case 1. $r=0$.
Then $h(y z r)=y z=y g_{k}(h(z r))$.
Case 2. $0<r \leq k$.
We have $h(z r)=z(r-1) z(r-1)$ and $g_{k}(h(z r))=z(r-1)$. Then $h(y z r)=y z(r-1) y z(r-$
$1)=y g_{k}(h(z r)) y g_{k}(h(z r))$ and we may apply the induction hypothesis to see that if $\left.y g_{k} h(z r)\right)$ terminates, then $h(y z r)$ terminates.

Case 3. $r>k$.
Then $h(y z r)=y h(z r)=y g_{k}(h(z r))$.
Note that $y g_{k}(h(z r))$ has the form $y z^{\prime} r^{\prime}$ where $s\left(z^{\prime}\right) \geq k$. By the same arguments it is sufficient to prove that $y g_{k}\left(h\left(z^{\prime} r^{\prime}\right)\right)=y\left(g_{k} \circ h\right)^{2}(z r)$ terminates and, by induction, that $y\left(g_{k} \circ h\right)^{m}(z r)$ terminates for some positive integer m. In view of Lemma 2 there is some m such that ($g_{k} \circ$ $h)^{m}(z r)=\epsilon$, so $x=y z r$ terminates if y terminates. Thus Lemma 3 is proved.
Now assume that there is some string x that does not terminate. We choose x minimal. If $x \geq 10$, we can write x in the form $x=y z r$ of Lemma 3 and by this lemma x terminates since y and $z r$ are smaller than x. If $x \leq 9$, then $h(x)=(x-1)(x-1)$ and $h(x)$ terminates again by Lemma 3 and the minimal choice of x.

Solution 3. We commence by introducing some terminology. Instead of integers, we will consider the set S of all strings consisting of the digits $0,1, \ldots, 9$, including the empty string ϵ. If $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ is a nonempty string, we let $\rho(a)=a_{n}$ denote the terminal digit of a and $\lambda(a)$ be the string with the last digit removed. We also define $\lambda(\epsilon)=\epsilon$ and denote the set of non-negative integers by \mathbb{N}_{0}.
Now let $k \in\{0,1,2, \ldots, 9\}$ denote any digit. We define a function $f_{k}: S \longrightarrow S$ on the set of strings: First, if the terminal digit of n belongs to $\{0,1, \ldots, k\}$, then $f_{k}(n)$ is obtained from n by deleting this terminal digit, i.e $f_{k}(n)=\lambda(n)$. Secondly, if the terminal digit of n belongs to $\{k+1, \ldots, 9\}$, then $f_{k}(n)$ is obtained from n by the process described in the problem. We also define $f_{k}(\epsilon)=\epsilon$. Note that up to the definition for integers $n \leq 1$, the function f_{0} coincides with the function h in the problem, through interpreting integers as digit strings. The argument will be roughly as follows. We begin by introducing a straightforward generalization of our claim about f_{0}. Then it will be easy to see that f_{9} has all these stronger properties, which means that is suffices to show for $k \in\{0,1, \ldots, 8\}$ that f_{k} possesses these properties provided that f_{k+1} does.
We continue to use k to denote any digit. The operation f_{k} is said to be separating, if the followings holds: Whenever a is an initial segment of b, there is some $N \in \mathbb{N}_{0}$ such that $f_{k}^{N}(b)=a$. The following two notions only apply to the case where f_{k} is indeed separating, otherwise they remain undefined. For every $a \in S$ we denote the least $N \in \mathbb{N}_{0}$ for which $f_{k}^{N}(a)=\epsilon$ occurs by $g_{k}(a)$ (because ϵ is an initial segment of a, such an N exists if f_{k} is separating). If for every two strings a and b such that a is a terminal segment of b one has $g_{k}(a) \leq g_{k}(b)$, we say that f_{k} is coherent. In case that f_{k} is separating and coherent we call the digit k seductive.
As $f_{9}(a)=\lambda(a)$ for all a, it is obvious that 9 is seductive. Hence in order to show that 0 is seductive, which clearly implies the statement of the problem, it suffices to take any $k \in\{0,1, \ldots, 8\}$ such that $k+1$ is seductive and to prove that k has to be seductive as well. Note that in doing so, we have the function g_{k+1} at our disposal. We have to establish two things and we begin with

Step 1. f_{k} is separating.

Before embarking on the proof of this, we record a useful observation which is easily proved by induction on M.

Claim 1. For any strings A, B and any positive integer M such that $f_{k}^{M-1}(B) \neq \epsilon$, we have

$$
f_{k}^{M}(A k B)=A k f_{k}^{M}(B)
$$

Now we call a pair (a, b) of strings wicked provided that a is an initial segment of b, but there is no $N \in \mathbb{N}_{0}$ such that $f_{k}^{N}(b)=a$. We need to show that there are none, so assume that there were such pairs. Choose a wicked pair (a, b) for which $g_{k+1}(b)$ attains its minimal possible value. Obviously $b \neq \epsilon$ for any wicked pair (a, b). Let z denote the terminal digit of b. Observe that $a \neq b$, which means that a is also an initial segment of $\lambda(b)$. To facilitate the construction of the eventual contradiction, we prove
Claim 2. There cannot be an $N \in \mathbb{N}_{0}$ such that

$$
f_{k}^{N}(b)=\lambda(b)
$$

Proof of Claim 2. For suppose that such an N existed. Because $g_{k+1}(\lambda(b))<g_{k+1}(b)$ in view of the coherency of f_{k+1}, the pair $(a, \lambda(b))$ is not wicked. But then there is some N^{\prime} for which $f_{k}^{N^{\prime}}(\lambda(b))=a$ which entails $f_{k}^{N+N^{\prime}}(b)=a$, contradiction. Hence Claim 2 is proved.

It follows that $z \leq k$ is impossible, for otherwise $N=1$ violated Claim 2.
Also $z>k+1$ is impossible: Set $B=f_{k}(b)$. Then also $f_{k+1}(b)=B$, but $g_{k+1}(B)<g_{k+1}(b)$ and a is an initial segment of B. Thus the pair (a, B) is not wicked. Hence there is some $N \in \mathbb{N}_{0}$ with $a=f_{k}^{N}(B)$, which, however, entails $a=f_{k}^{N+1}(b)$.
We are left with the case $z=k+1$. Let L denote the left part and $R=R^{*}(k+1)$ the right part of b. Then we have symbolically

$$
f_{k}(b)=L R^{*} k R^{*} k, f_{k}^{2}(b)=L R^{*} k R^{*} \quad \text { and } \quad f_{k+1}(b)=L R^{*} .
$$

Using that R^{*} is a terminal segment of $L R^{*}$ and the coherency of f_{k+1}, we infer

$$
g_{k+1}\left(R^{*}\right) \leq g_{k+1}\left(L R^{*}\right)<g_{k+1}(b) .
$$

Hence the pair $\left(\epsilon, R^{*}\right)$ is not wicked, so there is some minimal $M \in \mathbb{N}_{0}$ with $f_{k}^{M}\left(R^{*}\right)=\epsilon$ and by Claim 1 it follows that $f_{k}^{2+M}(b)=L R^{*} k$. Finally, we infer that $\lambda(b)=L R^{*}=f_{k}\left(L R^{*} k\right)=$ $f_{k}^{3+M}(b)$, which yields a contradiction to Claim 2.
This final contradiction establishes that f_{k} is indeed separating.

Step 2. f_{k} is coherent.

To prepare the proof of this, we introduce some further pieces of terminology. A nonempty string $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ is called a hypostasis, if $a_{n}<a_{i}$ for all $i=1, \ldots, n-1$. Reading an arbitrary string a backwards, we easily find a, possibly empty, sequence $\left(A_{1}, A_{2}, \ldots, A_{m}\right)$ of hypostases such that $\rho\left(A_{1}\right) \leq \rho\left(A_{2}\right) \leq \cdots \leq \rho\left(A_{m}\right)$ and, symbolically, $a=A_{1} A_{2} \ldots A_{m}$. The latter sequence is referred to as the decomposition of a. So, for instance, $(20,0,9)$ is the decomposition of 2009 and the string 50 is a hypostasis. Next we explain when we say about two strings a and b that a is injectible into b. The definition is by induction on the length of b. Let $\left(B_{1}, B_{2}, \ldots, B_{n}\right)$ be the decomposition of b into hypostases. Then a is injectible into b if for the decomposition $\left(A_{1}, A_{2}, \ldots, A_{m}\right)$ of a there is a strictly increasing function $H:\{1,2, \ldots, m\} \longrightarrow\{1,2, \ldots, n\}$ satisfying

$$
\rho\left(A_{i}\right)=\rho\left(B_{H(i)}\right) \text { for all } i=1, \ldots, m \text {; }
$$

$\lambda\left(A_{i}\right)$ is injectible into $\lambda\left(B_{H(i)}\right)$ for all $i=1, \ldots, m$.
If one can choose H with $H(m)=n$, then we say that a is strongly injectible into b. Obviously, if a is a terminal segment of b, then a is strongly injectible into b.
Claim 3. If a and b are two nonempty strings such that a is strongly injectible into b, then $\lambda(a)$ is injectible into $\lambda(b)$.

Proof of Claim 3. Let $\left(B_{1}, B_{2}, \ldots, B_{n}\right)$ be the decomposition of b and let $\left(A_{1}, A_{2}, \ldots, A_{m}\right)$ be the decomposition of a. Take a function H exemplifying that a is strongly injectible into b. Let $\left(C_{1}, C_{2}, \ldots, C_{r}\right)$ be the decomposition of $\lambda\left(A_{m}\right)$ and let $\left(D_{1}, D_{2}, \ldots, D_{s}\right)$ be the decomposition of $\lambda\left(B_{n}\right)$. Choose a strictly increasing $H^{\prime}:\{1,2, \ldots, r\} \longrightarrow\{1,2, \ldots s\}$ witnessing that $\lambda\left(A_{m}\right)$ is injectible into $\lambda\left(B_{n}\right)$. Clearly, $\left(A_{1}, A_{2}, \ldots, A_{m-1}, C_{1}, C_{2}, \ldots, C_{r}\right)$ is the decomposition of $\lambda(a)$ and $\left(B_{1}, B_{2}, \ldots, B_{n-1}, D_{1}, D_{2}, \ldots, D_{s}\right)$ is the decomposition of $\lambda(b)$. Then the function $H^{\prime \prime}:\{1,2, \ldots, m+r-1\} \longrightarrow\{1,2, \ldots, n+s-1\}$ given by $H^{\prime \prime}(i)=H(i)$ for $i=1,2, \ldots, m-1$ and $H^{\prime \prime}(m-1+i)=n-1+H^{\prime}(i)$ for $i=1,2, \ldots, r$ exemplifies that $\lambda(a)$ is injectible into $\lambda(b)$, which finishes the proof of the claim.

A pair (a, b) of strings is called aggressive if a is injectible into b and nevertheless $g_{k}(a)>g_{k}(b)$. Observe that if f_{k} was incoherent, which we shall assume from now on, then such pairs existed. Now among all aggressive pairs we choose one, say (a, b), for which $g_{k}(b)$ attains its least possible value. Obviously $f_{k}(a)$ cannot be injectible into $f_{k}(b)$, for otherwise the pair $\left(f_{k}(a), f_{k}(b)\right)$ was aggressive and contradicted our choice of (a, b). Let $\left(A_{1}, A_{2}, \ldots, A_{m}\right)$ and ($B_{1}, B_{2}, \ldots, B_{n}$) be the decompositions of a and b and take a function $H:\{1,2, \ldots, m\} \longrightarrow\{1,2, \ldots, n\}$ exemplifying that a is indeed injectible into b. If we had $H(m)<n$, then a was also injectible into the number b^{\prime} whose decomposition is $\left(B_{1}, B_{2}, \ldots, B_{n-1}\right)$ and by separativity of f_{k} we obtained $g_{k}\left(b^{\prime}\right)<g_{k}(b)$, whence the pair $\left(a, b^{\prime}\right)$ was also aggressive, contrary to the minimality condition imposed on b. Therefore a is strongly injectible into b. In particular, a and b have a common terminal digit, say z. If we had $z \leq k$, then $f_{k}(a)=\lambda(a)$ and $f_{k}(b)=\lambda(b)$, so that by Claim $3, f_{k}(a)$ was injectible into $f_{k}(b)$, which is a contradiction. Hence, $z \geq k+1$.
Now let r be the minimal element of $\{1,2, \ldots, m\}$ for which $\rho\left(A_{r}\right)=z$. Then the maximal right part of a consisting of digits $\geq z$ is equal to R_{a}, the string whose decomposition is $\left(A_{r}, A_{r+1}, \ldots, A_{m}\right)$. Then $R_{a}-1$ is a hypostasis and $\left(A_{1}, \ldots, A_{r-1}, R_{a}-1, R_{a}-1\right)$ is the decomposition of $f_{k}(a)$. Defining s and R_{b} in a similar fashion with respect to b, we see that $\left(B_{1}, \ldots, B_{s-1}, R_{b}-1, R_{b}-1\right)$ is the decomposition of $f_{k}(b)$. The definition of injectibility then easily entails that R_{a} is strongly injectible into R_{b}. It follows from Claim 3 that $\lambda\left(R_{a}\right)=$ $\lambda\left(R_{a}-1\right)$ is injectible into $\lambda\left(R_{b}\right)=\lambda\left(R_{b}-1\right)$, whence the function $H^{\prime}:\{1,2, \ldots, r+1\} \longrightarrow$ $\{1,2, \ldots, s+1\}$, given by $H^{\prime}(i)=H(i)$ for $i=1,2, \ldots, r-1, H^{\prime}(r)=s$ and $H^{\prime}(r+1)=s+1$ exemplifies that $f_{k}(a)$ is injectible into $f_{k}(b)$, which yields a contradiction as before.
This shows that aggressive pairs cannot exist, whence f_{k} is indeed coherent, which finishes the proof of the seductivity of k, whereby the problem is finally solved.

Geometry

G1 BEL (Belgium)

Let $A B C$ be a triangle with $A B=A C$. The angle bisectors of A and B meet the sides $B C$ and $A C$ in D and E, respectively. Let K be the incenter of triangle $A D C$. Suppose that $\angle B E K=45^{\circ}$. Find all possible values of $\angle B A C$.

Solution 1. Answer: $\angle B A C=60^{\circ}$ or $\angle B A C=90^{\circ}$ are possible values and the only possible values.

Let I be the incenter of triangle $A B C$, then K lies on the line $C I$. Let F be the point, where the incircle of triangle $A B C$ touches the side $A C$; then the segments $I F$ and $I D$ have the same length and are perpendicular to $A C$ and $B C$, respectively.

Figure 1

Figure 2

Let P, Q and R be the points where the incircle of triangle $A D C$ touches the sides $A D, D C$ and $C A$, respectively. Since K and I lie on the angle bisector of $\angle A C D$, the segments $I D$ and $I F$ are symmetric with respect to the line $I C$. Hence there is a point S on $I F$ where the incircle of triangle $A D C$ touches the segment $I F$. Then segments $K P, K Q, K R$ and $K S$ all have the same length and are perpendicular to $A D, D C, C A$ and $I F$, respectively. So - regardless of the value of $\angle B E K$ - the quadrilateral $K R F S$ is a square and $\angle S F K=\angle K F C=45^{\circ}$.
Consider the case $\angle B A C=60^{\circ}$ (see Figure 1). Then triangle $A B C$ is equilateral. Furthermore we have $F=E$, hence $\angle B E K=\angle I F K=\angle S E K=45^{\circ}$. So 60° is a possible value for $\angle B A C$.
Now consider the case $\angle B A C=90^{\circ}$ (see Figure 2). Then $\angle C B A=\angle A C B=45^{\circ}$. Furthermore, $\angle K I E=\frac{1}{2} \angle C B A+\frac{1}{2} \angle A C B=45^{\circ}, \angle A E B=180^{\circ}-90^{\circ}-22.5^{\circ}=67.5^{\circ}$ and $\angle E I A=\angle B I D=180^{\circ}-90^{\circ}-22.5^{\circ}=67.5^{\circ}$. Hence triangle $I E A$ is isosceles and a reflection of the bisector of $\angle I A E$ takes I to E and K to itself. So triangle $I K E$ is symmetric with respect to this axis, i.e. $\angle K I E=\angle I E K=\angle B E K=45^{\circ}$. So 90° is a possible value for $\angle B A C$, too.
If, on the other hand, $\angle B E K=45^{\circ}$ then $\angle B E K=\angle I E K=\angle I F K=45^{\circ}$. Then

- either $F=E$, which makes the angle bisector $B I$ be an altitude, i.e., which makes triangle $A B C$ isosceles with base $A C$ and hence equilateral and so $\angle B A C=60^{\circ}$,
- or E lies between F and C, which makes the points K, E, F and I concyclic, so $45^{\circ}=$ $\angle K F C=\angle K F E=\angle K I E=\angle C B I+\angle I C B=2 \cdot \angle I C B=90^{\circ}-\frac{1}{2} \angle B A C$, and so $\angle B A C=90^{\circ}$,
- or F lies between E and C, then again, K, E, F and I are concyclic, so $45^{\circ}=\angle K F C=$ $180^{\circ}-\angle K F E=\angle K I E$, which yields the same result $\angle B A C=90^{\circ}$. (However, for $\angle B A C=90^{\circ} E$ lies, in fact, between F and C, see Figure 2. So this case does not occur.)
This proves 90° and 60° to be the only possible values for $\angle B A C$.

Solution 2. Denote angles at A, B and C as usual by α, β and γ. Since triangle $A B C$ is isosceles, we have $\beta=\gamma=90^{\circ}-\frac{\alpha}{2}<90^{\circ}$, so $\angle E C K=45^{\circ}-\frac{\alpha}{4}=\angle K C D$. Since K is the incenter of triangle $A D C$, we have $\angle C D K=\angle K D A=45^{\circ}$; furthermore $\angle D I C=45^{\circ}+\frac{\alpha}{4}$. Now, if $\angle B E K=45^{\circ}$, easy calculations within triangles $B C E$ and $K C E$ yield

$$
\begin{aligned}
& \angle K E C=180^{\circ}-\frac{\beta}{2}-45^{\circ}-\beta=135^{\circ}-\frac{3}{2} \beta=\frac{3}{2}\left(90^{\circ}-\beta\right)=\frac{3}{4} \alpha, \\
& \angle I K E=\frac{3}{4} \alpha+45^{\circ}-\frac{\alpha}{4}=45^{\circ}+\frac{\alpha}{2} .
\end{aligned}
$$

So in triangles $I C E, I K E, I D K$ and $I D C$ we have (see Figure 3)

$$
\begin{array}{ll}
\frac{I C}{I E}=\frac{\sin \angle I E C}{\sin \angle E C I}=\frac{\sin \left(45^{\circ}+\frac{3}{4} \alpha\right)}{\sin \left(45^{\circ}-\frac{\alpha}{4}\right)}, & \frac{I E}{I K}=\frac{\sin \angle E K I}{\sin \angle I E K}=\frac{\sin \left(45^{\circ}+\frac{\alpha}{2}\right)}{\sin 45^{\circ}} \\
\frac{I K}{I D}=\frac{\sin \angle K D I}{\sin \angle I K D}=\frac{\sin 45^{\circ}}{\sin \left(90^{\circ}-\frac{\alpha}{4}\right)}, & \frac{I D}{I C}=\frac{\sin \angle I C D}{\sin \angle C D I}=\frac{\sin \left(45^{\circ}-\frac{\alpha}{4}\right)}{\sin 90^{\circ}}
\end{array}
$$

Figure 3
Multiplication of these four equations yields

$$
1=\frac{\sin \left(45^{\circ}+\frac{3}{4} \alpha\right) \sin \left(45^{\circ}+\frac{\alpha}{2}\right)}{\sin \left(90^{\circ}-\frac{\alpha}{4}\right)}
$$

But, since

$$
\begin{aligned}
\sin \left(90^{\circ}-\frac{\alpha}{4}\right) & =\cos \frac{\alpha}{4}=\cos \left(\left(45^{\circ}+\frac{3}{4} \alpha\right)-\left(45^{\circ}+\frac{\alpha}{2}\right)\right) \\
& =\cos \left(45^{\circ}+\frac{3}{4} \alpha\right) \cos \left(45^{\circ}+\frac{\alpha}{2}\right)+\sin \left(45^{\circ}+\frac{3}{4} \alpha\right) \sin \left(45^{\circ}+\frac{\alpha}{2}\right),
\end{aligned}
$$

this is equivalent to

$$
\sin \left(45^{\circ}+\frac{3}{4} \alpha\right) \sin \left(45^{\circ}+\frac{\alpha}{2}\right)=\cos \left(45^{\circ}+\frac{3}{4} \alpha\right) \cos \left(45^{\circ}+\frac{\alpha}{2}\right)+\sin \left(45^{\circ}+\frac{3}{4} \alpha\right) \sin \left(45^{\circ}+\frac{\alpha}{2}\right)
$$

and finally

$$
\cos \left(45^{\circ}+\frac{3}{4} \alpha\right) \cos \left(45^{\circ}+\frac{\alpha}{2}\right)=0 .
$$

But this means $\cos \left(45^{\circ}+\frac{3}{4} \alpha\right)=0$, hence $45^{\circ}+\frac{3}{4} \alpha=90^{\circ}$, i.e. $\alpha=60^{\circ}$ or $\cos \left(45^{\circ}+\frac{\alpha}{2}\right)=0$, hence $45^{\circ}+\frac{\alpha}{2}=90^{\circ}$, i.e. $\alpha=90^{\circ}$. So these values are the only two possible values for α.
On the other hand, both $\alpha=90^{\circ}$ and $\alpha=60^{\circ}$ yield $\angle B E K=45^{\circ}$, this was shown in Solution 1.

G2 RUS (Russian Federation)

Let $A B C$ be a triangle with circumcenter O. The points P and Q are interior points of the sides $C A$ and $A B$, respectively. The circle k passes through the midpoints of the segments $B P$, $C Q$, and $P Q$. Prove that if the line $P Q$ is tangent to circle k then $O P=O Q$.

Solution 1. Let $K, L, M, B^{\prime}, C^{\prime}$ be the midpoints of $B P, C Q, P Q, C A$, and $A B$, respectively (see Figure 1). Since $C A \| L M$, we have $\angle L M P=\angle Q P A$. Since k touches the segment $P Q$ at M, we find $\angle L M P=\angle L K M$. Thus $\angle Q P A=\angle L K M$. Similarly it follows from $A B \| M K$ that $\angle P Q A=\angle K L M$. Therefore, triangles $A P Q$ and $M K L$ are similar, hence

$$
\begin{equation*}
\frac{A P}{A Q}=\frac{M K}{M L}=\frac{\frac{Q B}{2}}{\frac{P C}{2}}=\frac{Q B}{P C} \tag{1}
\end{equation*}
$$

Now (1) is equivalent to $A P \cdot P C=A Q \cdot Q B$ which means that the power of points P and Q with respect to the circumcircle of $\triangle A B C$ are equal, hence $O P=O Q$.

Figure 1

Comment. The last argument can also be established by the following calculation:

$$
\begin{aligned}
O P^{2}-O Q^{2} & =O B^{\prime 2}+B^{\prime} P^{2}-O C^{\prime 2}-C^{\prime} Q^{2} \\
& =\left(O A^{2}-A B^{2}\right)+B^{\prime} P^{2}-\left(O A^{2}-A C^{\prime 2}\right)-C^{\prime} Q^{2} \\
& =\left(A C^{\prime 2}-C^{\prime} Q^{2}\right)-\left(A B^{\prime 2}-B^{\prime} P^{2}\right) \\
& =\left(A C^{\prime}-C^{\prime} Q\right)\left(A C^{\prime}+C^{\prime} Q\right)-\left(A B^{\prime}-B^{\prime} P\right)\left(A B^{\prime}+B^{\prime} P\right) \\
& =A Q \cdot Q B-A P \cdot P C
\end{aligned}
$$

With (1), we conclude $O P^{2}-O Q^{2}=0$, as desired.

Solution 2. Again, denote by K, L, M the midpoints of segments $B P, C Q$, and $P Q$, respectively. Let O, S, T be the circumcenters of triangles $A B C, K L M$, and $A P Q$, respectively (see Figure 2). Note that $M K$ and $L M$ are the midlines in triangles $B P Q$ and $C P Q$, respectively, so $\overrightarrow{M K}=\frac{1}{2} \overrightarrow{Q B}$ and $\overrightarrow{M L}=\frac{1}{2} \overrightarrow{P C}$. Denote by $\operatorname{pr}_{l}(\vec{v})$ the projection of vector \vec{v} onto line l. Then $\operatorname{pr}_{A B}(\overrightarrow{O T})=\operatorname{pr}_{A B}(\overrightarrow{O A}-\overrightarrow{T A})=\frac{1}{2} \overrightarrow{B A}-\frac{1}{2} \overrightarrow{Q A}=\frac{1}{2} \overrightarrow{B Q}=\overrightarrow{K M}$ and $\operatorname{pr}_{A B}(\overrightarrow{S M})=\operatorname{pr}_{M K}(\overrightarrow{S M})=$ $\frac{1}{2} \overrightarrow{K M}=\frac{1}{2} \operatorname{pr}_{A B}(\overrightarrow{O T})$. Analogously we get $\mathrm{pr}_{C A}(\overrightarrow{S M})=\frac{1}{2} \operatorname{pr}_{C A}(\overrightarrow{O T})$. Since $A B$ and $C A$ are not parallel, this implies that $\overrightarrow{S M}=\frac{1}{2} \overrightarrow{O T}$.

Figure 2
Now, since the circle k touches $P Q$ at M, we get $S M \perp P Q$, hence $O T \perp P Q$. Since T is equidistant from P and Q, the line $O T$ is a perpendicular bisector of segment $P Q$, and hence O is equidistant from P and Q which finishes the proof.

G3 IRN (Islamic Republic of Iran)

Let $A B C$ be a triangle. The incircle of $A B C$ touches the sides $A B$ and $A C$ at the points Z and Y, respectively. Let G be the point where the lines $B Y$ and $C Z$ meet, and let R and S be points such that the two quadrilaterals $B C Y R$ and $B C S Z$ are parallelograms.
Prove that $G R=G S$.

Solution 1. Denote by k the incircle and by k_{a} the excircle opposite to A of triangle $A B C$. Let k and k_{a} touch the side $B C$ at the points X and T, respectively, let k_{a} touch the lines $A B$ and $A C$ at the points P and Q, respectively. We use several times the fact that opposing sides of a parallelogram are of equal length, that points of contact of the excircle and incircle to a side of a triangle lie symmetric with respect to the midpoint of this side and that segments on two tangents to a circle defined by the points of contact and their point of intersection have the same length. So we conclude

$$
\begin{gathered}
Z P=Z B+B P=X B+B T=B X+C X=Z S \text { and } \\
C Q=C T=B X=B Z=C S .
\end{gathered}
$$

So for each of the points Z, C, their distances to S equal the length of a tangent segment from this point to k_{a}. It is well-known, that all points with this property lie on the line $Z C$, which is the radical axis of S and k_{a}. Similar arguments yield that $B Y$ is the radical axis of R and k_{a}. So the point of intersection of $Z C$ and $B Y$, which is G by definition, is the radical center of R, S and k_{a}, from which the claim $G R=G S$ follows immediately.

Solution 2. Denote $x=A Z=A Y, y=B Z=B X, z=C X=C Y, p=Z G, q=G C$. Several lengthy calculations (Menelaos' theorem in triangle $A Z C$, law of Cosines in triangles $A B C$ and $A Z C$ and Stewart's theorem in triangle $Z C S$) give four equations for $p, q, \cos \alpha$
and $G S$ in terms of x, y, and z that can be resolved for $G S$. The result is symmetric in y and z, so $G R=G S$. More in detail this means:
The line $B Y$ intersects the sides of triangle $A Z C$, so Menelaos' theorem yields $\frac{p}{q} \cdot \frac{z}{x} \cdot \frac{x+y}{y}=1$, hence

$$
\begin{equation*}
\frac{p}{q}=\frac{x y}{y z+z x} . \tag{1}
\end{equation*}
$$

Since we only want to show that the term for $G S$ is symmetric in y and z, we abbreviate terms that are symmetric in y and z by capital letters, starting with $N=x y+y z+z x$. So (1) implies

$$
\begin{equation*}
\frac{p}{p+q}=\frac{x y}{x y+y z+z x}=\frac{x y}{N} \quad \text { and } \quad \frac{q}{p+q}=\frac{y z+z x}{x y+y z+z x}=\frac{y z+z x}{N} . \tag{2}
\end{equation*}
$$

Now the law of Cosines in triangle $A B C$ yields

$$
\cos \alpha=\frac{(x+y)^{2}+(x+z)^{2}-(y+z)^{2}}{2(x+y)(x+z)}=\frac{2 x^{2}+2 x y+2 x z-2 y z}{2(x+y)(x+z)}=1-\frac{2 y z}{(x+y)(x+z)} .
$$

We use this result to apply the law of Cosines in triangle $A Z C$:

$$
\begin{align*}
(p+q)^{2} & =x^{2}+(x+z)^{2}-2 x(x+z) \cos \alpha \\
& =x^{2}+(x+z)^{2}-2 x(x+z) \cdot\left(1-\frac{2 y z}{(x+y)(x+z)}\right) \\
& =z^{2}+\frac{4 x y z}{x+y} \tag{3}
\end{align*}
$$

Now in triangle $Z C S$ the segment $G S$ is a cevian, so with StEWART's theorem we have $p y^{2}+q(y+z)^{2}=(p+q)\left(G S^{2}+p q\right)$, hence

$$
G S^{2}=\frac{p}{p+q} \cdot y^{2}+\frac{q}{p+q} \cdot(y+z)^{2}-\frac{p}{p+q} \cdot \frac{q}{p+q} \cdot(p+q)^{2} .
$$

Replacing the p 's and q 's herein by (2) and (3) yields

$$
\begin{aligned}
G S^{2} & =\frac{x y}{N} y^{2}+\frac{y z+z x}{N}(y+z)^{2}-\frac{x y}{N} \cdot \frac{y z+z x}{N} \cdot\left(z^{2}+\frac{4 x y z}{x+y}\right) \\
& =\frac{x y^{3}}{N}+\underbrace{\frac{y z(y+z)^{2}}{N}}_{M_{1}}+\frac{z x(y+z)^{2}}{N}-\frac{x y z^{3}(x+y)}{N^{2}}-\underbrace{\frac{4 x^{2} y^{2} z^{2}}{N^{2}}}_{M_{2}} \\
& =\frac{x y^{3}+z x(y+z)^{2}}{N}-\frac{x y z^{3}(x+y)}{N^{2}}+M_{1}-M_{2} \\
& =\underbrace{\frac{x\left(y^{3}+y^{2} z+y z^{2}+z^{3}\right)}{N}+\frac{x y z^{2} N}{N^{2}}-\frac{x y z^{3}(x+y)}{N^{2}}+M_{1}-M_{2}}_{M_{3}} \\
& =\frac{x^{2} y^{2} z^{2}+x y^{2} z^{3}+x^{2} y z^{3}-x^{2} y z^{3}-x y^{2} z^{3}}{N^{2}}+M_{1}-M_{2}+M_{3} \\
& =\frac{x^{2} y^{2} z^{2}}{N^{2}}+M_{1}-M_{2}+M_{3},
\end{aligned}
$$

a term that is symmetric in y and z, indeed.

Comment. G is known as Gergonne's point of $\triangle A B C$.

G4 UNK (United Kingdom)

Given a cyclic quadrilateral $A B C D$, let the diagonals $A C$ and $B D$ meet at E and the lines $A D$ and $B C$ meet at F. The midpoints of $A B$ and $C D$ are G and H, respectively. Show that $E F$ is tangent at E to the circle through the points E, G, and H.

Solution 1. It suffices to show that $\angle H E F=\angle H G E$ (see Figure 1), since in circle $E G H$ the angle over the chord $E H$ at G equals the angle between the tangent at E and $E H$.
First, $\angle B A D=180^{\circ}-\angle D C B=\angle F C D$. Since triangles $F A B$ and $F C D$ have also a common interior angle at F, they are similar.

Figure 1
Denote by \mathcal{T} the transformation consisting of a reflection at the bisector of $\angle D F C$ followed by a dilation with center F and factor of $\frac{F A}{F C}$. Then \mathcal{T} maps F to F, C to A, D to B, and H to G. To see this, note that $\triangle F C A \sim \triangle F D B$, so $\frac{F A}{F C}=\frac{F B}{F D}$. Moreover, as $\angle A D B=\angle A C B$, the image of the line $D E$ under \mathcal{T} is parallel to $A C$ (and passes through B) and similarly the image of $C E$ is parallel to $D B$ and passes through A. Hence E is mapped to the point X which is the fourth vertex of the parallelogram $B E A X$. Thus, in particular $\angle H E F=\angle F X G$.
As G is the midpoint of the diagonal $A B$ of the parallelogram $B E A X$, it is also the midpoint of $E X$. In particular, E, G, X are collinear, and $E X=2 \cdot E G$.
Denote by Y the fourth vertex of the parallelogram $D E C Y$. By an analogous reasoning as before, it follows that \mathcal{T} maps Y to E, thus E, H, Y are collinear with $E Y=2 \cdot E H$. Therefore, by the intercept theorem, $H G \| X Y$.

From the construction of \mathcal{T} it is clear that the lines $F X$ and $F E$ are symmetric with respect to the bisector of $\angle D F C$, as are $F Y$ and $F E$. Thus, F, X, Y are collinear, which together with $H G \| X Y$ implies $\angle F X E=\angle H G E$. This completes the proof.

Solution 2. We use the following
Lemma (Gauß). Let $A B C D$ be a quadrilateral. Let $A B$ and $C D$ intersect at P, and $B C$ and $D A$ intersect at Q. Then the midpoints K, L, M of $A C, B D$, and $P Q$, respectively, are collinear.
Proof: Let us consider the points Z that fulfill the equation

$$
\begin{equation*}
(A B Z)+(C D Z)=(B C Z)+(D A Z) \tag{1}
\end{equation*}
$$

where $(R S T)$ denotes the oriented area of the triangle $R S T$ (see Figure 2).

Figure 2
As (1) is linear in Z, it can either characterize a line, or be contradictory, or be trivially fulfilled for all Z in the plane. If (1) was fulfilled for all Z, then it would hold for $Z=A, Z=B$, which gives $(C D A)=(B C A),(C D B)=(D A B)$, respectively, i.e. the diagonals of $A B C D$ would bisect each other, thus $A B C D$ would be a parallelogram. This contradicts the hypothesis that $A D$ and $B C$ intersect. Since E, F, G fulfill (1), it is the equation of a line which completes the proof of the lemma.
Now consider the parallelograms $E A X B$ and $E C Y D$ (see Figure 1). Then G, H are the midpoints of $E X, E Y$, respectively. Let M be the midpoint of $E F$. By applying the Lemma to the (re-entrant) quadrilateral $A D B C$, it is evident that G, H, and M are collinear. A dilation by a factor of 2 with center E shows that X, Y, F are collinear. Since $A X \| D E$ and $B X \| C E$, we have pairwise equal interior angles in the quadrilaterals $F D E C$ and $F B X A$. Since we have also $\angle E B A=\angle D C A=\angle C D Y$, the quadrilaterals are similar. Thus, $\angle F X A=\angle C E F$.
Clearly the parallelograms $E C Y D$ and $E B X A$ are similar, too, thus $\angle E X A=\angle C E Y$. Consequently, $\angle F X E=\angle F X A-\angle E X A=\angle C E F-\angle C E Y=\angle Y E F$. By the converse of the tangent-chord angle theorem $E F$ is tangent to the circle $X E Y$. A dilation by a factor of $\frac{1}{2}$ completes the proof.

Solution 3. As in Solution 2, G, H, M are proven to be collinear. It suffices to show that $M E^{2}=M G \cdot M H$. If $\boldsymbol{p}=\overrightarrow{O P}$ denotes the vector from circumcenter O to point P, the claim becomes

$$
\left(\frac{\boldsymbol{e}-\boldsymbol{f}}{2}\right)^{2}=\left(\frac{\boldsymbol{e}+\boldsymbol{f}}{2}-\frac{\boldsymbol{a}+\boldsymbol{b}}{2}\right)\left(\frac{\boldsymbol{e}+\boldsymbol{f}}{2}-\frac{\boldsymbol{c}+\boldsymbol{d}}{2}\right)
$$

or equivalently

$$
\begin{equation*}
4 \boldsymbol{e} \boldsymbol{f}-(\boldsymbol{e}+\boldsymbol{f})(\boldsymbol{a}+\boldsymbol{b}+\boldsymbol{c}+\boldsymbol{d})+(\boldsymbol{a}+\boldsymbol{b})(\boldsymbol{c}+\boldsymbol{d})=0 . \tag{2}
\end{equation*}
$$

With R as the circumradius of $A B C D$, we obtain for the powers $\mathcal{P}(E)$ and $\mathcal{P}(F)$ of E and F, respectively, with respect to the circumcircle

$$
\begin{aligned}
& \mathcal{P}(E)=(\boldsymbol{e}-\boldsymbol{a})(\boldsymbol{e}-\boldsymbol{c})=(\boldsymbol{e}-\boldsymbol{b})(\boldsymbol{e}-\boldsymbol{d})=\boldsymbol{e}^{2}-R^{2}, \\
& \mathcal{P}(F)=(\boldsymbol{f}-\boldsymbol{a})(\boldsymbol{f}-\boldsymbol{d})=(\boldsymbol{f}-\boldsymbol{b})(\boldsymbol{f}-\boldsymbol{c})=\boldsymbol{f}^{2}-R^{2}
\end{aligned}
$$

hence

$$
\begin{align*}
& (\boldsymbol{e}-\boldsymbol{a})(\boldsymbol{e}-\boldsymbol{c})=\boldsymbol{e}^{2}-R^{2}, \tag{3}\\
& (\boldsymbol{e}-\boldsymbol{b})(\boldsymbol{e}-\boldsymbol{d})=\boldsymbol{e}^{2}-R^{2}, \tag{4}\\
& (\boldsymbol{f}-\boldsymbol{a})(\boldsymbol{f}-\boldsymbol{d})=\boldsymbol{f}^{2}-R^{2}, \tag{5}\\
& (\boldsymbol{f}-\boldsymbol{b})(\boldsymbol{f}-\boldsymbol{c})=\boldsymbol{f}^{2}-R^{2} . \tag{6}
\end{align*}
$$

Since F lies on the polar to E with respect to the circumcircle, we have

$$
\begin{equation*}
4 \boldsymbol{e} \boldsymbol{f}=4 R^{2} \tag{7}
\end{equation*}
$$

Adding up (3) to (7) yields (2), as desired.

G5 POL (Poland)

Let P be a polygon that is convex and symmetric to some point O. Prove that for some parallelogram R satisfying $P \subset R$ we have

$$
\frac{|R|}{|P|} \leq \sqrt{2}
$$

where $|R|$ and $|P|$ denote the area of the sets R and P, respectively.

Solution 1. We will construct two parallelograms R_{1} and R_{3}, each of them containing P, and prove that at least one of the inequalities $\left|R_{1}\right| \leq \sqrt{2}|P|$ and $\left|R_{3}\right| \leq \sqrt{2}|P|$ holds (see Figure 1). First we will construct a parallelogram $R_{1} \supseteq P$ with the property that the midpoints of the sides of R_{1} are points of the boundary of P.
Choose two points A and B of P such that the triangle $O A B$ has maximal area. Let a be the line through A parallel to $O B$ and b the line through B parallel to $O A$. Let $A^{\prime}, B^{\prime}, a^{\prime}$ and b^{\prime} be the points or lines, that are symmetric to A, B, a and b, respectively, with respect to O. Now let R_{1} be the parallelogram defined by a, b, a^{\prime} and b^{\prime}.

Figure 1
Obviously, A and B are located on the boundary of the polygon P, and A, B, A^{\prime} and B^{\prime} are midpoints of the sides of R_{1}. We note that $P \subseteq R_{1}$. Otherwise, there would be a point $Z \in P$ but $Z \notin R_{1}$, i.e., one of the lines a, b, a^{\prime} or b^{\prime} were between O and Z. If it is a, we have $|O Z B|>|O A B|$, which is contradictory to the choice of A and B. If it is one of the lines b, a^{\prime} or b^{\prime} almost identical arguments lead to a similar contradiction.
Let R_{2} be the parallelogram $A B A^{\prime} B^{\prime}$. Since A and B are points of P, segment $A B \subset P$ and so $R_{2} \subset R_{1}$. Since A, B, A^{\prime} and B^{\prime} are midpoints of the sides of R_{1}, an easy argument yields

$$
\begin{equation*}
\left|R_{1}\right|=2 \cdot\left|R_{2}\right| . \tag{1}
\end{equation*}
$$

Let R_{3} be the smallest parallelogram enclosing P defined by lines parallel to $A B$ and $B A^{\prime}$. Obviously $R_{2} \subset R_{3}$ and every side of R_{3} contains at least one point of the boundary of P. Denote by C the intersection point of a and b, by X the intersection point of $A B$ and $O C$, and by X^{\prime} the intersection point of $X C$ and the boundary of R_{3}. In a similar way denote by D
the intersection point of b and a^{\prime}, by Y the intersection point of $A^{\prime} B$ and $O D$, and by Y^{\prime} the intersection point of $Y D$ and the boundary of R_{3}.
Note that $O C=2 \cdot O X$ and $O D=2 \cdot O Y$, so there exist real numbers x and y with $1 \leq x, y \leq 2$ and $O X^{\prime}=x \cdot O X$ and $O Y^{\prime}=y \cdot O Y$. Corresponding sides of R_{3} and R_{2} are parallel which yields

$$
\begin{equation*}
\left|R_{3}\right|=x y \cdot\left|R_{2}\right| . \tag{2}
\end{equation*}
$$

The side of R_{3} containing X^{\prime} contains at least one point X^{*} of P; due to the convexity of P we have $A X^{*} B \subset P$. Since this side of the parallelogram R_{3} is parallel to $A B$ we have $\left|A X^{*} B\right|=\left|A X^{\prime} B\right|$, so $\left|O A X^{\prime} B\right|$ does not exceed the area of P confined to the sector defined by the rays $O B$ and $O A$. In a similar way we conclude that $\left|O B^{\prime} Y^{\prime} A^{\prime}\right|$ does not exceed the area of P confined to the sector defined by the rays $O B$ and $O A^{\prime}$. Putting things together we have $\left|O A X^{\prime} B\right|=x \cdot|O A B|,\left|O B D A^{\prime}\right|=y \cdot\left|O B A^{\prime}\right|$. Since $|O A B|=\left|O B A^{\prime}\right|$, we conclude that $|P| \geq 2 \cdot\left|A X^{\prime} B Y^{\prime} A^{\prime}\right|=2 \cdot\left(x \cdot|O A B|+y \cdot\left|O B A^{\prime}\right|\right)=4 \cdot \frac{x+y}{2} \cdot|O A B|=\frac{x+y}{2} \cdot R_{2}$; this is in short

$$
\begin{equation*}
\frac{x+y}{2} \cdot\left|R_{2}\right| \leq|P| . \tag{3}
\end{equation*}
$$

Since all numbers concerned are positive, we can combine (1)-(3). Using the arithmetic-geometric-mean inequality we obtain

$$
\left|R_{1}\right| \cdot\left|R_{3}\right|=2 \cdot\left|R_{2}\right| \cdot x y \cdot\left|R_{2}\right| \leq 2 \cdot\left|R_{2}\right|^{2}\left(\frac{x+y}{2}\right)^{2} \leq 2 \cdot|P|^{2}
$$

This implies immediately the desired result $\left|R_{1}\right| \leq \sqrt{2} \cdot|P|$ or $\left|R_{3}\right| \leq \sqrt{2} \cdot|P|$.

Solution 2. We construct the parallelograms R_{1}, R_{2} and R_{3} in the same way as in Solution 1 and will show that $\frac{\left|R_{1}\right|}{|P|} \leq \sqrt{2}$ or $\frac{\left|R_{3}\right|}{|P|} \leq \sqrt{2}$.

Figure 2
Recall that affine one-to-one maps of the plane preserve the ratio of areas of subsets of the plane. On the other hand, every parallelogram can be transformed with an affine map onto a square. It follows that without loss of generality we may assume that R_{1} is a square (see Figure 2).

Then R_{2}, whose vertices are the midpoints of the sides of R_{1}, is a square too, and R_{3}, whose sides are parallel to the diagonals of R_{1}, is a rectangle.
Let $a>0, b \geq 0$ and $c \geq 0$ be the distances introduced in Figure 2. Then $\left|R_{1}\right|=2 a^{2}$ and
$\left|R_{3}\right|=(a+2 b)(a+2 c)$.
Points A, A^{\prime}, B and B^{\prime} are in the convex polygon P. Hence the square $A B A^{\prime} B^{\prime}$ is a subset of P. Moreover, each of the sides of the rectangle R_{3} contains a point of P, otherwise R_{3} would not be minimal. It follows that

$$
|P| \geq a^{2}+2 \cdot \frac{a b}{2}+2 \cdot \frac{a c}{2}=a(a+b+c)
$$

Now assume that both $\frac{\left|R_{1}\right|}{|P|}>\sqrt{2}$ and $\frac{\left|R_{3}\right|}{|P|}>\sqrt{2}$, then

$$
2 a^{2}=\left|R_{1}\right|>\sqrt{2} \cdot|P| \geq \sqrt{2} \cdot a(a+b+c)
$$

and

$$
(a+2 b)(a+2 c)=\left|R_{3}\right|>\sqrt{2} \cdot|P| \geq \sqrt{2} \cdot a(a+b+c)
$$

All numbers concerned are positive, so after multiplying these inequalities we get

$$
2 a^{2}(a+2 b)(a+2 c)>2 a^{2}(a+b+c)^{2}
$$

But the arithmetic-geometric-mean inequality implies the contradictory result

$$
2 a^{2}(a+2 b)(a+2 c) \leq 2 a^{2}\left(\frac{(a+2 b)+(a+2 c)}{2}\right)^{2}=2 a^{2}(a+b+c)^{2}
$$

Hence $\frac{\left|R_{1}\right|}{|P|} \leq \sqrt{2}$ or $\frac{\left|R_{3}\right|}{|P|} \leq \sqrt{2}$, as desired.

G6 UKR (Ukraine)

Let the sides $A D$ and $B C$ of the quadrilateral $A B C D$ (such that $A B$ is not parallel to $C D$) intersect at point P. Points O_{1} and O_{2} are the circumcenters and points H_{1} and H_{2} are the orthocenters of triangles $A B P$ and $D C P$, respectively. Denote the midpoints of segments $O_{1} H_{1}$ and $O_{2} H_{2}$ by E_{1} and E_{2}, respectively. Prove that the perpendicular from E_{1} on $C D$, the perpendicular from E_{2} on $A B$ and the line $H_{1} H_{2}$ are concurrent.

Solution 1. We keep triangle $A B P$ fixed and move the line $C D$ parallel to itself uniformly, i.e. linearly dependent on a single parameter λ (see Figure 1). Then the points C and D also move uniformly. Hence, the points O_{2}, H_{2} and E_{2} move uniformly, too. Therefore also the perpendicular from E_{2} on $A B$ moves uniformly. Obviously, the points O_{1}, H_{1}, E_{1} and the perpendicular from E_{1} on $C D$ do not move at all. Hence, the intersection point S of these two perpendiculars moves uniformly. Since H_{1} does not move, while H_{2} and S move uniformly along parallel lines (both are perpendicular to $C D$), it is sufficient to prove their collinearity for two different positions of $C D$.

Figure 1
Let $C D$ pass through either point A or point B. Note that by hypothesis these two cases are different. We will consider the case $A \in C D$, i.e. $A=D$. So we have to show that the perpendiculars from E_{1} on $A C$ and from E_{2} on $A B$ intersect on the altitude $A H$ of triangle $A B C$ (see Figure 2).

Figure 2

To this end, we consider the midpoints A_{1}, B_{1}, C_{1} of $B C, C A, A B$, respectively. As E_{1} is the center of Feuerbach's circle (nine-point circle) of $\triangle A B P$, we have $E_{1} C_{1}=E_{1} H$. Similarly, $E_{2} B_{1}=E_{2} H$. Note further that a point X lies on the perpendicular from E_{1} on $A_{1} C_{1}$ if and only if

$$
X C_{1}^{2}-X A_{1}^{2}=E_{1} C_{1}^{2}-E_{1} A_{1}^{2} .
$$

Similarly, the perpendicular from E_{2} on $A_{1} B_{1}$ is characterized by

$$
X A_{1}^{2}-X B_{1}^{2}=E_{2} A_{1}^{2}-E_{2} B_{1}^{2}
$$

The line $H_{1} H_{2}$, which is perpendicular to $B_{1} C_{1}$ and contains A, is given by

$$
X B_{1}^{2}-X C_{1}^{2}=A B_{1}^{2}-A C_{1}^{2}
$$

The three lines are concurrent if and only if

$$
\begin{aligned}
0 & =X C_{1}^{2}-X A_{1}^{2}+X A_{1}^{2}-X B_{1}^{2}+X B_{1}^{2}-X C_{1}^{2} \\
& =E_{1} C_{1}^{2}-E_{1} A_{1}^{2}+E_{2} A_{1}^{2}-E_{2} B_{1}^{2}+A B_{1}^{2}-A C_{1}^{2} \\
& =-E_{1} A_{1}^{2}+E_{2} A_{1}^{2}+E_{1} H^{2}-E_{2} H^{2}+A B_{1}^{2}-A C_{1}^{2},
\end{aligned}
$$

i.e. it suffices to show that

$$
E_{1} A_{1}^{2}-E_{2} A_{1}^{2}-E_{1} H^{2}+E_{2} H^{2}=\frac{A C^{2}-A B^{2}}{4}
$$

We have

$$
\frac{A C^{2}-A B^{2}}{4}=\frac{H C^{2}-H B^{2}}{4}=\frac{(H C+H B)(H C-H B)}{4}=\frac{H A_{1} \cdot B C}{2}
$$

Let F_{1}, F_{2} be the projections of E_{1}, E_{2} on $B C$. Obviously, these are the midpoints of $H P_{1}$,
$H P_{2}$, where P_{1}, P_{2} are the midpoints of $P B$ and $P C$ respectively. Then

$$
\begin{aligned}
& E_{1} A_{1}^{2}-E_{2} A_{1}^{2}-E_{1} H^{2}+E_{2} H^{2} \\
& =F_{1} A_{1}^{2}-F_{1} H^{2}-F_{2} A_{1}^{2}+F_{2} H^{2} \\
& =\left(F_{1} A_{1}-F_{1} H\right)\left(F_{1} A_{1}+F_{1} H\right)-\left(F_{2} A_{1}-F_{2} H\right)\left(F_{2} A_{1}+F_{2} H\right) \\
& =A_{1} H \cdot\left(A_{1} P_{1}-A_{1} P_{2}\right) \\
& =\frac{A_{1} H \cdot B C}{2} \\
& =\frac{A C^{2}-A B^{2}}{4}
\end{aligned}
$$

which proves the claim.

Solution 2. Let the perpendicular from E_{1} on $C D$ meet $P H_{1}$ at X, and the perpendicular from E_{2} on $A B$ meet $P H_{2}$ at Y (see Figure 3). Let φ be the intersection angle of $A B$ and $C D$. Denote by M, N the midpoints of $P H_{1}, P H_{2}$ respectively.

Figure 3
We will prove now that triangles $E_{1} X M$ and $E_{2} Y N$ have equal angles at E_{1}, E_{2}, and supplementary angles at X, Y.

In the following, angles are understood as oriented, and equalities of angles modulo 180°.
Let $\alpha=\angle H_{2} P D, \psi=\angle D P C, \beta=\angle C P H_{1}$. Then $\alpha+\psi+\beta=\varphi, \angle E_{1} X H_{1}=\angle H_{2} Y E_{2}=\varphi$, thus $\angle M X E_{1}+\angle N Y E_{2}=180^{\circ}$.

By considering the Feuerbach circle of $\triangle A B P$ whose center is E_{1} and which goes through M, we have $\angle E_{1} M H_{1}=\psi+2 \beta$. Analogous considerations with the Feuerbach circle of $\triangle D C P$ yield $\angle H_{2} N E_{2}=\psi+2 \alpha$. Hence indeed $\angle X E_{1} M=\varphi-(\psi+2 \beta)=(\psi+2 \alpha)-\varphi=\angle Y E_{2} N$. It follows now that

$$
\frac{X M}{M E_{1}}=\frac{Y N}{N E_{2}}
$$

Furthermore, $M E_{1}$ is half the circumradius of $\triangle A B P$, while $P H_{1}$ is the distance of P to the orthocenter of that triangle, which is twice the circumradius times the cosine of ψ. Together
with analogous reasoning for $\triangle D C P$ we have

$$
\frac{M E_{1}}{P H_{1}}=\frac{1}{4 \cos \psi}=\frac{N E_{2}}{P H_{2}}
$$

By multiplication,

$$
\frac{X M}{P H_{1}}=\frac{Y N}{P H_{2}}
$$

and therefore

$$
\frac{P X}{X H_{1}}=\frac{H_{2} Y}{Y P}
$$

Let $E_{1} X, E_{2} Y$ meet $H_{1} H_{2}$ in R, S respectively.
Applying the intercept theorem to the parallels $E_{1} X, P H_{2}$ and center H_{1} gives

$$
\frac{H_{2} R}{R H_{1}}=\frac{P X}{X H_{1}},
$$

while with parallels $E_{2} Y, P H_{1}$ and center H_{2} we obtain

$$
\frac{H_{2} S}{S H_{1}}=\frac{H_{2} Y}{Y P} .
$$

Combination of the last three equalities yields that R and S coincide.

G7 IRN (Islamic Republic of Iran)

Let $A B C$ be a triangle with incenter I and let X, Y and Z be the incenters of the triangles $B I C, C I A$ and $A I B$, respectively. Let the triangle $X Y Z$ be equilateral. Prove that $A B C$ is equilateral too.

Solution. $A Z, A I$ and $A Y$ divide $\angle B A C$ into four equal angles; denote them by α. In the same way we have four equal angles β at B and four equal angles γ at C. Obviously $\alpha+\beta+\gamma=\frac{180^{\circ}}{4}=45^{\circ}$; and $0^{\circ}<\alpha, \beta, \gamma<45^{\circ}$.

Easy calculations in various triangles yield $\angle B I C=180^{\circ}-2 \beta-2 \gamma=180^{\circ}-\left(90^{\circ}-2 \alpha\right)=$ $90^{\circ}+2 \alpha$, hence (for X is the incenter of triangle $B C I$, so $I X$ bisects $\angle B I C$) we have $\angle X I C=$ $\angle B I X=\frac{1}{2} \angle B I C=45^{\circ}+\alpha$ and with similar aguments $\angle C I Y=\angle Y I A=45^{\circ}+\beta$ and $\angle A I Z=\angle Z I B=45^{\circ}+\gamma$. Furthermore, we have $\angle X I Y=\angle X I C+\angle C I Y=\left(45^{\circ}+\alpha\right)+$ $\left(45^{\circ}+\beta\right)=135^{\circ}-\gamma, \angle Y I Z=135^{\circ}-\alpha$, and $\angle Z I X=135^{\circ}-\beta$.
Now we calculate the lengths of $I X, I Y$ and $I Z$ in terms of α, β and γ. The perpendicular from I on $C X$ has length $I X \cdot \sin \angle C X I=I X \cdot \sin \left(90^{\circ}+\beta\right)=I X \cdot \cos \beta$. But $C I$ bisects $\angle Y C X$, so the perpendicular from I on $C Y$ has the same length, and we conclude

$$
I X \cdot \cos \beta=I Y \cdot \cos \alpha
$$

To make calculations easier we choose a length unit that makes $I X=\cos \alpha$. Then $I Y=\cos \beta$ and with similar arguments $I Z=\cos \gamma$.
Since $X Y Z$ is equilateral we have $Z X=Z Y$. The law of Cosines in triangles $X Y I, Y Z I$ yields

$$
\begin{aligned}
& Z X^{2}=Z Y^{2} \\
\Longrightarrow & I Z^{2}+I X^{2}-2 \cdot I Z \cdot I X \cdot \cos \angle Z I X=I Z^{2}+I Y^{2}-2 \cdot I Z \cdot I Y \cdot \cos \angle Y I Z \\
\Longrightarrow & I X^{2}-I Y^{2}=2 \cdot I Z \cdot(I X \cdot \cos \angle Z I X-I Y \cdot \cos \angle Y I Z) \\
\Longrightarrow & \underbrace{\cos ^{2} \alpha-\cos ^{2} \beta}_{\text {L.H.S. }}=\underbrace{2 \cdot \cos \gamma \cdot\left(\cos \alpha \cdot \cos \left(135^{\circ}-\beta\right)-\cos \beta \cdot \cos \left(135^{\circ}-\alpha\right)\right)}_{\text {R.H.S. }} .
\end{aligned}
$$

A transformation of the left-hand side (L.H.S.) yields

$$
\begin{aligned}
\text { L.H.S. } & =\cos ^{2} \alpha \cdot\left(\sin ^{2} \beta+\cos ^{2} \beta\right)-\cos ^{2} \beta \cdot\left(\sin ^{2} \alpha+\cos ^{2} \alpha\right) \\
& =\cos ^{2} \alpha \cdot \sin ^{2} \beta-\cos ^{2} \beta \cdot \sin ^{2} \alpha
\end{aligned}
$$

$$
\begin{aligned}
& =(\cos \alpha \cdot \sin \beta+\cos \beta \cdot \sin \alpha) \cdot(\cos \alpha \cdot \sin \beta-\cos \beta \cdot \sin \alpha) \\
& =\sin (\beta+\alpha) \cdot \sin (\beta-\alpha)=\sin \left(45^{\circ}-\gamma\right) \cdot \sin (\beta-\alpha)
\end{aligned}
$$

whereas a transformation of the right-hand side (R.H.S.) leads to

$$
\begin{aligned}
\text { R.H.S. } & =2 \cdot \cos \gamma \cdot\left(\cos \alpha \cdot\left(-\cos \left(45^{\circ}+\beta\right)\right)-\cos \beta \cdot\left(-\cos \left(45^{\circ}+\alpha\right)\right)\right) \\
& =2 \cdot \frac{\sqrt{2}}{2} \cdot \cos \gamma \cdot(\cos \alpha \cdot(\sin \beta-\cos \beta)+\cos \beta \cdot(\cos \alpha-\sin \alpha)) \\
& =\sqrt{2} \cdot \cos \gamma \cdot(\cos \alpha \cdot \sin \beta-\cos \beta \cdot \sin \alpha) \\
& =\sqrt{2} \cdot \cos \gamma \cdot \sin (\beta-\alpha) .
\end{aligned}
$$

Equating L.H.S. and R.H.S. we obtain

$$
\begin{aligned}
& \sin \left(45^{\circ}-\gamma\right) \cdot \sin (\beta-\alpha)=\sqrt{2} \cdot \cos \gamma \cdot \sin (\beta-\alpha) \\
\Longrightarrow & \sin (\beta-\alpha) \cdot\left(\sqrt{2} \cdot \cos \gamma-\sin \left(45^{\circ}-\gamma\right)\right)=0 \\
\Longrightarrow & \alpha=\beta \text { or } \sqrt{2} \cdot \cos \gamma=\sin \left(45^{\circ}-\gamma\right) .
\end{aligned}
$$

But $\gamma<45^{\circ}$; so $\sqrt{2} \cdot \cos \gamma>\cos \gamma>\cos 45^{\circ}=\sin 45^{\circ}>\sin \left(45^{\circ}-\gamma\right)$. This leaves $\alpha=\beta$. With similar reasoning we have $\alpha=\gamma$, which means triangle $A B C$ must be equilateral.

G8 BGR (Bulgaria)

Let $A B C D$ be a circumscribed quadrilateral. Let g be a line through A which meets the segment $B C$ in M and the line $C D$ in N. Denote by I_{1}, I_{2}, and I_{3} the incenters of $\triangle A B M$, $\triangle M N C$, and $\triangle N D A$, respectively. Show that the orthocenter of $\triangle I_{1} I_{2} I_{3}$ lies on g.

Solution 1. Let k_{1}, k_{2} and k_{3} be the incircles of triangles $A B M, M N C$, and $N D A$, respectively (see Figure 1). We shall show that the tangent h from C to k_{1} which is different from $C B$ is also tangent to k_{3}.

Figure 1
To this end, let X denote the point of intersection of g and h. Then $A B C X$ and $A B C D$ are circumscribed quadrilaterals, whence

$$
C D-C X=(A B+C D)-(A B+C X)=(B C+A D)-(B C+A X)=A D-A X
$$

i.e.

$$
A X+C D=C X+A D
$$

which in turn reveals that the quadrilateral $A X C D$ is also circumscribed. Thus h touches indeed the circle k_{3}.
Moreover, we find that $\angle I_{3} C I_{1}=\angle I_{3} C X+\angle X C I_{1}=\frac{1}{2}(\angle D C X+\angle X C B)=\frac{1}{2} \angle D C B=$ $\frac{1}{2}\left(180^{\circ}-\angle M C N\right)=180^{\circ}-\angle M I_{2} N=\angle I_{3} I_{2} I_{1}$, from which we conclude that C, I_{1}, I_{2}, I_{3} are concyclic.
Let now L_{1} and L_{3} be the reflection points of C with respect to the lines $I_{2} I_{3}$ and $I_{1} I_{2}$ respectively. Since $I_{1} I_{2}$ is the angle bisector of $\angle N M C$, it follows that L_{3} lies on g. By analogous reasoning, L_{1} lies on g.

Let H be the orthocenter of $\triangle I_{1} I_{2} I_{3}$. We have $\angle I_{2} L_{3} I_{1}=\angle I_{1} C I_{2}=\angle I_{1} I_{3} I_{2}=180^{\circ}-\angle I_{1} H I_{2}$, which entails that the quadrilateral $I_{2} H I_{1} L_{3}$ is cyclic. Analogously, $I_{3} H L_{1} I_{2}$ is cyclic.

Then, working with oriented angles modulo 180°, we have

$$
\angle L_{3} H I_{2}=\angle L_{3} I_{1} I_{2}=\angle I_{2} I_{1} C=\angle I_{2} I_{3} C=\angle L_{1} I_{3} I_{2}=\angle L_{1} H I_{2},
$$

whence L_{1}, L_{3}, and H are collinear. By $L_{1} \neq L_{3}$, the claim follows.

Comment. The last part of the argument essentially reproves the following fact: The Simson line of a point P lying on the circumcircle of a triangle $A B C$ with respect to that triangle bisects the line segment connecting P with the orthocenter of $A B C$.

Solution 2. We start by proving that C, I_{1}, I_{2}, and I_{3} are concyclic.

Figure 2
To this end, notice first that I_{2}, M, I_{1} are collinear, as are N, I_{2}, I_{3} (see Figure 2). Denote by $\alpha, \beta, \gamma, \delta$ the internal angles of $A B C D$. By considerations in triangle $C M N$, it follows that $\angle I_{3} I_{2} I_{1}=\frac{\gamma}{2}$. We will show that $\angle I_{3} C I_{1}=\frac{\gamma}{2}$, too. Denote by I the incenter of $A B C D$. Clearly, $I_{1} \in B I, I_{3} \in D I, \angle I_{1} A I_{3}=\frac{\alpha}{2}$.
Using the abbreviation $[X, Y Z]$ for the distance from point X to the line $Y Z$, we have because of $\angle B A I_{1}=\angle I A I_{3}$ and $\angle I_{1} A I=\angle I_{3} A D$ that

$$
\frac{\left[I_{1}, A B\right]}{\left[I_{1}, A I\right]}=\frac{\left[I_{3}, A I\right]}{\left[I_{3}, A D\right]} .
$$

Furthermore, consideration of the angle sums in $A I B, B I C, C I D$ and $D I A$ implies $\angle A I B+$ $\angle C I D=\angle B I C+\angle D I A=180^{\circ}$, from which we see

$$
\frac{\left[I_{1}, A I\right]}{\left[I_{3}, C I\right]}=\frac{I_{1} I}{I_{3} I}=\frac{\left[I_{1}, C I\right]}{\left[I_{3}, A I\right]} .
$$

Because of $\left[I_{1}, A B\right]=\left[I_{1}, B C\right],\left[I_{3}, A D\right]=\left[I_{3}, C D\right]$, multiplication yields

$$
\frac{\left[I_{1}, B C\right]}{\left[I_{3}, C I\right]}=\frac{\left[I_{1}, C I\right]}{\left[I_{3}, C D\right]} .
$$

By $\angle D C I=\angle I C B=\gamma / 2$ it follows that $\angle I_{1} C B=\angle I_{3} C I$ which concludes the proof of the
above statement.
Let the perpendicular from I_{1} on $I_{2} I_{3}$ intersect g at Z. Then $\angle M I_{1} Z=90^{\circ}-\angle I_{3} I_{2} I_{1}=$ $90^{\circ}-\gamma / 2=\angle M C I_{2}$. Since we have also $\angle Z M I_{1}=\angle I_{2} M C$, triangles $M Z I_{1}$ and $M I_{2} C$ are similar. From this one easily proves that also $M I_{2} Z$ and $M C I_{1}$ are similar. Because C, I_{1}, I_{2}, and I_{3} are concyclic, $\angle M Z I_{2}=\angle M I_{1} C=\angle N I_{3} C$, thus $N I_{2} Z$ and $N C I_{3}$ are similar, hence $N C I_{2}$ and $N I_{3} Z$ are similar. We conclude $\angle Z I_{3} I_{2}=\angle I_{2} C N=90^{\circ}-\gamma / 2$, hence $I_{1} I_{2} \perp Z I_{3}$. This completes the proof.

Number Theory

N1 AUS (Australia)

A social club has n members. They have the membership numbers $1,2, \ldots, n$, respectively. From time to time members send presents to other members, including items they have already received as presents from other members. In order to avoid the embarrassing situation that a member might receive a present that he or she has sent to other members, the club adds the following rule to its statutes at one of its annual general meetings:
"A member with membership number a is permitted to send a present to a member with membership number b if and only if $a(b-1)$ is a multiple of n."
Prove that, if each member follows this rule, none will receive a present from another member that he or she has already sent to other members.

Alternative formulation: Let G be a directed graph with n vertices $v_{1}, v_{2}, \ldots, v_{n}$, such that there is an edge going from v_{a} to v_{b} if and only if a and b are distinct and $a(b-1)$ is a multiple of n. Prove that this graph does not contain a directed cycle.

Solution 1. Suppose there is an edge from v_{i} to v_{j}. Then $i(j-1)=i j-i=k n$ for some integer k, which implies $i=i j-k n$. If $\operatorname{gcd}(i, n)=d$ and $\operatorname{gcd}(j, n)=e$, then e divides $i j-k n=i$ and thus e also divides d. Hence, if there is an edge from v_{i} to v_{j}, then $\operatorname{gcd}(j, n) \mid \operatorname{gcd}(i, n)$.
If there is a cycle in G, say $v_{i_{1}} \rightarrow v_{i_{2}} \rightarrow \cdots \rightarrow v_{i_{r}} \rightarrow v_{i_{1}}$, then we have

$$
\operatorname{gcd}\left(i_{1}, n\right)\left|\operatorname{gcd}\left(i_{r}, n\right)\right| \operatorname{gcd}\left(i_{r-1}, n\right)|\ldots| \operatorname{gcd}\left(i_{2}, n\right) \mid \operatorname{gcd}\left(i_{1}, n\right),
$$

which implies that all these greatest common divisors must be equal, say be equal to t.
Now we pick any of the i_{k}, without loss of generality let it be i_{1}. Then $i_{r}\left(i_{1}-1\right)$ is a multiple of n and hence also (by dividing by t), $i_{1}-1$ is a multiple of $\frac{n}{t}$. Since i_{1} and $i_{1}-1$ are relatively prime, also t and $\frac{n}{t}$ are relatively prime. So, by the Chinese remainder theorem, the value of i_{1} is uniquely determined modulo $n=t \cdot \frac{n}{t}$ by the value of t. But, as i_{1} was chosen arbitrarily among the i_{k}, this implies that all the i_{k} have to be equal, a contradiction.

Solution 2. If a, b, c are integers such that $a b-a$ and $b c-b$ are multiples of n, then also $a c-a=a(b c-b)+(a b-a)-(a b-a) c$ is a multiple of n. This implies that if there is an edge from v_{a} to v_{b} and an edge from v_{b} to v_{c}, then there also must be an edge from v_{a} to v_{c}. Therefore, if there are any cycles at all, the smallest cycle must have length 2. But suppose the vertices v_{a} and v_{b} form such a cycle, i.e., $a b-a$ and $a b-b$ are both multiples of n. Then $a-b$ is also a multiple of n, which can only happen if $a=b$, which is impossible.

Solution 3. Suppose there was a cycle $v_{i_{1}} \rightarrow v_{i_{2}} \rightarrow \cdots \rightarrow v_{i_{r}} \rightarrow v_{i_{1}}$. Then $i_{1}\left(i_{2}-1\right)$ is a multiple of n, i.e., $i_{1} \equiv i_{1} i_{2} \bmod n$. Continuing in this manner, we get $i_{1} \equiv i_{1} i_{2} \equiv$ $i_{1} i_{2} i_{3} \equiv i_{1} i_{2} i_{3} \ldots i_{r} \bmod n$. But the same holds for all i_{k}, i. e., $i_{k} \equiv i_{1} i_{2} i_{3} \ldots i_{r} \bmod n$. Hence $i_{1} \equiv i_{2} \equiv \cdots \equiv i_{r} \bmod n$, which means $i_{1}=i_{2}=\cdots=i_{r}$, a contradiction.

Solution 4. Let $n=k$ be the smallest value of n for which the corresponding graph has a cycle. We show that k is a prime power.
If k is not a prime power, it can be written as a product $k=d e$ of relatively prime integers greater than 1. Reducing all the numbers modulo d yields a single vertex or a cycle in the corresponding graph on d vertices, because if $a(b-1) \equiv 0 \bmod k$ then this equation also holds modulo d. But since the graph on d vertices has no cycles, by the minimality of k, we must have that all the indices of the cycle are congruent modulo d. The same holds modulo e and hence also modulo $k=d e$. But then all the indices are equal, which is a contradiction.
Thus k must be a prime power $k=p^{m}$. There are no edges ending at v_{k}, so v_{k} is not contained in any cycle. All edges not starting at v_{k} end at a vertex belonging to a non-multiple of p, and all edges starting at a non-multiple of p must end at v_{1}. But there is no edge starting at v_{1}. Hence there is no cycle.

Solution 5. Suppose there was a cycle $v_{i_{1}} \rightarrow v_{i_{2}} \rightarrow \cdots \rightarrow v_{i_{r}} \rightarrow v_{i_{1}}$. Let $q=p^{m}$ be a prime power dividing n. We claim that either $i_{1} \equiv i_{2} \equiv \cdots \equiv i_{r} \equiv 0 \bmod q$ or $i_{1} \equiv i_{2} \equiv \cdots \equiv i_{r} \equiv$ $1 \bmod q$.
Suppose that there is an i_{s} not divisible by q. Then, as $i_{s}\left(i_{s+1}-1\right)$ is a multiple of $q, i_{s+1} \equiv$ $1 \bmod p$. Similarly, we conclude $i_{s+2} \equiv 1 \bmod p$ and so on. So none of the labels is divisible by p, but since $i_{s}\left(i_{s+1}-1\right)$ is a multiple of $q=p^{m}$ for all s, all i_{s+1} are congruent to 1 modulo q. This proves the claim.
Now, as all the labels are congruent modulo all the prime powers dividing n, they must all be equal by the Chinese remainder theorem. This is a contradiction.

N2 PER (Peru)

A positive integer N is called balanced, if $N=1$ or if N can be written as a product of an even number of not necessarily distinct primes. Given positive integers a and b, consider the polynomial P defined by $P(x)=(x+a)(x+b)$.
(a) Prove that there exist distinct positive integers a and b such that all the numbers $P(1), P(2)$, $\ldots, P(50)$ are balanced.
(b) Prove that if $P(n)$ is balanced for all positive integers n, then $a=b$.

Solution. Define a function f on the set of positive integers by $f(n)=0$ if n is balanced and $f(n)=1$ otherwise. Clearly, $f(n m) \equiv f(n)+f(m) \bmod 2$ for all positive integers n, m.
(a) Now for each positive integer n consider the binary sequence $(f(n+1), f(n+2), \ldots, f(n+$ $50)$). As there are only 2^{50} different such sequences there are two different positive integers a and b such that

$$
(f(a+1), f(a+2), \ldots, f(a+50))=(f(b+1), f(b+2), \ldots, f(b+50))
$$

But this implies that for the polynomial $P(x)=(x+a)(x+b)$ all the numbers $P(1), P(2)$, $\ldots, P(50)$ are balanced, since for all $1 \leq k \leq 50$ we have $f(P(k)) \equiv f(a+k)+f(b+k) \equiv$ $2 f(a+k) \equiv 0 \bmod 2$.
(b) Now suppose $P(n)$ is balanced for all positive integers n and $a<b$. Set $n=k(b-a)-a$ for sufficiently large k, such that n is positive. Then $P(n)=k(k+1)(b-a)^{2}$, and this number can only be balanced, if $f(k)=f(k+1)$ holds. Thus, the sequence $f(k)$ must become constant for sufficiently large k. But this is not possible, as for every prime p we have $f(p)=1$ and for every square t^{2} we have $f\left(t^{2}\right)=0$.
Hence $a=b$.

Comment. Given a positive integer k, a computer search for the pairs of positive integers (a, b), for which $P(1), P(2), \ldots, P(k)$ are all balanced yields the following results with minimal sum $a+b$ and $a<b$:

k	3	4	5	10	20
(a, b)	$(2,4)$	$(6,11)$	$(8,14)$	$(20,34)$	$(1751,3121)$

Therefore, trying to find a and b in part (a) of the problem cannot be done by elementary calculations.

N3 EST (Estonia)

Let f be a non-constant function from the set of positive integers into the set of positive integers, such that $a-b$ divides $f(a)-f(b)$ for all distinct positive integers a, b. Prove that there exist infinitely many primes p such that p divides $f(c)$ for some positive integer c.

Solution 1. Denote by $v_{p}(a)$ the exponent of the prime p in the prime decomposition of a.
Assume that there are only finitely many primes $p_{1}, p_{2}, \ldots, p_{m}$ that divide some function value produced of f.
There are infinitely many positive integers a such that $v_{p_{i}}(a)>v_{p_{i}}(f(1))$ for all $i=1,2, \ldots, m$, e.g. $a=\left(p_{1} p_{2} \ldots p_{m}\right)^{\alpha}$ with α sufficiently large. Pick any such a. The condition of the problem then yields $a \mid(f(a+1)-f(1))$. Assume $f(a+1) \neq f(1)$. Then we must have $v_{p_{i}}(f(a+1)) \neq$ $v_{p_{i}}(f(1))$ for at least one i. This yields $v_{p_{i}}(f(a+1)-f(1))=\min \left\{v_{p_{i}}(f(a+1)), v_{p_{i}}(f(1))\right\} \leq$ $v_{p_{1}}(f(1))<v_{p_{i}}(a)$. But this contradicts the fact that $a \mid(f(a+1)-f(1))$.
Hence we must have $f(a+1)=f(1)$ for all such a.
Now, for any positive integer b and all such a, we have $(a+1-b) \mid(f(a+1)-f(b))$, i.e., $(a+1-b) \mid(f(1)-f(b))$. Since this is true for infinitely many positive integers a we must have $f(b)=f(1)$. Hence f is a constant function, a contradiction. Therefore, our initial assumption was false and there are indeed infinitely many primes p dividing $f(c)$ for some positive integer c.

Solution 2. Assume that there are only finitely many primes $p_{1}, p_{2}, \ldots, p_{m}$ that divide some function value of f. Since f is not identically 1 , we must have $m \geq 1$.
Then there exist non-negative integers $\alpha_{1}, \ldots, \alpha_{m}$ such that

$$
f(1)=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{m}^{\alpha_{m}}
$$

We can pick a positive integer r such that $f(r) \neq f(1)$. Let

$$
M=1+p_{1}^{\alpha_{1}+1} p_{2}^{\alpha_{2}+1} \ldots p_{m}^{\alpha_{m}+1} \cdot(f(r)+r)
$$

Then for all $i \in\{1, \ldots, m\}$ we have that $p_{i}^{\alpha_{i}+1}$ divides $M-1$ and hence by the condition of the problem also $f(M)-f(1)$. This implies that $f(M)$ is divisible by $p_{i}^{\alpha_{i}}$ but not by $p_{i}^{\alpha_{i}+1}$ for all i and therefore $f(M)=f(1)$.
Hence

$$
\begin{aligned}
M-r & >p_{1}^{\alpha_{1}+1} p_{2}^{\alpha_{2}+1} \ldots p_{m}^{\alpha_{m}+1} \cdot(f(r)+r)-r \\
& \geq p_{1}^{\alpha_{1}+1} p_{2}^{\alpha_{2}+1} \ldots p_{m}^{\alpha_{m}+1}+(f(r)+r)-r \\
& >p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{m}^{\alpha_{m}}+f(r) \\
& \geq|f(M)-f(r)| .
\end{aligned}
$$

But since $M-r$ divides $f(M)-f(r)$ this can only be true if $f(r)=f(M)=f(1)$, which contradicts the choice of r.

Comment. In the case that f is a polynomial with integer coefficients the result is well-known, see e.g. W. Schwarz, Einführung in die Methoden der Primzahltheorie, 1969.

N4 PRK (Democratic People's Republic of Korea)

Find all positive integers n such that there exists a sequence of positive integers $a_{1}, a_{2}, \ldots, a_{n}$ satisfying

$$
a_{k+1}=\frac{a_{k}^{2}+1}{a_{k-1}+1}-1
$$

for every k with $2 \leq k \leq n-1$.

Solution 1. Such a sequence exists for $n=1,2,3,4$ and no other n. Since the existence of such a sequence for some n implies the existence of such a sequence for all smaller n, it suffices to prove that $n=5$ is not possible and $n=4$ is possible.
Assume first that for $n=5$ there exists a sequence of positive integers $a_{1}, a_{2}, \ldots, a_{5}$ satisfying the conditions

$$
\begin{aligned}
& a_{2}^{2}+1=\left(a_{1}+1\right)\left(a_{3}+1\right), \\
& a_{3}^{2}+1=\left(a_{2}+1\right)\left(a_{4}+1\right), \\
& a_{4}^{2}+1=\left(a_{3}+1\right)\left(a_{5}+1\right) .
\end{aligned}
$$

Assume a_{1} is odd, then a_{2} has to be odd as well and as then $a_{2}^{2}+1 \equiv 2 \bmod 4, a_{3}$ has to be even. But this is a contradiction, since then the even number $a_{2}+1$ cannot divide the odd number $a_{3}^{2}+1$.
Hence a_{1} is even.
If a_{2} is odd, $a_{3}^{2}+1$ is even (as a multiple of $a_{2}+1$) and hence a_{3} is odd, too. Similarly we must have a_{4} odd as well. But then $a_{3}^{2}+1$ is a product of two even numbers $\left(a_{2}+1\right)\left(a_{4}+1\right)$ and thus is divisible by 4 , which is a contradiction as for odd a_{3} we have $a_{3}^{2}+1 \equiv 2 \bmod 4$.
Hence a_{2} is even. Furthermore $a_{3}+1$ divides the odd number $a_{2}^{2}+1$ and so a_{3} is even. Similarly, a_{4} and a_{5} are even as well.
Now set $x=a_{2}$ and $y=a_{3}$. From the given condition we get $(x+1) \mid\left(y^{2}+1\right)$ and $(y+1) \mid\left(x^{2}+1\right)$. We will prove that there is no pair of positive even numbers (x, y) satisfying these two conditions, thus yielding a contradiction to the assumption.
Assume there exists a pair $\left(x_{0}, y_{0}\right)$ of positive even numbers satisfying the two conditions $\left(x_{0}+1\right) \mid\left(y_{0}^{2}+1\right)$ and $\left(y_{0}+1\right) \mid\left(x_{0}^{2}+1\right)$.
Then one has $\left(x_{0}+1\right) \mid\left(y_{0}^{2}+1+x_{0}^{2}-1\right)$, i.e., $\left(x_{0}+1\right) \mid\left(x_{0}^{2}+y_{0}^{2}\right)$, and similarly $\left(y_{0}+1\right) \mid\left(x_{0}^{2}+y_{0}^{2}\right)$. Any common divisor d of $x_{0}+1$ and $y_{0}+1$ must hence also divide the number
$\left(x_{0}^{2}+1\right)+\left(y_{0}^{2}+1\right)-\left(x_{0}^{2}+y_{0}^{2}\right)=2$. But as $x_{0}+1$ and $y_{0}+1$ are both odd, we must have $d=1$. Thus $x_{0}+1$ and $y_{0}+1$ are relatively prime and therefore there exists a positive integer k such that

$$
k(x+1)(y+1)=x^{2}+y^{2}
$$

has the solution $\left(x_{0}, y_{0}\right)$. We will show that the latter equation has no solution (x, y) in positive even numbers.

Assume there is a solution. Pick the solution $\left(x_{1}, y_{1}\right)$ with the smallest sum $x_{1}+y_{1}$ and assume $x_{1} \geq y_{1}$. Then x_{1} is a solution to the quadratic equation

$$
x^{2}-k\left(y_{1}+1\right) x+y_{1}^{2}-k\left(y_{1}+1\right)=0 .
$$

Let x_{2} be the second solution, which by Vieta's theorem fulfills $x_{1}+x_{2}=k\left(y_{1}+1\right)$ and $x_{1} x_{2}=y_{1}^{2}-k\left(y_{1}+1\right)$. If $x_{2}=0$, the second equation implies $y_{1}^{2}=k\left(y_{1}+1\right)$, which is impossible, as $y_{1}+1>1$ cannot divide the relatively prime number y_{1}^{2}. Therefore $x_{2} \neq 0$.
Also we get $\left(x_{1}+1\right)\left(x_{2}+1\right)=x_{1} x_{2}+x_{1}+x_{2}+1=y_{1}^{2}+1$ which is odd, and hence x_{2} must be even and positive. Also we have $x_{2}+1=\frac{y_{1}^{2}+1}{x_{1}+1} \leq \frac{y_{1}^{2}+1}{y_{1}+1} \leq y_{1} \leq x_{1}$. But this means that the pair $\left(x^{\prime}, y^{\prime}\right)$ with $x^{\prime}=y_{1}$ and $y^{\prime}=x_{2}$ is another solution of $k(x+1)(y+1)=x^{2}+y^{2}$ in even positive numbers with $x^{\prime}+y^{\prime}<x_{1}+y_{1}$, a contradiction.
Therefore we must have $n \leq 4$.
When $n=4$, a possible example of a sequence is $a_{1}=4, a_{2}=33, a_{3}=217$ and $a_{4}=1384$.

Solution 2. It is easy to check that for $n=4$ the sequence $a_{1}=4, a_{2}=33, a_{3}=217$ and $a_{4}=1384$ is possible.
Now assume there is a sequence with $n \geq 5$. Then we have in particular

$$
\begin{aligned}
& a_{2}^{2}+1=\left(a_{1}+1\right)\left(a_{3}+1\right), \\
& a_{3}^{2}+1=\left(a_{2}+1\right)\left(a_{4}+1\right), \\
& a_{4}^{2}+1=\left(a_{3}+1\right)\left(a_{5}+1\right) .
\end{aligned}
$$

Also assume without loss of generality that among all such quintuples $\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right)$ we have chosen one with minimal a_{1}.
One shows quickly the following fact:
If three positive integers x, y, z fulfill $y^{2}+1=(x+1)(z+1)$ and if y is even, then x and z are even as well and either $x<y<z$ or $z<y<x$ holds.
Indeed, the first part is obvious and from $x<y$ we conclude

$$
z+1=\frac{y^{2}+1}{x+1} \geq \frac{y^{2}+1}{y}>y
$$

and similarly in the other case.
Now, if a_{3} was odd, then $\left(a_{2}+1\right)\left(a_{4}+1\right)=a_{3}^{2}+1 \equiv 2 \bmod 4$ would imply that one of a_{2} or a_{4} is even, this contradicts (1). Thus a_{3} and hence also a_{1}, a_{2}, a_{4} and a_{5} are even. According to (1), one has $a_{1}<a_{2}<a_{3}<a_{4}<a_{5}$ or $a_{1}>a_{2}>a_{3}>a_{4}>a_{5}$ but due to the minimality of a_{1} the first series of inequalities must hold.
Consider the identity
$\left(a_{3}+1\right)\left(a_{1}+a_{3}\right)=a_{3}^{2}-1+\left(a_{1}+1\right)\left(a_{3}+1\right)=a_{2}^{2}+a_{3}^{2}=a_{2}^{2}-1+\left(a_{2}+1\right)\left(a_{4}+1\right)=\left(a_{2}+1\right)\left(a_{2}+a_{4}\right)$.
Any common divisor of the two odd numbers $a_{2}+1$ and $a_{3}+1$ must also divide $\left(a_{2}+1\right)\left(a_{4}+\right.$ 1) $-\left(a_{3}+1\right)\left(a_{3}-1\right)=2$, so these numbers are relatively prime. Hence the last identity shows that $a_{1}+a_{3}$ must be a multiple of $a_{2}+1$, i.e. there is an integer k such that

$$
\begin{equation*}
a_{1}+a_{3}=k\left(a_{2}+1\right) . \tag{2}
\end{equation*}
$$

Now set $a_{0}=k\left(a_{1}+1\right)-a_{2}$. This is an integer and we have

$$
\begin{aligned}
\left(a_{0}+1\right)\left(a_{2}+1\right) & =k\left(a_{1}+1\right)\left(a_{2}+1\right)-\left(a_{2}-1\right)\left(a_{2}+1\right) \\
& =\left(a_{1}+1\right)\left(a_{1}+a_{3}\right)-\left(a_{1}+1\right)\left(a_{3}+1\right)+2 \\
& =\left(a_{1}+1\right)\left(a_{1}-1\right)+2=a_{1}^{2}+1 .
\end{aligned}
$$

Thus $a_{0} \geq 0$. If $a_{0}>0$, then by (1) we would have $a_{0}<a_{1}<a_{2}$ and then the quintuple ($a_{0}, a_{1}, a_{2}, a_{3}, a_{4}$) would contradict the minimality of a_{1}.
Hence $a_{0}=0$, implying $a_{2}=a_{1}^{2}$. But also $a_{2}=k\left(a_{1}+1\right)$, which finally contradicts the fact that $a_{1}+1>1$ is relatively prime to a_{1}^{2} and thus cannot be a divisior of this number.
Hence $n \geq 5$ is not possible.

Comment 1. Finding the example for $n=4$ is not trivial and requires a tedious calculation, but it can be reduced to checking a few cases. The equations $\left(a_{1}+1\right)\left(a_{3}+1\right)=a_{2}^{2}+1$ and $\left(a_{2}+1\right)\left(a_{4}+1\right)=a_{3}^{2}+1$ imply, as seen in the proof, that a_{1} is even and a_{2}, a_{3}, a_{4} are odd. The case $a_{1}=2$ yields $a_{2}^{2} \equiv-1 \bmod 3$ which is impossible. Hence $a_{1}=4$ is the smallest possibility. In this case $a_{2}^{2} \equiv-1 \bmod 5$ and a_{2} is odd, which implies $a_{2} \equiv 3$ or $a_{2} \equiv 7 \bmod 10$. Hence we have to start checking $a_{2}=7,13,17,23,27,33$ and in the last case we succeed.

Comment 2. The choice of $a_{0}=k\left(a_{1}+1\right)-a_{2}$ in the second solution appears more natural if one considers that by the previous calculations one has $a_{1}=k\left(a_{2}+1\right)-a_{3}$ and $a_{2}=k\left(a_{3}+1\right)-a_{4}$. Alternatively, one can solve the equation (2) for a_{3} and use $a_{2}^{2}+1=\left(a_{1}+1\right)\left(a_{3}+1\right)$ to get $a_{2}^{2}-k\left(a_{1}+1\right) a_{2}+a_{1}^{2}-k\left(a_{1}+1\right)=0$. Now a_{0} is the second solution to this quadratic equation in a_{2} (Vieta jumping).

N5 HUN (Hungary)

Let $P(x)$ be a non-constant polynomial with integer coefficients. Prove that there is no function T from the set of integers into the set of integers such that the number of integers x with $T^{n}(x)=x$ is equal to $P(n)$ for every $n \geq 1$, where T^{n} denotes the n-fold application of T.

Solution 1. Assume there is a polynomial P of degree at least 1 with the desired property for a given function T. Let $A(n)$ denote the set of all $x \in \mathbb{Z}$ such that $T^{n}(x)=x$ and let $B(n)$ denote the set of all $x \in \mathbb{Z}$ for which $T^{n}(x)=x$ and $T^{k}(x) \neq x$ for all $1 \leq k<n$. Both sets are finite under the assumption made. For each $x \in A(n)$ there is a smallest $k \geq 1$ such that $T^{k}(x)=x$, i.e., $x \in B(k)$. Let $d=\operatorname{gcd}(k, n)$. There are positive integers r, s such that $r k-s n=d$ and hence $x=T^{r k}(x)=T^{s n+d}(x)=T^{d}\left(T^{s n}(x)\right)=T^{d}(x)$. The minimality of k implies $d=k$, i.e., $k \mid n$. On the other hand one clearly has $B(k) \subset A(n)$ if $k \mid n$ and thus we have $A(n)=\bigcup_{d \mid n} B(d)$ as a disjoint union and hence

$$
|A(n)|=\sum_{d \mid n}|B(d)| .
$$

Furthermore, for every $x \in B(n)$ the elements $x, T^{1}(x), T^{2}(x), \ldots, T^{n-1}(x)$ are n distinct elements of $B(n)$. The fact that they are in $A(n)$ is obvious. If for some $k<n$ and some $0 \leq i<n$ we had $T^{k}\left(T^{i}(x)\right)=T^{i}(x)$, i.e. $T^{k+i}(x)=T^{i}(x)$, that would imply $x=T^{n}(x)=T^{n-i}\left(T^{i}(x)\right)=T^{n-i}\left(T^{k+i}(x)\right)=T^{k}\left(T^{n}(x)\right)=T^{k}(x)$ contradicting the minimality of n. Thus $T^{i}(x) \in B(n)$ and $T^{i}(x) \neq T^{j}(x)$ for $0 \leq i<j \leq n-1$.
So indeed, T permutes the elements of $B(n)$ in (disjoint) cycles of length n and in particular one has $n||B(n)|$.
Now let $P(x)=\sum_{i=0}^{k} a_{i} x^{i}, a_{i} \in \mathbb{Z}, k \geq 1, a_{k} \neq 0$ and suppose that $|A(n)|=P(n)$ for all $n \geq 1$. Let p be any prime. Then

$$
p^{2}| | B\left(p^{2}\right)\left|=\left|A\left(p^{2}\right)\right|-|A(p)|=a_{1}\left(p^{2}-p\right)+a_{2}\left(p^{4}-p^{2}\right)+\ldots\right.
$$

Hence $p \mid a_{1}$ and since this is true for all primes we must have $a_{1}=0$.
Now consider any two different primes p and q. Since $a_{1}=0$ we have that

$$
\left|A\left(p^{2} q\right)\right|-|A(p q)|=a_{2}\left(p^{4} q^{2}-p^{2} q^{2}\right)+a_{3}\left(p^{6} q^{3}-p^{3} q^{3}\right)+\ldots
$$

is a multiple of $p^{2} q$. But we also have

$$
p^{2} q| | B\left(p^{2} q\right)\left|=\left|A\left(p^{2} q\right)\right|-|A(p q)|-\left|B\left(p^{2}\right)\right| .\right.
$$

This implies

$$
p^{2} q| | B\left(p^{2}\right)\left|=\left|A\left(p^{2}\right)\right|-|A(p)|=a_{2}\left(p^{4}-p^{2}\right)+a_{3}\left(p^{6}-p^{3}\right)+\cdots+a_{k}\left(p^{2 k}-p^{k}\right)\right.
$$

Since this is true for every prime q we must have $a_{2}\left(p^{4}-p^{2}\right)+a_{3}\left(p^{6}-p^{3}\right)+\cdots+a_{k}\left(p^{2 k}-p^{k}\right)=0$ for every prime p. Since this expression is a polynomial in p of degree $2 k$ (because $a_{k} \neq 0$) this is a contradiction, as such a polynomial can have at most $2 k$ zeros.

Comment. The last contradiction can also be reached via

$$
a_{k}=\lim _{p \rightarrow \infty} \frac{1}{p^{2 k}}\left(a_{2}\left(p^{4}-p^{2}\right)+a_{3}\left(p^{6}-p^{3}\right)+\cdots+a_{k}\left(p^{2 k}-p^{k}\right)\right)=0 .
$$

Solution 2. As in the first solution define $A(n)$ and $B(n)$ and assume that a polynomial P with the required property exists. This again implies that $|A(n)|$ and $|B(n)|$ is finite for all positive integers n and that

$$
P(n)=|A(n)|=\sum_{d \mid n}|B(d)| \quad \text { and } \quad n||B(n)| .
$$

Now, for any two distinct primes p and q, we have

$$
P(0) \equiv P(p q) \equiv|B(1)|+|B(p)|+|B(q)|+|B(p q)| \equiv|B(1)|+|B(p)| \quad \bmod q .
$$

Thus, for any fixed p, the expression $P(0)-|B(1)|-|B(p)|$ is divisible by arbitrarily large primes q which means that $P(0)=|B(1)|+|B(p)|=P(p)$ for any prime p. This implies that the polynomial P is constant, a contradiction.

N6 TUR (Turkey)

Let k be a positive integer. Show that if there exists a sequence a_{0}, a_{1}, \ldots of integers satisfying the condition

$$
a_{n}=\frac{a_{n-1}+n^{k}}{n} \quad \text { for all } n \geq 1,
$$

then $k-2$ is divisible by 3 .

Solution 1. Part A. For each positive integer k, there exists a polynomial P_{k} of degree $k-1$ with integer coefficients, i. e., $P_{k} \in \mathbb{Z}[x]$, and an integer q_{k} such that the polynomial identity

$$
\begin{equation*}
x P_{k}(x)=x^{k}+P_{k}(x-1)+q_{k} \tag{k}
\end{equation*}
$$

is satisfied. To prove this, for fixed k we write

$$
P_{k}(x)=b_{k-1} x^{k-1}+\cdots+b_{1} x+b_{0}
$$

and determine the coefficients $b_{k-1}, b_{k-2}, \ldots, b_{0}$ and the number q_{k} successively. Obviously, we have $b_{k-1}=1$. For $m=k-1, k-2, \ldots, 1$, comparing the coefficients of x^{m} in the identity $\left(I_{k}\right)$ results in an expression of b_{m-1} as an integer linear combination of b_{k-1}, \ldots, b_{m}, and finally $q_{k}=-P_{k}(-1)$.
Part B. Let k be a positive integer, and let a_{0}, a_{1}, \ldots be a sequence of real numbers satisfying the recursion given in the problem. This recursion can be written as

$$
a_{n}-P_{k}(n)=\frac{a_{n-1}-P_{k}(n-1)}{n}-\frac{q_{k}}{n} \quad \text { for all } n \geq 1
$$

which by induction gives

$$
a_{n}-P_{k}(n)=\frac{a_{0}-P_{k}(0)}{n!}-q_{k} \sum_{i=0}^{n-1} \frac{i!}{n!} \text { for all } n \geq 1
$$

Therefore, the numbers a_{n} are integers for all $n \geq 1$ only if

$$
a_{0}=P_{k}(0) \quad \text { and } \quad q_{k}=0
$$

Part C. Multiplying the identity $\left(I_{k}\right)$ by $x^{2}+x$ and subtracting the identities $\left(I_{k+1}\right),\left(I_{k+2}\right)$ and $q_{k} x^{2}=q_{k} x^{2}$ therefrom, we obtain

$$
x T_{k}(x)=T_{k}(x-1)+2 x\left(P_{k}(x-1)+q_{k}\right)-\left(q_{k+2}+q_{k+1}+q_{k}\right),
$$

where the polynomials $T_{k} \in \mathbb{Z}[x]$ are defined by $T_{k}(x)=\left(x^{2}+x\right) P_{k}(x)-P_{k+1}(x)-P_{k+2}(x)-q_{k} x$. Thus

$$
x T_{k}(x) \equiv T_{k}(x-1)+q_{k+2}+q_{k+1}+q_{k} \bmod 2, \quad k=1,2, \ldots
$$

Comparing the degrees, we easily see that this is only possible if T_{k} is the zero polynomial modulo 2 , and

$$
q_{k+2} \equiv q_{k+1}+q_{k} \bmod 2 \quad \text { for } k=1,2, \ldots
$$

Since $q_{1}=-1$ and $q_{2}=0$, these congruences finish the proof.

Solution 2. Part A and B. Let k be a positive integer, and suppose there is a sequence a_{0}, a_{1}, \ldots as required. We prove: There exists a polynomial $P \in \mathbb{Z}[x]$, i. e., with integer coefficients, such that $a_{n}=P(n), n=0,1, \ldots$, and $\quad x P(x)=x^{k}+P(x-1)$.
To prove this, we write $P(x)=b_{k-1} x^{k-1}+\cdots+b_{1} x+b_{0} \quad$ and determine the coefficients $b_{k-1}, b_{k-2}, \ldots, b_{0}$ successively such that

$$
x P(x)-x^{k}-P(x-1)=q,
$$

where $q=q_{k}$ is an integer. Comparing the coefficients of x^{m} results in an expression of b_{m-1} as an integer linear combination of b_{k-1}, \ldots, b_{m}.
Defining $c_{n}=a_{n}-P(n)$, we get

$$
\begin{aligned}
P(n)+c_{n} & =\frac{P(n-1)+c_{n-1}+n^{k}}{n}, \quad \text { i.e., } \\
q+n c_{n} & =c_{n-1},
\end{aligned}
$$

hence

$$
c_{n}=\frac{c_{0}}{n!}-q \cdot \frac{0!+1!+\cdots+(n-1)!}{n!} .
$$

We conclude $\lim _{n \rightarrow \infty} c_{n}=0$, which, using $c_{n} \in \mathbb{Z}$, implies $c_{n}=0$ for sufficiently large n. Therefore, we get $q=0$ and $c_{n}=0, n=0,1, \ldots$.
Part C. Suppose that $q=q_{k}=0$, i. e. $x P(x)=x^{k}+P(x-1)$. To consider this identity for arguments $x \in \mathbb{F}_{4}$, we write $\mathbb{F}_{4}=\{0,1, \alpha, \alpha+1\}$. Then we get

$$
\begin{aligned}
\alpha P_{k}(\alpha) & =\alpha^{k}+P_{k}(\alpha+1) \quad \text { and } \\
(\alpha+1) P_{k}(\alpha+1) & =(\alpha+1)^{k}+P_{k}(\alpha),
\end{aligned}
$$

hence

$$
\begin{aligned}
P_{k}(\alpha) & =1 \cdot P_{k}(\alpha)=(\alpha+1) \alpha P_{k}(\alpha) \\
& =(\alpha+1) P_{k}(\alpha+1)+(\alpha+1) \alpha^{k} \\
& =P_{k}(\alpha)+(\alpha+1)^{k}+(\alpha+1) \alpha^{k} .
\end{aligned}
$$

Now, $(\alpha+1)^{k-1}=\alpha^{k}$ implies $k \equiv 2 \bmod 3$.

Comment 1. For $k=2$, the sequence given by $a_{n}=n+1, n=0,1, \ldots$, satisfies the conditions of the problem.

Comment 2. The first few polynomials P_{k} and integers q_{k} are

$$
\begin{aligned}
& P_{1}(x)=1, \quad q_{1}=-1, \\
& P_{2}(x)=x+1, \quad q_{2}=0, \\
& P_{3}(x)=x^{2}+x-1, \quad q_{3}=1, \\
& P_{4}(x)=x^{3}+x^{2}-2 x-1, \quad q_{4}=-1, \\
& P_{5}(x)=x^{4}+x^{3}-3 x^{2}+5, \quad q_{5}=-2, \\
& P_{6}(x)=x^{5}+x^{4}-4 x^{3}+2 x^{2}+10 x-5, \quad q_{6}=9, \\
& q_{7}=-9, \quad q_{8}=-50, \quad q_{9}=267, \quad q_{10}=-413, \quad q_{11}=-2180 .
\end{aligned}
$$

A lookup in the On-Line Encyclopedia of Integer Sequences (A000587) reveals that the sequence $q_{1},-q_{2}, q_{3},-q_{4}, q_{5}, \ldots$ is known as Uppuluri-Carpenter numbers. The result that $q_{k}=0$ implies $k \equiv 2 \bmod 3$ is contained in
Murty, Summer: On the p-adic series $\sum_{n=0}^{\infty} n^{k} \cdot n!$. CRM Proc. and Lecture Notes 36, 2004. As shown by Alexander (Non-Vanishing of Uppuluri-Carpenter Numbers, Preprint 2006), Uppuluri-Carpenter numbers are zero at most twice.

Comment 3. The numbers q_{k} can be written in terms of the Stirling numbers of the second kind. To show this, we fix the notation such that

$$
\begin{align*}
x^{k}= & S_{k-1, k-1} x(x-1) \cdots(x-k+1) \\
& +S_{k-1, k-2} x(x-1) \cdots(x-k+2) \tag{*}\\
& +\cdots+S_{k-1,0} x
\end{align*}
$$

e. g., $S_{2,2}=1, S_{2,1}=3, S_{2,0}=1$, and we define

$$
\Omega_{k}=S_{k-1, k-1}-S_{k-1, k-2}+-\cdots
$$

Replacing x by $-x$ in (*) results in

$$
\begin{aligned}
x^{k}= & S_{k-1, k-1} x(x+1) \cdots(x+k-1) \\
& -S_{k-1, k-2} x(x+1) \cdots(x+k-2) \\
& +-\cdots \pm S_{k-1,0} x .
\end{aligned}
$$

Defining

$$
\begin{aligned}
P(x)= & S_{k-1, k-1}(x+1) \cdots(x+k-1) \\
& +\left(S_{k-1, k-1}-S_{k-1, k-2}\right)(x+1) \cdots(x+k-2) \\
& +\left(S_{k-1, k-1}-S_{k-1, k-2}+S_{k-1, k-3}\right)(x+1) \cdots(x+k-3) \\
& +\cdots+\Omega_{k},
\end{aligned}
$$

we obtain

$$
\begin{aligned}
x P(x)-P(x-1)= & S_{k-1, k-1} x(x+1) \cdots(x+k-1) \\
& -S_{k-1, k-2} x(x+1) \cdots(x+k-2) \\
& +-\cdots \pm S_{k-1,0} x-\Omega_{k} \\
= & x^{k}-\Omega_{k},
\end{aligned}
$$

hence $q_{k}=-\Omega_{k}$.

N7 MNG (Mongolia)

Let a and b be distinct integers greater than 1 . Prove that there exists a positive integer n such that $\left(a^{n}-1\right)\left(b^{n}-1\right)$ is not a perfect square.

Solution 1. At first we notice that

$$
\begin{align*}
(1-\alpha)^{\frac{1}{2}}(1-\beta)^{\frac{1}{2}} & =\left(1-\frac{1}{2} \cdot \alpha-\frac{1}{8} \cdot \alpha^{2}-\cdots\right)\left(1-\frac{1}{2} \cdot \beta-\frac{1}{8} \cdot \beta^{2}-\cdots\right) \\
& =\sum_{k, \ell \geq 0} c_{k, \ell} \cdot \alpha^{k} \beta^{\ell} \quad \text { for all } \alpha, \beta \in(0,1) \tag{1}
\end{align*}
$$

where $c_{0,0}=1$ and $c_{k, \ell}$ are certain coefficients.
For an indirect proof, we suppose that $x_{n}=\sqrt{\left(a^{n}-1\right)\left(b^{n}-1\right)} \in \mathbb{Z}$ for all positive integers n. Replacing a by a^{2} and b by b^{2} if necessary, we may assume that a and b are perfect squares, hence $\sqrt{a b}$ is an integer.
At first we shall assume that $a^{\mu} \neq b^{\nu}$ for all positive integers μ, ν. We have

$$
\begin{equation*}
x_{n}=(\sqrt{a b})^{n}\left(1-\frac{1}{a^{n}}\right)^{\frac{1}{2}}\left(1-\frac{1}{b^{n}}\right)^{\frac{1}{2}}=\sum_{k, \ell \geq 0} c_{k, \ell}\left(\frac{\sqrt{a b}}{a^{k} b^{\ell}}\right)^{n} . \tag{2}
\end{equation*}
$$

Choosing k_{0} and ℓ_{0} such that $a^{k_{0}}>\sqrt{a b}, b^{\ell_{0}}>\sqrt{a b}$, we define the polynomial

$$
P(x)=\prod_{k=0, \ell=0}^{k_{0}-1, \ell_{0}-1}\left(a^{k} b^{\ell} x-\sqrt{a b}\right)=: \sum_{i=0}^{k_{0} \cdot \ell_{0}} d_{i} x^{i}
$$

with integer coefficients d_{i}. By our assumption, the zeros

$$
\frac{\sqrt{a b}}{a^{k} b^{\ell}}, \quad k=0, \ldots, k_{0}-1, \quad \ell=0, \ldots, \ell_{0}-1,
$$

of P are pairwise distinct.
Furthermore, we consider the integer sequence

$$
\begin{equation*}
y_{n}=\sum_{i=0}^{k_{0} \cdot \ell_{0}} d_{i} x_{n+i}, \quad n=1,2, \ldots \tag{3}
\end{equation*}
$$

By the theory of linear recursions, we obtain

$$
\begin{equation*}
y_{n}=\sum_{\substack{k, \ell \geq 0 \\ k \geq k_{0} \text { or } \ell \geq \ell_{0}}} e_{k, \ell}\left(\frac{\sqrt{a b}}{a^{k} b^{\ell}}\right)^{n}, \quad n=1,2, \ldots, \tag{4}
\end{equation*}
$$

with real numbers $e_{k, \ell}$. We have

$$
\left|y_{n}\right| \leq \sum_{\substack{k, \ell \geq 0 \\ k \geq k_{0} \text { or } \ell \geq \ell_{0}}}\left|e_{k, \ell}\right|\left(\frac{\sqrt{a b}}{a^{k} b^{\ell}}\right)^{n}=: M_{n} .
$$

Because the series in (4) is obtained by a finite linear combination of the absolutely convergent series (1), we conclude that in particular $M_{1}<\infty$. Since

$$
\frac{\sqrt{a b}}{a^{k} b^{\ell}} \leq \lambda:=\max \left\{\frac{\sqrt{a b}}{a^{k_{0}}}, \frac{\sqrt{a b}}{b^{\ell_{0}}}\right\} \quad \text { for all } k, \ell \geq 0 \text { such that } k \geq k_{0} \text { or } \ell \geq \ell_{0}
$$

we get the estimates $M_{n+1} \leq \lambda M_{n}, n=1,2, \ldots$ Our choice of k_{0} and ℓ_{0} ensures $\lambda<1$, which implies $M_{n} \rightarrow 0$ and consequently $y_{n} \rightarrow 0$ as $n \rightarrow \infty$. It follows that $y_{n}=0$ for all sufficiently large n.
So, equation (3) reduces to $\sum_{i=0}^{k_{0} \cdot \ell_{0}} d_{i} x_{n+i}=0$.
Using the theory of linear recursions again, for sufficiently large n we have

$$
x_{n}=\sum_{k=0, \ell=0}^{k_{0}-1, \ell_{0}-1} f_{k, \ell}\left(\frac{\sqrt{a b}}{a^{k} b^{\ell}}\right)^{n}
$$

for certain real numbers $f_{k, \ell}$.
Comparing with (2), we see that $f_{k, \ell}=c_{k, \ell}$ for all $k, \ell \geq 0$ with $k<k_{0}, \ell<\ell_{0}$, and $c_{k, \ell}=0$ if $k \geq k_{0}$ or $\ell \geq \ell_{0}$, since we assumed that $a^{\mu} \neq b^{\nu}$ for all positive integers μ, ν.
In view of (1), this means

$$
\begin{equation*}
(1-\alpha)^{\frac{1}{2}}(1-\beta)^{\frac{1}{2}}=\sum_{k=0, \ell=0}^{k_{0}-1, \ell_{0}-1} c_{k, \ell} \cdot \alpha^{k} \beta^{\ell} \tag{5}
\end{equation*}
$$

for all real numbers $\alpha, \beta \in(0,1)$. We choose $k^{*}<k_{0}$ maximal such that there is some i with $c_{k^{*}, i} \neq 0$. Squaring (5) and comparing coefficients of $\alpha^{2 k^{*}} \beta^{2 i^{*}}$, where i^{*} is maximal with $c_{k^{*}, i^{*}} \neq 0$, we see that $k^{*}=0$. This means that the right hand side of (5) is independent of α, which is clearly impossible.
We are left with the case that $a^{\mu}=b^{\nu}$ for some positive integers μ and ν. We may assume that μ and ν are relatively prime. Then there is some positive integer c such that $a=c^{\nu}$ and $b=c^{\mu}$. Now starting with the expansion (2), i.e.,

$$
x_{n}=\sum_{j \geq 0} g_{j}\left(\frac{\sqrt{c^{\mu+\nu}}}{c^{j}}\right)^{n}
$$

for certain coefficients g_{j}, and repeating the arguments above, we see that $g_{j}=0$ for sufficiently large j, say $j>j_{0}$. But this means that

$$
\left(1-x^{\mu}\right)^{\frac{1}{2}}\left(1-x^{\nu}\right)^{\frac{1}{2}}=\sum_{j=0}^{j_{0}} g_{j} x^{j}
$$

for all real numbers $x \in(0,1)$. Squaring, we see that

$$
\left(1-x^{\mu}\right)\left(1-x^{\nu}\right)
$$

is the square of a polynomial in x. In particular, all its zeros are of order at least 2 , which implies $\mu=\nu$ by looking at roots of unity. So we obtain $\mu=\nu=1$, i. e., $a=b$, a contradiction.

Solution 2. We set $a^{2}=A, b^{2}=B$, and $z_{n}=\sqrt{\left(A^{n}-1\right)\left(B^{n}-1\right)}$. Let us assume that z_{n} is an integer for $n=1,2, \ldots$. Without loss of generality, we may suppose that $b<a$. We determine an integer $k \geq 2$ such that $b^{k-1} \leq a<b^{k}$, and define a sequence $\gamma_{1}, \gamma_{2}, \ldots$ of rational numbers such that

$$
2 \gamma_{1}=1 \quad \text { and } \quad 2 \gamma_{n+1}=\sum_{i=1}^{n} \gamma_{i} \gamma_{n-i} \text { for } n=1,2, \ldots
$$

It could easily be shown that $\gamma_{n}=\frac{1 \cdot 1 \cdot 3 \cdot .(2 n-3)}{2 \cdot 4 \cdot 6 \ldots 2 n}$, for instance by reading Vandermondes convolution as an equation between polynomials, but we shall have no use for this fact.
Using Landaus O-Notation in the usual way, we have

$$
\begin{aligned}
& \left\{(a b)^{n}-\gamma_{1}\left(\frac{a}{b}\right)^{n}-\gamma_{2}\left(\frac{a}{b^{3}}\right)^{n}-\cdots-\gamma_{k}\left(\frac{a}{b^{2 k-1}}\right)^{n}+O\left(\frac{b}{a}\right)^{n}\right\}^{2} \\
& =A^{n} B^{n}-2 \gamma_{1} A^{n}-\sum_{i=2}^{k}\left(2 \gamma_{i}-\sum_{j=1}^{i-1} \gamma_{j} \gamma_{i-j}\right)\left(\frac{A}{B^{i-1}}\right)^{n}+O\left(\frac{A}{B^{k}}\right)^{n}+O\left(B^{n}\right) \\
& =A^{n} B^{n}-A^{n}+O\left(B^{n}\right)
\end{aligned}
$$

whence

$$
z_{n}=(a b)^{n}-\gamma_{1}\left(\frac{a}{b}\right)^{n}-\gamma_{2}\left(\frac{a}{b^{3}}\right)^{n}-\cdots-\gamma_{k}\left(\frac{a}{b^{2 k-1}}\right)^{n}+O\left(\frac{b}{a}\right)^{n} .
$$

Now choose rational numbers $r_{1}, r_{2}, \ldots, r_{k+1}$ such that

$$
(x-a b) \cdot\left(x-\frac{a}{b}\right) \ldots\left(x-\frac{a}{b^{2 k-1}}\right)=x^{k+1}-r_{1} x^{k}+-\cdots \pm r_{k+1},
$$

and then a natural number M for which $M r_{1}, M r_{2}, \ldots M r_{k+1}$ are integers. For known reasons,

$$
M\left(z_{n+k+1}-r_{1} z_{n+k}+-\cdots \pm r_{k+1} z_{n}\right)=O\left(\frac{b}{a}\right)^{n}
$$

for all $n \in \mathbb{N}$ and thus there is a natural number N which is so large, that

$$
z_{n+k+1}=r_{1} z_{n+k}-r_{2} z_{n+k-1}+-\cdots \mp r_{k+1} z_{n}
$$

holds for all $n \geqslant N$. Now the theory of linear recursions reveals that there are some rational numbers $\delta_{0}, \delta_{1}, \delta_{2}, \ldots, \delta_{k}$ such that

$$
z_{n}=\delta_{0}(a b)^{n}-\delta_{1}\left(\frac{a}{b}\right)^{n}-\delta_{2}\left(\frac{a}{b^{3}}\right)^{n}-\cdots-\delta_{k}\left(\frac{a}{b^{2 k-1}}\right)^{n}
$$

for sufficiently large n, where $\delta_{0}>0$ as $z_{n}>0$. As before, one obtains

$$
\begin{aligned}
& A^{n} B^{n}-A^{n}-B^{n}+1=z_{n}^{2} \\
& =\left\{\delta_{0}(a b)^{n}-\delta_{1}\left(\frac{a}{b}\right)^{n}-\delta_{2}\left(\frac{a}{b^{3}}\right)^{n}-\cdots-\delta_{k}\left(\frac{a}{b^{2 k-1}}\right)^{n}\right\}^{2} \\
& =\delta_{0}^{2} A^{n} B^{n}-2 \delta_{0} \delta_{1} A^{n}-\sum_{i=2}^{i=k}\left(2 \delta_{0} \delta_{i}-\sum_{j=1}^{j=i-1} \delta_{j} \delta_{i-j}\right)\left(\frac{A}{B^{i-1}}\right)^{n}+O\left(\frac{A}{B^{k}}\right)^{n} .
\end{aligned}
$$

Easy asymptotic calculations yield $\delta_{0}=1, \delta_{1}=\frac{1}{2}, \delta_{i}=\frac{1}{2} \sum_{j=1}^{j=i-1} \delta_{j} \delta_{i-j}$ for $i=2,3, \ldots, k-2$, and then $a=b^{k-1}$. It follows that $k>2$ and there is some $P \in \mathbb{Q}[X]$ for which $(X-1)\left(X^{k-1}-1\right)=$ $P(X)^{2}$. But this cannot occur, for instance as $X^{k-1}-1$ has no double zeros. Thus our
assumption that z_{n} was an integer for $n=1,2, \ldots$ turned out to be wrong, which solves the problem.

Original formulation of the problem. a, b are positive integers such that $a \cdot b$ is not a square of an integer. Prove that there exists a (infinitely many) positive integer n such that ($a^{n}-1$) ($b^{n}-1$) is not a square of an integer.

Solution. Lemma. Let c be a positive integer, which is not a perfect square. Then there exists an odd prime p such that c is not a quadratic residue modulo p.
Proof. Denoting the square-free part of c by c^{\prime}, we have the equality $\left(\frac{c^{\prime}}{p}\right)=\left(\frac{c}{p}\right)$ of the corresponding Legendre symbols. Suppose that $c^{\prime}=q_{1} \cdots q_{m}$, where $q_{1}<\cdots<q_{m}$ are primes. Then we have

$$
\left(\frac{c^{\prime}}{p}\right)=\left(\frac{q_{1}}{p}\right) \cdots\left(\frac{q_{m}}{p}\right)
$$

Case 1. Let q_{1} be odd. We choose a quadratic nonresidue r_{1} modulo q_{1} and quadratic residues r_{i} modulo q_{i} for $i=2, \ldots, m$. By the Chinese remainder theorem and the Dirichlet theorem, there exists a (infinitely many) prime p such that

$$
\begin{aligned}
& p \equiv r_{1} \bmod q_{1} \\
& p \equiv r_{2} \bmod q_{2} \\
& \vdots \vdots \\
& p \equiv r_{m} \bmod q_{m}, \\
& p \equiv 1 \bmod 4
\end{aligned}
$$

By our choice of the residues, we obtain

$$
\left(\frac{p}{q_{i}}\right)=\left(\frac{r_{i}}{q_{i}}\right)= \begin{cases}-1, & i=1 \\ 1, & i=2, \ldots, m\end{cases}
$$

The congruence $p \equiv 1 \bmod 4$ implies that $\left(\frac{q_{i}}{p}\right)=\left(\frac{p}{q_{i}}\right), i=1, \ldots, m$, by the law of quadratic reciprocity. Thus

$$
\left(\frac{c^{\prime}}{p}\right)=\left(\frac{q_{1}}{p}\right) \cdots\left(\frac{q_{m}}{p}\right)=-1 .
$$

Case 2. Suppose $q_{1}=2$. We choose quadratic residues r_{i} modulo q_{i} for $i=2, \ldots, m$. Again, by the Chinese remainder theorem and the Dirichlet theorem, there exists a prime p such that

$$
\begin{aligned}
& p \equiv r_{2} \bmod q_{2} \\
& \vdots \quad \vdots \\
& p \equiv r_{m} \bmod q_{m} \\
& p \equiv 5 \bmod 8
\end{aligned}
$$

By the choice of the residues, we obtain $\left(\frac{p}{q_{i}}\right)=\left(\frac{r_{i}}{q_{i}}\right)=1$ for $i=2, \ldots, m$. Since $p \equiv 1 \bmod 4$ we have $\left(\frac{q_{i}}{p}\right)=\left(\frac{p}{q_{i}}\right), i=2, \ldots, m$, by the law of quadratic reciprocity. The congruence $p \equiv 5 \bmod 8$
implies that $\left(\frac{2}{p}\right)=-1$. Thus

$$
\left(\frac{c^{\prime}}{p}\right)=\left(\frac{2}{p}\right)\left(\frac{q_{2}}{p}\right) \cdots\left(\frac{q_{m}}{p}\right)=-1
$$

and the lemma is proved.
Applying the lemma for $c=a \cdot b$, we find an odd prime p such that

$$
\left(\frac{a b}{p}\right)=\left(\frac{a}{p}\right) \cdot\left(\frac{b}{p}\right)=-1
$$

This implies either

$$
a^{\frac{p-1}{2}} \equiv 1 \bmod p, \quad b^{\frac{p-1}{2}} \equiv-1 \bmod p, \quad \text { or } \quad a^{\frac{p-1}{2}} \equiv-1 \bmod p, \quad b^{\frac{p-1}{2}} \equiv 1 \bmod p .
$$

Without loss of generality, suppose that $a^{\frac{p-1}{2}} \equiv 1 \bmod p$ and $b^{\frac{p-1}{2}} \equiv-1 \bmod p$. The second congruence implies that $b^{\frac{p-1}{2}}-1$ is not divisible by p. Hence, if the exponent $\nu_{p}\left(a^{\frac{p-1}{2}}-1\right)$ of p in the prime decomposition of $\left(a^{\frac{p-1}{2}}-1\right)$ is odd, then $\left(a^{\frac{p-1}{2}}-1\right)\left(b^{\frac{p-1}{2}}-1\right)$ is not a perfect square. If $\nu_{p}\left(a^{\frac{p-1}{2}}-1\right)$ is even, then $\nu_{p}\left(a^{\frac{p-1}{2} p}-1\right)$ is odd by the well-known power lifting property

$$
\nu_{p}\left(a^{\frac{p-1}{2} p}-1\right)=\nu_{p}\left(a^{\frac{p-1}{2}}-1\right)+1 .
$$

In this case, $\left(a^{\frac{p-1}{2} p}-1\right)\left(b^{\frac{p-1}{2} p}-1\right)$ is not a perfect square.

Comment 1. In 1998, the following problem appeared in Crux Mathematicorum:
Problem 2344. Find all positive integers N that are quadratic residues modulo all primes greater than N.
The published solution (Crux Mathematicorum, 25(1999)4) is the same as the proof of the lemma given above, see also http://www.mathlinks.ro/viewtopic.php?t=150495.

Comment 2. There is also an elementary proof of the lemma. We cite Theorem 3 of Chapter 5 and its proof from the book
Ireland, Rosen: A Classical Introduction to Modern Number Theory, Springer 1982.
Theorem. Let a be a nonsquare integer. Then there are infinitely many primes p for which a is a quadratic nonresidue.
Proof. It is easily seen that we may assume that a is square-free. Let $a=2^{e} q_{1} q_{2} \cdots q_{n}$, where q_{i} are distinct odd primes and $e=0$ or 1 . The case $a=2$ has to be dealt with separately. We shall assume to begin with that $n \geq 1$, i. e., that a is divisible by an odd prime.

Let $\ell_{1}, \ell_{2}, \ldots, \ell_{k}$ be a finite set of odd primes not including any q_{i}. Let s be any quadratic nonresidue $\bmod q_{n}$, and find a simultaneous solution to the congruences

$$
\begin{aligned}
& x \equiv 1 \bmod \ell_{i}, \quad i=1, \ldots, k \\
& x \equiv 1 \bmod 8, \\
& x \equiv 1 \bmod q_{i}, \quad i=1, \ldots, n-1, \\
& x \equiv s \bmod q_{n} .
\end{aligned}
$$

Call the solution $b . b$ is odd. Suppose that $b=p_{1} p_{2} \cdots p_{m}$ is its prime decomposition. Since
$b \equiv 1 \bmod 8$ we have $\left(\frac{2}{b}\right)=1$ and $\left(\frac{q_{i}}{b}\right)=\left(\frac{b}{q_{i}}\right)$ by a result on JACOBI symbols. Thus

$$
\left(\frac{a}{b}\right)=\left(\frac{2}{b}\right)^{e}\left(\frac{q_{1}}{b}\right) \cdots\left(\frac{q_{n-1}}{b}\right)\left(\frac{q_{n}}{b}\right)=\left(\frac{b}{q_{1}}\right) \cdots\left(\frac{b}{q_{n-1}}\right)\left(\frac{b}{q_{n}}\right)=\left(\frac{1}{q_{1}}\right) \cdots\left(\frac{1}{q_{n-1}}\right)\left(\frac{s}{q_{n}}\right)=-1 .
$$

On the other hand, by the definition of $\left(\frac{a}{b}\right)$, we have $\left(\frac{a}{b}\right)=\left(\frac{a}{p_{1}}\right)\left(\frac{a}{p_{2}}\right) \cdots\left(\frac{a}{p_{m}}\right)$. It follows that $\left(\frac{a}{p_{i}}\right)=-1$ for some i.
Notice that ℓ_{j} does not divide b. Thus $p_{i} \notin\left\{\ell_{1}, \ell_{2}, \ldots, \ell_{k}\right\}$.
To summarize, if a is a nonsquare, divisible by an odd prime, we have found a prime p, outside of a given finite set of primes $\left\{2, \ell_{1}, \ell_{2}, \ldots, \ell_{k}\right\}$, such that $\left(\frac{a}{p}\right)=-1$. This proves the theorem in this case.
It remains to consider the case $a=2$. Let $\ell_{1}, \ell_{2}, \ldots, \ell_{k}$ be a finite set of primes, excluding 3 , for which $\left(\frac{2}{\ell_{i}}\right)=-1$. Let $b=8 \ell_{1} \ell_{2} \cdots \ell_{k}+3 . b$ is not divisible by 3 or any ℓ_{i}. Since $b \equiv 3 \bmod 8$ we have $\left(\frac{2}{b}\right)=(-1)^{\frac{b^{2}-1}{8}}=-1$. Suppose that $b=p_{1} p_{2} \cdots p_{m}$ is the prime decomposition of b. Then, as before, we see that $\left(\frac{2}{p_{i}}\right)=-1$ for some i. $p_{i} \notin\left\{3, \ell_{1}, \ell_{2}, \ldots, \ell_{k}\right\}$. This proves the theorem for $a=2$.

This proof has also been posted to mathlinks, see http://www.mathlinks.ro/viewtopic. php?t=150495 again.

The IMO 2009 is organised by

Bildung
BBegabung

in cooperation with

JACOBS
UNIVERSITY

INTERNATIONAL MATHEMATICAL OLYMPIAD

51st IMO

 Shortlisted Problems with SolutionsAstana, Karakistan July 2-14, 2010
$51^{\text {st }}$ International Mathematical Olympiad Astana, Kazakhstan 2010

Shortlisted Problems with Solutions

Contents

Note of Confidentiality 5
Contributing Countries \& Problem Selection Committee 5
Algebra 7
Problem A1 7
Problem A2 8
Problem A3 10
Problem A4 12
Problem A5 13
Problem A6 15
Problem A7 17
Problem A8 19
Combinatorics 23
Problem C1 23
Problem C2 26
Problem C3 28
Problem C4 30
Problem C4 ${ }^{\prime}$ 30
Problem C5 32
Problem C6 35
Problem C7 38
Geometry 44
Problem G1 44
Problem G2 46
Problem G3 50
Problem G4 52
Problem G5 54
Problem G6 56
Problem G6' 56
Problem G7 60
Number Theory 64
Problem N1 64
Problem N1 ${ }^{\prime}$ 64
Problem N2 66
Problem N3 68
Problem N4 70
Problem N5 71
Problem N6 72

Note of Confidentiality

The Shortlisted Problems should be kept strictly confidential until IMO 2011.

Contributing Countries

The Organizing Committee and the Problem Selection Committee of IMO 2010 thank the following 42 countries for contributing 158 problem proposals.

Armenia, Australia, Austria, Bulgaria, Canada, Columbia, Croatia, Cyprus, Estonia, Finland, France, Georgia, Germany, Greece, Hong Kong, Hungary, India, Indonesia, Iran, Ireland, Japan, Korea (North), Korea (South), Luxembourg, Mongolia, Netherlands, Pakistan, Panama, Poland, Romania, Russia, Saudi Arabia, Serbia, Slovakia, Slovenia, Switzerland, Thailand, Turkey, Ukraine, United Kingdom, United States of America, Uzbekistan

Problem Selection Committee

Yerzhan Baissalov
Ilya Bogdanov
Géza Kós
Nairi Sedrakyan
Damir Yeliussizov
Kuat Yessenov

Algebra

A1. Determine all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that the equality

$$
\begin{equation*}
f([x] y)=f(x)[f(y)] . \tag{1}
\end{equation*}
$$

holds for all $x, y \in \mathbb{R}$. Here, by $[x]$ we denote the greatest integer not exceeding x.
(France)
Answer. $f(x)=$ const $=C$, where $C=0$ or $1 \leq C<2$.
Solution 1. First, setting $x=0$ in (1) we get

$$
\begin{equation*}
f(0)=f(0)[f(y)] \tag{2}
\end{equation*}
$$

for all $y \in \mathbb{R}$. Now, two cases are possible.
Case 1. Assume that $f(0) \neq 0$. Then from (2) we conclude that $[f(y)]=1$ for all $y \in \mathbb{R}$. Therefore, equation (1) becomes $f([x] y)=f(x)$, and substituting $y=0$ we have $f(x)=f(0)=C \neq 0$. Finally, from $[f(y)]=1=[C]$ we obtain that $1 \leq C<2$.

Case 2. Now we have $f(0)=0$. Here we consider two subcases.
Subcase 2a. Suppose that there exists $0<\alpha<1$ such that $f(\alpha) \neq 0$. Then setting $x=\alpha$ in (1) we obtain $0=f(0)=f(\alpha)[f(y)]$ for all $y \in \mathbb{R}$. Hence, $[f(y)]=0$ for all $y \in \mathbb{R}$. Finally, substituting $x=1$ in (1) provides $f(y)=0$ for all $y \in \mathbb{R}$, thus contradicting the condition $f(\alpha) \neq 0$.

Subcase 2b. Conversely, we have $f(\alpha)=0$ for all $0 \leq \alpha<1$. Consider any real z; there exists an integer N such that $\alpha=\frac{z}{N} \in[0,1)$ (one may set $N=[z]+1$ if $z \geq 0$ and $N=[z]-1$ otherwise). Now, from (1) we get $f(z)=f([N] \alpha)=f(N)[f(\alpha)]=0$ for all $z \in \mathbb{R}$.

Finally, a straightforward check shows that all the obtained functions satisfy (1).
Solution 2. Assume that $[f(y)]=0$ for some y; then the substitution $x=1$ provides $f(y)=f(1)[f(y)]=0$. Hence, if $[f(y)]=0$ for all y, then $f(y)=0$ for all y. This function obviously satisfies the problem conditions.

So we are left to consider the case when $[f(a)] \neq 0$ for some a. Then we have

$$
\begin{equation*}
f([x] a)=f(x)[f(a)], \quad \text { or } \quad f(x)=\frac{f([x] a)}{[f(a)]} . \tag{3}
\end{equation*}
$$

This means that $f\left(x_{1}\right)=f\left(x_{2}\right)$ whenever $\left[x_{1}\right]=\left[x_{2}\right]$, hence $f(x)=f([x])$, and we may assume that a is an integer.

Now we have

$$
f(a)=f\left(2 a \cdot \frac{1}{2}\right)=f(2 a)\left[f\left(\frac{1}{2}\right)\right]=f(2 a)[f(0)] ;
$$

this implies $[f(0)] \neq 0$, so we may even assume that $a=0$. Therefore equation (3) provides

$$
f(x)=\frac{f(0)}{[f(0)]}=C \neq 0
$$

for each x. Now, condition (1) becomes equivalent to the equation $C=C[C]$ which holds exactly when $[C]=1$.

A2. Let the real numbers a, b, c, d satisfy the relations $a+b+c+d=6$ and $a^{2}+b^{2}+c^{2}+d^{2}=12$. Prove that

$$
36 \leq 4\left(a^{3}+b^{3}+c^{3}+d^{3}\right)-\left(a^{4}+b^{4}+c^{4}+d^{4}\right) \leq 48 .
$$

(Ukraine)
Solution 1. Observe that

$$
\begin{gathered}
4\left(a^{3}+b^{3}+c^{3}+d^{3}\right)-\left(a^{4}+b^{4}+c^{4}+d^{4}\right)=-\left((a-1)^{4}+(b-1)^{4}+(c-1)^{4}+(d-1)^{4}\right) \\
+6\left(a^{2}+b^{2}+c^{2}+d^{2}\right)-4(a+b+c+d)+4 \\
=-\left((a-1)^{4}+(b-1)^{4}+(c-1)^{4}+(d-1)^{4}\right)+52
\end{gathered}
$$

Now, introducing $x=a-1, y=b-1, z=c-1, t=d-1$, we need to prove the inequalities

$$
16 \geq x^{4}+y^{4}+z^{4}+t^{4} \geq 4,
$$

under the constraint

$$
\begin{equation*}
x^{2}+y^{2}+z^{2}+t^{2}=\left(a^{2}+b^{2}+c^{2}+d^{2}\right)-2(a+b+c+d)+4=4 \tag{1}
\end{equation*}
$$

(we will not use the value of $x+y+z+t$ though it can be found).
Now the rightmost inequality in (1) follows from the power mean inequality:

$$
x^{4}+y^{4}+z^{4}+t^{4} \geq \frac{\left(x^{2}+y^{2}+z^{2}+t^{2}\right)^{2}}{4}=4 .
$$

For the other one, expanding the brackets we note that

$$
\left(x^{2}+y^{2}+z^{2}+t^{2}\right)^{2}=\left(x^{4}+y^{4}+z^{4}+t^{4}\right)+q,
$$

where q is a nonnegative number, so

$$
x^{4}+y^{4}+z^{4}+t^{4} \leq\left(x^{2}+y^{2}+z^{2}+t^{2}\right)^{2}=16
$$

and we are done.
Comment 1. The estimates are sharp; the lower and upper bounds are attained at ($3,1,1,1$) and $(0,2,2,2)$, respectively.

Comment 2. After the change of variables, one can finish the solution in several different ways. The latter estimate, for instance, it can be performed by moving the variables - since we need only the second of the two shifted conditions.

Solution 2. First, we claim that $0 \leq a, b, c, d \leq 3$. Actually, we have

$$
a+b+c=6-d, \quad a^{2}+b^{2}+c^{2}=12-d^{2}
$$

hence the power mean inequality

$$
a^{2}+b^{2}+c^{2} \geq \frac{(a+b+c)^{2}}{3}
$$

rewrites as

$$
12-d^{2} \geq \frac{(6-d)^{2}}{3} \quad \Longleftrightarrow \quad 2 d(d-3) \leq 0
$$

which implies the desired inequalities for d; since the conditions are symmetric, we also have the same estimate for the other variables.

Now, to prove the rightmost inequality, we use the obvious inequality $x^{2}(x-2)^{2} \geq 0$ for each real x; this inequality rewrites as $4 x^{3}-x^{4} \leq 4 x^{2}$. It follows that

$$
\left(4 a^{3}-a^{4}\right)+\left(4 b^{3}-b^{4}\right)+\left(4 c^{3}-c^{4}\right)+\left(4 d^{3}-d^{4}\right) \leq 4\left(a^{2}+b^{2}+c^{2}+d^{2}\right)=48
$$

as desired.
Now we prove the leftmost inequality in an analogous way. For each $x \in[0,3]$, we have $(x+1)(x-1)^{2}(x-3) \leq 0$ which is equivalent to $4 x^{3}-x^{4} \geq 2 x^{2}+4 x-3$. This implies that
$\left(4 a^{3}-a^{4}\right)+\left(4 b^{3}-b^{4}\right)+\left(4 c^{3}-c^{4}\right)+\left(4 d^{3}-d^{4}\right) \geq 2\left(a^{2}+b^{2}+c^{2}+d^{2}\right)+4(a+b+c+d)-12=36$, as desired.

Comment. It is easy to guess the extremal points $(0,2,2,2)$ and $(3,1,1,1)$ for this inequality. This provides a method of finding the polynomials used in Solution 2. Namely, these polynomials should have the form $x^{4}-4 x^{3}+a x^{2}+b x+c$; moreover, the former polynomial should have roots at 2 (with an even multiplicity) and 0 , while the latter should have roots at 1 (with an even multiplicity) and 3 . These conditions determine the polynomials uniquely.

Solution 3. First, expanding $48=4\left(a^{2}+b^{2}+c^{2}+d^{2}\right)$ and applying the AM-GM inequality, we have

$$
\begin{aligned}
a^{4}+b^{4}+c^{4}+d^{4}+48 & =\left(a^{4}+4 a^{2}\right)+\left(b^{4}+4 b^{2}\right)+\left(c^{4}+4 c^{2}\right)+\left(d^{4}+4 d^{2}\right) \\
& \geq 2\left(\sqrt{a^{4} \cdot 4 a^{2}}+\sqrt{b^{4} \cdot 4 b^{2}}+\sqrt{c^{4} \cdot 4 c^{2}}+\sqrt{d^{4} \cdot 4 d^{2}}\right) \\
& =4\left(\left|a^{3}\right|+\left|b^{3}\right|+\left|c^{3}\right|+\left|d^{3}\right|\right) \geq 4\left(a^{3}+b^{3}+c^{3}+d^{3}\right),
\end{aligned}
$$

which establishes the rightmost inequality.
To prove the leftmost inequality, we first show that $a, b, c, d \in[0,3]$ as in the previous solution. Moreover, we can assume that $0 \leq a \leq b \leq c \leq d$. Then we have $a+b \leq b+c \leq$ $\frac{2}{3}(b+c+d) \leq \frac{2}{3} \cdot 6=4$.

Next, we show that $4 b-b^{2} \leq 4 c-c^{2}$. Actually, this inequality rewrites as $(c-b)(b+c-4) \leq 0$, which follows from the previous estimate. The inequality $4 a-a^{2} \leq 4 b-b^{2}$ can be proved analogously.

Further, the inequalities $a \leq b \leq c$ together with $4 a-a^{2} \leq 4 b-b^{2} \leq 4 c-c^{2}$ allow us to apply the Chebyshev inequality obtaining

$$
\begin{aligned}
a^{2}\left(4 a-a^{2}\right)+b^{2}\left(4 b-b^{2}\right)+c^{2}\left(4 c-c^{2}\right) & \geq \frac{1}{3}\left(a^{2}+b^{2}+c^{2}\right)\left(4(a+b+c)-\left(a^{2}+b^{2}+c^{2}\right)\right) \\
& =\frac{\left(12-d^{2}\right)\left(4(6-d)-\left(12-d^{2}\right)\right)}{3}
\end{aligned}
$$

This implies that

$$
\begin{align*}
\left(4 a^{3}-a^{4}\right) & +\left(4 b^{3}-b^{4}\right)+\left(4 c^{3}-c^{4}\right)+\left(4 d^{3}-d^{4}\right) \geq \frac{\left(12-d^{2}\right)\left(d^{2}-4 d+12\right)}{3}+4 d^{3}-d^{4} \\
& =\frac{144-48 d+16 d^{3}-4 d^{4}}{3}=36+\frac{4}{3}(3-d)(d-1)\left(d^{2}-3\right) . \tag{2}
\end{align*}
$$

Finally, we have $d^{2} \geq \frac{1}{4}\left(a^{2}+b^{2}+c^{2}+d^{2}\right)=3$ (which implies $d>1$); so, the expression $\frac{4}{3}(3-d)(d-1)\left(d^{2}-3\right)$ in the right-hand part of (2) is nonnegative, and the desired inequality is proved.
Comment. The rightmost inequality is easier than the leftmost one. In particular, Solutions 2 and 3 show that only the condition $a^{2}+b^{2}+c^{2}+d^{2}=12$ is needed for the former one.

A3. Let x_{1}, \ldots, x_{100} be nonnegative real numbers such that $x_{i}+x_{i+1}+x_{i+2} \leq 1$ for all $i=1, \ldots, 100$ (we put $x_{101}=x_{1}, x_{102}=x_{2}$). Find the maximal possible value of the sum

$$
S=\sum_{i=1}^{100} x_{i} x_{i+2}
$$

(Russia)
Answer. $\frac{25}{2}$.
Solution 1. Let $x_{2 i}=0, x_{2 i-1}=\frac{1}{2}$ for all $i=1, \ldots, 50$. Then we have $S=50 \cdot\left(\frac{1}{2}\right)^{2}=\frac{25}{2}$. So, we are left to show that $S \leq \frac{25}{2}$ for all values of x_{i} 's satisfying the problem conditions.

Consider any $1 \leq i \leq 50$. By the problem condition, we get $x_{2 i-1} \leq 1-x_{2 i}-x_{2 i+1}$ and $x_{2 i+2} \leq 1-x_{2 i}-x_{2 i+1}$. Hence by the AM-GM inequality we get

$$
\begin{aligned}
x_{2 i-1} x_{2 i+1} & +x_{2 i} x_{2 i+2} \leq\left(1-x_{2 i}-x_{2 i+1}\right) x_{2 i+1}+x_{2 i}\left(1-x_{2 i}-x_{2 i+1}\right) \\
& =\left(x_{2 i}+x_{2 i+1}\right)\left(1-x_{2 i}-x_{2 i+1}\right) \leq\left(\frac{\left(x_{2 i}+x_{2 i+1}\right)+\left(1-x_{2 i}-x_{2 i+1}\right)}{2}\right)^{2}=\frac{1}{4} .
\end{aligned}
$$

Summing up these inequalities for $i=1,2, \ldots, 50$, we get the desired inequality

$$
\sum_{i=1}^{50}\left(x_{2 i-1} x_{2 i+1}+x_{2 i} x_{2 i+2}\right) \leq 50 \cdot \frac{1}{4}=\frac{25}{2} .
$$

Comment. This solution shows that a bit more general fact holds. Namely, consider $2 n$ nonnegative numbers $x_{1}, \ldots, x_{2 n}$ in a row (with no cyclic notation) and suppose that $x_{i}+x_{i+1}+x_{i+2} \leq 1$ for all $i=1,2, \ldots, 2 n-2$. Then $\sum_{i=1}^{2 n-2} x_{i} x_{i+2} \leq \frac{n-1}{4}$.

The proof is the same as above, though if might be easier to find it (for instance, applying induction). The original estimate can be obtained from this version by considering the sequence $x_{1}, x_{2}, \ldots, x_{100}, x_{1}, x_{2}$.

Solution 2. We present another proof of the estimate. From the problem condition, we get

$$
\begin{aligned}
S=\sum_{i=1}^{100} x_{i} x_{i+2} \leq \sum_{i=1}^{100} x_{i}\left(1-x_{i}-x_{i+1}\right) & =\sum_{i=1}^{100} x_{i}-\sum_{i=1}^{100} x_{i}^{2}-\sum_{i=1}^{100} x_{i} x_{i+1} \\
& =\sum_{i=1}^{100} x_{i}-\frac{1}{2} \sum_{i=1}^{100}\left(x_{i}+x_{i+1}\right)^{2} .
\end{aligned}
$$

By the AM-QM inequality, we have $\sum\left(x_{i}+x_{i+1}\right)^{2} \geq \frac{1}{100}\left(\sum\left(x_{i}+x_{i+1}\right)\right)^{2}$, so

$$
\begin{aligned}
S \leq \sum_{i=1}^{100} x_{i}-\frac{1}{200}\left(\sum_{i=1}^{100}\left(x_{i}+x_{i+1}\right)\right)^{2} & =\sum_{i=1}^{100} x_{i}-\frac{2}{100}\left(\sum_{i=1}^{100} x_{i}\right)^{2} \\
& =\frac{2}{100}\left(\sum_{i=1}^{100} x_{i}\right)\left(\frac{100}{2}-\sum_{i=1}^{100} x_{i}\right)
\end{aligned}
$$

And finally, by the AM-GM inequality

$$
S \leq \frac{2}{100} \cdot\left(\frac{1}{2}\left(\sum_{i=1}^{100} x_{i}+\frac{100}{2}-\sum_{i=1}^{100} x_{i}\right)\right)^{2}=\frac{2}{100} \cdot\left(\frac{100}{4}\right)^{2}=\frac{25}{2} .
$$

Comment. These solutions are not as easy as they may seem at the first sight. There are two different optimal configurations in which the variables have different values, and not all of sums of three consecutive numbers equal 1. Although it is easy to find the value $\frac{25}{2}$, the estimates must be done with care to preserve equality in the optimal configurations.

A4. A sequence x_{1}, x_{2}, \ldots is defined by $x_{1}=1$ and $x_{2 k}=-x_{k}, x_{2 k-1}=(-1)^{k+1} x_{k}$ for all $k \geq 1$. Prove that $x_{1}+x_{2}+\cdots+x_{n} \geq 0$ for all $n \geq 1$.
(Austria)
Solution 1. We start with some observations. First, from the definition of x_{i} it follows that for each positive integer k we have

$$
\begin{equation*}
x_{4 k-3}=x_{2 k-1}=-x_{4 k-2} \quad \text { and } \quad x_{4 k-1}=x_{4 k}=-x_{2 k}=x_{k} . \tag{1}
\end{equation*}
$$

Hence, denoting $S_{n}=\sum_{i=1}^{n} x_{i}$, we have

$$
\begin{gather*}
S_{4 k}=\sum_{i=1}^{k}\left(\left(x_{4 k-3}+x_{4 k-2}\right)+\left(x_{4 k-1}+x_{4 k}\right)\right)=\sum_{i=1}^{k}\left(0+2 x_{k}\right)=2 S_{k}, \tag{2}\\
S_{4 k+2}=S_{4 k}+\left(x_{4 k+1}+x_{4 k+2}\right)=S_{4 k} . \tag{3}
\end{gather*}
$$

Observe also that $S_{n}=\sum_{i=1}^{n} x_{i} \equiv \sum_{i=1}^{n} 1=n(\bmod 2)$.
Now we prove by induction on k that $S_{i} \geq 0$ for all $i \leq 4 k$. The base case is valid since $x_{1}=x_{3}=x_{4}=1, x_{2}=-1$. For the induction step, assume that $S_{i} \geq 0$ for all $i \leq 4 k$. Using the relations (1)-(3), we obtain

$$
S_{4 k+4}=2 S_{k+1} \geq 0, \quad S_{4 k+2}=S_{4 k} \geq 0, \quad S_{4 k+3}=S_{4 k+2}+x_{4 k+3}=\frac{S_{4 k+2}+S_{4 k+4}}{2} \geq 0
$$

So, we are left to prove that $S_{4 k+1} \geq 0$. If k is odd, then $S_{4 k}=2 S_{k} \geq 0$; since k is odd, S_{k} is odd as well, so we have $S_{4 k} \geq 2$ and hence $S_{4 k+1}=S_{4 k}+x_{4 k+1} \geq 1$.

Conversely, if k is even, then we have $x_{4 k+1}=x_{2 k+1}=x_{k+1}$, hence $S_{4 k+1}=S_{4 k}+x_{4 k+1}=$ $2 S_{k}+x_{k+1}=S_{k}+S_{k+1} \geq 0$. The step is proved.

Solution 2. We will use the notation of S_{n} and the relations (1)-(3) from the previous solution.

Assume the contrary and consider the minimal n such that $S_{n+1}<0$; surely $n \geq 1$, and from $S_{n} \geq 0$ we get $S_{n}=0, x_{n+1}=-1$. Hence, we are especially interested in the set $M=\left\{n: S_{n}=0\right\}$; our aim is to prove that $x_{n+1}=1$ whenever $n \in M$ thus coming to a contradiction.

For this purpose, we first describe the set M inductively. We claim that (i) M consists only of even numbers, (ii) $2 \in M$, and (iii) for every even $n \geq 4$ we have $n \in M \Longleftrightarrow[n / 4] \in M$. Actually, (i) holds since $S_{n} \equiv n(\bmod 2)$, (ii) is straightforward, while (iii) follows from the relations $S_{4 k+2}=S_{4 k}=2 S_{k}$.

Now, we are left to prove that $x_{n+1}=1$ if $n \in M$. We use the induction on n. The base case is $n=2$, that is, the minimal element of M; here we have $x_{3}=1$, as desired.

For the induction step, consider some $4 \leq n \in M$ and let $m=[n / 4] \in M$; then m is even, and $x_{m+1}=1$ by the induction hypothesis. We prove that $x_{n+1}=x_{m+1}=1$. If $n=4 m$ then we have $x_{n+1}=x_{2 m+1}=x_{m+1}$ since m is even; otherwise, $n=4 m+2$, and $x_{n+1}=-x_{2 m+2}=x_{m+1}$, as desired. The proof is complete.

Comment. Using the inductive definition of set M, one can describe it explicitly. Namely, M consists exactly of all positive integers not containing digits 1 and 3 in their 4 -base representation.

A5. Denote by \mathbb{Q}^{+}the set of all positive rational numbers. Determine all functions $f: \mathbb{Q}^{+} \rightarrow \mathbb{Q}^{+}$ which satisfy the following equation for all $x, y \in \mathbb{Q}^{+}$:

$$
\begin{equation*}
f\left(f(x)^{2} y\right)=x^{3} f(x y) \tag{1}
\end{equation*}
$$

(Switzerland)
Answer. The only such function is $f(x)=\frac{1}{x}$.
Solution. By substituting $y=1$, we get

$$
\begin{equation*}
f\left(f(x)^{2}\right)=x^{3} f(x) \tag{2}
\end{equation*}
$$

Then, whenever $f(x)=f(y)$, we have

$$
x^{3}=\frac{f\left(f(x)^{2}\right)}{f(x)}=\frac{f\left(f(y)^{2}\right)}{f(y)}=y^{3}
$$

which implies $x=y$, so the function f is injective.
Now replace x by $x y$ in (2), and apply (1) twice, second time to $\left(y, f(x)^{2}\right)$ instead of (x, y) :

$$
f\left(f(x y)^{2}\right)=(x y)^{3} f(x y)=y^{3} f\left(f(x)^{2} y\right)=f\left(f(x)^{2} f(y)^{2}\right)
$$

Since f is injective, we get

$$
\begin{aligned}
f(x y)^{2} & =f(x)^{2} f(y)^{2} \\
f(x y) & =f(x) f(y)
\end{aligned}
$$

Therefore, f is multiplicative. This also implies $f(1)=1$ and $f\left(x^{n}\right)=f(x)^{n}$ for all integers n.
Then the function equation (1) can be re-written as

$$
\begin{align*}
f(f(x))^{2} f(y) & =x^{3} f(x) f(y), \\
f(f(x)) & =\sqrt{x^{3} f(x)} . \tag{3}
\end{align*}
$$

Let $g(x)=x f(x)$. Then, by (3), we have

$$
\begin{aligned}
g(g(x)) & =g(x f(x))=x f(x) \cdot f(x f(x))=x f(x)^{2} f(f(x))= \\
& =x f(x)^{2} \sqrt{x^{3} f(x)}=(x f(x))^{5 / 2}=(g(x))^{5 / 2}
\end{aligned}
$$

and, by induction,
for every positive integer n.
Consider (4) for a fixed x. The left-hand side is always rational, so $(g(x))^{(5 / 2)^{n}}$ must be rational for every n. We show that this is possible only if $g(x)=1$. Suppose that $g(x) \neq 1$, and let the prime factorization of $g(x)$ be $g(x)=p_{1}^{\alpha_{1}} \ldots p_{k}^{\alpha_{k}}$ where p_{1}, \ldots, p_{k} are distinct primes and $\alpha_{1}, \ldots, \alpha_{k}$ are nonzero integers. Then the unique prime factorization of (4) is

$$
\underbrace{g(g(\ldots g}_{n+1}(x) \ldots))=(g(x))^{(5 / 2)^{n}}=p_{1}^{(5 / 2)^{n} \alpha_{1}} \cdots p_{k}^{(5 / 2)^{n} \alpha_{k}}
$$

where the exponents should be integers. But this is not true for large values of n, for example $\left(\frac{5}{2}\right)^{n} \alpha_{1}$ cannot be a integer number when $2^{n} \nmid \alpha_{1}$. Therefore, $g(x) \neq 1$ is impossible.

Hence, $g(x)=1$ and thus $f(x)=\frac{1}{x}$ for all x.
The function $f(x)=\frac{1}{x}$ satisfies the equation (1):

$$
f\left(f(x)^{2} y\right)=\frac{1}{f(x)^{2} y}=\frac{1}{\left(\frac{1}{x}\right)^{2} y}=\frac{x^{3}}{x y}=x^{3} f(x y)
$$

Comment. Among $\mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$functions, $f(x)=\frac{1}{x}$ is not the only solution. Another solution is $f_{1}(x)=x^{3 / 2}$. Using transfinite tools, infinitely many other solutions can be constructed.

A6. Suppose that f and g are two functions defined on the set of positive integers and taking positive integer values. Suppose also that the equations $f(g(n))=f(n)+1$ and $g(f(n))=$ $g(n)+1$ hold for all positive integers. Prove that $f(n)=g(n)$ for all positive integer n.
(Germany)
Solution 1. Throughout the solution, by \mathbb{N} we denote the set of all positive integers. For any function $h: \mathbb{N} \rightarrow \mathbb{N}$ and for any positive integer k, define $h^{k}(x)=\underbrace{h(h(\ldots h}_{k}(x) \ldots)$) (in particular, $\left.h^{0}(x)=x\right)$.

Observe that $f\left(g^{k}(x)\right)=f\left(g^{k-1}(x)\right)+1=\cdots=f(x)+k$ for any positive integer k, and similarly $g\left(f^{k}(x)\right)=g(x)+k$. Now let a and b are the minimal values attained by f and g, respectively; say $f\left(n_{f}\right)=a, g\left(n_{g}\right)=b$. Then we have $f\left(g^{k}\left(n_{f}\right)\right)=a+k, g\left(f^{k}\left(n_{g}\right)\right)=b+k$, so the function f attains all values from the set $N_{f}=\{a, a+1, \ldots\}$, while g attains all the values from the set $N_{g}=\{b, b+1, \ldots\}$.

Next, note that $f(x)=f(y)$ implies $g(x)=g(f(x))-1=g(f(y))-1=g(y)$; surely, the converse implication also holds. Now, we say that x and y are similar (and write $x \sim y$) if $f(x)=f(y)$ (equivalently, $g(x)=g(y)$). For every $x \in \mathbb{N}$, we define $[x]=\{y \in \mathbb{N}: x \sim y\}$; surely, $y_{1} \sim y_{2}$ for all $y_{1}, y_{2} \in[x]$, so $[x]=[y]$ whenever $y \in[x]$.

Now we investigate the structure of the sets $[x]$.
Claim 1. Suppose that $f(x) \sim f(y)$; then $x \sim y$, that is, $f(x)=f(y)$. Consequently, each class [x] contains at most one element from N_{f}, as well as at most one element from N_{g}.
Proof. If $f(x) \sim f(y)$, then we have $g(x)=g(f(x))-1=g(f(y))-1=g(y)$, so $x \sim y$. The second statement follows now from the sets of values of f and g.

Next, we clarify which classes do not contain large elements.
Claim 2. For any $x \in \mathbb{N}$, we have $[x] \subseteq\{1,2, \ldots, b-1\}$ if and only if $f(x)=a$. Analogously, $[x] \subseteq\{1,2, \ldots, a-1\}$ if and only if $g(x)=b$.
Proof. We will prove that $[x] \nsubseteq\{1,2, \ldots, b-1\} \Longleftrightarrow f(x)>a$; the proof of the second statement is similar.

Note that $f(x)>a$ implies that there exists some y satisfying $f(y)=f(x)-1$, so $f(g(y))=$ $f(y)+1=f(x)$, and hence $x \sim g(y) \geq b$. Conversely, if $b \leq c \sim x$ then $c=g(y)$ for some $y \in \mathbb{N}$, which in turn follows $f(x)=f(g(y))=f(y)+1 \geq a+1$, and hence $f(x)>a$.

Claim 2 implies that there exists exactly one class contained in $\{1, \ldots, a-1\}$ (that is, the class $\left[n_{g}\right]$), as well as exactly one class contained in $\{1, \ldots, b-1\}$ (the class $\left[n_{f}\right]$). Assume for a moment that $a \leq b$; then $\left[n_{g}\right]$ is contained in $\{1, \ldots, b-1\}$ as well, hence it coincides with $\left[n_{g}\right]$. So, we get that

$$
\begin{equation*}
f(x)=a \Longleftrightarrow g(x)=b \Longleftrightarrow x \sim n_{f} \sim n_{g} . \tag{1}
\end{equation*}
$$

Claim 3. $a=b$.
Proof. By Claim 2, we have $[a] \neq\left[n_{f}\right]$, so $[a]$ should contain some element $a^{\prime} \geq b$ by Claim 2 again. If $a \neq a^{\prime}$, then $[a]$ contains two elements $\geq a$ which is impossible by Claim 1. Therefore, $a=a^{\prime} \geq b$. Similarly, $b \geq a$.

Now we are ready to prove the problem statement. First, we establish the following
Claim 4. For every integer $d \geq 0, f^{d+1}\left(n_{f}\right)=g^{d+1}\left(n_{f}\right)=a+d$.
Proof. Induction on d. For $d=0$, the statement follows from (1) and Claim 3. Next, for $d>1$ from the induction hypothesis we have $f^{d+1}\left(n_{f}\right)=f\left(f^{d}\left(n_{f}\right)\right)=f\left(g^{d}\left(n_{f}\right)\right)=f\left(n_{f}\right)+d=a+d$. The equality $g^{d+1}\left(n_{f}\right)=a+d$ is analogous.

Finally, for each $x \in \mathbb{N}$, we have $f(x)=a+d$ for some $d \geq 0$, so $f(x)=f\left(g^{d}\left(n_{f}\right)\right)$ and hence $x \sim g^{d}\left(n_{f}\right)$. It follows that $g(x)=g\left(g^{d}\left(n_{f}\right)\right)=g^{d+1}\left(n_{f}\right)=a+d=f(x)$ by Claim 4 .

Solution 2. We start with the same observations, introducing the relation \sim and proving Claim 1 from the previous solution.

Note that $f(a)>a$ since otherwise we have $f(a)=a$ and hence $g(a)=g(f(a))=g(a)+1$, which is false.
Claim 2'. $a=b$.
Proof. We can assume that $a \leq b$. Since $f(a) \geq a+1$, there exists some $x \in \mathbb{N}$ such that $f(a)=f(x)+1$, which is equivalent to $f(a)=f(g(x))$ and $a \sim g(x)$. Since $g(x) \geq b \geq a$, by Claim 1 we have $a=g(x) \geq b$, which together with $a \leq b$ proves the Claim.

Now, almost the same method allows to find the values $f(a)$ and $g(a)$.
Claim 3' $. f(a)=g(a)=a+1$.
Proof. Assume the contrary; then $f(a) \geq a+2$, hence there exist some $x, y \in \mathbb{N}$ such that $f(x)=f(a)-2$ and $f(y)=g(x)($ as $g(x) \geq a=b)$. Now we get $f(a)=f(x)+2=f\left(g^{2}(x)\right)$, so $a \sim g^{2}(x) \geq a$, and by Claim 1 we get $a=g^{2}(x)=g(f(y))=1+g(y) \geq 1+a$; this is impossible. The equality $g(a)=a+1$ is similar.

Now, we are prepared for the proof of the problem statement. First, we prove it for $n \geq a$. Claim 4'. For each integer $x \geq a$, we have $f(x)=g(x)=x+1$.
Proof. Induction on x. The base case $x=a$ is provided by Claim 3^{\prime}, while the induction step follows from $f(x+1)=f(g(x))=f(x)+1=(x+1)+1$ and the similar computation for $g(x+1)$.

Finally, for an arbitrary $n \in \mathbb{N}$ we have $g(n) \geq a$, so by Claim 4^{\prime} we have $f(n)+1=$ $f(g(n))=g(n)+1$, hence $f(n)=g(n)$.
Comment. It is not hard now to describe all the functions $f: \mathbb{N} \rightarrow \mathbb{N}$ satisfying the property $f(f(n))=$ $f(n)+1$. For each such function, there exists $n_{0} \in \mathbb{N}$ such that $f(n)=n+1$ for all $n \geq n_{0}$, while for each $n<n_{0}, f(n)$ is an arbitrary number greater than of equal to n_{0} (these numbers may be different for different $n<n_{0}$).

A7. Let a_{1}, \ldots, a_{r} be positive real numbers. For $n>r$, we inductively define

$$
\begin{equation*}
a_{n}=\max _{1 \leq k \leq n-1}\left(a_{k}+a_{n-k}\right) \tag{1}
\end{equation*}
$$

Prove that there exist positive integers $\ell \leq r$ and N such that $a_{n}=a_{n-\ell}+a_{\ell}$ for all $n \geq N$.

Solution 1. First, from the problem conditions we have that each $a_{n}(n>r)$ can be expressed as $a_{n}=a_{j_{1}}+a_{j_{2}}$ with $j_{1}, j_{2}<n, j_{1}+j_{2}=n$. If, say, $j_{1}>r$ then we can proceed in the same way with $a_{j_{1}}$, and so on. Finally, we represent a_{n} in a form

$$
\begin{gather*}
a_{n}=a_{i_{1}}+\cdots+a_{i_{k}}, \tag{2}\\
1 \leq i_{j} \leq r, \quad i_{1}+\cdots+i_{k}=n . \tag{3}
\end{gather*}
$$

Moreover, if $a_{i_{1}}$ and $a_{i_{2}}$ are the numbers in (2) obtained on the last step, then $i_{1}+i_{2}>r$. Hence we can adjust (3) as

$$
\begin{equation*}
1 \leq i_{j} \leq r, \quad i_{1}+\cdots+i_{k}=n, \quad i_{1}+i_{2}>r . \tag{4}
\end{equation*}
$$

On the other hand, suppose that the indices i_{1}, \ldots, i_{k} satisfy the conditions (4). Then, denoting $s_{j}=i_{1}+\cdots+i_{j}$, from (1) we have

$$
a_{n}=a_{s_{k}} \geq a_{s_{k-1}}+a_{i_{k}} \geq a_{s_{k-2}}+a_{i_{k-1}}+a_{i_{k}} \geq \cdots \geq a_{i_{1}}+\cdots+a_{i_{k}} .
$$

Summarizing these observations we get the following
Claim. For every $n>r$, we have

$$
a_{n}=\max \left\{a_{i_{1}}+\cdots+a_{i_{k}}: \text { the collection }\left(i_{1}, \ldots, i_{k}\right) \text { satisfies }(4)\right\} .
$$

Now we denote

$$
s=\max _{1 \leq i \leq r} \frac{a_{i}}{i}
$$

and fix some index $\ell \leq r$ such that $s=\frac{a_{\ell}}{\ell}$.
Consider some $n \geq r^{2} \ell+2 r$ and choose an expansion of a_{n} in the form (2), (4). Then we have $n=i_{1}+\cdots+i_{k} \leq r k$, so $k \geq n / r \geq r \ell+2$. Suppose that none of the numbers i_{3}, \ldots, i_{k} equals ℓ. Then by the pigeonhole principle there is an index $1 \leq j \leq r$ which appears among i_{3}, \ldots, i_{k} at least ℓ times, and surely $j \neq \ell$. Let us delete these ℓ occurrences of j from $\left(i_{1}, \ldots, i_{k}\right)$, and add j occurrences of ℓ instead, obtaining a sequence $\left(i_{1}, i_{2}, i_{3}^{\prime}, \ldots, i_{k^{\prime}}^{\prime}\right)$ also satisfying (4). By Claim, we have

$$
a_{i_{1}}+\cdots+a_{i_{k}}=a_{n} \geq a_{i_{1}}+a_{i_{2}}+a_{i_{3}^{\prime}}+\cdots+a_{i_{k_{k}^{\prime}}^{\prime}}
$$

or, after removing the coinciding terms, $\ell a_{j} \geq j a_{\ell}$, so $\frac{a_{\ell}}{\ell} \leq \frac{a_{j}}{j}$. By the definition of ℓ, this means that $\ell a_{j}=j a_{\ell}$, hence

$$
a_{n}=a_{i_{1}}+a_{i_{2}}+a_{i_{3}^{\prime}}+\cdots+a_{i_{k^{\prime}}^{\prime}}
$$

Thus, for every $n \geq r^{2} \ell+2 r$ we have found a representation of the form (2), (4) with $i_{j}=\ell$ for some $j \geq 3$. Rearranging the indices we may assume that $i_{k}=\ell$.

Finally, observe that in this representation, the indices $\left(i_{1}, \ldots, i_{k-1}\right)$ satisfy the conditions (4) with n replaced by $n-\ell$. Thus, from the Claim we get

$$
a_{n-\ell}+a_{\ell} \geq\left(a_{i_{1}}+\cdots+a_{i_{k-1}}\right)+a_{\ell}=a_{n}
$$

which by (1) implies

$$
a_{n}=a_{n-\ell}+a_{\ell} \quad \text { for each } n \geq r^{2} \ell+2 r,
$$

as desired.

Solution 2. As in the previous solution, we involve the expansion (2), (3), and we fix some index $1 \leq \ell \leq r$ such that

$$
\frac{a_{\ell}}{\ell}=s=\max _{1 \leq i \leq r} \frac{a_{i}}{i} .
$$

Now, we introduce the sequence $\left(b_{n}\right)$ as $b_{n}=a_{n}-s n$; then $b_{\ell}=0$.
We prove by induction on n that $b_{n} \leq 0$, and $\left(b_{n}\right)$ satisfies the same recurrence relation as $\left(a_{n}\right)$. The base cases $n \leq r$ follow from the definition of s. Now, for $n>r$ from the induction hypothesis we have

$$
b_{n}=\max _{1 \leq k \leq n-1}\left(a_{k}+a_{n-k}\right)-n s=\max _{1 \leq k \leq n-1}\left(b_{k}+b_{n-k}+n s\right)-n s=\max _{1 \leq k \leq n-1}\left(b_{k}+b_{n-k}\right) \leq 0,
$$

as required.
Now, if $b_{k}=0$ for all $1 \leq k \leq r$, then $b_{n}=0$ for all n, hence $a_{n}=s n$, and the statement is trivial. Otherwise, define

$$
M=\max _{1 \leq i \leq r}\left|b_{i}\right|, \quad \varepsilon=\min \left\{\left|b_{i}\right|: 1 \leq i \leq r, b_{i}<0\right\} .
$$

Then for $n>r$ we obtain

$$
b_{n}=\max _{1 \leq k \leq n-1}\left(b_{k}+b_{n-k}\right) \geq b_{\ell}+b_{n-\ell}=b_{n-\ell}
$$

so

$$
0 \geq b_{n} \geq b_{n-\ell} \geq b_{n-2 \ell} \geq \cdots \geq-M
$$

Thus, in view of the expansion (2), (3) applied to the sequence $\left(b_{n}\right)$, we get that each b_{n} is contained in a set

$$
T=\left\{b_{i_{1}}+b_{i_{2}}+\cdots+b_{i_{k}}: i_{1}, \ldots, i_{k} \leq r\right\} \cap[-M, 0]
$$

We claim that this set is finite. Actually, for any $x \in T$, let $x=b_{i_{1}}+\cdots+b_{i_{k}}\left(i_{1}, \ldots, i_{k} \leq r\right)$. Then among $b_{i_{j}}$'s there are at most $\frac{M}{\varepsilon}$ nonzero terms (otherwise $\left.x<\frac{M}{\varepsilon} \cdot(-\varepsilon)<-M\right)$. Thus x can be expressed in the same way with $k \leq \frac{M}{\varepsilon}$, and there is only a finite number of such sums.

Finally, for every $t=1,2, \ldots, \ell$ we get that the sequence

$$
b_{r+t}, b_{r+t+\ell}, b_{r+t+2 \ell}, \ldots
$$

is non-decreasing and attains the finite number of values; therefore it is constant from some index. Thus, the sequence $\left(b_{n}\right)$ is periodic with period ℓ from some index N, which means that

$$
b_{n}=b_{n-\ell}=b_{n-\ell}+b_{\ell} \quad \text { for all } n>N+\ell,
$$

and hence

$$
a_{n}=b_{n}+n s=\left(b_{n-\ell}+(n-\ell) s\right)+\left(b_{\ell}+\ell s\right)=a_{n-\ell}+a_{\ell} \quad \text { for all } n>N+\ell,
$$

as desired.

A8. Given six positive numbers a, b, c, d, e, f such that $a<b<c<d<e<f$. Let $a+c+e=S$ and $b+d+f=T$. Prove that

$$
\begin{equation*}
2 S T>\sqrt{3(S+T)(S(b d+b f+d f)+T(a c+a e+c e))} . \tag{1}
\end{equation*}
$$

(South Korea)
Solution 1. We define also $\sigma=a c+c e+a e, \tau=b d+b f+d f$. The idea of the solution is to interpret (1) as a natural inequality on the roots of an appropriate polynomial.

Actually, consider the polynomial

$$
\begin{align*}
& P(x)=(b+d+f)(x-a)(x-c)(x-e)+(a+c+e)(x-b)(x-d)(x-f) \\
&=T\left(x^{3}-S x^{2}+\sigma x-a c e\right)+S\left(x^{3}-T x^{2}+\tau x-b d f\right) \tag{2}
\end{align*}
$$

Surely, P is cubic with leading coefficient $S+T>0$. Moreover, we have

$$
\begin{array}{ll}
P(a)=S(a-b)(a-d)(a-f)<0, & P(c)=S(c-b)(c-d)(c-f)>0 \\
P(e)=S(e-b)(e-d)(e-f)<0, & \\
P(f)=T(f-a)(f-c)(f-e)>0
\end{array}
$$

Hence, each of the intervals $(a, c),(c, e),(e, f)$ contains at least one root of $P(x)$. Since there are at most three roots at all, we obtain that there is exactly one root in each interval (denote them by $\alpha \in(a, c), \beta \in(c, e), \gamma \in(e, f))$. Moreover, the polynomial P can be factorized as

$$
\begin{equation*}
P(x)=(T+S)(x-\alpha)(x-\beta)(x-\gamma) \tag{3}
\end{equation*}
$$

Equating the coefficients in the two representations (2) and (3) of $P(x)$ provides

$$
\alpha+\beta+\gamma=\frac{2 T S}{T+S}, \quad \alpha \beta+\alpha \gamma+\beta \gamma=\frac{S \tau+T \sigma}{T+S}
$$

Now, since the numbers α, β, γ are distinct, we have

$$
0<(\alpha-\beta)^{2}+(\alpha-\gamma)^{2}+(\beta-\gamma)^{2}=2(\alpha+\beta+\gamma)^{2}-6(\alpha \beta+\alpha \gamma+\beta \gamma)
$$

which implies

$$
\frac{4 S^{2} T^{2}}{(T+S)^{2}}=(\alpha+\beta+\gamma)^{2}>3(\alpha \beta+\alpha \gamma+\beta \gamma)=\frac{3(S \tau+T \sigma)}{T+S}
$$

or

$$
4 S^{2} T^{2}>3(T+S)(T \sigma+S \tau)
$$

which is exactly what we need.
Comment 1. In fact, one can locate the roots of $P(x)$ more narrowly: they should lie in the intervals $(a, b),(c, d),(e, f)$.

Surely, if we change all inequality signs in the problem statement to non-strict ones, the (non-strict) inequality will also hold by continuity. One can also find when the equality is achieved. This happens in that case when $P(x)$ is a perfect cube, which immediately implies that $b=c=d=e(=\alpha=\beta=\gamma)$, together with the additional condition that $P^{\prime \prime}(b)=0$. Algebraically,

$$
\begin{array}{rlr}
6(T+S) b-4 T S=0 & \Longleftrightarrow & 3 b(a+4 b+f)=2(a+2 b)(2 b+f) \\
& \Longleftrightarrow & f=\frac{b(4 b-a)}{2 a+b}=b\left(1+\frac{3(b-a)}{2 a+b}\right)>b .
\end{array}
$$

This means that for every pair of numbers a, b such that $0<a<b$, there exists $f>b$ such that the point (a, b, b, b, b, f) is a point of equality.

Solution 2. Let

$$
U=\frac{1}{2}\left((e-a)^{2}+(c-a)^{2}+(e-c)^{2}\right)=S^{2}-3(a c+a e+c e)
$$

and

$$
V=\frac{1}{2}\left((f-b)^{2}+(f-d)^{2}+(d-b)^{2}\right)=T^{2}-3(b d+b f+d f) .
$$

Then

$$
\begin{aligned}
& \text { (L.H.S. })^{2}-(\text { R.H.S. })^{2}=(2 S T)^{2}-(S+T)(S \cdot 3(b d+b f+d f)+T \cdot 3(a c+a e+c e))= \\
& \quad=4 S^{2} T^{2}-(S+T)\left(S\left(T^{2}-V\right)+T\left(S^{2}-U\right)\right)=(S+T)(S V+T U)-S T(T-S)^{2},
\end{aligned}
$$

and the statement is equivalent with

$$
\begin{equation*}
(S+T)(S V+T U)>S T(T-S)^{2} . \tag{4}
\end{equation*}
$$

By the Cauchy-Schwarz inequality,

$$
\begin{equation*}
(S+T)(T U+S V) \geq(\sqrt{S \cdot T U}+\sqrt{T \cdot S V})^{2}=S T(\sqrt{U}+\sqrt{V})^{2} . \tag{5}
\end{equation*}
$$

Estimate the quantities \sqrt{U} and \sqrt{V} by the QM-AM inequality with the positive terms $(e-c)^{2}$ and $(d-b)^{2}$ being omitted:

$$
\begin{align*}
\sqrt{U}+\sqrt{V} & >\sqrt{\frac{(e-a)^{2}+(c-a)^{2}}{2}}+\sqrt{\frac{(f-b)^{2}+(f-d)^{2}}{2}} \\
& >\frac{(e-a)+(c-a)}{2}+\frac{(f-b)+(f-d)}{2}=\left(f-\frac{d}{2}-\frac{b}{2}\right)+\left(\frac{e}{2}+\frac{c}{2}-a\right) \\
& =(T-S)+\frac{3}{2}(e-d)+\frac{3}{2}(c-b)>T-S . \tag{6}
\end{align*}
$$

The estimates (5) and (6) prove (4) and hence the statement.
Solution 3. We keep using the notations σ and τ from Solution 1. Moreover, let $s=c+e$. Note that

$$
(c-b)(c-d)+(e-f)(e-d)+(e-f)(c-b)<0
$$

since each summand is negative. This rewrites as

$$
\begin{align*}
(b d+b f+d f)-(a c+c e+a e) & <(c+e)(b+d+f-a-c-e), \text { or } \\
\tau-\sigma & <s(T-S) . \tag{7}
\end{align*}
$$

Then we have

$$
\begin{aligned}
S \tau+T \sigma & =S(\tau-\sigma)+(S+T) \sigma<S s(T-S)+(S+T)(c e+a s) \\
& \leq S s(T-S)+(S+T)\left(\frac{s^{2}}{4}+(S-s) s\right)=s\left(2 S T-\frac{3}{4}(S+T) s\right) .
\end{aligned}
$$

Using this inequality together with the AM-GM inequality we get

$$
\begin{aligned}
\sqrt{\frac{3}{4}(S+T)(S \tau+T \sigma)} & <\sqrt{\frac{3}{4}(S+T) s\left(2 S T-\frac{3}{4}(S+T) s\right)} \\
& \leq \frac{\frac{3}{4}(S+T) s+2 S T-\frac{3}{4}(S+T) s}{2}=S T .
\end{aligned}
$$

Hence,

$$
2 S T>\sqrt{3(S+T)(S(b d+b f+d f)+T(a c+a e+c e))}
$$

Comment 2. The expression (7) can be found by considering the sum of the roots of the quadratic polynomial $q(x)=(x-b)(x-d)(x-f)-(x-a)(x-c)(x-e)$.

Solution 4. We introduce the expressions σ and τ as in the previous solutions. The idea of the solution is to change the values of variables a, \ldots, f keeping the left-hand side unchanged and increasing the right-hand side; it will lead to a simpler inequality which can be proved in a direct way.

Namely, we change the variables (i) keeping the (non-strict) inequalities $a \leq b \leq c \leq d \leq$ $e \leq f$; (ii) keeping the values of sums S and T unchanged; and finally (iii) increasing the values of σ and τ. Then the left-hand side of (1) remains unchanged, while the right-hand side increases. Hence, the inequality (1) (and even a non-strict version of (1)) for the changed values would imply the same (strict) inequality for the original values.

First, we find the sufficient conditions for (ii) and (iii) to be satisfied.
Lemma. Let $x, y, z>0$; denote $U(x, y, z)=x+y+z, v(x, y, z)=x y+x z+y z$. Suppose that $x^{\prime}+y^{\prime}=x+y$ but $|x-y| \geq\left|x^{\prime}-y^{\prime}\right|$; then we have $U\left(x^{\prime}, y^{\prime}, z\right)=U(x, y, z)$ and $v\left(x^{\prime}, y^{\prime}, z\right) \geq$ $v(x, y, z)$ with equality achieved only when $|x-y|=\left|x^{\prime}-y^{\prime}\right|$.
Proof. The first equality is obvious. For the second, we have

$$
\begin{aligned}
v\left(x^{\prime}, y^{\prime}, z\right)=z\left(x^{\prime}+y^{\prime}\right)+x^{\prime} y^{\prime} & =z\left(x^{\prime}+y^{\prime}\right)+\frac{\left(x^{\prime}+y^{\prime}\right)^{2}-\left(x^{\prime}-y^{\prime}\right)^{2}}{4} \\
& \geq z(x+y)+\frac{(x+y)^{2}-(x-y)^{2}}{4}=v(x, y, z)
\end{aligned}
$$

with the equality achieved only for $\left(x^{\prime}-y^{\prime}\right)^{2}=(x-y)^{2} \Longleftrightarrow\left|x^{\prime}-y^{\prime}\right|=|x-y|$, as desired.

Now, we apply Lemma several times making the following changes. For each change, we denote the new values by the same letters to avoid cumbersome notations.

1. Let $k=\frac{d-c}{2}$. Replace (b, c, d, e) by $(b+k, c+k, d-k, e-k)$. After the change we have $a<b<c=d<e<f$, the values of S, T remain unchanged, but σ, τ strictly increase by Lemma.
2. Let $\ell=\frac{e-d}{2}$. Replace (c, d, e, f) by $(c+\ell, d+\ell, e-\ell, f-\ell)$. After the change we have $a<b<c=d=e<f$, the values of S, T remain unchanged, but σ, τ strictly increase by the Lemma.
3. Finally, let $m=\frac{c-b}{3}$. Replace (a, b, c, d, e, f) by $(a+2 m, b+2 m, c-m, d-m, e-m, f-m)$. After the change, we have $a<b=c=d=e<f$ and S, T are unchanged. To check (iii), we observe that our change can be considered as a composition of two changes: $(a, b, c, d) \rightarrow$ $(a+m, b+m, c-m, d-m)$ and $(a, b, e, f) \rightarrow(a+m, b+m, e-m, f-m)$. It is easy to see that each of these two consecutive changes satisfy the conditions of the Lemma, hence the values of σ and τ increase.

Finally, we come to the situation when $a<b=c=d=e<f$, and we need to prove the inequality

$$
\begin{align*}
2(a+2 b)(2 b+f) & \geq \sqrt{3(a+4 b+f)\left((a+2 b)\left(b^{2}+2 b f\right)+(2 b+f)\left(2 a b+b^{2}\right)\right)} \\
& =\sqrt{3 b(a+4 b+f) \cdot((a+2 b)(b+2 f)+(2 b+f)(2 a+b))} \tag{8}
\end{align*}
$$

Now, observe that

$$
2 \cdot 2(a+2 b)(2 b+f)=3 b(a+4 b+f)+((a+2 b)(b+2 f)+(2 a+b)(2 b+f))
$$

Hence (4) rewrites as

$$
\begin{aligned}
3 b(a+4 b+f) & +((a+2 b)(b+2 f)+(2 a+b)(2 b+f)) \\
& \geq 2 \sqrt{3 b(a+4 b+f) \cdot((a+2 b)(b+2 f)+(2 b+f)(2 a+b))}
\end{aligned}
$$

which is simply the AM-GM inequality.
Comment 3. Here, we also can find all the cases of equality. Actually, it is easy to see that if some two numbers among b, c, d, e are distinct then one can use Lemma to increase the right-hand side of (1). Further, if $b=c=d=e$, then we need equality in (4); this means that we apply AM-GM to equal numbers, that is,

$$
3 b(a+4 b+f)=(a+2 b)(b+2 f)+(2 a+b)(2 b+f),
$$

which leads to the same equality as in Comment 1.

Combinatorics

C1. In a concert, 20 singers will perform. For each singer, there is a (possibly empty) set of other singers such that he wishes to perform later than all the singers from that set. Can it happen that there are exactly 2010 orders of the singers such that all their wishes are satisfied?
(Austria)
Answer. Yes, such an example exists.
Solution. We say that an order of singers is good if it satisfied all their wishes. Next, we say that a number N is realizable by k singers (or k-realizable) if for some set of wishes of these singers there are exactly N good orders. Thus, we have to prove that a number 2010 is 20-realizable.

We start with the following simple
Lemma. Suppose that numbers n_{1}, n_{2} are realizable by respectively k_{1} and k_{2} singers. Then the number $n_{1} n_{2}$ is ($k_{1}+k_{2}$)-realizable.
Proof. Let the singers $A_{1}, \ldots, A_{k_{1}}$ (with some wishes among them) realize n_{1}, and the singers B_{1}, $\ldots, B_{k_{2}}$ (with some wishes among them) realize n_{2}. Add to each singer B_{i} the wish to perform later than all the singers A_{j}. Then, each good order of the obtained set of singers has the form $\left(A_{i_{1}}, \ldots, A_{i_{k_{1}}}, B_{j_{1}}, \ldots, B_{j_{k_{2}}}\right)$, where $\left(A_{i_{1}}, \ldots, A_{i_{k_{1}}}\right)$ is a good order for A_{i} 's and $\left(B_{j_{1}}, \ldots, B_{j_{k_{2}}}\right)$ is a good order for B_{j} 's. Conversely, each order of this form is obviously good. Hence, the number of good orders is $n_{1} n_{2}$.

In view of Lemma, we show how to construct sets of singers containing 4, 3 and 13 singers and realizing the numbers 5,6 and 67 , respectively. Thus the number $2010=6 \cdot 5 \cdot 67$ will be realizable by $4+3+13=20$ singers. These companies of singers are shown in Figs. 1-3; the wishes are denoted by arrows, and the number of good orders for each Figure stands below in the brackets.

(5)

Fig. 1

(67)

Fig. 3

For Fig. 1, there are exactly 5 good orders $(a, b, c, d),(a, b, d, c),(b, a, c, d),(b, a, d, c)$, (b, d, a, c). For Fig. 2, each of 6 orders is good since there are no wishes.

Finally, for Fig. 3, the order of a_{1}, \ldots, a_{11} is fixed; in this line, singer x can stand before each of $a_{i}(i \leq 9)$, and singer y can stand after each of $a_{j}(j \geq 5)$, thus resulting in $9 \cdot 7=63$ cases. Further, the positions of x and y in this line determine the whole order uniquely unless both of them come between the same pair (a_{i}, a_{i+1}) (thus $\left.5 \leq i \leq 8\right)$; in the latter cases, there are two orders instead of 1 due to the order of x and y. Hence, the total number of good orders is $63+4=67$, as desired.

Comment. The number 20 in the problem statement is not sharp and is put there to respect the original formulation. So, if necessary, the difficulty level of this problem may be adjusted by replacing 20 by a smaller number. Here we present some improvements of the example leading to a smaller number of singers.

Surely, each example with <20 singers can be filled with some "super-stars" who should perform at the very end in a fixed order. Hence each of these improvements provides a different solution for the problem. Moreover, the large variety of ideas standing behind these examples allows to suggest that there are many other examples.

1. Instead of building the examples realizing 5 and 6 , it is more economic to make an example realizing 30 ; it may seem even simpler. Two possible examples consisting of 5 and 6 singers are shown in Fig. 4; hence the number 20 can be decreased to 19 or 18 .

For Fig. 4a, the order of a_{1}, \ldots, a_{4} is fixed, there are 5 ways to add x into this order, and there are 6 ways to add y into the resulting order of a_{1}, \ldots, a_{4}, x. Hence there are $5 \cdot 6=30$ good orders.

On Fig. 4b, for 5 singers $a, b_{1}, b_{2}, c_{1}, c_{2}$ there are $5!=120$ orders at all. Obviously, exactly one half of them satisfies the wish $b_{1} \leftarrow b_{2}$, and exactly one half of these orders satisfies another wish $c_{1} \leftarrow c_{2}$; hence, there are exactly $5!/ 4=30$ good orders.

2. One can merge the examples for 30 and 67 shown in Figs. 4 b and 3 in a smarter way, obtaining a set of 13 singers representing 2010. This example is shown in Fig. 5; an arrow from/to group $\left\{b_{1}, \ldots, b_{5}\right\}$ means that there exists such arrow from each member of this group.

Here, as in Fig. 4b, one can see that there are exactly 30 orders of $b_{1}, \ldots, b_{5}, a_{6}, \ldots, a_{11}$ satisfying all their wishes among themselves. Moreover, one can prove in the same way as for Fig. 3 that each of these orders can be complemented by x and y in exactly 67 ways, hence obtaining $30 \cdot 67=2010$ good orders at all.

Analogously, one can merge the examples in Figs. 1-3 to represent 2010 by 13 singers as is shown in Fig. 6.

Fig. 7
3. Finally, we will present two other improvements; the proofs are left to the reader. The graph in Fig. 7 shows how 10 singers can represent 67 . Moreover, even a company of 10 singers representing 2010 can be found; this company is shown in Fig. 8.

C2. On some planet, there are 2^{N} countries $(N \geq 4)$. Each country has a flag N units wide and one unit high composed of N fields of size 1×1, each field being either yellow or blue. No two countries have the same flag.

We say that a set of N flags is diverse if these flags can be arranged into an $N \times N$ square so that all N fields on its main diagonal will have the same color. Determine the smallest positive integer M such that among any M distinct flags, there exist N flags forming a diverse set.
(Croatia)
Answer. $M=2^{N-2}+1$.
Solution. When speaking about the diagonal of a square, we will always mean the main diagonal.

Let M_{N} be the smallest positive integer satisfying the problem condition. First, we show that $M_{N}>2^{N-2}$. Consider the collection of all 2^{N-2} flags having yellow first squares and blue second ones. Obviously, both colors appear on the diagonal of each $N \times N$ square formed by these flags.

We are left to show that $M_{N} \leq 2^{N-2}+1$, thus obtaining the desired answer. We start with establishing this statement for $N=4$.

Suppose that we have 5 flags of length 4 . We decompose each flag into two parts of 2 squares each; thereby, we denote each flag as $L R$, where the 2×1 flags $L, R \in \mathcal{S}=\{\mathrm{BB}, \mathrm{BY}, \mathrm{YB}, \mathrm{YY}\}$ are its left and right parts, respectively. First, we make two easy observations on the flags 2×1 which can be checked manually.
(i) For each $A \in \mathcal{S}$, there exists only one 2×1 flag $C \in \mathcal{S}$ (possibly $C=A$) such that A and C cannot form a 2×2 square with monochrome diagonal (for part BB, that is YY, and for BY that is YB).
(ii) Let $A_{1}, A_{2}, A_{3} \in \mathcal{S}$ be three distinct elements; then two of them can form a 2×2 square with yellow diagonal, and two of them can form a 2×2 square with blue diagonal (for all parts but BB, a pair (BY, YB) fits for both statements, while for all parts but BY, these pairs are (YB, YY) and (BB, YB)).

Now, let ℓ and r be the numbers of distinct left and right parts of our 5 flags, respectively. The total number of flags is $5 \leq r \ell$, hence one of the factors (say, r) should be at least 3 . On the other hand, $\ell, r \leq 4$, so there are two flags with coinciding right part; let them be $L_{1} R_{1}$ and $L_{2} R_{1}\left(L_{1} \neq L_{2}\right)$.

Next, since $r \geq 3$, there exist some flags $L_{3} R_{3}$ and $L_{4} R_{4}$ such that R_{1}, R_{3}, R_{4} are distinct. Let $L^{\prime} R^{\prime}$ be the remaining flag. By (i), one of the pairs $\left(L^{\prime}, L_{1}\right)$ and (L^{\prime}, L_{2}) can form a 2×2 square with monochrome diagonal; we can assume that L^{\prime}, L_{2} form a square with a blue diagonal. Finally, the right parts of two of the flags $L_{1} R_{1}, L_{3} R_{3}, L_{4} R_{4}$ can also form a 2×2 square with a blue diagonal by (ii). Putting these 2×2 squares on the diagonal of a 4×4 square, we find a desired arrangement of four flags.

We are ready to prove the problem statement by induction on N; actually, above we have proved the base case $N=4$. For the induction step, assume that $N>4$, consider any $2^{N-2}+1$ flags of length N, and arrange them into a large flag of size $\left(2^{N-2}+1\right) \times N$. This flag contains a non-monochrome column since the flags are distinct; we may assume that this column is the first one. By the pigeonhole principle, this column contains at least $\left\lceil\frac{2^{N-2}+1}{2}\right\rceil=2^{N-3}+1$ squares of one color (say, blue). We call the flags with a blue first square good.

Consider all the good flags and remove the first square from each of them. We obtain at least $2^{N-3}+1 \geq M_{N-1}$ flags of length $N-1$; by the induction hypothesis, $N-1$ of them
can form a square Q with the monochrome diagonal. Now, returning the removed squares, we obtain a rectangle $(N-1) \times N$, and our aim is to supplement it on the top by one more flag.

If Q has a yellow diagonal, then we can take each flag with a yellow first square (it exists by a choice of the first column; moreover, it is not used in Q). Conversely, if the diagonal of Q is blue then we can take any of the $\geq 2^{N-3}+1-(N-1)>0$ remaining good flags. So, in both cases we get a desired $N \times N$ square.

Solution 2. We present a different proof of the estimate $M_{N} \leq 2^{N-2}+1$. We do not use the induction, involving Hall's lemma on matchings instead.

Consider arbitrary $2^{N-2}+1$ distinct flags and arrange them into a large $\left(2^{N-2}+1\right) \times N$ flag. Construct two bipartite graphs $G_{\mathrm{y}}=\left(V \cup V^{\prime}, E_{\mathrm{y}}\right)$ and $G_{\mathrm{b}}=\left(V \cup V^{\prime}, E_{\mathrm{b}}\right)$ with the common set of vertices as follows. Let V and V^{\prime} be the set of columns and the set of flags under consideration, respectively. Next, let the edge (c, f) appear in E_{y} if the intersection of column c and flag f is yellow, and $(c, f) \in E_{\mathrm{b}}$ otherwise. Then we have to prove exactly that one of the graphs G_{y} and G_{b} contains a matching with all the vertices of V involved.

Assume that these matchings do not exist. By Hall's lemma, it means that there exist two sets of columns $S_{\mathrm{y}}, S_{\mathrm{b}} \subset V$ such that $\left|E_{\mathrm{y}}\left(S_{\mathrm{y}}\right)\right| \leq\left|S_{\mathrm{y}}\right|-1$ and $\left|E_{\mathrm{b}}\left(S_{\mathrm{b}}\right)\right| \leq\left|S_{\mathrm{b}}\right|-1$ (in the left-hand sides, $E_{\mathrm{y}}\left(S_{\mathrm{y}}\right)$ and $E_{\mathrm{b}}\left(S_{\mathrm{b}}\right)$ denote respectively the sets of all vertices connected to S_{y} and S_{b} in the corresponding graphs). Our aim is to prove that this is impossible. Note that $S_{\mathrm{y}}, S_{\mathrm{b}} \neq V$ since $N \leq 2^{N-2}+1$.

First, suppose that $S_{\mathrm{y}} \cap S_{\mathrm{b}} \neq \varnothing$, so there exists some $c \in S_{\mathrm{y}} \cap S_{\mathrm{b}}$. Note that each flag is connected to c either in G_{y} or in G_{b}, hence $E_{\mathrm{y}}\left(S_{\mathrm{y}}\right) \cup E_{\mathrm{b}}\left(S_{\mathrm{b}}\right)=V^{\prime}$. Hence we have $2^{N-2}+1=\left|V^{\prime}\right| \leq\left|E_{\mathrm{y}}\left(S_{\mathrm{y}}\right)\right|+\left|E_{\mathrm{b}}\left(S_{\mathrm{b}}\right)\right| \leq\left|S_{\mathrm{y}}\right|+\left|S_{\mathrm{b}}\right|-2 \leq 2 N-4$; this is impossible for $N \geq 4$.

So, we have $S_{\mathrm{y}} \cap S_{\mathrm{b}}=\varnothing$. Let $y=\left|S_{\mathrm{y}}\right|, b=\left|S_{\mathrm{b}}\right|$. From the construction of our graph, we have that all the flags in the set $V^{\prime \prime}=V^{\prime} \backslash\left(E_{\mathrm{y}}\left(S_{\mathrm{y}}\right) \cup E_{\mathrm{b}}\left(S_{\mathrm{b}}\right)\right)$ have blue squares in the columns of S_{y} and yellow squares in the columns of S_{b}. Hence the only undetermined positions in these flags are the remaining $N-y-b$ ones, so $2^{N-y-b} \geq\left|V^{\prime \prime}\right| \geq\left|V^{\prime}\right|-\left|E_{\mathrm{y}}\left(S_{\mathrm{y}}\right)\right|-\left|E_{\mathrm{b}}\left(S_{\mathrm{b}}\right)\right| \geq$ $2^{N-2}+1-(y-1)-(b-1)$, or, denoting $c=y+b, 2^{N-c}+c>2^{N-2}+2$. This is impossible since $N \geq c \geq 2$.

C3. 2500 chess kings have to be placed on a 100×100 chessboard so that
(i) no king can capture any other one (i.e. no two kings are placed in two squares sharing a common vertex);
(ii) each row and each column contains exactly 25 kings.

Find the number of such arrangements. (Two arrangements differing by rotation or symmetry are supposed to be different.)
(Russia)
Answer. There are two such arrangements.
Solution. Suppose that we have an arrangement satisfying the problem conditions. Divide the board into 2×2 pieces; we call these pieces blocks. Each block can contain not more than one king (otherwise these two kings would attack each other); hence, by the pigeonhole principle each block must contain exactly one king.

Now assign to each block a letter T or B if a king is placed in its top or bottom half, respectively. Similarly, assign to each block a letter L or R if a king stands in its left or right half. So we define T-blocks, B-blocks, L-blocks, and R-blocks. We also combine the letters; we call a block a TL-block if it is simultaneously T-block and L-block. Similarly we define TR-blocks, $B L$-blocks, and BR-blocks. The arrangement of blocks determines uniquely the arrangement of kings; so in the rest of the solution we consider the 50×50 system of blocks (see Fig. 1). We identify the blocks by their coordinate pairs; the pair (i, j), where $1 \leq i, j \leq 50$, refers to the j th block in the i th row (or the i th block in the j th column). The upper-left block is $(1,1)$.

The system of blocks has the following properties..
(i^{\prime}) If (i, j) is a B-block then $(i+1, j)$ is a B-block: otherwise the kings in these two blocks can take each other. Similarly: if (i, j) is a T-block then $(i-1, j)$ is a T-block; if (i, j) is an L-block then $(i, j-1)$ is an L-block; if (i, j) is an R -block then $(i, j+1)$ is an R -block.
(ii') Each column contains exactly 25 L-blocks and 25 R-blocks, and each row contains exactly 25 T-blocks and 25 B-blocks. In particular, the total number of L-blocks (or R-blocks, or T-blocks, or B-blocks) is equal to $25 \cdot 50=1250$.

Consider any B-block of the form $(1, j)$. By (i^{\prime}), all blocks in the j th column are B-blocks; so we call such a column B-column. By (ii'), we have 25 B -blocks in the first row, so we obtain 25 B-columns. These 25 B-columns contain 1250 B-blocks, hence all blocks in the remaining columns are T-blocks, and we obtain $25 T$-columns. Similarly, there are exactly $25 L$-rows and exactly $25 R$-rows.

Now consider an arbitrary pair of a T-column and a neighboring B-column (columns with numbers j and $j+1$).

Fig. 1

Fig. 2

Case 1. Suppose that the j th column is a T-column, and the $(j+1)$ th column is a Bcolumn. Consider some index i such that the i th row is an L-row; then $(i, j+1)$ is a BL-block. Therefore, $(i+1, j)$ cannot be a TR-block (see Fig. 2), hence $(i+1, j)$ is a TL-block, thus the
$(i+1)$ th row is an L-row. Now, choosing the i th row to be the topmost L-row, we successively obtain that all rows from the i th to the 50 th are L-rows. Since we have exactly 25 L-rows, it follows that the rows from the 1 st to the 25 th are R-rows, and the rows from the 26 th to the 50th are L-rows.

Now consider the neighboring R-row and L-row (that are the rows with numbers 25 and 26). Replacing in the previous reasoning rows by columns and vice versa, the columns from the 1 st to the 25 th are T-columns, and the columns from the 26 th to the 50 th are B-columns. So we have a unique arrangement of blocks that leads to the arrangement of kings satisfying the condition of the problem (see Fig. 3).

Fig. 3

Fig. 4

Case 2. Suppose that the j th column is a B-column, and the $(j+1)$ th column is a T-column. Repeating the arguments from Case 1, we obtain that the rows from the 1st to the 25th are L-rows (and all other rows are R-rows), the columns from the 1st to the 25 th are B-columns (and all other columns are T-columns), so we find exactly one more arrangement of kings (see Fig. 4).

C4. Six stacks S_{1}, \ldots, S_{6} of coins are standing in a row. In the beginning every stack contains a single coin. There are two types of allowed moves:
Move 1: If stack S_{k} with $1 \leq k \leq 5$ contains at least one coin, you may remove one coin from S_{k} and add two coins to S_{k+1}.
Move 2: If stack S_{k} with $1 \leq k \leq 4$ contains at least one coin, then you may remove one coin from S_{k} and exchange stacks S_{k+1} and S_{k+2}.
Decide whether it is possible to achieve by a sequence of such moves that the first five stacks are empty, whereas the sixth stack S_{6} contains exactly $2010^{2010^{2010}}$ coins.
$\mathbf{C} 4^{\prime}$. Same as Problem C4, but the constant $2010^{2010^{2010}}$ is replaced by 2010^{2010}.
(Netherlands)
Answer. Yes (in both variants of the problem). There exists such a sequence of moves.
Solution. Denote by $\left(a_{1}, a_{2}, \ldots, a_{n}\right) \rightarrow\left(a_{1}^{\prime}, a_{2}^{\prime}, \ldots, a_{n}^{\prime}\right)$ the following: if some consecutive stacks contain a_{1}, \ldots, a_{n} coins, then it is possible to perform several allowed moves such that the stacks contain $a_{1}^{\prime}, \ldots, a_{n}^{\prime}$ coins respectively, whereas the contents of the other stacks remain unchanged.

Let $A=2010^{2010}$ or $A=2010^{2010^{2010}}$, respectively. Our goal is to show that

$$
(1,1,1,1,1,1) \rightarrow(0,0,0,0,0, A)
$$

First we prove two auxiliary observations.
Lemma 1. $(a, 0,0) \rightarrow\left(0,2^{a}, 0\right)$ for every $a \geq 1$.
Proof. We prove by induction that $(a, 0,0) \rightarrow\left(a-k, 2^{k}, 0\right)$ for every $1 \leq k \leq a$. For $k=1$, apply Move 1 to the first stack:

$$
(a, 0,0) \rightarrow(a-1,2,0)=\left(a-1,2^{1}, 0\right)
$$

Now assume that $k<a$ and the statement holds for some $k<a$. Starting from $\left(a-k, 2^{k}, 0\right)$, apply Move 1 to the middle stack 2^{k} times, until it becomes empty. Then apply Move 2 to the first stack:

$$
\left(a-k, 2^{k}, 0\right) \rightarrow\left(a-k, 2^{k}-1,2\right) \rightarrow \cdots \rightarrow\left(a-k, 0,2^{k+1}\right) \rightarrow\left(a-k-1,2^{k+1}, 0\right)
$$

Hence,

$$
(a, 0,0) \rightarrow\left(a-k, 2^{k}, 0\right) \rightarrow\left(a-k-1,2^{k+1}, 0\right)
$$

Lemma 2. For every positive integer n, let $P_{n}=\underbrace{2^{2 \cdot b^{2}}}_{n}$ (e.g. $P_{3}=2^{2^{2}}=16$). Then $(a, 0,0,0) \rightarrow\left(0, P_{a}, 0,0\right)$ for every $a \geq 1$.
Proof. Similarly to Lemma 1 , we prove that $(a, 0,0,0) \rightarrow\left(a-k, P_{k}, 0,0\right)$ for every $1 \leq k \leq a$.
For $k=1$, apply Move 1 to the first stack:

$$
(a, 0,0,0) \rightarrow(a-1,2,0,0)=\left(a-1, P_{1}, 0,0\right)
$$

Now assume that the lemma holds for some $k<a$. Starting from ($a-k, P_{k}, 0,0$), apply Lemma 1, then apply Move 1 to the first stack:

$$
\left(a-k, P_{k}, 0,0\right) \rightarrow\left(a-k, 0,2^{P_{k}}, 0\right)=\left(a-k, 0, P_{k+1}, 0\right) \rightarrow\left(a-k-1, P_{k+1}, 0,0\right)
$$

Therefore,

$$
(a, 0,0,0) \rightarrow\left(a-k, P_{k}, 0,0\right) \rightarrow\left(a-k-1, P_{k+1}, 0,0\right)
$$

Now we prove the statement of the problem.
First apply Move 1 to stack 5 , then apply Move 2 to stacks S_{4}, S_{3}, S_{2} and S_{1} in this order. Then apply Lemma 2 twice:

$$
\begin{gathered}
(1,1,1,1,1,1) \rightarrow(1,1,1,1,0,3) \rightarrow(1,1,1,0,3,0) \rightarrow(1,1,0,3,0,0) \rightarrow(1,0,3,0,0,0) \rightarrow \\
\quad \rightarrow(0,3,0,0,0,0) \rightarrow\left(0,0, P_{3}, 0,0,0\right)=(0,0,16,0,0,0) \rightarrow\left(0,0,0, P_{16}, 0,0\right) .
\end{gathered}
$$

We already have more than A coins in stack S_{4}, since

$$
A \leq 2010^{2010^{2010}}<\left(2^{11}\right)^{20100^{2010}}=2^{11 \cdot 2010^{2010}}<2^{20100^{2011}}<2^{\left(2^{11}\right)^{2011}}=2^{2^{11 \cdot 2011}}<2^{2^{2^{15}}}<P_{16} .
$$

To decrease the number of coins in stack S_{4}, apply Move 2 to this stack repeatedly until its size decreases to $A / 4$. (In every step, we remove a coin from S_{4} and exchange the empty stacks S_{5} and S_{6}.)

$$
\begin{aligned}
\left(0,0,0, P_{16}, 0,0\right) \rightarrow & \left(0,0,0, P_{16}-1,0,0\right) \rightarrow\left(0,0,0, P_{16}-2,0,0\right) \rightarrow \\
& \rightarrow \cdots \rightarrow(0,0,0, A / 4,0,0) .
\end{aligned}
$$

Finally, apply Move 1 repeatedly to empty stacks S_{4} and S_{5} :

$$
(0,0,0, A / 4,0,0) \rightarrow \cdots \rightarrow(0,0,0,0, A / 2,0) \rightarrow \cdots \rightarrow(0,0,0,0,0, A)
$$

Comment 1. Starting with only 4 stack, it is not hard to check manually that we can achieve at most 28 coins in the last position. However, around 5 and 6 stacks the maximal number of coins explodes. With 5 stacks it is possible to achieve more than $2^{2^{14}}$ coins. With 6 stacks the maximum is greater than $P_{P_{2^{14}}}$.

It is not hard to show that the numbers 2010^{2010} and $2010^{2010^{2010}}$ in the problem can be replaced by any nonnegative integer up to $P_{P_{214}}$.
Comment 2. The simpler variant $\mathrm{C} 4^{\prime}$ of the problem can be solved without Lemma 2:

$$
\begin{aligned}
(1,1,1,1,1,1) & \rightarrow(0,3,1,1,1,1) \rightarrow(0,1,5,1,1,1) \rightarrow(0,1,1,9,1,1) \rightarrow \\
& \rightarrow(0,1,1,1,17,1) \rightarrow(0,1,1,1,0,35) \rightarrow(0,1,1,0,35,0) \rightarrow(0,1,0,35,0,0) \rightarrow \\
& \rightarrow(0,0,35,0,0,0) \rightarrow\left(0,0,1,2^{34}, 0,0\right) \rightarrow\left(0,0,1,0,2^{2^{34}}, 0\right) \rightarrow\left(0,0,0,2^{2^{34}}, 0,0\right) \\
& \rightarrow\left(0,0,0,2^{2^{34}}-1,0,0\right) \rightarrow \ldots \rightarrow(0,0,0, A / 4,0,0) \rightarrow(0,0,0,0, A / 2,0) \rightarrow(0,0,0,0,0, A) .
\end{aligned}
$$

For this reason, the PSC suggests to consider the problem C4 as well. Problem C4 requires more invention and technical care. On the other hand, the problem statement in C 4 ' hides the fact that the resulting amount of coins can be such incredibly huge and leaves this discovery to the students.

C5. $n \geq 4$ players participated in a tennis tournament. Any two players have played exactly one game, and there was no tie game. We call a company of four players bad if one player was defeated by the other three players, and each of these three players won a game and lost another game among themselves. Suppose that there is no bad company in this tournament. Let w_{i} and ℓ_{i} be respectively the number of wins and losses of the i th player. Prove that

$$
\begin{equation*}
\sum_{i=1}^{n}\left(w_{i}-\ell_{i}\right)^{3} \geq 0 \tag{1}
\end{equation*}
$$

(South Korea)
Solution. For any tournament T satisfying the problem condition, denote by $S(T)$ sum under consideration, namely

$$
S(T)=\sum_{i=1}^{n}\left(w_{i}-\ell_{i}\right)^{3} .
$$

First, we show that the statement holds if a tournament T has only 4 players. Actually, let $A=\left(a_{1}, a_{2}, a_{3}, a_{4}\right)$ be the number of wins of the players; we may assume that $a_{1} \geq a_{2} \geq a_{3} \geq a_{4}$. We have $a_{1}+a_{2}+a_{3}+a_{4}=\binom{4}{2}=6$, hence $a_{4} \leq 1$. If $a_{4}=0$, then we cannot have $a_{1}=a_{2}=a_{3}=2$, otherwise the company of all players is bad. Hence we should have $A=(3,2,1,0)$, and $S(T)=3^{3}+1^{3}+(-1)^{3}+(-3)^{3}=0$. On the other hand, if $a_{4}=1$, then only two possibilities, $A=(3,1,1,1)$ and $A=(2,2,1,1)$ can take place. In the former case we have $S(T)=3^{3}+3 \cdot(-2)^{3}>0$, while in the latter one $S(T)=1^{3}+1^{3}+(-1)^{3}+(-1)^{3}=0$, as desired.

Now we turn to the general problem. Consider a tournament T with no bad companies and enumerate the players by the numbers from 1 to n. For every 4 players $i_{1}, i_{2}, i_{3}, i_{4}$ consider a "sub-tournament" $T_{i_{1} i_{2} i_{3} i_{4}}$ consisting of only these players and the games which they performed with each other. By the abovementioned, we have $S\left(T_{i_{1} i_{2} i_{3} i_{4}}\right) \geq 0$. Our aim is to prove that

$$
\begin{equation*}
S(T)=\sum_{i_{1}, i_{2}, i_{3}, i_{4}} S\left(T_{i_{1} i_{2} i_{3} i_{4}}\right) \tag{2}
\end{equation*}
$$

where the sum is taken over all 4 -tuples of distinct numbers from the set $\{1, \ldots, n\}$. This way the problem statement will be established.

We interpret the number $\left(w_{i}-\ell_{i}\right)^{3}$ as following. For $i \neq j$, let $\varepsilon_{i j}=1$ if the i th player wins against the j th one, and $\varepsilon_{i j}=-1$ otherwise. Then

$$
\left(w_{i}-\ell_{i}\right)^{3}=\left(\sum_{j \neq i} \varepsilon_{i j}\right)^{3}=\sum_{j_{1}, j_{2}, j_{3} \neq i} \varepsilon_{i j_{1}} \varepsilon_{i j_{2}} \varepsilon_{i j_{3}} .
$$

Hence,

$$
S(T)=\sum_{i \notin\left\{j_{1}, j_{2}, j_{3}\right\}} \varepsilon_{i j_{1}} \varepsilon_{i j_{2}} \varepsilon_{i j_{3}} .
$$

To simplify this expression, consider all the terms in this sum where two indices are equal. If, for instance, $j_{1}=j_{2}$, then the term contains $\varepsilon_{i j_{1}}^{2}=1$, so we can replace this term by $\varepsilon_{i j_{3}}$. Make such replacements for each such term; obviously, after this change each term of the form $\varepsilon_{i j_{3}}$ will appear $P(T)$ times, hence

$$
S(T)=\sum_{\left|\left\{i, j_{1}, j_{2}, j_{3}\right\}\right|=4} \varepsilon_{i j_{1}} \varepsilon_{i j_{2}} \varepsilon_{i j_{3}}+P(T) \sum_{i \neq j} \varepsilon_{i j}=S_{1}(T)+P(T) S_{2}(T)
$$

We show that $S_{2}(T)=0$ and hence $S(T)=S_{1}(T)$ for each tournament. Actually, note that $\varepsilon_{i j}=-\varepsilon_{j i}$, and the whole sum can be split into such pairs. Since the sum in each pair is 0 , so is $S_{2}(T)$.

Thus the desired equality (2) rewrites as

$$
\begin{equation*}
S_{1}(T)=\sum_{i_{1}, i_{2}, i_{3}, i_{4}} S_{1}\left(T_{i_{1} i_{2} i_{3} i_{4}}\right) . \tag{3}
\end{equation*}
$$

Now, if all the numbers j_{1}, j_{2}, j_{3} are distinct, then the set $\left\{i, j_{1}, j_{2}, j_{3}\right\}$ is contained in exactly one 4 -tuple, hence the term $\varepsilon_{i j_{1}} \varepsilon_{i j_{2}} \varepsilon_{i j_{3}}$ appears in the right-hand part of (3) exactly once, as well as in the left-hand part. Clearly, there are no other terms in both parts, so the equality is established.

Solution 2. Similarly to the first solution, we call the subsets of players as companies, and the k-element subsets will be called as k-companies.

In any company of the players, call a player the local champion of the company if he defeated all other members of the company. Similarly, if a player lost all his games against the others in the company then call him the local loser of the company. Obviously every company has at most one local champion and at most one local loser. By the condition of the problem, whenever a 4-company has a local loser, then this company has a local champion as well.

Suppose that k is some positive integer, and let us count all cases when a player is the local champion of some k-company. The i th player won against w_{i} other player. To be the local champion of a k-company, he must be a member of the company, and the other $k-1$ members must be chosen from those whom he defeated. Therefore, the i th player is the local champion of $\binom{w_{i}}{k-1} k$-companies. Hence, the total number of local champions of all k-companies is $\sum_{i=1}^{n}\binom{w_{i}}{k-1}$.

Similarly, the total number of local losers of the k-companies is $\sum_{i=1}^{n}\binom{\ell_{i}}{k-1}$.
Now apply this for $k=2,3$ and 4 .
Since every game has a winner and a loser, we have $\sum_{i=1}^{n} w_{i}=\sum_{i=1}^{n} \ell_{i}=\binom{n}{2}$, and hence

$$
\begin{equation*}
\sum_{i=1}^{n}\left(w_{i}-\ell_{i}\right)=0 \tag{4}
\end{equation*}
$$

In every 3-company, either the players defeated one another in a cycle or the company has both a local champion and a local loser. Therefore, the total number of local champions and local losers in the 3-companies is the same, $\sum_{i=1}^{n}\binom{w_{i}}{2}=\sum_{i=1}^{n}\binom{\ell_{i}}{2}$. So we have

$$
\begin{equation*}
\sum_{i=1}^{n}\left(\binom{w_{i}}{2}-\binom{\ell_{i}}{2}\right)=0 \tag{5}
\end{equation*}
$$

In every 4-company, by the problem's condition, the number of local losers is less than or equal to the number of local champions. Then the same holds for the total numbers of local
champions and local losers in all 4-companies, so $\sum_{i=1}^{n}\binom{w_{i}}{3} \geq \sum_{i=1}^{n}\binom{\ell_{i}}{3}$. Hence,

$$
\begin{equation*}
\sum_{i=1}^{n}\left(\binom{w_{i}}{3}-\binom{\ell_{i}}{3}\right) \geq 0 \tag{6}
\end{equation*}
$$

Now we establish the problem statement (1) as a linear combination of (4), (5) and (6). It is easy check that

$$
(x-y)^{3}=24\left(\binom{x}{3}-\binom{y}{3}\right)+24\left(\binom{x}{2}-\binom{y}{2}\right)-\left(3(x+y)^{2}-4\right)(x-y)
$$

Apply this identity to $x=w_{1}$ and $y=\ell_{i}$. Since every player played $n-1$ games, we have $w_{i}+\ell_{i}=n-1$, and thus

$$
\left(w_{i}-\ell_{i}\right)^{3}=24\left(\binom{w_{i}}{3}-\binom{\ell_{i}}{3}\right)+24\left(\binom{w_{i}}{2}-\binom{\ell_{i}}{2}\right)-\left(3(n-1)^{2}-4\right)\left(w_{i}-\ell_{i}\right) .
$$

Then

$$
\sum_{i=1}^{n}\left(w_{i}-\ell_{i}\right)^{3}=24 \underbrace{\sum_{i=1}^{n}\left(\binom{w_{i}}{3}-\binom{\ell_{i}}{3}\right)}_{\geq 0}+24 \underbrace{\sum_{i=1}^{n}\left(\binom{w_{i}}{2}-\binom{\ell_{i}}{2}\right)}_{0}-\left(3(n-1)^{2}-4\right) \underbrace{\sum_{i=1}^{n}\left(w_{i}-\ell_{i}\right)}_{0} \geq 0
$$

C6. Given a positive integer k and other two integers $b>w>1$. There are two strings of pearls, a string of b black pearls and a string of w white pearls. The length of a string is the number of pearls on it.

One cuts these strings in some steps by the following rules. In each step:
(i) The strings are ordered by their lengths in a non-increasing order. If there are some strings of equal lengths, then the white ones precede the black ones. Then k first ones (if they consist of more than one pearl) are chosen; if there are less than k strings longer than 1 , then one chooses all of them.
(ii) Next, one cuts each chosen string into two parts differing in length by at most one.
(For instance, if there are strings of $5,4,4,2$ black pearls, strings of $8,4,3$ white pearls and $k=4$, then the strings of 8 white, 5 black, 4 white and 4 black pearls are cut into the parts $(4,4),(3,2),(2,2)$ and $(2,2)$, respectively.)

The process stops immediately after the step when a first isolated white pearl appears. Prove that at this stage, there will still exist a string of at least two black pearls.
(Canada)
Solution 1. Denote the situation after the i th step by A_{i}; hence A_{0} is the initial situation, and $A_{i-1} \rightarrow A_{i}$ is the i th step. We call a string containing m pearls an m-string; it is an m - w-string or a m-b-string if it is white or black, respectively.

We continue the process until every string consists of a single pearl. We will focus on three moments of the process: (a) the first stage A_{s} when the first 1 -string (no matter black or white) appears; (b) the first stage A_{t} where the total number of strings is greater than k (if such moment does not appear then we put $t=\infty$); and (c) the first stage A_{f} when all black pearls are isolated. It is sufficient to prove that in A_{f-1} (or earlier), a 1-w-string appears.

We start with some easy properties of the situations under consideration. Obviously, we have $s \leq f$. Moreover, all b-strings from A_{f-1} become single pearls in the f th step, hence all of them are 1 - or 2 -b-strings.

Next, observe that in each step $A_{i} \rightarrow A_{i+1}$ with $i \leq t-1$, all (>1)-strings were cut since there are not more than k strings at all; if, in addition, $i<s$, then there were no 1 -string, so all the strings were cut in this step.

Now, let B_{i} and b_{i} be the lengths of the longest and the shortest b-strings in A_{i}, and let W_{i} and w_{i} be the same for w-strings. We show by induction on $i \leq \min \{s, t\}$ that (i) the situation A_{i} contains exactly 2^{i} black and 2^{i} white strings, (ii) $B_{i} \geq W_{i}$, and (iii) $b_{i} \geq w_{i}$. The base case $i=0$ is obvious. For the induction step, if $i \leq \min \{s, t\}$ then in the i th step, each string is cut, thus the claim (i) follows from the induction hypothesis; next, we have $B_{i}=\left\lceil B_{i-1} / 2\right\rceil \geq\left\lceil W_{i-1} / 2\right\rceil=W_{i}$ and $b_{i}=\left\lfloor b_{i-1} / 2\right\rfloor \geq\left\lfloor w_{i-1} / 2\right\rfloor=w_{i}$, thus establishing (ii) and (iii).

For the numbers s, t, f, two cases are possible.
Case 1. Suppose that $s \leq t$ or $f \leq t+1$ (and hence $s \leq t+1$); in particular, this is true when $t=\infty$. Then in A_{s-1} we have $B_{s-1} \geq W_{s-1}, b_{s-1} \geq w_{s-1}>1$ as $s-1 \leq \min \{s, t\}$. Now, if $s=f$, then in A_{s-1}, there is no 1 -w-string as well as no (>2)-b-string. That is, $2=B_{s-1} \geq W_{s-1} \geq b_{s-1} \geq w_{s-1}>1$, hence all these numbers equal 2. This means that in A_{s-1}, all strings contain 2 pearls, and there are 2^{s-1} black and 2^{s-1} white strings, which means $b=2 \cdot 2^{s-1}=w$. This contradicts the problem conditions.

Hence we have $s \leq f-1$ and thus $s \leq t$. Therefore, in the s th step each string is cut into two parts. Now, if a 1 -b-string appears in this step, then from $w_{s-1} \leq b_{s-1}$ we see that a

1 -w-string appears as well; so, in each case in the sth step a 1 -w-string appears, while not all black pearls become single, as desired.

Case 2. Now assume that $t+1 \leq s$ and $t+2 \leq f$. Then in A_{t} we have exactly 2^{t} white and 2^{t} black strings, all being larger than 1 , and $2^{t+1}>k \geq 2^{t}$ (the latter holds since 2^{t} is the total number of strings in $\left.A_{t-1}\right)$. Now, in the $(t+1)$ st step, exactly k strings are cut, not more than 2^{t} of them being black; so the number of w-strings in A_{t+1} is at least $2^{t}+\left(k-2^{t}\right)=k$. Since the number of w-strings does not decrease in our process, in A_{f-1} we have at least k white strings as well.

Finally, in A_{f-1}, all b-strings are not larger than 2, and at least one 2-b-string is cut in the f th step. Therefore, at most $k-1$ white strings are cut in this step, hence there exists a w-string \mathcal{W} which is not cut in the f th step. On the other hand, since a 2 -b-string is cut, all (≥ 2)-w-strings should also be cut in the f th step; hence \mathcal{W} should be a single pearl. This is exactly what we needed.

Comment. In this solution, we used the condition $b \neq w$ only to avoid the case $b=w=2^{t}$. Hence, if a number $b=w$ is not a power of 2 , then the problem statement is also valid.

Solution 2. We use the same notations as introduced in the first paragraph of the previous solution. We claim that at every stage, there exist a u-b-string and a v-w-string such that either
(i) $u>v \geq 1$, or
(ii) $2 \leq u \leq v<2 u$, and there also exist $k-1$ of ($>v / 2$)-strings other than considered above.

First, we notice that this statement implies the problem statement. Actually, in both cases (i) and (ii) we have $u>1$, so at each stage there exists a (≥ 2)-b-string, and for the last stage it is exactly what we need.

Now, we prove the claim by induction on the number of the stage. Obviously, for A_{0} the condition (i) holds since $b>w$. Further, we suppose that the statement holds for A_{i}, and prove it for A_{i+1}. Two cases are possible.

Case 1. Assume that in A_{i}, there are a u-b-string and a v-w-string with $u>v$. We can assume that v is the length of the shortest w-string in A_{i}; since we are not at the final stage, we have $v \geq 2$. Now, in the $(i+1)$ st step, two subcases may occur.

Subcase 1a. Suppose that either no u-b-string is cut, or both some u-b-string and some v-w-string are cut. Then in A_{i+1}, we have either a u-b-string and a $(\leq v)$-w-string (and (i) is valid), or we have a $\lceil u / 2\rceil$-b-string and a $\lfloor v / 2\rfloor$-w-string. In the latter case, from $u>v$ we get $\lceil u / 2\rceil>\lfloor v / 2\rfloor$, and (i) is valid again.

Subcase 1 . Now, some u-b-string is cut, and no v-w-string is cut (and hence all the strings which are cut are longer than v). If $u^{\prime}=\lceil u / 2\rceil>v$, then the condition (i) is satisfied since we have a u^{\prime}-b-string and a v-w-string in A_{i+1}. Otherwise, notice that the inequality $u>v \geq 2$ implies $u^{\prime} \geq 2$. Furthermore, besides a fixed u-b-string, other $k-1$ of $(\geq v+1)$-strings should be cut in the $(i+1)$ st step, hence providing at least $k-1$ of $(\geq\lceil(v+1) / 2\rceil)$-strings, and $\lceil(v+1) / 2\rceil>v / 2$. So, we can put $v^{\prime}=v$, and we have $u^{\prime} \leq v<u \leq 2 u^{\prime}$, so the condition (ii) holds for A_{i+1}.

Case 2. Conversely, assume that in A_{i} there exist a u-b-string, a v-w-string $(2 \leq u \leq v<2 u)$ and a set S of $k-1$ other strings larger than $v / 2$ (and hence larger than 1). In the ($i+1$)st step, three subcases may occur.

Subcase 2a. Suppose that some u-b-string is not cut, and some v-w-string is cut. The latter one results in a $\lfloor v / 2\rfloor$-w-string, we have $v^{\prime}=\lfloor v / 2\rfloor<u$, and the condition (i) is valid.

Subcase 2b. Next, suppose that no v-w-string is cut (and therefore no u-b-string is cut as $u \leq v$). Then all k strings which are cut have the length $>v$, so each one results in a ($>v / 2$)string. Hence in A_{i+1}, there exist $k \geq k-1$ of ($>v / 2$)-strings other than the considered u - and v-strings, and the condition (ii) is satisfied.

Subcase 2c. In the remaining case, all u-b-strings are cut. This means that all $(\geq u)$-strings are cut as well, hence our v-w-string is cut. Therefore in A_{i+1} there exists a $\lceil u / 2\rceil$-b-string together with a $\lfloor v / 2\rfloor$-w-string. Now, if $u^{\prime}=\lceil u / 2\rceil>\lfloor v / 2\rfloor=v^{\prime}$ then the condition (i) is fulfilled. Otherwise, we have $u^{\prime} \leq v^{\prime}<u \leq 2 u^{\prime}$. In this case, we show that $u^{\prime} \geq 2$. If, to the contrary, $u^{\prime}=1$ (and hence $u=2$), then all black and white (≥ 2)-strings should be cut in the $(i+1)$ st step, and among these strings there are at least a u-b-string, a v-w-string, and $k-1$ strings in $S(k+1$ strings altogether). This is impossible.

Hence, we get $2 \leq u^{\prime} \leq v^{\prime}<2 u^{\prime}$. To reach (ii), it remains to check that in A_{i+1}, there exists a set S^{\prime} of $k-1$ other strings larger than $v^{\prime} / 2$. These will be exactly the strings obtained from the elements of S. Namely, each $s \in S$ was either cut in the $(i+1)$ st step, or not. In the former case, let us include into $S^{\prime \prime}$ the largest of the strings obtained from s; otherwise we include s itself into S^{\prime}. All $k-1$ strings in S^{\prime} are greater than $v / 2 \geq v^{\prime}$, as desired.

C7. Let P_{1}, \ldots, P_{s} be arithmetic progressions of integers, the following conditions being satisfied:
(i) each integer belongs to at least one of them;
(ii) each progression contains a number which does not belong to other progressions.

Denote by n the least common multiple of steps of these progressions; let $n=p_{1}^{\alpha_{1}} \ldots p_{k}^{\alpha_{k}}$ be its prime factorization. Prove that

$$
s \geq 1+\sum_{i=1}^{k} \alpha_{i}\left(p_{i}-1\right)
$$

(Germany)
Solution 1. First, we prove the key lemma, and then we show how to apply it to finish the solution.

Let n_{1}, \ldots, n_{k} be positive integers. By an $n_{1} \times n_{2} \times \cdots \times n_{k}$ grid we mean the set $N=$ $\left\{\left(a_{1}, \ldots, a_{k}\right): a_{i} \in \mathbb{Z}, 0 \leq a_{i} \leq n_{i}-1\right\}$; the elements of N will be referred to as points. In this grid, we define a subgrid as a subset of the form

$$
\begin{equation*}
L=\left\{\left(b_{1}, \ldots, b_{k}\right) \in N: b_{i_{1}}=x_{i_{1}}, \ldots, b_{i_{t}}=x_{i_{t}}\right\} \tag{1}
\end{equation*}
$$

where $I=\left\{i_{1}, \ldots, i_{t}\right\}$ is an arbitrary nonempty set of indices, and $x_{i_{j}} \in\left[0, n_{i_{j}}-1\right](1 \leq j \leq t)$ are fixed integer numbers. Further, we say that a subgrid (1) is orthogonal to the i th coordinate axis if $i \in I$, and that it is parallel to the i th coordinate axis otherwise.
Lemma. Assume that the grid N is covered by subgrids $L_{1}, L_{2}, \ldots, L_{s}$ (this means $N=\bigcup_{i=1}^{s} L_{i}$) so that
(ii') each subgrid contains a point which is not covered by other subgrids;
(iii) for each coordinate axis, there exists a subgrid L_{i} orthogonal to this axis.

Then

$$
s \geq 1+\sum_{i=1}^{k}\left(n_{i}-1\right)
$$

Proof. Assume to the contrary that $s \leq \sum_{i}\left(n_{i}-1\right)=s^{\prime}$. Our aim is to find a point that is not covered by L_{1}, \ldots, L_{s}.

The idea of the proof is the following. Imagine that we expand each subgrid to some maximal subgrid so that for the i th axis, there will be at most $n_{i}-1$ maximal subgrids orthogonal to this axis. Then the desired point can be found easily: its i th coordinate should be that not covered by the maximal subgrids orthogonal to the i th axis. Surely, the conditions for existence of such expansion are provided by Hall's lemma on matchings. So, we will follow this direction, although we will apply Hall's lemma to some subgraph instead of the whole graph.

Construct a bipartite graph $G=\left(V \cup V^{\prime}, E\right)$ as follows. Let $V=\left\{L_{1}, \ldots, L_{s}\right\}$, and let $V^{\prime}=\left\{v_{i j}: 1 \leq i \leq s, 1 \leq j \leq n_{i}-1\right\}$ be some set of s^{\prime} elements. Further, let the edge ($L_{m}, v_{i j}$) appear iff L_{m} is orthogonal to the i th axis.

For each subset $W \subset V$, denote

$$
f(W)=\left\{v \in V^{\prime}:(L, v) \in E \text { for some } L \in W\right\} .
$$

Notice that $f(V)=V^{\prime}$ by (iii).
Now, consider the set $W \subset V$ containing the maximal number of elements such that $|W|>$ $|f(W)|$; if there is no such set then we set $W=\varnothing$. Denote $W^{\prime}=f(W), U=V \backslash W, U^{\prime}=V^{\prime} \backslash W^{\prime}$.

By our assumption and the Lemma condition, $|f(V)|=\left|V^{\prime}\right| \geq|V|$, hence $W \neq V$ and $U \neq \varnothing$. Permuting the coordinates, we can assume that $U^{\prime}=\left\{v_{i j}: 1 \leq i \leq \ell\right\}, W^{\prime}=\left\{v_{i j}: \ell+1 \leq i \leq k\right\}$.

Consider the induced subgraph G^{\prime} of G on the vertices $U \cup U^{\prime}$. We claim that for every $X \subset U$, we get $\left|f(X) \cap U^{\prime}\right| \geq|X|$ (so G^{\prime} satisfies the conditions of Hall's lemma). Actually, we have $|W| \geq|f(W)|$, so if $|X|>\left|f(X) \cap U^{\prime}\right|$ for some $X \subset U$, then we have

$$
|W \cup X|=|W|+|X|>|f(W)|+\left|f(X) \cap U^{\prime}\right|=\left|f(W) \cup\left(f(X) \cap U^{\prime}\right)\right|=|f(W \cup X)|
$$

This contradicts the maximality of $|W|$.
Thus, applying Hall's lemma, we can assign to each $L \in U$ some vertex $v_{i j} \in U^{\prime}$ so that to distinct elements of U, distinct vertices of U^{\prime} are assigned. In this situation, we say that $L \in U$ corresponds to the i th axis, and write $g(L)=i$. Since there are $n_{i}-1$ vertices of the form $v_{i j}$, we get that for each $1 \leq i \leq \ell$, not more than $n_{i}-1$ subgrids correspond to the i th axis.

Finally, we are ready to present the desired point. Since $W \neq V$, there exists a point $b=\left(b_{1}, b_{2}, \ldots, b_{k}\right) \in N \backslash\left(\cup_{L \in W} L\right)$. On the other hand, for every $1 \leq i \leq \ell$, consider any subgrid $L \in U$ with $g(L)=i$. This means exactly that L is orthogonal to the i th axis, and hence all its elements have the same i th coordinate c_{L}. Since there are at most $n_{i}-1$ such subgrids, there exists a number $0 \leq a_{i} \leq n_{i}-1$ which is not contained in a set $\left\{c_{L}: g(L)=i\right\}$. Choose such number for every $1 \leq i \leq \ell$. Now we claim that point $a=\left(a_{1}, \ldots, a_{\ell}, b_{\ell+1}, \ldots, b_{k}\right)$ is not covered, hence contradicting the Lemma condition.

Surely, point a cannot lie in some $L \in U$, since all the points in L have $g(L)$ th coordinate $c_{L} \neq a_{g(L)}$. On the other hand, suppose that $a \in L$ for some $L \in W$; recall that $b \notin L$. But the points a and b differ only at first ℓ coordinates, so L should be orthogonal to at least one of the first ℓ axes, and hence our graph contains some edge $\left(L, v_{i j}\right)$ for $i \leq \ell$. It contradicts the definition of W^{\prime}. The Lemma is proved.

Now we turn to the problem. Let d_{j} be the step of the progression P_{j}. Note that since $n=$ l.c.m. $\left(d_{1}, \ldots, d_{s}\right)$, for each $1 \leq i \leq k$ there exists an index $j(i)$ such that $p_{i}^{\alpha_{i}} \mid d_{j(i)}$. We assume that $n>1$; otherwise the problem statement is trivial.

For each $0 \leq m \leq n-1$ and $1 \leq i \leq k$, let m_{i} be the residue of m modulo $p_{i}^{\alpha_{i}}$, and let $m_{i}=\overline{r_{i \alpha_{i}} \ldots r_{i 1}}$ be the base p_{i} representation of m_{i} (possibly, with some leading zeroes). Now, we put into correspondence to m the sequence $r(m)=\left(r_{11}, \ldots, r_{1 \alpha_{1}}, r_{21}, \ldots, r_{k \alpha_{k}}\right)$. Hence $r(m)$ lies in a $\underbrace{p_{1} \times \cdots \times p_{1}}_{\alpha_{1} \text { times }} \times \cdots \times \underbrace{p_{k} \times \cdots \times p_{k}}_{\alpha_{k} \text { times }}$ grid N.

Surely, if $r(m)=r\left(m^{\prime}\right)$ then $p_{i}^{\alpha_{i}} \mid m_{i}-m_{i}^{\prime}$, which follows $p_{i}^{\alpha_{i}} \mid m-m^{\prime}$ for all $1 \leq i \leq k$; consequently, $n \mid m-m^{\prime}$. So, when m runs over the set $\{0, \ldots, n-1\}$, the sequences $r(m)$ do not repeat; since $|N|=n$, this means that r is a bijection between $\{0, \ldots, n-1\}$ and N. Now we will show that for each $1 \leq i \leq s$, the set $L_{i}=\left\{r(m): m \in P_{i}\right\}$ is a subgrid, and that for each axis there exists a subgrid orthogonal to this axis. Obviously, these subgrids cover N, and the condition (ii') follows directly from (ii). Hence the Lemma provides exactly the estimate we need.

Consider some $1 \leq j \leq s$ and let $d_{j}=p_{1}^{\gamma_{1}} \ldots p_{k}^{\gamma_{k}}$. Consider some $q \in P_{j}$ and let $r(q)=$ $\left(r_{11}, \ldots, r_{k \alpha_{k}}\right)$. Then for an arbitrary q^{\prime}, setting $r\left(q^{\prime}\right)=\left(r_{11}^{\prime}, \ldots, r_{k \alpha_{k}}^{\prime}\right)$ we have

$$
q^{\prime} \in P_{j} \quad \Longleftrightarrow p_{i}^{\gamma_{i}} \mid q-q^{\prime} \text { for each } 1 \leq i \leq k \quad \Longleftrightarrow \quad r_{i, t}=r_{i, t}^{\prime} \text { for all } t \leq \gamma_{i}
$$

Hence $L_{j}=\left\{\left(r_{11}^{\prime}, \ldots, r_{k \alpha_{k}}^{\prime}\right) \in N: r_{i, t}=r_{i, t}^{\prime}\right.$ for all $\left.t \leq \gamma_{i}\right\}$ which means that L_{j} is a subgrid containing $r(q)$. Moreover, in $L_{j(i)}$, all the coordinates corresponding to p_{i} are fixed, so it is orthogonal to all of their axes, as desired.

Comment 1. The estimate in the problem is sharp for every n. One of the possible examples is the following one. For each $1 \leq i \leq k, 0 \leq j \leq \alpha_{i}-1,1 \leq k \leq p-1$, let

$$
P_{i, j, k}=k p_{i}^{j}+p_{i}^{j+1} \mathbb{Z},
$$

and add the progression $P_{0}=n \mathbb{Z}$. One can easily check that this set satisfies all the problem conditions. There also exist other examples.

On the other hand, the estimate can be adjusted in the following sense. For every $1 \leq i \leq k$, let $0=\alpha_{i 0}, \alpha_{i 1}, \ldots, \alpha_{i h_{i}}$ be all the numbers of the form $\operatorname{ord}_{p_{i}}\left(d_{j}\right)$ in an increasing order (we delete the repeating occurences of a number, and add a number $0=\alpha_{i 0}$ if it does not occur). Then, repeating the arguments from the solution one can obtain that

$$
s \geq 1+\sum_{i=1}^{k} \sum_{j=1}^{h_{i}}\left(p^{\alpha_{j}-\alpha_{j-1}}-1\right) .
$$

Note that $p^{\alpha}-1 \geq \alpha(p-1)$, and the equality is achieved only for $\alpha=1$. Hence, for reaching the minimal number of the progressions, one should have $\alpha_{i, j}=j$ for all i, j. In other words, for each $1 \leq j \leq \alpha_{i}$, there should be an index t such that $\operatorname{ord}_{p_{i}}\left(d_{t}\right)=j$.

Solution 2. We start with introducing some notation. For positive integer r, we denote $[r]=\{1,2, \ldots, r\}$. Next, we say that a set of progressions $\mathcal{P}=\left\{P_{1}, \ldots, P_{s}\right\}$ cover \mathbb{Z} if each integer belongs to some of them; we say that this covering is minimal if no proper subset of \mathcal{P} covers \mathbb{Z}. Obviously, each covering contains a minimal subcovering.

Next, for a minimal covering $\left\{P_{1}, \ldots, P_{s}\right\}$ and for every $1 \leq i \leq s$, let d_{i} be the step of progression P_{i}, and h_{i} be some number which is contained in P_{i} but in none of the other progressions. We assume that $n>1$, otherwise the problem is trivial. This implies $d_{i}>1$, otherwise the progression P_{i} covers all the numbers, and $n=1$.

We will prove a more general statement, namely the following
Claim. Assume that the progressions P_{1}, \ldots, P_{s} and number $n=p_{1}^{\alpha_{1}} \ldots p_{k}^{\alpha_{k}}>1$ are chosen as in the problem statement. Moreover, choose some nonempty set of indices $I=\left\{i_{1}, \ldots, i_{t}\right\} \subseteq[k]$ and some positive integer $\beta_{i} \leq \alpha_{i}$ for every $i \in I$. Consider the set of indices

$$
T=\left\{j: 1 \leq j \leq s, \text { and } p_{i}^{\alpha_{i}-\beta_{i}+1} \mid d_{j} \text { for some } i \in I\right\} .
$$

Then

$$
\begin{equation*}
|T| \geq 1+\sum_{i \in I} \beta_{i}\left(p_{i}-1\right) \tag{2}
\end{equation*}
$$

Observe that the Claim for $I=[k]$ and $\beta_{i}=\alpha_{i}$ implies the problem statement, since the left-hand side in (2) is not greater than s. Hence, it suffices to prove the Claim.

1. First, we prove the Claim assuming that all d_{j} 's are prime numbers. If for some $1 \leq i \leq k$ we have at least p_{i} progressions with the step p_{i}, then they do not intersect and hence cover all the integers; it means that there are no other progressions, and $n=p_{i}$; the Claim is trivial in this case.

Now assume that for every $1 \leq i \leq k$, there are not more than $p_{i}-1$ progressions with step p_{i}; each such progression covers the numbers with a fixed residue modulo p_{i}, therefore there exists a residue $q_{i} \bmod p_{i}$ which is not touched by these progressions. By the Chinese Remainder Theorem, there exists a number q such that $q \equiv q_{i}\left(\bmod p_{i}\right)$ for all $1 \leq i \leq k$; this number cannot be covered by any progression with step p_{i}, hence it is not covered at all. A contradiction.
2. Now, we assume that the general Claim is not valid, and hence we consider a counterexample $\left\{P_{1}, \ldots, P_{s}\right\}$ for the Claim; we can choose it to be minimal in the following sense:

- the number n is minimal possible among all the counterexamples;
- the sum $\sum_{i} d_{i}$ is minimal possible among all the counterexamples having the chosen value of n.

As was mentioned above, not all numbers d_{i} are primes; hence we can assume that d_{1} is composite, say $p_{1} \mid d_{1}$ and $d_{1}^{\prime}=\frac{d_{1}}{p_{1}}>1$. Consider a progression P_{1}^{\prime} having the step d_{1}^{\prime}, and containing P_{1}. We will focus on two coverings constructed as follows.
(i) Surely, the progressions $P_{1}^{\prime}, P_{2}, \ldots, P_{s}$ cover \mathbb{Z}, though this covering in not necessarily minimal. So, choose some minimal subcovering \mathcal{P}^{\prime} in it; surely $P_{1}^{\prime} \in \mathcal{P}^{\prime}$ since h_{1} is not covered by P_{2}, \ldots, P_{s}, so we may assume that $\mathcal{P}^{\prime}=\left\{P_{1}^{\prime}, P_{2}, \ldots, P_{s^{\prime}}\right\}$ for some $s^{\prime} \leq s$. Furthermore, the period of the covering \mathcal{P}^{\prime} can appear to be less than n; so we denote this period by

$$
n^{\prime}=p_{1}^{\alpha_{1}-\sigma_{1}} \ldots p_{k}^{\alpha_{k}-\sigma_{k}}=\text { l.c.m. }\left(d_{1}^{\prime}, d_{2}, \ldots, d_{s^{\prime}}\right)
$$

Observe that for each $P_{j} \notin \mathcal{P}^{\prime}$, we have $h_{j} \in P_{1}^{\prime}$, otherwise h_{j} would not be covered by \mathcal{P}.
(ii) On the other hand, each nonempty set of the form $R_{i}=P_{i} \cap P_{1}^{\prime}(1 \leq i \leq s)$ is also a progression with a step $r_{i}=$ l.c.m. $\left(d_{i}, d_{1}^{\prime}\right)$, and such sets cover P_{1}^{\prime}. Scaling these progressions with the ratio $1 / d_{1}^{\prime}$, we obtain the progressions Q_{i} with steps $q_{i}=r_{i} / d_{1}^{\prime}$ which cover \mathbb{Z}. Now we choose a minimal subcovering \mathcal{Q} of this covering; again we should have $Q_{1} \in \mathcal{Q}$ by the reasons of h_{1}. Now, denote the period of \mathcal{Q} by

$$
n^{\prime \prime}=\text { l.c.m. }\left\{q_{i}: Q_{i} \in \mathcal{Q}\right\}=\frac{\text { l.c.m. }\left\{r_{i}: Q_{i} \in \mathcal{Q}\right\}}{d_{1}^{\prime}}=\frac{p_{1}^{\gamma_{1}} \ldots p_{k}^{\gamma_{k}}}{d_{1}^{\prime}} .
$$

Note that if $h_{j} \in P_{1}^{\prime}$, then the image of h_{j} under the scaling can be covered by Q_{j} only; so, in this case we have $Q_{j} \in \mathcal{Q}$.

Our aim is to find the desired number of progressions in coverings \mathcal{P} and \mathcal{Q}. First, we have $n \geq n^{\prime}$, and the sum of the steps in \mathcal{P}^{\prime} is less than that in \mathcal{P}; hence the Claim is valid for \mathcal{P}^{\prime}. We apply it to the set of indices $I^{\prime}=\left\{i \in I: \beta_{i}>\sigma_{i}\right\}$ and the exponents $\beta_{i}^{\prime}=\beta_{i}-\sigma_{i}$; hence the set under consideration is

$$
T^{\prime}=\left\{j: 1 \leq j \leq s^{\prime}, \text { and } p_{i}^{\left(\alpha_{i}-\sigma_{i}\right)-\beta_{i}^{\prime}+1}=p_{i}^{\alpha_{i}-\beta_{i}+1} \mid d_{j} \text { for some } i \in I^{\prime}\right\} \subseteq T \cap\left[s^{\prime}\right],
$$

and we obtain that

$$
\left|T \cap\left[s^{\prime}\right]\right| \geq\left|T^{\prime}\right| \geq 1+\sum_{i \in I^{\prime}}\left(\beta_{i}-\sigma_{i}\right)\left(p_{i}-1\right)=1+\sum_{i \in I}\left(\beta_{i}-\sigma_{i}\right)_{+}\left(p_{i}-1\right),
$$

where $(x)_{+}=\max \{x, 0\}$; the latter equality holds as for $i \notin I^{\prime}$ we have $\beta_{i} \leq \sigma_{i}$.
Observe that $x=(x-y)_{+}+\min \{x, y\}$ for all x, y. So, if we find at least

$$
G=\sum_{i \in I} \min \left\{\beta_{i}, \sigma_{i}\right\}\left(p_{i}-1\right)
$$

indices in $T \cap\left\{s^{\prime}+1, \ldots, s\right\}$, then we would have

$$
|T|=\left|T \cap\left[s^{\prime}\right]\right|+\left|T \cap\left\{s^{\prime}+1, \ldots, s\right\}\right| \geq 1+\sum_{i \in I}\left(\left(\beta_{i}-\sigma_{i}\right)_{+}+\min \left\{\beta_{i}, \sigma_{i}\right\}\right)\left(p_{i}-1\right)=1+\sum_{i \in I} \beta_{i}\left(p_{i}-1\right)
$$

thus leading to a contradiction with the choice of \mathcal{P}. We will find those indices among the indices of progressions in \mathcal{Q}.
3. Now denote $I^{\prime \prime}=\left\{i \in I: \sigma_{i}>0\right\}$ and consider some $i \in I^{\prime \prime}$; then $p_{i}^{\alpha_{i}} \nmid n^{\prime}$. On the other hand, there exists an index $j(i)$ such that $p_{i}^{\alpha_{i}} \mid d_{j(i)}$; this means that $d_{j(i)} \nmid n^{\prime}$ and hence $P_{j(i)}$ cannot appear in \mathcal{P}^{\prime}, so $j(i)>s^{\prime}$. Moreover, we have observed before that in this case $h_{j(i)} \in P_{1}^{\prime}$, hence $Q_{j(i)} \in \mathcal{Q}$. This means that $q_{j(i)} \mid n^{\prime \prime}$, therefore $\gamma_{i}=\alpha_{i}$ for each $i \in I^{\prime \prime}$ (recall here that $q_{i}=r_{i} / d_{1}^{\prime}$ and hence $\left.d_{j(i)}\left|r_{j(i)}\right| d_{1}^{\prime} n^{\prime \prime}\right)$.

Let $d_{1}^{\prime}=p_{1}^{\tau_{1}} \ldots p_{k}^{\tau_{k}}$. Then $n^{\prime \prime}=p_{1}^{\gamma_{1}-\tau_{1}} \ldots p_{k}^{\gamma_{i}-\tau_{i}}$. Now, if $i \in I^{\prime \prime}$, then for every β the condition $p_{i}^{\left(\gamma_{i}-\tau_{i}\right)-\beta+1} \mid q_{j}$ is equivalent to $p_{i}^{\alpha_{i}-\beta+1} \mid r_{j}$.

Note that $n^{\prime \prime} \leq n / d_{1}^{\prime}<n$, hence we can apply the Claim to the covering \mathcal{Q}. We perform this with the set of indices $I^{\prime \prime}$ and the exponents $\beta_{i}^{\prime \prime}=\min \left\{\beta_{i}, \sigma_{i}\right\}>0$. So, the set under consideration is

$$
\begin{aligned}
T^{\prime \prime} & =\left\{j: Q_{j} \in \mathcal{Q}, \text { and } p_{i}^{\left(\gamma_{i}-\tau_{i}\right)-\min \left\{\beta_{i}, \sigma_{i}\right\}+1} \mid q_{j} \text { for some } i \in I^{\prime \prime}\right\} \\
& =\left\{j: Q_{j} \in \mathcal{Q}, \text { and } p_{i}^{\alpha_{i}-\min \left\{\beta_{i}, \sigma_{i}\right\}+1} \mid r_{j} \text { for some } i \in I^{\prime \prime}\right\},
\end{aligned}
$$

and we obtain $\left|T^{\prime \prime}\right| \geq 1+G$. Finally, we claim that $T^{\prime \prime} \subseteq T \cap\left(\{1\} \cup\left\{s^{\prime}+1, \ldots, s\right\}\right)$; then we will obtain $\left|T \cap\left\{s^{\prime}+1, \ldots, s\right\}\right| \geq G$, which is exactly what we need.

To prove this, consider any $j \in T^{\prime \prime}$. Observe first that $\alpha_{i}-\min \left\{\beta_{i}, \sigma_{i}\right\}+1>\alpha_{i}-\sigma_{i} \geq \tau_{i}$, hence from $p_{i}^{\alpha_{i}-\min \left\{\beta_{i}, \sigma_{i}\right\}+1} \mid r_{j}=$ l.c.m. $\left(d_{1}^{\prime}, d_{j}\right)$ we have $p_{i}^{\alpha_{i}-\min \left\{\beta_{i}, \sigma_{i}\right\}+1} \mid d_{j}$, which means that $j \in T$. Next, the exponent of p_{i} in d_{j} is greater than that in n^{\prime}, which means that $P_{j} \notin \mathcal{P}^{\prime}$. This may appear only if $j=1$ or $j>s^{\prime}$, as desired. This completes the proof.

Comment 2. A grid analogue of the Claim is also valid. It reads as following.
Claim. Assume that the grid N is covered by subgrids $L_{1}, L_{2}, \ldots, L_{s}$ so that
(ii') each subgrid contains a point which is not covered by other subgrids;
(iii) for each coordinate axis, there exists a subgrid L_{i} orthogonal to this axis.

Choose some set of indices $I=\left\{i_{1}, \ldots, i_{t}\right\} \subset[k]$, and consider the set of indices

$$
T=\left\{j: 1 \leq j \leq s, \text { and } L_{j} \text { is orthogonal to the } i \text { th axis for some } i \in I\right\}
$$

Then

$$
|T| \geq 1+\sum_{i \in I}\left(n_{i}-1\right) .
$$

This Claim may be proved almost in the same way as in Solution 1.

Geometry

G1. Let $A B C$ be an acute triangle with D, E, F the feet of the altitudes lying on $B C, C A, A B$ respectively. One of the intersection points of the line $E F$ and the circumcircle is P. The lines $B P$ and $D F$ meet at point Q. Prove that $A P=A Q$.
(United Kingdom)
Solution 1. The line $E F$ intersects the circumcircle at two points. Depending on the choice of P, there are two different cases to consider.

Case 1: The point P lies on the ray $E F$ (see Fig. 1).
Let $\angle C A B=\alpha, \angle A B C=\beta$ and $\angle B C A=\gamma$. The quadrilaterals $B C E F$ and $C A F D$ are cyclic due to the right angles at D, E and F. So,

$$
\begin{aligned}
& \angle B D F=180^{\circ}-\angle F D C=\angle C A F=\alpha, \\
& \angle A F E=180^{\circ}-\angle E F B=\angle B C E=\gamma, \\
& \angle D F B=180^{\circ}-\angle A F D=\angle D C A=\gamma .
\end{aligned}
$$

Since P lies on the arc $A B$ of the circumcircle, $\angle P B A<\angle B C A=\gamma$. Hence, we have

$$
\angle P B D+\angle B D F=\angle P B A+\angle A B D+\angle B D F<\gamma+\beta+\alpha=180^{\circ},
$$

and the point Q must lie on the extensions of $B P$ and $D F$ beyond the points P and F, respectively.

From the cyclic quadrilateral $A P B C$ we get

$$
\angle Q P A=180^{\circ}-\angle A P B=\angle B C A=\gamma=\angle D F B=\angle Q F A .
$$

Hence, the quadrilateral $A Q P F$ is cyclic. Then $\angle A Q P=180^{\circ}-\angle P F A=\angle A F E=\gamma$.
We obtained that $\angle A Q P=\angle Q P A=\gamma$, so the triangle $A Q P$ is isosceles, $A P=A Q$.

Fig. 1

Fig. 2

Case 2: The point P lies on the ray $F E$ (see Fig. 2). In this case the point Q lies inside the segment $F D$.

Similarly to the first case, we have

$$
\angle Q P A=\angle B C A=\gamma=\angle D F B=180^{\circ}-\angle A F Q
$$

Hence, the quadrilateral $A F Q P$ is cyclic.
Then $\angle A Q P=\angle A F P=\angle A F E=\gamma=\angle Q P A$. The triangle $A Q P$ is isosceles again, $\angle A Q P=\angle Q P A$ and thus $A P=A Q$.
Comment. Using signed angles, the two possible configurations can be handled simultaneously, without investigating the possible locations of P and Q.

Solution 2. For arbitrary points X, Y on the circumcircle, denote by $\widehat{X Y}$ the central angle of the arc $X Y$.

Let P and P^{\prime} be the two points where the line $E F$ meets the circumcircle; let P lie on the arc $A B$ and let P^{\prime} lie on the $\operatorname{arc} C A$. Let $B P$ and $B P^{\prime}$ meet the line $D F$ and Q and Q^{\prime}, respectively (see Fig. 3). We will prove that $A P=A P^{\prime}=A Q=A Q^{\prime}$.

Fig. 3
Like in the first solution, we have $\angle A F E=\angle B F P=\angle D F B=\angle B C A=\gamma$ from the cyclic quadrilaterals $B C E F$ and $C A F D$.

By $\overparen{P B}+\overparen{P^{\prime} A}=2 \angle A F P^{\prime}=2 \gamma=2 \angle B C A=\overparen{A P}+\overparen{P B}$, we have

$$
\begin{equation*}
\widehat{A P}=\widehat{P^{\prime} A}, \quad \angle P B A=\angle A B P^{\prime} \quad \text { and } \quad A P=A P^{\prime} \tag{1}
\end{equation*}
$$

Due to $\overparen{A P}=\overparen{P^{\prime} A}$, the lines $B P$ and $B Q^{\prime}$ are symmetrical about line $A B$.
Similarly, by $\angle B F P=\angle Q^{\prime} F B$, the lines $F P$ and $F Q^{\prime}$ are symmetrical about $A B$. It follows that also the points P and P^{\prime} are symmetrical to Q^{\prime} and Q, respectively. Therefore,

$$
\begin{equation*}
A P=A Q^{\prime} \quad \text { and } \quad A P^{\prime}=A Q \tag{2}
\end{equation*}
$$

The relations (1) and (2) together prove $A P=A P^{\prime}=A Q=A Q^{\prime}$.

G2. Point P lies inside triangle $A B C$. Lines $A P, B P, C P$ meet the circumcircle of $A B C$ again at points K, L, M, respectively. The tangent to the circumcircle at C meets line $A B$ at S. Prove that $S C=S P$ if and only if $M K=M L$.
(Poland)
Solution 1. We assume that $C A>C B$, so point S lies on the ray $A B$.
From the similar triangles $\triangle P K M \sim \triangle P C A$ and $\triangle P L M \sim \triangle P C B$ we get $\frac{P M}{K M}=\frac{P A}{C A}$ and $\frac{L M}{P M}=\frac{C B}{P B}$. Multiplying these two equalities, we get

$$
\frac{L M}{K M}=\frac{C B}{C A} \cdot \frac{P A}{P B}
$$

Hence, the relation $M K=M L$ is equivalent to $\frac{C B}{C A}=\frac{P B}{P A}$.
Denote by E the foot of the bisector of angle B in triangle $A B C$. Recall that the locus of points X for which $\frac{X A}{X B}=\frac{C A}{C B}$ is the Apollonius circle Ω with the center Q on the line $A B$, and this circle passes through C and E. Hence, we have $M K=M L$ if and only if P lies on Ω, that is $Q P=Q C$.

Fig. 1

Now we prove that $S=Q$, thus establishing the problem statement. We have $\angle C E S=$ $\angle C A E+\angle A C E=\angle B C S+\angle E C B=\angle E C S$, so $S C=S E$. Hence, the point S lies on $A B$ as well as on the perpendicular bisector of $C E$ and therefore coincides with Q.

Solution 2. As in the previous solution, we assume that S lies on the ray $A B$.

1. Let P be an arbitrary point inside both the circumcircle ω of the triangle $A B C$ and the angle $A S C$, the points K, L, M defined as in the problem. We claim that $S P=S C$ implies $M K=M L$.

Let E and F be the points of intersection of the line $S P$ with ω, point E lying on the segment $S P$ (see Fig. 2).

Fig. 2

We have $S P^{2}=S C^{2}=S A \cdot S B$, so $\frac{S P}{S B}=\frac{S A}{S P}$, and hence $\triangle P S A \sim \triangle B S P$. Then $\angle B P S=\angle S A P$. Since $2 \angle B P S=\overparen{B E}+\overparen{L F}$ and $2 \angle S A P=\overparen{B E}+\overparen{E K}$ we have

$$
\begin{equation*}
\overparen{L F}=\overparen{E K} . \tag{1}
\end{equation*}
$$

On the other hand, from $\angle S P C=\angle S C P$ we have $\overparen{E C}+\overparen{M F}=\overparen{E C}+\overparen{E M}$, or

$$
\begin{equation*}
\overparen{M F}=\overparen{E M} . \tag{2}
\end{equation*}
$$

From (1) and (2) we get $\widehat{M F L}=\widehat{M F}+\overparen{F L}=\widehat{M E}+\overparen{E K}=\widehat{M E K}$ and hence $M K=M L$. The claim is proved.
2. We are left to prove the converse. So, assume that $M K=M L$, and introduce the points E and F as above. We have $S C^{2}=S E \cdot S F$; hence, there exists a point P^{\prime} lying on the segment $E F$ such that $S P^{\prime}=S C$ (see Fig. 3).

Fig. 3

Assume that $P \neq P^{\prime}$. Let the lines $A P^{\prime}, B P^{\prime}, C P^{\prime}$ meet ω again at points $K^{\prime}, L^{\prime}, M^{\prime}$ respectively. Now, if P^{\prime} lies on the segment $P F$ then by the first part of the solution we have $\widetilde{M^{\prime} F L^{\prime}}=\overline{M^{\prime} E K^{\prime}}$. On the other hand, we have $\overline{M F L}>\sqrt{M^{\prime} F L^{\prime}}=\overline{M^{\prime} E K^{\prime}}>\overline{M E K}$, therefore $\widehat{M F L}>\widehat{M E K}$ which contradicts $M K=M L$.

Similarly, if point P^{\prime} lies on the segment $E P$ then we get $\widehat{M F L}<\widehat{M E K}$ which is impossible. Therefore, the points P and P^{\prime} coincide and hence $S P=S P^{\prime}=S C$.

Solution 3. We present a different proof of the converse direction, that is, $M K=M L \Rightarrow$ $S P=S C$. As in the previous solutions we assume that $C A>C B$, and the line $S P$ meets ω at E and F.

From $M L=M K$ we get $\widehat{M E K}=\widehat{M F L}$. Now we claim that $\widehat{M E}=\widehat{M F}$ and $\widehat{E K}=\widehat{F L}$.
To the contrary, suppose first that $\widehat{M E}>\widehat{M F}$; then $\widehat{E K}=\widehat{M E K}-\overparen{M E}<\widehat{M F L}-\overparen{M F}=$ $\overparen{F L}$. Now, the inequality $\overparen{M E}>\overparen{M F}$ implies $2 \angle S C M=\overparen{E C}+\overparen{M E}>\overparen{E C}+\overparen{M F}=2 \angle S P C$ and hence $S P>S C$. On the other hand, the inequality $\overparen{E K}<\overparen{F L}$ implies $2 \angle S P K=$ $\overparen{E K}+\overparen{A F}<\overparen{F L}+\overparen{A F}=2 \angle A B L$, hence

$$
\angle S P A=180^{\circ}-\angle S P K>180^{\circ}-\angle A B L=\angle S B P
$$

Fig. 4
Consider the point A^{\prime} on the ray $S A$ for which $\angle S P A^{\prime}=\angle S B P$; in our case, this point lies on the segment $S A$ (see Fig. 4). Then $\triangle S B P \sim \triangle S P A^{\prime}$ and $S P^{2}=S B \cdot S A^{\prime}<S B \cdot S A=S C^{2}$. Therefore, $S P<S C$ which contradicts $S P>S C$.

Similarly, one can prove that the inequality $\widehat{M E}<\widehat{M F}$ is also impossible. So, we get $\overparen{M E}=\overparen{M F}$ and therefore $2 \angle S C M=\widehat{E C}+\overparen{M E}=\overparen{E C}+\overparen{M F}=2 \angle S P C$, which implies $S C=S P$.

G3. Let $A_{1} A_{2} \ldots A_{n}$ be a convex polygon. Point P inside this polygon is chosen so that its projections P_{1}, \ldots, P_{n} onto lines $A_{1} A_{2}, \ldots, A_{n} A_{1}$ respectively lie on the sides of the polygon. Prove that for arbitrary points X_{1}, \ldots, X_{n} on sides $A_{1} A_{2}, \ldots, A_{n} A_{1}$ respectively,

$$
\max \left\{\frac{X_{1} X_{2}}{P_{1} P_{2}}, \ldots, \frac{X_{n} X_{1}}{P_{n} P_{1}}\right\} \geq 1
$$

(Armenia)

Solution 1. Denote $P_{n+1}=P_{1}, X_{n+1}=X_{1}, A_{n+1}=A_{1}$.
Lemma. Let point Q lies inside $A_{1} A_{2} \ldots A_{n}$. Then it is contained in at least one of the circumcircles of triangles $X_{1} A_{2} X_{2}, \ldots, X_{n} A_{1} X_{1}$.
Proof. If Q lies in one of the triangles $X_{1} A_{2} X_{2}, \ldots, X_{n} A_{1} X_{1}$, the claim is obvious. Otherwise Q lies inside the polygon $X_{1} X_{2} \ldots X_{n}$ (see Fig. 1). Then we have

$$
\begin{aligned}
& \left(\angle X_{1} A_{2} X_{2}+\angle X_{1} Q X_{2}\right)+\cdots+\left(\angle X_{n} A_{1} X_{1}+\angle X_{n} Q X_{1}\right) \\
& \quad=\left(\angle X_{1} A_{1} X_{2}+\cdots+\angle X_{n} A_{1} X_{1}\right)+\left(\angle X_{1} Q X_{2}+\cdots+\angle X_{n} Q X_{1}\right)=(n-2) \pi+2 \pi=n \pi
\end{aligned}
$$

hence there exists an index i such that $\angle X_{i} A_{i+1} X_{i+1}+\angle X_{i} Q X_{i+1} \geq \frac{\pi n}{n}=\pi$. Since the quadrilateral $Q X_{i} A_{i+1} X_{i+1}$ is convex, this means exactly that Q is contained the circumcircle of $\triangle X_{i} A_{i+1} X_{i+1}$, as desired.

Now we turn to the solution. Applying lemma, we get that P lies inside the circumcircle of triangle $X_{i} A_{i+1} X_{i+1}$ for some i. Consider the circumcircles ω and Ω of triangles $P_{i} A_{i+1} P_{i+1}$ and $X_{i} A_{i+1} X_{i+1}$ respectively (see Fig. 2); let r and R be their radii. Then we get $2 r=A_{i+1} P \leq 2 R$ (since P lies inside Ω), hence

$$
P_{i} P_{i+1}=2 r \sin \angle P_{i} A_{i+1} P_{i+1} \leq 2 R \sin \angle X_{i} A_{i+1} X_{i+1}=X_{i} X_{i+1},
$$

QED.

Fig. 1

Fig. 2

Solution 2. As in Solution 1, we assume that all indices of points are considered modulo n.
We will prove a bit stronger inequality, namely

$$
\max \left\{\frac{X_{1} X_{2}}{P_{1} P_{2}} \cos \alpha_{1}, \ldots, \frac{X_{n} X_{1}}{P_{n} P_{1}} \cos \alpha_{n}\right\} \geq 1
$$

where $\alpha_{i}(1 \leq i \leq n)$ is the angle between lines $X_{i} X_{i+1}$ and $P_{i} P_{i+1}$. We denote $\beta_{i}=\angle A_{i} P_{i} P_{i-1}$ and $\gamma_{i}=\angle A_{i+1} P_{i} P_{i+1}$ for all $1 \leq i \leq n$.

Suppose that for some $1 \leq i \leq n$, point X_{i} lies on the segment $A_{i} P_{i}$, while point X_{i+1} lies on the segment $P_{i+1} A_{i+2}$. Then the projection of the segment $X_{i} X_{i+1}$ onto the line $P_{i} P_{i+1}$ contains segment $P_{i} P_{i+1}$, since γ_{i} and β_{i+1} are acute angles (see Fig. 3). Therefore, $X_{i} X_{i+1} \cos \alpha_{i} \geq$ $P_{i} P_{i+1}$, and in this case the statement is proved.

So, the only case left is when point X_{i} lies on segment $P_{i} A_{i+1}$ for all $1 \leq i \leq n$ (the case when each X_{i} lies on segment $A_{i} P_{i}$ is completely analogous).

Now, assume to the contrary that the inequality

$$
\begin{equation*}
X_{i} X_{i+1} \cos \alpha_{i}<P_{i} P_{i+1} \tag{1}
\end{equation*}
$$

holds for every $1 \leq i \leq n$. Let Y_{i} and Y_{i+1}^{\prime} be the projections of X_{i} and X_{i+1} onto $P_{i} P_{i+1}$. Then inequality (1) means exactly that $Y_{i} Y_{i+1}^{\prime}<P_{i} P_{i+1}$, or $P_{i} Y_{i}>P_{i+1} Y_{i+1}^{\prime}$ (again since γ_{i} and β_{i+1} are acute; see Fig. 4). Hence, we have

$$
X_{i} P_{i} \cos \gamma_{i}>X_{i+1} P_{i+1} \cos \beta_{i+1}, \quad 1 \leq i \leq n .
$$

Multiplying these inequalities, we get

$$
\begin{equation*}
\cos \gamma_{1} \cos \gamma_{2} \cdots \cos \gamma_{n}>\cos \beta_{1} \cos \beta_{2} \cdots \cos \beta_{n} \tag{2}
\end{equation*}
$$

On the other hand, the sines theorem applied to triangle $P P_{i} P_{i+1}$ provides

$$
\frac{P P_{i}}{P P_{i+1}}=\frac{\sin \left(\frac{\pi}{2}-\beta_{i+1}\right)}{\sin \left(\frac{\pi}{2}-\gamma_{i}\right)}=\frac{\cos \beta_{i+1}}{\cos \gamma_{i}}
$$

Multiplying these equalities we get

$$
1=\frac{\cos \beta_{2}}{\cos \gamma_{1}} \cdot \frac{\cos \beta_{3}}{\cos \gamma_{2}} \cdots \frac{\cos \beta_{1}}{\cos \gamma_{n}}
$$

which contradicts (2).

Fig. 3
Fig. 4

G4. Let I be the incenter of a triangle $A B C$ and Γ be its circumcircle. Let the line $A I$ intersect Γ at a point $D \neq A$. Let F and E be points on side $B C$ and $\operatorname{arc} B D C$ respectively such that $\angle B A F=\angle C A E<\frac{1}{2} \angle B A C$. Finally, let G be the midpoint of the segment $I F$. Prove that the lines $D G$ and $E I$ intersect on Γ.
(Hong Kong)
Solution 1. Let X be the second point of intersection of line $E I$ with Γ, and L be the foot of the bisector of angle $B A C$. Let G^{\prime} and T be the points of intersection of segment $D X$ with lines $I F$ and $A F$, respectively. We are to prove that $G=G^{\prime}$, or $I G^{\prime}=G^{\prime} F$. By the Menelaus theorem applied to triangle $A I F$ and line $D X$, it means that we need the relation

$$
1=\frac{G^{\prime} F}{I G^{\prime}}=\frac{T F}{A T} \cdot \frac{A D}{I D}, \quad \text { or } \quad \frac{T F}{A T}=\frac{I D}{A D} .
$$

Let the line $A F$ intersect Γ at point $K \neq A$ (see Fig. 1); since $\angle B A K=\angle C A E$ we have $\widehat{B K}=\overparen{C E}$, hence $K E \| B C$. Notice that $\angle I A T=\angle D A K=\angle E A D=\angle E X D=\angle I X T$, so the points I, A, X, T are concyclic. Hence we have $\angle I T A=\angle I X A=\angle E X A=\angle E K A$, so $I T\|K E\| B C$. Therefore we obtain $\frac{T F}{A T}=\frac{I L}{A I}$.

Since $C I$ is the bisector of $\angle A C L$, we get $\frac{I L}{A I}=\frac{C L}{A C}$. Furthermore, $\angle D C L=\angle D C B=$ $\angle D A B=\angle C A D=\frac{1}{2} \angle B A C$, hence the triangles $D C L$ and $D A C$ are similar; therefore we get $\frac{C L}{A C}=\frac{D C}{A D}$. Finally, it is known that the midpoint D of $\operatorname{arc} B C$ is equidistant from points I, B, C, hence $\frac{D C}{A D}=\frac{I D}{A D}$.

Summarizing all these equalities, we get

$$
\frac{T F}{A T}=\frac{I L}{A I}=\frac{C L}{A C}=\frac{D C}{A D}=\frac{I D}{A D}
$$

as desired.

Fig. 1

Fig. 2

Comment. The equality $\frac{A I}{I L}=\frac{A D}{D I}$ is known and can be obtained in many different ways. For instance, one can consider the inversion with center D and radius $D C=D I$. This inversion takes $\widehat{B A C}$ to the segment $B C$, so point A goes to L. Hence $\frac{I L}{D I}=\frac{A I}{A D}$, which is the desired equality.

Solution 2. As in the previous solution, we introduce the points X, T and K and note that it suffice to prove the equality

$$
\frac{T F}{A T}=\frac{D I}{A D} \quad \Longleftrightarrow \quad \frac{T F+A T}{A T}=\frac{D I+A D}{A D} \quad \Longleftrightarrow \quad \frac{A T}{A D}=\frac{A F}{D I+A D}
$$

Since $\angle F A D=\angle E A I$ and $\angle T D A=\angle X D A=\angle X E A=\angle I E A$, we get that the triangles $A T D$ and $A I E$ are similar, therefore $\frac{A T}{A D}=\frac{A I}{A E}$.

Next, we also use the relation $D B=D C=D I$. Let J be the point on the extension of segment $A D$ over point D such that $D J=D I=D C$ (see Fig. 2). Then $\angle D J C=$ $\angle J C D=\frac{1}{2}(\pi-\angle J D C)=\frac{1}{2} \angle A D C=\frac{1}{2} \angle A B C=\angle A B I$. Moreover, $\angle B A I=\angle J A C$, hence triangles $A B I$ and $A J C$ are similar, so $\frac{A B}{A J}=\frac{A I}{A C}$, or $A B \cdot A C=A J \cdot A I=(D I+A D) \cdot A I$.

On the other hand, we get $\angle A B F=\angle A B C=\angle A E C$ and $\angle B A F=\angle C A E$, so triangles $A B F$ and $A E C$ are also similar, which implies $\frac{A F}{A C}=\frac{A B}{A E}$, or $A B \cdot A C=A F \cdot A E$.

Summarizing we get

$$
(D I+A D) \cdot A I=A B \cdot A C=A F \cdot A E \quad \Rightarrow \quad \frac{A I}{A E}=\frac{A F}{A D+D I} \quad \Rightarrow \quad \frac{A T}{A D}=\frac{A F}{A D+D I}
$$

as desired.
Comment. In fact, point J is an excenter of triangle $A B C$.

G5. Let $A B C D E$ be a convex pentagon such that $B C \| A E, A B=B C+A E$, and $\angle A B C=$ $\angle C D E$. Let M be the midpoint of $C E$, and let O be the circumcenter of triangle $B C D$. Given that $\angle D M O=90^{\circ}$, prove that $2 \angle B D A=\angle C D E$.
(Ukraine)
Solution 1. Choose point T on ray $A E$ such that $A T=A B$; then from $A E \| B C$ we have $\angle C B T=\angle A T B=\angle A B T$, so $B T$ is the bisector of $\angle A B C$. On the other hand, we have $E T=A T-A E=A B-A E=B C$, hence quadrilateral $B C T E$ is a parallelogram, and the midpoint M of its diagonal $C E$ is also the midpoint of the other diagonal $B T$.

Next, let point K be symmetrical to D with respect to M. Then $O M$ is the perpendicular bisector of segment $D K$, and hence $O D=O K$, which means that point K lies on the circumcircle of triangle $B C D$. Hence we have $\angle B D C=\angle B K C$. On the other hand, the angles $B K C$ and $T D E$ are symmetrical with respect to M, so $\angle T D E=\angle B K C=\angle B D C$.

Therefore, $\angle B D T=\angle B D E+\angle E D T=\angle B D E+\angle B D C=\angle C D E=\angle A B C=180^{\circ}-$ $\angle B A T$. This means that the points A, B, D, T are concyclic, and hence $\angle A D B=\angle A T B=$ $\frac{1}{2} \angle A B C=\frac{1}{2} \angle C D E$, as desired.

Solution 2. Let $\angle C B D=\alpha, \angle B D C=\beta, \angle A D E=\gamma$, and $\angle A B C=\angle C D E=2 \varphi$. Then we have $\angle A D B=2 \varphi-\beta-\gamma, \angle B C D=180^{\circ}-\alpha-\beta, \angle A E D=360^{\circ}-\angle B C D-\angle C D E=$ $180^{\circ}-2 \varphi+\alpha+\beta$, and finally $\angle D A E=180^{\circ}-\angle A D E-\angle A E D=2 \varphi-\alpha-\beta-\gamma$.

Let N be the midpoint of $C D$; then $\angle D N O=90^{\circ}=\angle D M O$, hence points M, N lie on the circle with diameter $O D$. Now, if points O and M lie on the same side of $C D$, we have $\angle D M N=\angle D O N=\frac{1}{2} \angle D O C=\alpha ;$ in the other case, we have $\angle D M N=180^{\circ}-\angle D O N=\alpha ;$
so, in both cases $\angle D M N=\alpha$ (see Figures). Next, since $M N$ is a midline in triangle $C D E$, we have $\angle M D E=\angle D M N=\alpha$ and $\angle N D M=2 \varphi-\alpha$.

Now we apply the sine rule to the triangles $A B D, A D E$ (twice), $B C D$ and $M N D$ obtaining

$$
\begin{gathered}
\frac{A B}{A D}=\frac{\sin (2 \varphi-\beta-\gamma)}{\sin (2 \varphi-\alpha)}, \quad \frac{A E}{A D}=\frac{\sin \gamma}{\sin (2 \varphi-\alpha-\beta)}, \quad \frac{D E}{A D}=\frac{\sin (2 \varphi-\alpha-\beta-\gamma)}{\sin (2 \varphi-\alpha-\beta)}, \\
\frac{B C}{C D}=\frac{\sin \beta}{\sin \alpha}, \quad \frac{C D}{D E}=\frac{C D / 2}{D E / 2}=\frac{N D}{N M}=\frac{\sin \alpha}{\sin (2 \varphi-\alpha)}
\end{gathered}
$$

which implies

$$
\frac{B C}{A D}=\frac{B C}{C D} \cdot \frac{C D}{D E} \cdot \frac{D E}{A D}=\frac{\sin \beta \cdot \sin (2 \varphi-\alpha-\beta-\gamma)}{\sin (2 \varphi-\alpha) \cdot \sin (2 \varphi-\alpha-\beta)}
$$

Hence, the condition $A B=A E+B C$, or equivalently $\frac{A B}{A D}=\frac{A E+B C}{A D}$, after multiplying by the common denominator rewrites as

$$
\begin{gathered}
\quad \sin (2 \varphi-\alpha-\beta) \cdot \sin (2 \varphi-\beta-\gamma)=\sin \gamma \cdot \sin (2 \varphi-\alpha)+\sin \beta \cdot \sin (2 \varphi-\alpha-\beta-\gamma) \\
\Longleftrightarrow \cos (\gamma-\alpha)-\cos (4 \varphi-2 \beta-\alpha-\gamma)=\cos (2 \varphi-\alpha-2 \beta-\gamma)-\cos (2 \varphi+\gamma-\alpha) \\
\Longleftrightarrow \cos (\gamma-\alpha)+\cos (2 \varphi+\gamma-\alpha)=\cos (2 \varphi-\alpha-2 \beta-\gamma)+\cos (4 \varphi-2 \beta-\alpha-\gamma) \\
\Longleftrightarrow \cos \varphi \cdot \cos (\varphi+\gamma-\alpha)=\cos \varphi \cdot \cos (3 \varphi-2 \beta-\alpha-\gamma) \\
\Longleftrightarrow \cos \varphi \cdot(\cos (\varphi+\gamma-\alpha)-\cos (3 \varphi-2 \beta-\alpha-\gamma))=0 \\
\Longleftrightarrow \cos \varphi \cdot \sin (2 \varphi-\beta-\alpha) \cdot \sin (\varphi-\beta-\gamma)=0 .
\end{gathered}
$$

Since $2 \varphi-\beta-\alpha=180^{\circ}-\angle A E D<180^{\circ}$ and $\varphi=\frac{1}{2} \angle A B C<90^{\circ}$, it follows that $\varphi=\beta+\gamma$, hence $\angle B D A=2 \varphi-\beta-\gamma=\varphi=\frac{1}{2} \angle C D E$, as desired.

G6. The vertices X, Y, Z of an equilateral triangle $X Y Z$ lie respectively on the sides $B C$, $C A, A B$ of an acute-angled triangle $A B C$. Prove that the incenter of triangle $A B C$ lies inside triangle $X Y Z$.

G6'. The vertices X, Y, Z of an equilateral triangle $X Y Z$ lie respectively on the sides $B C, C A, A B$ of a triangle $A B C$. Prove that if the incenter of triangle $A B C$ lies outside triangle $X Y Z$, then one of the angles of triangle $A B C$ is greater than 120°.
(Bulgaria)
Solution 1 for G6. We will prove a stronger fact; namely, we will show that the incenter I of triangle $A B C$ lies inside the incircle of triangle $X Y Z$ (and hence surely inside triangle $X Y Z$ itself). We denote by $d(U, V W)$ the distance between point U and line $V W$.

Denote by O the incenter of $\triangle X Y Z$ and by r, r^{\prime} and R^{\prime} the inradii of triangles $A B C, X Y Z$ and the circumradius of $X Y Z$, respectively. Then we have $R^{\prime}=2 r^{\prime}$, and the desired inequality is $O I \leq r^{\prime}$. We assume that $O \neq I$; otherwise the claim is trivial.

Let the incircle of $\triangle A B C$ touch its sides $B C, A C, A B$ at points A_{1}, B_{1}, C_{1} respectively. The lines $I A_{1}, I B_{1}, I C_{1}$ cut the plane into 6 acute angles, each one containing one of the points A_{1}, B_{1}, C_{1} on its border. We may assume that O lies in an angle defined by lines $I A_{1}$, $I C_{1}$ and containing point C_{1} (see Fig. 1). Let A^{\prime} and C^{\prime} be the projections of O onto lines $I A_{1}$ and $I C_{1}$, respectively.

Since $O X=R^{\prime}$, we have $d(O, B C) \leq R^{\prime}$. Since $O A^{\prime} \| B C$, it follows that $d\left(A^{\prime}, B C\right)=$ $A^{\prime} I+r \leq R^{\prime}$, or $A^{\prime} I \leq R^{\prime}-r$. On the other hand, the incircle of $\triangle X Y Z$ lies inside $\triangle A B C$, hence $d(O, A B) \geq r^{\prime}$, and analogously we get $d(O, A B)=C^{\prime} C_{1}=r-I C^{\prime} \geq r^{\prime}$, or $I C^{\prime} \leq r-r^{\prime}$.

Fig. 1

Fig. 2

Finally, the quadrilateral $I A^{\prime} O C^{\prime}$ is circumscribed due to the right angles at A^{\prime} and C^{\prime} (see Fig. 2). On its circumcircle, we have $\widehat{A^{\prime} O C^{\prime}}=2 \angle A^{\prime} I C^{\prime}<180^{\circ}=\widetilde{O C^{\prime} I}$, hence $180^{\circ} \geq$ $\overline{I C^{\prime}}>\overline{A^{\prime} O}$. This means that $I C^{\prime}>A^{\prime} O$. Finally, we have $O I \leq I A^{\prime}+A^{\prime} O<I A^{\prime}+I C^{\prime} \leq$ $\left(R^{\prime}-r\right)+\left(r-r^{\prime}\right)=R^{\prime}-r^{\prime}=r^{\prime}$, as desired.

Solution 2 for G6. Assume the contrary. Then the incenter I should lie in one of triangles $A Y Z, B X Z, C X Y$ - assume that it lies in $\triangle A Y Z$. Let the incircle ω of $\triangle A B C$ touch sides $B C, A C$ at point A_{1}, B_{1} respectively. Without loss of generality, assume that point A_{1} lies on segment $C X$. In this case we will show that $\angle C>90^{\circ}$ thus leading to a contradiction.

Note that ω intersects each of the segments $X Y$ and $Y Z$ at two points; let U, U^{\prime} and V, V^{\prime} be the points of intersection of ω with $X Y$ and $Y Z$, respectively $\left(U Y>U^{\prime} Y, V Y>V^{\prime} Y\right.$; see Figs. 3 and 4). Note that $60^{\circ}=\angle X Y Z=\frac{1}{2}\left(\overparen{U V}-\overparen{U^{\prime} V^{\prime}}\right) \leq \frac{1}{2} \overparen{U V}$, hence $\overparen{U V} \geq 120^{\circ}$.

On the other hand, since I lies in $\triangle A Y Z$, we get $\sqrt{U V^{\prime}}<180^{\circ}$, hence $\widehat{U A_{1} U^{\prime}} \leq \sqrt{U A_{1} V^{\prime}}<$ $180^{\circ}-\overparen{U V} \leq 60^{\circ}$.

Now, two cases are possible due to the order of points Y, B_{1} on segment $A C$.

Fig. 3

Fig. 4

Case 1. Let point Y lie on the segment $A B_{1}$ (see Fig. 3). Then we have $\angle Y X C=$ $\frac{1}{2}\left(\widehat{A_{1} U^{\prime}}-\widehat{A_{1} U}\right) \leq \frac{1}{2} \widehat{U A_{1} U^{\prime}}<30^{\circ}$; analogously, we get $\angle X Y C \leq \frac{1}{2} \widehat{U A_{1} U^{\prime}}<30^{\circ}$. Therefore, $\angle Y C X=180^{\circ}-\angle Y X C-\angle X Y C>120^{\circ}$, as desired.

Case 2. Now let point Y lie on the segment $C B_{1}$ (see Fig. 4). Analogously, we obtain $\angle Y X C<30^{\circ}$. Next, $\angle I Y X>\angle Z Y X=60^{\circ}$, but $\angle I Y X<\angle I Y B_{1}$, since $Y B_{1}$ is a tangent and $Y X$ is a secant line to circle ω from point Y. Hence, we get $120^{\circ}<\angle I Y B_{1}+\angle I Y X=$ $\angle B_{1} Y X=\angle Y X C+\angle Y C X<30^{\circ}+\angle Y C X$, hence $\angle Y C X>120^{\circ}-30^{\circ}=90^{\circ}$, as desired.

Comment. In the same way, one can prove a more general
Claim. Let the vertices X, Y, Z of a triangle $X Y Z$ lie respectively on the sides $B C, C A, A B$ of a triangle $A B C$. Suppose that the incenter of triangle $A B C$ lies outside triangle $X Y Z$, and α is the least angle of $\triangle X Y Z$. Then one of the angles of triangle $A B C$ is greater than $3 \alpha-90^{\circ}$.

Solution for G6'. Assume the contrary. As in Solution 2, we assume that the incenter I of $\triangle A B C$ lies in $\triangle A Y Z$, and the tangency point A_{1} of ω and $B C$ lies on segment $C X$. Surely, $\angle Y Z A \leq 180^{\circ}-\angle Y Z X=120^{\circ}$, hence points I and Y lie on one side of the perpendicular bisector to $X Y$; therefore $I X>I Y$. Moreover, ω intersects segment $X Y$ at two points, and therefore the projection M of I onto $X Y$ lies on the segment $X Y$. In this case, we will prove that $\angle C>120^{\circ}$.

Let $Y K, Y L$ be two tangents from point Y to ω (points K and A_{1} lie on one side of $X Y$; if Y lies on ω, we say $K=L=Y$); one of the points K and L is in fact a tangency point B_{1} of ω and $A C$. From symmetry, we have $\angle Y I K=\angle Y I L$. On the other hand, since $I X>I Y$, we get $X M<X Y$ which implies $\angle A_{1} X Y<\angle K Y X$.

Next, we have $\angle M I Y=90^{\circ}-\angle I Y X<90^{\circ}-\angle Z Y X=30^{\circ}$. Since $I A_{1} \perp A_{1} X, I M \perp X Y$, $I K \perp Y K$ we get $\angle M I A_{1}=\angle A_{1} X Y<\angle K Y X=\angle M I K$. Finally, we get

$$
\begin{aligned}
\angle A_{1} I K<\angle A_{1} I L=(& \left.\angle A_{1} I M+\angle M I K\right)+(\angle K I Y+\angle Y I L) \\
& <2 \angle M I K+2 \angle K I Y=2 \angle M I Y<60^{\circ} .
\end{aligned}
$$

Hence, $\angle A_{1} I B_{1}<60^{\circ}$, and therefore $\angle A C B=180^{\circ}-\angle A_{1} I B_{1}>120^{\circ}$, as desired.

Fig. 5

Fig. 6

Comment 1. The estimate claimed in G^{\prime} is sharp. Actually, if $\angle B A C>120^{\circ}$, one can consider an equilateral triangle $X Y Z$ with $Z=A, Y \in A C, X \in B C$ (such triangle exists since $\angle A C B<60^{\circ}$). It intersects with the angle bisector of $\angle B A C$ only at point A, hence it does not contain I.

Comment 2. As in the previous solution, there is a generalization for an arbitrary triangle $X Y Z$, but here we need some additional condition. The statement reads as follows.
Claim. Let the vertices X, Y, Z of a triangle $X Y Z$ lie respectively on the sides $B C, C A, A B$ of a triangle $A B C$. Suppose that the incenter of triangle $A B C$ lies outside triangle $X Y Z, \alpha$ is the least angle of $\triangle X Y Z$, and all sides of triangle $X Y Z$ are greater than $2 r \cot \alpha$, where r is the inradius of $\triangle A B C$. Then one of the angles of triangle $A B C$ is greater than 2α.

The additional condition is needed to verify that $X M>Y M$ since it cannot be shown in the original way. Actually, we have $\angle M Y I>\alpha, I M<r$, hence $Y M<r \cot \alpha$. Now, if we have $X Y=X M+Y M>2 r \cot \alpha$, then surely $X M>Y M$.

On the other hand, this additional condition follows easily from the conditions of the original problem. Actually, if $I \in \triangle A Y Z$, then the diameter of ω parallel to $Y Z$ is contained in $\triangle A Y Z$ and is thus shorter than $Y Z$. Hence $Y Z>2 r>2 r \cot 60^{\circ}$.

G7. Three circular arcs γ_{1}, γ_{2}, and γ_{3} connect the points A and C. These arcs lie in the same half-plane defined by line $A C$ in such a way that arc γ_{2} lies between the arcs γ_{1} and γ_{3}. Point B lies on the segment $A C$. Let h_{1}, h_{2}, and h_{3} be three rays starting at B, lying in the same half-plane, h_{2} being between h_{1} and h_{3}. For $i, j=1,2,3$, denote by $V_{i j}$ the point of intersection of h_{i} and γ_{j} (see the Figure below).

Denote by $\widehat{V_{i j} V_{k j}} \sqrt{V_{k \ell} V_{i \ell}}$ the curved quadrilateral, whose sides are the segments $V_{i j} V_{i \ell}, V_{k j} V_{k \ell}$ and $\operatorname{arcs} V_{i j} V_{k j}$ and $V_{i \ell} V_{k \ell}$. We say that this quadrilateral is circumscribed if there exists a circle touching these two segments and two arcs.

Prove that if the curved quadrilaterals $\sqrt{11} \sqrt{21} \sqrt{V_{22} V_{12}}, \sqrt{12} \sqrt{22} \sqrt{23} V_{13}, \sqrt{21 V_{31}} \sqrt{V_{32} V_{22}}$ are circumscribed, then the curved quadrilateral $\widehat{V_{22} V_{32}} \widehat{V_{33} V_{23}}$ is circumscribed, too.

Fig. 1

Solution. Denote by O_{i} and R_{i} the center and the radius of γ_{i}, respectively. Denote also by H the half-plane defined by $A C$ which contains the whole configuration. For every point P in the half-plane H, denote by $d(P)$ the distance between P and line $A C$. Furthermore, for any $r>0$, denote by $\Omega(P, r)$ the circle with center P and radius r.
Lemma 1. For every $1 \leq i<j \leq 3$, consider those circles $\Omega(P, r)$ in the half-plane H which are tangent to h_{i} and h_{j}.
(a) The locus of the centers of these circles is the angle bisector $\beta_{i j}$ between h_{i} and h_{j}.
(b) There is a constant $u_{i j}$ such that $r=u_{i j} \cdot d(P)$ for all such circles.

Proof. Part (a) is obvious. To prove part (b), notice that the circles which are tangent to h_{i} and h_{j} are homothetic with the common homothety center B (see Fig. 2). Then part (b) also becomes trivial.

Lemma 2. For every $1 \leq i<j \leq 3$, consider those circles $\Omega(P, r)$ in the half-plane H which are externally tangent to γ_{i} and internally tangent to γ_{j}.
(a) The locus of the centers of these circles is an ellipse arc $\varepsilon_{i j}$ with end-points A and C.
(b) There is a constant $v_{i j}$ such that $r=v_{i j} \cdot d(P)$ for all such circles.

Proof. (a) Notice that the circle $\Omega(P, r)$ is externally tangent to γ_{i} and internally tangent to γ_{j} if and only if $O_{i} P=R_{i}+r$ and $O_{j}=R_{j}-r$. Therefore, for each such circle we have

$$
O_{i} P+O_{j} P=O_{i} A+O_{j} A=O_{i} C+O_{j} C=R_{i}+R_{j}
$$

Such points lie on an ellipse with foci O_{i} and O_{j}; the diameter of this ellipse is $R_{i}+R_{j}$, and it passes through the points A and C. Let $\varepsilon_{i j}$ be that arc $A C$ of the ellipse which runs inside the half plane H (see Fig. 3.)

This ellipse arc lies between the arcs γ_{i} and γ_{j}. Therefore, if some point P lies on $\varepsilon_{i j}$, then $O_{i} P>R_{i}$ and $O_{j} P<R_{j}$. Now, we choose $r=O_{i} P-R_{i}=R_{j}-O_{j} P>0$; then the

circle $\Omega(P, r)$ touches γ_{i} externally and touches γ_{j} internally, so P belongs to the locus under investigation.
(b) Let $\vec{\rho}=\overrightarrow{A P}, \vec{\rho}_{i}=\overrightarrow{A O_{i}}$, and $\vec{\rho}_{j}=\overrightarrow{A O_{j}}$; let $d_{i j}=O_{i} O_{j}$, and let \vec{v} be a unit vector orthogonal to $A C$ and directed toward H. Then we have $\left|\vec{\rho}_{i}\right|=R_{i},\left|\vec{\rho}_{j}\right|=R_{j},\left|\overrightarrow{O_{i} P}\right|=$ $\left|\vec{\rho}-\vec{\rho}_{i}\right|=R_{i}+r,\left|\overrightarrow{O_{j} P}\right|=\left|\vec{\rho}-\vec{\rho}_{j}\right|=R_{j}-r$, hence

$$
\begin{gathered}
\left(\vec{\rho}-\vec{\rho}_{i}\right)^{2}-\left(\vec{\rho}-\vec{\rho}_{j}\right)^{2}=\left(R_{i}+r\right)^{2}-\left(R_{j}-r\right)^{2}, \\
\left(\vec{\rho}_{i}^{2}-\vec{\rho}_{j}^{2}\right)+2 \vec{\rho} \cdot\left(\vec{\rho}_{j}-\vec{\rho}_{i}\right)=\left(R_{i}^{2}-R_{j}^{2}\right)+2 r\left(R_{i}+R_{j}\right), \\
d_{i j} \cdot d(P)=d_{i j} \vec{v} \cdot \vec{\rho}=\left(\vec{\rho}_{j}-\vec{\rho}_{i}\right) \cdot \vec{\rho}=r\left(R_{i}+R_{j}\right) .
\end{gathered}
$$

Therefore,

$$
r=\frac{d_{i j}}{R_{i}+R_{j}} \cdot d(P)
$$

and the value $v_{i j}=\frac{d_{i j}}{R_{i}+R_{j}}$ does not depend on P.
Lemma 3. The curved quadrilateral $\mathcal{Q}_{i j}=\sqrt{i, j V_{i+1, j}} V_{i+1, j+1} \widetilde{V}_{i, j+1}$ is circumscribed if and only if $u_{i, i+1}=v_{j, j+1}$.
Proof. First suppose that the curved quadrilateral $\mathcal{Q}_{i j}$ is circumscribed and $\Omega(P, r)$ is its inscribed circle. By Lemma 1 and Lemma 2 we have $r=u_{i, i+1} \cdot d(P)$ and $r=v_{j, j+1} \cdot d(P)$ as well. Hence, $u_{i, i+1}=v_{j, j+1}$.

To prove the opposite direction, suppose $u_{i, i+1}=v_{j, j+1}$. Let P be the intersection of the angle bisector $\beta_{i, i+1}$ and the ellipse arc $\varepsilon_{j, j+1}$. Choose $r=u_{i, i+1} \cdot d(P)=v_{j, j+1} \cdot d(P)$. Then the circle $\Omega(P, r)$ is tangent to the half lines h_{i} and h_{i+1} by Lemma 1 , and it is tangent to the $\operatorname{arcs} \gamma_{j}$ and γ_{j+1} by Lemma 2. Hence, the curved quadrilateral $\mathcal{Q}_{i j}$ is circumscribed.

By Lemma 3, the statement of the problem can be reformulated to an obvious fact: If the equalities $u_{12}=v_{12}, u_{12}=v_{23}$, and $u_{23}=v_{12}$ hold, then $u_{23}=v_{23}$ holds as well.

Comment 1. Lemma 2(b) (together with the easy Lemma 1(b)) is the key tool in this solution. If one finds this fact, then the solution can be finished in many ways. That is, one can find a circle touching three of h_{2}, h_{3}, γ_{2}, and γ_{3}, and then prove that it is tangent to the fourth one in either synthetic or analytical way. Both approaches can be successful.

Here we present some discussion about this key Lemma.

1. In the solution above we chose an analytic proof for Lemma 2(b) because we expect that most students will use coordinates or vectors to examine the locus of the centers, and these approaches are less case-sensitive.

Here we outline a synthetic proof. We consider only the case when P does not lie in the line $O_{i} O_{j}$. The other case can be obtained as a limit case, or computed in a direct way.

Let S be the internal homothety center between the circles of γ_{i} and γ_{j}, lying on $O_{i} O_{j}$; this point does not depend on P. Let U and V be the points of tangency of circle $\sigma=\Omega(P, r)$ with γ_{i} and γ_{j}, respectively (then $r=P U=P V$); in other words, points U and V are the intersection points of rays $O_{i} P, O_{j} P$ with arcs γ_{i}, γ_{j} respectively (see Fig. 4).

Due to the theorem on three homothety centers (or just to the Menelaus theorem applied to triangle $O_{i} O_{j} P$), the points U, V and S are collinear. Let T be the intersection point of line $A C$ and the common tangent to σ and γ_{i} at U; then T is the radical center of σ, γ_{i} and γ_{j}, hence $T V$ is the common tangent to σ and γ_{j}.

Let Q be the projection of P onto the line $A C$. By the right angles, the points U, V and Q lie on the circle with diameter $P T$. From this fact and the equality $P U=P V$ we get $\angle U Q P=\angle U V P=$ $\angle V U P=\angle S U O_{i}$. Since $O_{i} S \| P Q$, we have $\angle S O_{i} U=\angle Q P U$. Hence, the triangles $S O_{i} U$ and $U P Q$ are similar and thus $\frac{r}{d(P)}=\frac{P U}{P Q}=\frac{O_{i} S}{O_{i} U}=\frac{O_{i} S}{R_{i}}$; the last expression is constant since S is a constant point.

Fig. 4

Fig. 5
2. Using some known facts about conics, the same statement can be proved in a very short way. Denote by ℓ the directrix of ellipse of $\varepsilon_{i j}$ related to the focus O_{j}; since $\varepsilon_{i j}$ is symmetrical about $O_{i} O_{j}$, we have $\ell \| A C$. Recall that for each point $P \in \varepsilon_{i j}$, we have $P O_{j}=\epsilon \cdot d_{\ell}(P)$, where $d_{\ell}(P)$ is the distance from P to ℓ, and ϵ is the eccentricity of $\varepsilon_{i j}$ (see Fig. 5).

Now we have

$$
r=R_{j}-\left(R_{j}-r\right)=A O_{j}-P O_{j}=\epsilon\left(d_{\ell}(A)-d_{\ell}(P)\right)=\epsilon(d(P)-d(A))=\epsilon \cdot d(P)
$$

and ϵ does not depend on P.

Comment 2. One can find a spatial interpretations of the problem and the solution.
For every point (x, y) and radius $r>0$, represent the circle $\Omega((x, y), r)$ by the point (x, y, r) in space. This point is the apex of the cone with base circle $\Omega((x, y), r)$ and height r. According to Lemma 1 , the circles which are tangent to h_{i} and h_{j} correspond to the points of a half line $\beta_{i j}^{\prime}$, starting at B.

Now we translate Lemma 2. Take some $1 \leq i<j \leq 3$, and consider those circles which are internally tangent to γ_{j}. It is easy to see that the locus of the points which represent these circles is a subset of a cone, containing γ_{j}. Similarly, the circles which are externally tangent to γ_{i} correspond to the points on the extension of another cone, which has its apex on the opposite side of the base plane Π. (See Fig. 6; for this illustration, the z-coordinates were multiplied by 2.)

The two cones are symmetric to each other (they have the same aperture, and their axes are parallel). As is well-known, it follows that the common points of the two cones are co-planar. So the intersection of the two cones is a a conic section - which is an ellipse, according to Lemma 2(a). The points which represent the circles touching γ_{i} and γ_{j} is an ellipse arc $\varepsilon_{i j}^{\prime}$ with end-points A and C.

Fig. 6

Fig. 7

Thus, the curved quadrilateral $\mathcal{Q}_{i j}$ is circumscribed if and only if $\beta_{i, i+1}^{\prime}$ and $\varepsilon_{j, j+1}^{\prime}$ intersect, i.e. if they are coplanar. If three of the four curved quadrilaterals are circumscribed, it means that $\varepsilon_{12}^{\prime}, \varepsilon_{23}^{\prime}$, β_{12}^{\prime} and β_{23}^{\prime} lie in the same plane Σ, and the fourth intersection comes to existence, too (see Fig. 7).

A connection between mathematics and real life:
the Palace of Creativity "Shabyt" ("Inspiration") in Astana

Number Theory

N1. Find the least positive integer n for which there exists a set $\left\{s_{1}, s_{2}, \ldots, s_{n}\right\}$ consisting of n distinct positive integers such that

$$
\left(1-\frac{1}{s_{1}}\right)\left(1-\frac{1}{s_{2}}\right) \ldots\left(1-\frac{1}{s_{n}}\right)=\frac{51}{2010} .
$$

$\mathbf{N 1}^{\prime}$. Same as Problem N1, but the constant $\frac{51}{2010}$ is replaced by $\frac{42}{2010}$.
(Canada)
Answer for Problem N1. $n=39$.
Solution for Problem N1. Suppose that for some n there exist the desired numbers; we may assume that $s_{1}<s_{2}<\cdots<s_{n}$. Surely $s_{1}>1$ since otherwise $1-\frac{1}{s_{1}}=0$. So we have $2 \leq s_{1} \leq s_{2}-1 \leq \cdots \leq s_{n}-(n-1)$, hence $s_{i} \geq i+1$ for each $i=1, \ldots, n$. Therefore

$$
\begin{aligned}
\frac{51}{2010} & =\left(1-\frac{1}{s_{1}}\right)\left(1-\frac{1}{s_{2}}\right) \ldots\left(1-\frac{1}{s_{n}}\right) \\
& \geq\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right) \ldots\left(1-\frac{1}{n+1}\right)=\frac{1}{2} \cdot \frac{2}{3} \cdots \frac{n}{n+1}=\frac{1}{n+1}
\end{aligned}
$$

which implies

$$
n+1 \geq \frac{2010}{51}=\frac{670}{17}>39
$$

so $n \geq 39$.
Now we are left to show that $n=39$ fits. Consider the set $\{2,3, \ldots, 33,35,36, \ldots, 40,67\}$ which contains exactly 39 numbers. We have

$$
\begin{equation*}
\frac{1}{2} \cdot \frac{2}{3} \cdots \frac{32}{33} \cdot \frac{34}{35} \cdots \frac{39}{40} \cdot \frac{66}{67}=\frac{1}{33} \cdot \frac{34}{40} \cdot \frac{66}{67}=\frac{17}{670}=\frac{51}{2010} \tag{1}
\end{equation*}
$$

hence for $n=39$ there exists a desired example.
Comment. One can show that the example (1) is unique.
Answer for Problem N1'. $n=48$.
Solution for Problem N1'. Suppose that for some n there exist the desired numbers. In the same way we obtain that $s_{i} \geq i+1$. Moreover, since the denominator of the fraction $\frac{42}{2010}=\frac{7}{335}$ is divisible by 67 , some of s_{i} 's should be divisible by 67 , so $s_{n} \geq s_{i} \geq 67$. This means that

$$
\frac{42}{2010} \geq \frac{1}{2} \cdot \frac{2}{3} \cdots \frac{n-1}{n} \cdot\left(1-\frac{1}{67}\right)=\frac{66}{67 n},
$$

which implies

$$
n \geq \frac{2010 \cdot 66}{42 \cdot 67}=\frac{330}{7}>47
$$

so $n \geq 48$.
Now we are left to show that $n=48$ fits. Consider the set $\{2,3, \ldots, 33,36,37, \ldots, 50,67\}$ which contains exactly 48 numbers. We have

$$
\frac{1}{2} \cdot \frac{2}{3} \cdots \frac{32}{33} \cdot \frac{35}{36} \cdots \frac{49}{50} \cdot \frac{66}{67}=\frac{1}{33} \cdot \frac{35}{50} \cdot \frac{66}{67}=\frac{7}{335}=\frac{42}{2010}
$$

hence for $n=48$ there exists a desired example.
Comment 1. In this version of the problem, the estimate needs one more step, hence it is a bit harder. On the other hand, the example in this version is not unique. Another example is

$$
\frac{1}{2} \cdot \frac{2}{3} \cdots \frac{46}{47} \cdot \frac{66}{67} \cdot \frac{329}{330}=\frac{1}{67} \cdot \frac{66}{330} \cdot \frac{329}{47}=\frac{7}{67 \cdot 5}=\frac{42}{2010} .
$$

Comment 2. N1' was the Proposer's formulation of the problem. We propose N1 according to the number of current IMO.

N2. Find all pairs (m, n) of nonnegative integers for which

$$
\begin{equation*}
m^{2}+2 \cdot 3^{n}=m\left(2^{n+1}-1\right) \tag{1}
\end{equation*}
$$

(Australia)
Answer. $(6,3),(9,3),(9,5),(54,5)$.
Solution. For fixed values of n, the equation (1) is a simple quadratic equation in m. For $n \leq 5$ the solutions are listed in the following table.

case	equation	discriminant	integer roots
$n=0$	$m^{2}-m+2=0$	-7	none
$n=1$	$m^{2}-3 m+6=0$	-15	none
$n=2$	$m^{2}-7 m+18=0$	-23	none
$n=3$	$m^{2}-15 m+54=0$	9	$m=6$ and $m=9$
$n=4$	$m^{2}-31 m+162=0$	313	none
$n=5$	$m^{2}-63 m+486=0$	$2025=45^{2}$	$m=9$ and $m=54$

We prove that there is no solution for $n \geq 6$.
Suppose that (m, n) satisfies (1) and $n \geq 6$. Since $m \mid 2 \cdot 3^{n}=m\left(2^{n+1}-1\right)-m^{2}$, we have $m=3^{p}$ with some $0 \leq p \leq n$ or $m=2 \cdot 3^{q}$ with some $0 \leq q \leq n$.

In the first case, let $q=n-p$; then

$$
2^{n+1}-1=m+\frac{2 \cdot 3^{n}}{m}=3^{p}+2 \cdot 3^{q}
$$

In the second case let $p=n-q$. Then

$$
2^{n+1}-1=m+\frac{2 \cdot 3^{n}}{m}=2 \cdot 3^{q}+3^{p}
$$

Hence, in both cases we need to find the nonnegative integer solutions of

$$
\begin{equation*}
3^{p}+2 \cdot 3^{q}=2^{n+1}-1, \quad p+q=n \tag{2}
\end{equation*}
$$

Next, we prove bounds for p, q. From (2) we get

$$
3^{p}<2^{n+1}=8^{\frac{n+1}{3}}<9^{\frac{n+1}{3}}=3^{\frac{2(n+1)}{3}}
$$

and

$$
2 \cdot 3^{q}<2^{n+1}=2 \cdot 8^{\frac{n}{3}}<2 \cdot 9^{\frac{n}{3}}=2 \cdot 3^{\frac{2 n}{3}}<2 \cdot 3^{\frac{2(n+1)}{3}}
$$

so $p, q<\frac{2(n+1)}{3}$. Combining these inequalities with $p+q=n$, we obtain

$$
\begin{equation*}
\frac{n-2}{3}<p, q<\frac{2(n+1)}{3} \tag{3}
\end{equation*}
$$

Now let $h=\min (p, q)$. By (3) we have $h>\frac{n-2}{3}$; in particular, we have $h>1$. On the left-hand side of (2), both terms are divisible by 3^{h}, therefore $9\left|3^{h}\right| 2^{n+1}-1$. It is easy check that $\operatorname{ord}_{9}(2)=6$, so $9 \mid 2^{n+1}-1$ if and only if $6 \mid n+1$. Therefore, $n+1=6 r$ for some positive integer r, and we can write

$$
\begin{equation*}
2^{n+1}-1=4^{3 r}-1=\left(4^{2 r}+4^{r}+1\right)\left(2^{r}-1\right)\left(2^{r}+1\right) \tag{4}
\end{equation*}
$$

Notice that the factor $4^{2 r}+4^{r}+1=\left(4^{r}-1\right)^{2}+3 \cdot 4^{r}$ is divisible by 3 , but it is never divisible by 9 . The other two factors in (4), $2^{r}-1$ and $2^{r}+1$ are coprime: both are odd and their difference is 2 . Since the whole product is divisible by 3^{h}, we have either $3^{h-1} \mid 2^{r}-1$ or $3^{h-1} \mid 2^{r}+1$. In any case, we have $3^{h-1} \leq 2^{r}+1$. Then

$$
\begin{gathered}
3^{h-1} \leq 2^{r}+1 \leq 3^{r}=3^{\frac{n+1}{6}} \\
\frac{n-2}{3}-1<h-1 \leq \frac{n+1}{6} \\
n<11
\end{gathered}
$$

But this is impossible since we assumed $n \geq 6$, and we proved $6 \mid n+1$.

N3. Find the smallest number n such that there exist polynomials $f_{1}, f_{2}, \ldots, f_{n}$ with rational coefficients satisfying

$$
x^{2}+7=f_{1}(x)^{2}+f_{2}(x)^{2}+\cdots+f_{n}(x)^{2} .
$$

(Poland)
Answer. The smallest n is 5 .
Solution 1. The equality $x^{2}+7=x^{2}+2^{2}+1^{2}+1^{2}+1^{2}$ shows that $n \leq 5$. It remains to show that $x^{2}+7$ is not a sum of four (or less) squares of polynomials with rational coefficients.

Suppose by way of contradiction that $x^{2}+7=f_{1}(x)^{2}+f_{2}(x)^{2}+f_{3}(x)^{2}+f_{4}(x)^{2}$, where the coefficients of polynomials f_{1}, f_{2}, f_{3} and f_{4} are rational (some of these polynomials may be zero).

Clearly, the degrees of f_{1}, f_{2}, f_{3} and f_{4} are at most 1 . Thus $f_{i}(x)=a_{i} x+b_{i}$ for $i=1,2,3,4$ and some rationals $a_{1}, b_{1}, a_{2}, b_{2}, a_{3}, b_{3}, a_{4}, b_{4}$. It follows that $x^{2}+7=\sum_{i=1}^{4}\left(a_{i} x+b_{i}\right)^{2}$ and hence

$$
\begin{equation*}
\sum_{i=1}^{4} a_{i}^{2}=1, \quad \sum_{i=1}^{4} a_{i} b_{i}=0, \quad \sum_{i=1}^{4} b_{i}^{2}=7 \tag{1}
\end{equation*}
$$

Let $p_{i}=a_{i}+b_{i}$ and $q_{i}=a_{i}-b_{i}$ for $i=1,2,3,4$. Then

$$
\begin{aligned}
\sum_{i=1}^{4} p_{i}^{2} & =\sum_{i=1}^{4} a_{i}^{2}+2 \sum_{i=1}^{4} a_{i} b_{i}+\sum_{i=1}^{4} b_{i}^{2}=8, \\
\sum_{i=1}^{4} q_{i}^{2} & =\sum_{i=1}^{4} a_{i}^{2}-2 \sum_{i=1}^{4} a_{i} b_{i}+\sum_{i=1}^{4} b_{i}^{2}=8 \\
\text { and } \quad \sum_{i=1}^{4} p_{i} q_{i} & =\sum_{i=1}^{4} a_{i}^{2}-\sum_{i=1}^{4} b_{i}^{2}=-6,
\end{aligned}
$$

which means that there exist a solution in integers $x_{1}, y_{1}, x_{2}, y_{2}, x_{3}, y_{3}, x_{4}, y_{4}$ and $m>0$ of the system of equations
(i) $\sum_{i=1}^{4} x_{i}^{2}=8 m^{2}$,
(ii) $\sum_{i=1}^{4} y_{i}^{2}=8 m^{2}$,
(iii) $\sum_{i=1}^{4} x_{i} y_{i}=-6 m^{2}$.

We will show that such a solution does not exist.
Assume the contrary and consider a solution with minimal m. Note that if an integer x is odd then $x^{2} \equiv 1(\bmod 8)$. Otherwise (i.e., if x is even) we have $x^{2} \equiv 0(\bmod 8)$ or $x^{2} \equiv 4$ $(\bmod 8)$. Hence, by (i), we get that x_{1}, x_{2}, x_{3} and x_{4} are even. Similarly, by (ii), we get that y_{1}, y_{2}, y_{3} and y_{4} are even. Thus the LHS of (iii) is divisible by 4 and m is also even. It follows that $\left(\frac{x_{1}}{2}, \frac{y_{1}}{2}, \frac{x_{2}}{2}, \frac{y_{2}}{2}, \frac{x_{3}}{2}, \frac{y_{3}}{2}, \frac{x_{4}}{2}, \frac{y_{4}}{2}, \frac{m}{2}\right)$ is a solution of the system of equations (i), (ii) and (iii), which contradicts the minimality of m.

Solution 2. We prove that $n \leq 4$ is impossible. Define the numbers a_{i}, b_{i} for $i=1,2,3,4$ as in the previous solution.

By Euler's identity we have

$$
\begin{aligned}
\left(a_{1}^{2}+a_{2}^{2}+a_{3}^{2}+a_{4}^{2}\right)\left(b_{1}^{2}+b_{2}^{2}+b_{3}^{2}+b_{4}^{2}\right) & =\left(a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}+a_{4} b_{4}\right)^{2}+\left(a_{1} b_{2}-a_{2} b_{1}+a_{3} b_{4}-a_{4} b_{3}\right)^{2} \\
& +\left(a_{1} b_{3}-a_{3} b_{1}+a_{4} b_{2}-a_{2} b_{4}\right)^{2}+\left(a_{1} b_{4}-a_{4} b_{1}+a_{2} b_{3}-a_{3} b_{2}\right)^{2} .
\end{aligned}
$$

So, using the relations (1) from the Solution 1 we get that

$$
\begin{equation*}
7=\left(\frac{m_{1}}{m}\right)^{2}+\left(\frac{m_{2}}{m}\right)^{2}+\left(\frac{m_{3}}{m}\right)^{2} \tag{2}
\end{equation*}
$$

where

$$
\begin{aligned}
& \frac{m_{1}}{m}=a_{1} b_{2}-a_{2} b_{1}+a_{3} b_{4}-a_{4} b_{3}, \\
& \frac{m_{2}}{m}=a_{1} b_{3}-a_{3} b_{1}+a_{4} b_{2}-a_{2} b_{4}, \\
& \frac{m_{3}}{m}=a_{1} b_{4}-a_{4} b_{1}+a_{2} b_{3}-a_{3} b_{2}
\end{aligned}
$$

and $m_{1}, m_{2}, m_{3} \in \mathbb{Z}, m \in \mathbb{N}$.
Let m be a minimum positive integer number for which (2) holds. Then

$$
8 m^{2}=m_{1}^{2}+m_{2}^{2}+m_{3}^{2}+m^{2} .
$$

As in the previous solution, we get that m_{1}, m_{2}, m_{3}, m are all even numbers. Then $\left(\frac{m_{1}}{2}, \frac{m_{2}}{2}, \frac{m_{3}}{2}, \frac{m}{2}\right)$ is also a solution of (2) which contradicts the minimality of m. So, we have $n \geq 5$. The example with $n=5$ is already shown in Solution 1 .

N4. Let a, b be integers, and let $P(x)=a x^{3}+b x$. For any positive integer n we say that the pair (a, b) is n-good if $n \mid P(m)-P(k)$ implies $n \mid m-k$ for all integers m, k. We say that (a, b) is very good if (a, b) is n-good for infinitely many positive integers n.
(a) Find a pair (a, b) which is 51 -good, but not very good.
(b) Show that all 2010-good pairs are very good.
(Turkey)
Solution. (a) We show that the pair $\left(1,-51^{2}\right)$ is good but not very good. Let $P(x)=x^{3}-51^{2} x$. Since $P(51)=P(0)$, the pair $\left(1,-51^{2}\right)$ is not n-good for any positive integer that does not divide 51. Therefore, $\left(1,-51^{2}\right)$ is not very good.

On the other hand, if $P(m) \equiv P(k)(\bmod 51)$, then $m^{3} \equiv k^{3}(\bmod 51)$. By Fermat's theorem, from this we obtain

$$
m \equiv m^{3} \equiv k^{3} \equiv k \quad(\bmod 3) \quad \text { and } \quad m \equiv m^{33} \equiv k^{33} \equiv k \quad(\bmod 17)
$$

Hence we have $m \equiv k(\bmod 51)$. Therefore $\left(1,-51^{2}\right)$ is 51 -good.
(b) We will show that if a pair (a, b) is 2010-good then (a, b) is 67^{i}-good for all positive integer i.
Claim 1. If (a, b) is 2010 -good then (a, b) is 67 -good.
Proof. Assume that $P(m)=P(k)(\bmod 67)$. Since 67 and 30 are coprime, there exist integers m^{\prime} and k^{\prime} such that $k^{\prime} \equiv k(\bmod 67), k^{\prime} \equiv 0(\bmod 30)$, and $m^{\prime} \equiv m(\bmod 67), m^{\prime} \equiv 0$ (mod 30). Then we have $P\left(m^{\prime}\right) \equiv P(0) \equiv P\left(k^{\prime}\right)(\bmod 30)$ and $P\left(m^{\prime}\right) \equiv P(m) \equiv P(k) \equiv P\left(k^{\prime}\right)$ (mod 67), hence $P\left(m^{\prime}\right) \equiv P\left(k^{\prime}\right)(\bmod 2010)$. This implies $m^{\prime} \equiv k^{\prime}(\bmod 2010)$ as (a, b) is 2010-good. It follows that $m \equiv m^{\prime} \equiv k^{\prime} \equiv k(\bmod 67)$. Therefore, (a, b) is 67 -good.
Claim 2. If (a, b) is 67 -good then $67 \mid a$.
Proof. Suppose that $67 \nmid a$. Consider the sets $\left\{a t^{2}(\bmod 67): 0 \leq t \leq 33\right\}$ and $\left\{-3 a s^{2}-b\right.$ $\bmod 67: 0 \leq s \leq 33\}$. Since $a \not \equiv 0(\bmod 67)$, each of these sets has 34 elements. Hence they have at least one element in common. If $a t^{2} \equiv-3 a s^{2}-b(\bmod 67)$ then for $m=t \pm s, k=\mp 2 s$ we have

$$
\begin{aligned}
P(m)-P(k)=a\left(m^{3}-k^{3}\right)+b(m-k) & =(m-k)\left(a\left(m^{2}+m k+k^{2}\right)+b\right) \\
& =(t \pm 3 s)\left(a t^{2}+3 a s^{2}+b\right) \equiv 0 \quad(\bmod 67)
\end{aligned}
$$

Since (a, b) is 67 -good, we must have $m \equiv k(\bmod 67)$ in both cases, that is, $t \equiv 3 s(\bmod 67)$ and $t \equiv-3 s(\bmod 67)$. This means $t \equiv s \equiv 0(\bmod 67)$ and $b \equiv-3 a s^{2}-a t^{2} \equiv 0(\bmod 67)$. But then $67 \mid P(7)-P(2)=67 \cdot 5 a+5 b$ and $67 \nmid 7-2$, contradicting that (a, b) is 67 -good.
Claim 3. If (a, b) is 2010-good then (a, b) is 67^{i}-good all $i \geq 1$.
Proof. By Claim 2, we have $67 \mid a$. If $67 \mid b$, then $P(x) \equiv P(0)(\bmod 67)$ for all x, contradicting that (a, b) is 67 -good. Hence, $67 \nmid b$.

Suppose that $67^{i} \mid P(m)-P(k)=(m-k)\left(a\left(m^{2}+m k+k^{2}\right)+b\right)$. Since $67 \mid a$ and $67 \nmid b$, the second factor $a\left(m^{2}+m k+k^{2}\right)+b$ is coprime to 67 and hence $67^{i} \mid m-k$. Therefore, (a, b) is 67^{i}-good.
Comment 1. In the proof of Claim 2, the following reasoning can also be used. Since 3 is not a quadratic residue modulo 67 , either $a u^{2} \equiv-b(\bmod 67)$ or $3 a v^{2} \equiv-b(\bmod 67)$ has a solution. The settings $(m, k)=(u, 0)$ in the first case and $(m, k)=(v,-2 v)$ in the second case lead to $b \equiv 0$ $(\bmod 67)$.
Comment 2. The pair $(67,30)$ is n-good if and only if $n=d \cdot 67^{i}$, where $d \mid 30$ and $i \geq 0$. It shows that in part (b), one should deal with the large powers of 67 to reach the solution. The key property of number 67 is that it has the form $3 k+1$, so there exists a nontrivial cubic root of unity modulo 67 .

N5. Let \mathbb{N} be the set of all positive integers. Find all functions $f: \mathbb{N} \rightarrow \mathbb{N}$ such that the number $(f(m)+n)(m+f(n))$ is a square for all $m, n \in \mathbb{N}$.
(U.S.A.)

Answer. All functions of the form $f(n)=n+c$, where $c \in \mathbb{N} \cup\{0\}$.
Solution. First, it is clear that all functions of the form $f(n)=n+c$ with a constant nonnegative integer c satisfy the problem conditions since $(f(m)+n)(f(n)+m)=(n+m+c)^{2}$ is a square.

We are left to prove that there are no other functions. We start with the following Lemma. Suppose that $p \mid f(k)-f(\ell)$ for some prime p and positive integers k, ℓ. Then $p \mid k-\ell$. Proof. Suppose first that $p^{2} \mid f(k)-f(\ell)$, so $f(\ell)=f(k)+p^{2} a$ for some integer a. Take some positive integer $D>\max \{f(k), f(\ell)\}$ which is not divisible by p and set $n=p D-f(k)$. Then the positive numbers $n+f(k)=p D$ and $n+f(\ell)=p D+(f(\ell)-f(k))=p(D+p a)$ are both divisible by p but not by p^{2}. Now, applying the problem conditions, we get that both the numbers $(f(k)+n)(f(n)+k)$ and $(f(\ell)+n)(f(n)+\ell)$ are squares divisible by p (and thus by p^{2}); this means that the multipliers $f(n)+k$ and $f(n)+\ell$ are also divisible by p, therefore $p \mid(f(n)+k)-(f(n)+\ell)=k-\ell$ as well.

On the other hand, if $f(k)-f(\ell)$ is divisible by p but not by p^{2}, then choose the same number D and set $n=p^{3} D-f(k)$. Then the positive numbers $f(k)+n=p^{3} D$ and $f(\ell)+n=$ $p^{3} D+(f(\ell)-f(k))$ are respectively divisible by p^{3} (but not by p^{4}) and by p (but not by p^{2}). Hence in analogous way we obtain that the numbers $f(n)+k$ and $f(n)+\ell$ are divisible by p, therefore $p \mid(f(n)+k)-(f(n)+\ell)=k-\ell$.

We turn to the problem. First, suppose that $f(k)=f(\ell)$ for some $k, \ell \in \mathbb{N}$. Then by Lemma we have that $k-\ell$ is divisible by every prime number, so $k-\ell=0$, or $k=\ell$. Therefore, the function f is injective.

Next, consider the numbers $f(k)$ and $f(k+1)$. Since the number $(k+1)-k=1$ has no prime divisors, by Lemma the same holds for $f(k+1)-f(k)$; thus $|f(k+1)-f(k)|=1$.

Now, let $f(2)-f(1)=q,|q|=1$. Then we prove by induction that $f(n)=f(1)+q(n-1)$. The base for $n=1,2$ holds by the definition of q. For the step, if $n>1$ we have $f(n+1)=$ $f(n) \pm q=f(1)+q(n-1) \pm q$. Since $f(n) \neq f(n-2)=f(1)+q(n-2)$, we get $f(n)=f(1)+q n$, as desired.

Finally, we have $f(n)=f(1)+q(n-1)$. Then q cannot be -1 since otherwise for $n \geq f(1)+1$ we have $f(n) \leq 0$ which is impossible. Hence $q=1$ and $f(n)=(f(1)-1)+n$ for each $n \in \mathbb{N}$, and $f(1)-1 \geq 0$, as desired.

N6. The rows and columns of a $2^{n} \times 2^{n}$ table are numbered from 0 to $2^{n}-1$. The cells of the table have been colored with the following property being satisfied: for each $0 \leq i, j \leq 2^{n}-1$, the j th cell in the i th row and the $(i+j)$ th cell in the j th row have the same color. (The indices of the cells in a row are considered modulo 2^{n}.)

Prove that the maximal possible number of colors is 2^{n}.

Solution. Throughout the solution we denote the cells of the table by coordinate pairs; (i, j) refers to the j th cell in the i th row.

Consider the directed graph, whose vertices are the cells of the board, and the edges are the arrows $(i, j) \rightarrow(j, i+j)$ for all $0 \leq i, j \leq 2^{n}-1$. From each vertex (i, j), exactly one edge passes $\left(\right.$ to $\left(j, i+j \bmod 2^{n}\right)$); conversely, to each cell (j, k) exactly one edge is directed (from the cell $\left.\left(k-j \bmod 2^{n}, j\right)\right)$. Hence, the graph splits into cycles.

Now, in any coloring considered, the vertices of each cycle should have the same color by the problem condition. On the other hand, if each cycle has its own color, the obtained coloring obviously satisfies the problem conditions. Thus, the maximal possible number of colors is the same as the number of cycles, and we have to prove that this number is 2^{n}.

Next, consider any cycle $\left(i_{1}, j_{1}\right),\left(i_{2}, j_{2}\right), \ldots$; we will describe it in other terms. Define a sequence $\left(a_{0}, a_{1}, \ldots\right)$ by the relations $a_{0}=i_{1}, a_{1}=j_{1}, a_{n+1}=a_{n}+a_{n-1}$ for all $n \geq 1$ (we say that such a sequence is a Fibonacci-type sequence). Then an obvious induction shows that $i_{k} \equiv a_{k-1}\left(\bmod 2^{n}\right), j_{k} \equiv a_{k}\left(\bmod 2^{n}\right)$. Hence we need to investigate the behavior of Fibonacci-type sequences modulo 2^{n}.

Denote by F_{0}, F_{1}, \ldots the Fibonacci numbers defined by $F_{0}=0, F_{1}=1$, and $F_{n+2}=$ $F_{n+1}+F_{n}$ for $n \geq 0$. We also set $F_{-1}=1$ according to the recurrence relation.

For every positive integer m, denote by $\nu(m)$ the exponent of 2 in the prime factorization of m, i.e. for which $2^{\nu(m)} \mid m$ but $2^{\nu(m)+1} \nmid m$.
Lemma 1. For every Fibonacci-type sequence $a_{0}, a_{1}, a_{2}, \ldots$, and every $k \geq 0$, we have $a_{k}=$ $F_{k-1} a_{0}+F_{k} a_{1}$.
Proof. Apply induction on k. The base cases $k=0,1$ are trivial. For the step, from the induction hypothesis we get

$$
a_{k+1}=a_{k}+a_{k-1}=\left(F_{k-1} a_{0}+F_{k} a_{1}\right)+\left(F_{k-2} a_{0}+F_{k-1} a_{1}\right)=F_{k} a_{0}+F_{k+1} a_{1} .
$$

Lemma 2. For every $m \geq 3$,
(a) we have $\nu\left(F_{3 \cdot 2^{m-2}}\right)=m$;
(b) $d=3 \cdot 2^{m-2}$ is the least positive index for which $2^{m} \mid F_{d}$;
(c) $F_{3 \cdot 2^{m-2}+1} \equiv 1+2^{m-1}\left(\bmod 2^{m}\right)$.

Proof. Apply induction on m. In the base case $m=3$ we have $\nu\left(F_{3 \cdot 2^{m-2}}\right)=F_{6}=8$, so $\nu\left(F_{3 \cdot 2^{m-2}}\right)=\nu(8)=3$, the preceding Fibonacci-numbers are not divisible by 8, and indeed $F_{3 \cdot 2^{m-2}+1}=F_{7}=13 \equiv 1+4(\bmod 8)$.

Now suppose that $m>3$ and let $k=3 \cdot 2^{m-3}$. By applying Lemma 1 to the Fibonacci-type sequence F_{k}, F_{k+1}, \ldots we get

$$
\begin{gathered}
F_{2 k}=F_{k-1} F_{k}+F_{k} F_{k+1}=\left(F_{k+1}-F_{k}\right) F_{k}+F_{k+1} F_{k}=2 F_{k+1} F_{k}-F_{k}^{2}, \\
F_{2 k+1}=F_{k} \cdot F_{k}+F_{k+1} \cdot F_{k+1}=F_{k}^{2}+F_{k+1}^{2} .
\end{gathered}
$$

By the induction hypothesis, $\nu\left(F_{k}\right)=m-1$, and F_{k+1} is odd. Therefore we get $\nu\left(F_{k}^{2}\right)=$ $2(m-1)>(m-1)+1=\nu\left(2 F_{k} F_{k+1}\right)$, which implies $\nu\left(F_{2 k}\right)=m$, establishing statement (a).

Moreover, since $F_{k+1}=1+2^{m-2}+a 2^{m-1}$ for some integer a, we get

$$
F_{2 k+1}=F_{k}^{2}+F_{k+1}^{2} \equiv 0+\left(1+2^{m-2}+a 2^{m-1}\right)^{2} \equiv 1+2^{m-1} \quad\left(\bmod 2^{m}\right)
$$

as desired in statement (c).
We are left to prove that $2^{m} \nmid F_{\ell}$ for $\ell<2 k$. Assume the contrary. Since $2^{m-1} \mid F_{\ell}$, from the induction hypothesis it follows that $\ell>k$. But then we have $F_{\ell}=F_{k-1} F_{\ell-k}+F_{k} F_{\ell-k+1}$, where the second summand is divisible by 2^{m-1} but the first one is not (since F_{k-1} is odd and $\ell-k<k)$. Hence the sum is not divisible even by 2^{m-1}. A contradiction.

Now, for every pair of integers $(a, b) \neq(0,0)$, let $\mu(a, b)=\min \{\nu(a), \nu(b)\}$. By an obvious induction, for every Fibonacci-type sequence $A=\left(a_{0}, a_{1}, \ldots\right)$ we have $\mu\left(a_{0}, a_{1}\right)=\mu\left(a_{1}, a_{2}\right)=\ldots$; denote this common value by $\mu(A)$. Also denote by $p_{n}(A)$ the period of this sequence modulo 2^{n}, that is, the least $p>0$ such that $a_{k+p} \equiv a_{k}\left(\bmod 2^{n}\right)$ for all $k \geq 0$.
Lemma 3. Let $A=\left(a_{0}, a_{1}, \ldots\right)$ be a Fibonacci-type sequence such that $\mu(A)=k<n$. Then $p_{n}(A)=3 \cdot 2^{n-1-k}$.
Proof. First, we note that the sequence $\left(a_{0}, a_{1}, \ldots\right)$ has period p modulo 2^{n} if and only if the sequence $\left(a_{0} / 2^{k}, a_{1} / 2^{k}, \ldots\right)$ has period p modulo 2^{n-k}. Hence, passing to this sequence we can assume that $k=0$.

We prove the statement by induction on n. It is easy to see that for $n=1,2$ the claim is true; actually, each Fibonacci-type sequence A with $\mu(A)=0$ behaves as $0,1,1,0,1,1, \ldots$ modulo 2 , and as $0,1,1,2,3,1,0,1,1,2,3,1, \ldots$ modulo 4 (all pairs of residues from which at least one is odd appear as a pair of consecutive terms in this sequence).

Now suppose that $n \geq 3$ and consider an arbitrary Fibonacci-type sequence $A=\left(a_{0}, a_{1}, \ldots\right)$ with $\mu(A)=0$. Obviously we should have $p_{n-1}(A) \mid p_{n}(A)$, or, using the induction hypothesis, $s=3 \cdot 2^{n-2} \mid p_{n}(A)$. Next, we may suppose that a_{0} is even; hence a_{1} is odd, and $a_{0}=2 b_{0}$, $a_{1}=2 b_{1}+1$ for some integers b_{0}, b_{1}.

Consider the Fibonacci-type sequence $B=\left(b_{0}, b_{1}, \ldots\right)$ starting with $\left(b_{0}, b_{1}\right)$. Since $a_{0}=$ $2 b_{0}+F_{0}, a_{1}=2 b_{1}+F_{1}$, by an easy induction we get $a_{k}=2 b_{k}+F_{k}$ for all $k \geq 0$. By the induction hypothesis, we have $p_{n-1}(B) \mid s$, hence the sequence $\left(2 b_{0}, 2 b_{1}, \ldots\right)$ is s-periodic modulo 2^{n}. On the other hand, by Lemma 2 we have $F_{s+1} \equiv 1+2^{n-1}\left(\bmod 2^{n}\right), F_{2 s} \equiv 0$ $\left(\bmod 2^{n}\right), F_{2 s+1} \equiv 1\left(\bmod 2^{n}\right)$, hence

$$
\begin{gathered}
a_{s+1}=2 b_{s+1}+F_{s+1} \equiv 2 b_{1}+1+2^{n-1} \not \equiv 2 b_{1}+1=a_{1} \quad\left(\bmod 2^{n}\right) \\
a_{2 s}=2 b_{2 s}+F_{2 s} \equiv 2 b_{0}+0=a_{0} \quad\left(\bmod 2^{n}\right) \\
a_{2 s+1}=2 b_{2 s+1}+F_{2 s+1} \equiv 2 b_{1}+1=a_{1} \quad\left(\bmod 2^{n}\right)
\end{gathered}
$$

The first line means that A is not s-periodic, while the other two provide that $a_{2 s} \equiv a_{0}$, $a_{2 s+1} \equiv a_{1}$ and hence $a_{2 s+t} \equiv a_{t}$ for all $t \geq 0$. Hence $s\left|p_{n}(A)\right| 2 s$ and $p_{n}(A) \neq s$, which means that $p_{n}(A)=2 s$, as desired.

Finally, Lemma 3 provides a straightforward method of counting the number of cycles. Actually, take any number $0 \leq k \leq n-1$ and consider all the cells (i, j) with $\mu(i, j)=k$. The total number of such cells is $2^{2(n-k)}-2^{2(n-k-1)}=3 \cdot 2^{2 n-2 k-2}$. On the other hand, they are split into cycles, and by Lemma 3 the length of each cycle is $3 \cdot 2^{n-1-k}$. Hence the number of cycles consisting of these cells is exactly $\frac{3 \cdot 2^{2 n-2 k-2}}{3 \cdot 2^{n-1-k}}=2^{n-k-1}$. Finally, there is only one cell $(0,0)$ which is not mentioned in the previous computation, and it forms a separate cycle. So the total number of cycles is

$$
1+\sum_{k=0}^{n-1} 2^{n-1-k}=1+\left(1+2+4+\cdots+2^{n-1}\right)=2^{n}
$$

Comment. We outline a different proof for the essential part of Lemma 3. That is, we assume that $k=0$ and show that in this case the period of $\left(a_{i}\right)$ modulo 2^{n} coincides with the period of the Fibonacci numbers modulo 2^{n}; then the proof can be finished by the arguments from Lemma 2..

Note that p is a (not necessarily minimal) period of the sequence $\left(a_{i}\right)$ modulo 2^{n} if and only if we have $a_{0} \equiv a_{p}\left(\bmod 2^{n}\right), a_{1} \equiv a_{p+1}\left(\bmod 2^{n}\right)$, that is,

$$
\begin{align*}
& a_{0} \equiv a_{p} \equiv F_{p-1} a_{0}+F_{p} a_{1}=F_{p}\left(a_{1}-a_{0}\right)+F_{p+1} a_{0} \quad\left(\bmod 2^{n}\right), \tag{1}\\
& a_{1} \equiv a_{p+1}=F_{p} a_{0}+F_{p+1} a_{1} \quad\left(\bmod 2^{n}\right) .
\end{align*}
$$

Now, If p is a period of $\left(F_{i}\right)$ then we have $F_{p} \equiv F_{0}=0\left(\bmod 2^{n}\right)$ and $F_{p+1} \equiv F_{1}=1\left(\bmod 2^{n}\right)$, which by (1) implies that p is a period of $\left(a_{i}\right)$ as well.

Conversely, suppose that p is a period of $\left(a_{i}\right)$. Combining the relations of (1) we get

$$
\begin{aligned}
0=a_{1} \cdot a_{0}-a_{0} \cdot a_{1} & \equiv a_{1}\left(F_{p}\left(a_{1}-a_{0}\right)+F_{p+1} a_{0}\right)-a_{0}\left(F_{p} a_{0}+F_{p+1} a_{1}\right) \\
& =F_{p}\left(a_{1}^{2}-a_{1} a_{0}-a_{0}^{2}\right)\left(\bmod 2^{n}\right), \\
a_{1}^{2}-a_{1} a_{0}-a_{0}^{2}=\left(a_{1}-a_{0}\right) a_{1}-a_{0} \cdot a_{0} & \equiv\left(a_{1}-a_{0}\right)\left(F_{p} a_{0}+F_{p+1} a_{1}\right)-a_{0}\left(F_{p}\left(a_{1}-a_{0}\right)+F_{p+1} a_{0}\right) \\
& =F_{p+1}\left(a_{1}^{2}-a_{1} a_{0}-a_{0}^{2}\right) \quad\left(\bmod 2^{n}\right) .
\end{aligned}
$$

Since at least one of the numbers a_{0}, a_{1} is odd, the number $a_{1}^{2}-a_{1} a_{0}-a_{0}^{2}$ is odd as well. Therefore the previous relations are equivalent with $F_{p} \equiv 0\left(\bmod 2^{n}\right)$ and $F_{p+1} \equiv 1\left(\bmod 2^{n}\right)$, which means exactly that p is a period of $\left(F_{0}, F_{1}, \ldots\right)$ modulo 2^{n}.

So, the sets of periods of $\left(a_{i}\right)$ and $\left(F_{i}\right)$ coincide, and hence the minimal periods coincide as well.

52 ${ }^{\text {nd }}$ International Mathematical Olympiad

12 - 24 July 2011
Amsterdam
The Netherlands

52nd International Mathematical Olympiad 12-24 July 2011
 Amsterdam The Netherlands

Problem shortlist with solutions

IMO regulation: these shortlist problems have to be kept strictly confidential until IMO 2012.

The problem selection committee

Bart de Smit (chairman), Ilya Bogdanov, Johan Bosman, Andries Brouwer, Gabriele Dalla Torre, Géza Kós, Hendrik Lenstra, Charles Leytem, Ronald van Luijk, Christian Reiher, Eckard Specht, Hans Sterk, Lenny Taelman

The committee gratefully acknowledges the receipt of 142 problem proposals by the following 46 countries:

Armenia, Australia, Austria, Belarus, Belgium, Bosnia and Herzegovina, Brazil, Bulgaria, Canada, Colombia, Cyprus, Denmark, Estonia, Finland, France, Germany, Greece, Hong Kong, Hungary, India, Islamic Republic of Iran, Ireland, Israel, Japan, Kazakhstan, Republic of Korea, Luxembourg, Malaysia, Mexico, Mongolia, Montenegro, Pakistan, Poland, Romania, Russian Federation, Saudi Arabia, Serbia, Slovakia, Slovenia, Sweden, Taiwan, Thailand, Turkey, Ukraine, United Kingdom, United States of America

Algebra

A1

For any set $A=\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$ of four distinct positive integers with sum $s_{A}=a_{1}+a_{2}+a_{3}+a_{4}$, let p_{A} denote the number of pairs (i, j) with $1 \leq i<j \leq 4$ for which $a_{i}+a_{j}$ divides s_{A}. Among all sets of four distinct positive integers, determine those sets A for which p_{A} is maximal.

A2

Determine all sequences $\left(x_{1}, x_{2}, \ldots, x_{2011}\right)$ of positive integers such that for every positive integer n there is an integer a with

$$
x_{1}^{n}+2 x_{2}^{n}+\cdots+2011 x_{2011}^{n}=a^{n+1}+1 .
$$

A3

Determine all pairs (f, g) of functions from the set of real numbers to itself that satisfy

$$
g(f(x+y))=f(x)+(2 x+y) g(y)
$$

for all real numbers x and y.

A4

Determine all pairs (f, g) of functions from the set of positive integers to itself that satisfy

$$
f^{g(n)+1}(n)+g^{f(n)}(n)=f(n+1)-g(n+1)+1
$$

for every positive integer n. Here, $f^{k}(n)$ means $\underbrace{f(f(\ldots f}_{k}(n) \ldots))$.

A5

Prove that for every positive integer n, the set $\{2,3,4, \ldots, 3 n+1\}$ can be partitioned into n triples in such a way that the numbers from each triple are the lengths of the sides of some obtuse triangle.

A6

Let f be a function from the set of real numbers to itself that satisfies

$$
f(x+y) \leq y f(x)+f(f(x))
$$

for all real numbers x and y. Prove that $f(x)=0$ for all $x \leq 0$.

A7

Let a, b, and c be positive real numbers satisfying $\min (a+b, b+c, c+a)>\sqrt{2}$ and $a^{2}+b^{2}+c^{2}=3$. Prove that

$$
\frac{a}{(b+c-a)^{2}}+\frac{b}{(c+a-b)^{2}}+\frac{c}{(a+b-c)^{2}} \geq \frac{3}{(a b c)^{2}} .
$$

Combinatorics

C1

Let $n>0$ be an integer. We are given a balance and n weights of weight $2^{0}, 2^{1}, \ldots, 2^{n-1}$. In a sequence of n moves we place all weights on the balance. In the first move we choose a weight and put it on the left pan. In each of the following moves we choose one of the remaining weights and we add it either to the left or to the right pan. Compute the number of ways in which we can perform these n moves in such a way that the right pan is never heavier than the left pan.

C2

Suppose that 1000 students are standing in a circle. Prove that there exists an integer k with $100 \leq k \leq 300$ such that in this circle there exists a contiguous group of $2 k$ students, for which the first half contains the same number of girls as the second half.

C3

Let \mathcal{S} be a finite set of at least two points in the plane. Assume that no three points of \mathcal{S} are collinear. By a windmill we mean a process as follows. Start with a line ℓ going through a point $P \in \mathcal{S}$. Rotate ℓ clockwise around the pivot P until the line contains another point Q of \mathcal{S}. The point Q now takes over as the new pivot. This process continues indefinitely, with the pivot always being a point from \mathcal{S}.

Show that for a suitable $P \in \mathcal{S}$ and a suitable starting line ℓ containing P, the resulting windmill will visit each point of \mathcal{S} as a pivot infinitely often.

C4

Determine the greatest positive integer k that satisfies the following property: The set of positive integers can be partitioned into k subsets $A_{1}, A_{2}, \ldots, A_{k}$ such that for all integers $n \geq 15$ and all $i \in\{1,2, \ldots, k\}$ there exist two distinct elements of A_{i} whose sum is n.

C5

Let m be a positive integer and consider a checkerboard consisting of m by m unit squares. At the midpoints of some of these unit squares there is an ant. At time 0 , each ant starts moving with speed 1 parallel to some edge of the checkerboard. When two ants moving in opposite directions meet, they both turn 90° clockwise and continue moving with speed 1. When more than two ants meet, or when two ants moving in perpendicular directions meet, the ants continue moving in the same direction as before they met. When an ant reaches one of the edges of the checkerboard, it falls off and will not re-appear.

Considering all possible starting positions, determine the latest possible moment at which the last ant falls off the checkerboard or prove that such a moment does not necessarily exist.

C6

Let n be a positive integer and let $W=\ldots x_{-1} x_{0} x_{1} x_{2} \ldots$ be an infinite periodic word consisting of the letters a and b. Suppose that the minimal period N of W is greater than 2^{n}.

A finite nonempty word U is said to appear in W if there exist indices $k \leq \ell$ such that $U=x_{k} x_{k+1} \ldots x_{\ell}$. A finite word U is called ubiquitous if the four words $U a, U b, a U$, and $b U$ all appear in W. Prove that there are at least n ubiquitous finite nonempty words.

C7

On a square table of 2011 by 2011 cells we place a finite number of napkins that each cover a square of 52 by 52 cells. In each cell we write the number of napkins covering it, and we record the maximal number k of cells that all contain the same nonzero number. Considering all possible napkin configurations, what is the largest value of k ?

Geometry

G1

Let $A B C$ be an acute triangle. Let ω be a circle whose center L lies on the side $B C$. Suppose that ω is tangent to $A B$ at B^{\prime} and to $A C$ at C^{\prime}. Suppose also that the circumcenter O of the triangle $A B C$ lies on the shorter arc $B^{\prime} C^{\prime}$ of ω. Prove that the circumcircle of $A B C$ and ω meet at two points.

G2

Let $A_{1} A_{2} A_{3} A_{4}$ be a non-cyclic quadrilateral. Let O_{1} and r_{1} be the circumcenter and the circumradius of the triangle $A_{2} A_{3} A_{4}$. Define O_{2}, O_{3}, O_{4} and r_{2}, r_{3}, r_{4} in a similar way. Prove that

$$
\frac{1}{O_{1} A_{1}^{2}-r_{1}^{2}}+\frac{1}{O_{2} A_{2}^{2}-r_{2}^{2}}+\frac{1}{O_{3} A_{3}^{2}-r_{3}^{2}}+\frac{1}{O_{4} A_{4}^{2}-r_{4}^{2}}=0 .
$$

G3

Let $A B C D$ be a convex quadrilateral whose sides $A D$ and $B C$ are not parallel. Suppose that the circles with diameters $A B$ and $C D$ meet at points E and F inside the quadrilateral. Let ω_{E} be the circle through the feet of the perpendiculars from E to the lines $A B, B C$, and $C D$. Let ω_{F} be the circle through the feet of the perpendiculars from F to the lines $C D, D A$, and $A B$. Prove that the midpoint of the segment $E F$ lies on the line through the two intersection points of ω_{E} and ω_{F}.

G4

Let $A B C$ be an acute triangle with circumcircle Ω. Let B_{0} be the midpoint of $A C$ and let C_{0} be the midpoint of $A B$. Let D be the foot of the altitude from A, and let G be the centroid of the triangle $A B C$. Let ω be a circle through B_{0} and C_{0} that is tangent to the circle Ω at a point $X \neq A$. Prove that the points D, G, and X are collinear.

G5

Let $A B C$ be a triangle with incenter I and circumcircle ω. Let D and E be the second intersection points of ω with the lines $A I$ and $B I$, respectively. The chord $D E$ meets $A C$ at a point F, and $B C$ at a point G. Let P be the intersection point of the line through F parallel to $A D$ and the line through G parallel to $B E$. Suppose that the tangents to ω at A and at B meet at a point K. Prove that the three lines $A E, B D$, and $K P$ are either parallel or concurrent.

G6

Let $A B C$ be a triangle with $A B=A C$, and let D be the midpoint of $A C$. The angle bisector of $\angle B A C$ intersects the circle through D, B, and C in a point E inside the triangle $A B C$. The line $B D$ intersects the circle through A, E, and B in two points B and F. The lines $A F$ and $B E$ meet at a point I, and the lines $C I$ and $B D$ meet at a point K. Show that I is the incenter of triangle $K A B$.

G7

Let $A B C D E F$ be a convex hexagon all of whose sides are tangent to a circle ω with center O. Suppose that the circumcircle of triangle $A C E$ is concentric with ω. Let J be the foot of the perpendicular from B to $C D$. Suppose that the perpendicular from B to $D F$ intersects the line $E O$ at a point K. Let L be the foot of the perpendicular from K to $D E$. Prove that $D J=D L$.

G8

Let $A B C$ be an acute triangle with circumcircle ω. Let t be a tangent line to ω. Let t_{a}, t_{b}, and t_{c} be the lines obtained by reflecting t in the lines $B C, C A$, and $A B$, respectively. Show that the circumcircle of the triangle determined by the lines t_{a}, t_{b}, and t_{c} is tangent to the circle ω.

Number Theory

N1

For any integer $d>0$, let $f(d)$ be the smallest positive integer that has exactly d positive divisors (so for example we have $f(1)=1, f(5)=16$, and $f(6)=12$). Prove that for every integer $k \geq 0$ the number $f\left(2^{k}\right)$ divides $f\left(2^{k+1}\right)$.

N2

Consider a polynomial $P(x)=\left(x+d_{1}\right)\left(x+d_{2}\right) \cdot \ldots \cdot\left(x+d_{9}\right)$, where $d_{1}, d_{2}, \ldots, d_{9}$ are nine distinct integers. Prove that there exists an integer N such that for all integers $x \geq N$ the number $P(x)$ is divisible by a prime number greater than 20 .

N3

Let $n \geq 1$ be an odd integer. Determine all functions f from the set of integers to itself such that for all integers x and y the difference $f(x)-f(y)$ divides $x^{n}-y^{n}$.

N4

For each positive integer k, let $t(k)$ be the largest odd divisor of k. Determine all positive integers a for which there exists a positive integer n such that all the differences

$$
t(n+a)-t(n), \quad t(n+a+1)-t(n+1), \quad \ldots, \quad t(n+2 a-1)-t(n+a-1)
$$

are divisible by 4 .

N5

Let f be a function from the set of integers to the set of positive integers. Suppose that for any two integers m and n, the difference $f(m)-f(n)$ is divisible by $f(m-n)$. Prove that for all integers m, n with $f(m) \leq f(n)$ the number $f(n)$ is divisible by $f(m)$.

N6

Let $P(x)$ and $Q(x)$ be two polynomials with integer coefficients such that no nonconstant polynomial with rational coefficients divides both $P(x)$ and $Q(x)$. Suppose that for every positive integer n the integers $P(n)$ and $Q(n)$ are positive, and $2^{Q(n)}-1$ divides $3^{P(n)}-1$. Prove that $Q(x)$ is a constant polynomial.

N7

Let p be an odd prime number. For every integer a, define the number

$$
S_{a}=\frac{a}{1}+\frac{a^{2}}{2}+\cdots+\frac{a^{p-1}}{p-1}
$$

Let m and n be integers such that

$$
S_{3}+S_{4}-3 S_{2}=\frac{m}{n}
$$

Prove that p divides m.

N8
Let k be a positive integer and set $n=2^{k}+1$. Prove that n is a prime number if and only if the following holds: there is a permutation a_{1}, \ldots, a_{n-1} of the numbers $1,2, \ldots, n-1$ and a sequence of integers $g_{1}, g_{2}, \ldots, g_{n-1}$ such that n divides $g_{i}^{a_{i}}-a_{i+1}$ for every $i \in\{1,2, \ldots, n-1\}$, where we set $a_{n}=a_{1}$.

A1

For any set $A=\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$ of four distinct positive integers with sum $s_{A}=a_{1}+a_{2}+a_{3}+a_{4}$, let p_{A} denote the number of pairs (i, j) with $1 \leq i<j \leq 4$ for which $a_{i}+a_{j}$ divides s_{A}. Among all sets of four distinct positive integers, determine those sets A for which p_{A} is maximal.

Answer. The sets A for which p_{A} is maximal are the sets the form $\{d, 5 d, 7 d, 11 d\}$ and $\{d, 11 d, 19 d, 29 d\}$, where d is any positive integer. For all these sets p_{A} is 4 .

Solution. Firstly, we will prove that the maximum value of p_{A} is at most 4. Without loss of generality, we may assume that $a_{1}<a_{2}<a_{3}<a_{4}$. We observe that for each pair of indices (i, j) with $1 \leq i<j \leq 4$, the sum $a_{i}+a_{j}$ divides s_{A} if and only if $a_{i}+a_{j}$ divides $s_{A}-\left(a_{i}+a_{j}\right)=a_{k}+a_{l}$, where k and l are the other two indices. Since there are 6 distinct pairs, we have to prove that at least two of them do not satisfy the previous condition. We claim that two such pairs are $\left(a_{2}, a_{4}\right)$ and $\left(a_{3}, a_{4}\right)$. Indeed, note that $a_{2}+a_{4}>a_{1}+a_{3}$ and $a_{3}+a_{4}>a_{1}+a_{2}$. Hence $a_{2}+a_{4}$ and $a_{3}+a_{4}$ do not divide s_{A}. This proves $p_{A} \leq 4$.

Now suppose $p_{A}=4$. By the previous argument we have

$$
\begin{array}{lll}
a_{1}+a_{4} \mid a_{2}+a_{3} & \text { and } & a_{2}+a_{3} \mid a_{1}+a_{4}, \\
a_{1}+a_{2} \mid a_{3}+a_{4} & \text { and } & a_{3}+a_{4} \nmid a_{1}+a_{2}, \\
a_{1}+a_{3} \mid a_{2}+a_{4} & \text { and } & a_{2}+a_{4} \nmid a_{1}+a_{3} .
\end{array}
$$

Hence, there exist positive integers m and n with $m>n \geq 2$ such that

$$
\left\{\begin{array}{l}
a_{1}+a_{4}=a_{2}+a_{3} \\
m\left(a_{1}+a_{2}\right)=a_{3}+a_{4} \\
n\left(a_{1}+a_{3}\right)=a_{2}+a_{4}
\end{array}\right.
$$

Adding up the first equation and the third one, we get $n\left(a_{1}+a_{3}\right)=2 a_{2}+a_{3}-a_{1}$. If $n \geq 3$, then $n\left(a_{1}+a_{3}\right)>3 a_{3}>2 a_{2}+a_{3}>2 a_{2}+a_{3}-a_{1}$. This is a contradiction. Therefore $n=2$. If we multiply by 2 the sum of the first equation and the third one, we obtain

$$
6 a_{1}+2 a_{3}=4 a_{2},
$$

while the sum of the first one and the second one is

$$
(m+1) a_{1}+(m-1) a_{2}=2 a_{3} .
$$

Adding up the last two equations we get

$$
(m+7) a_{1}=(5-m) a_{2} .
$$

It follows that $5-m \geq 1$, because the left-hand side of the last equation and a_{2} are positive. Since we have $m>n=2$, the integer m can be equal only to either 3 or 4. Substituting $(3,2)$ and $(4,2)$ for (m, n) and solving the previous system of equations, we find the families of solutions $\{d, 5 d, 7 d, 11 d\}$ and $\{d, 11 d, 19 d, 29 d\}$, where d is any positive integer.

A2

Determine all sequences $\left(x_{1}, x_{2}, \ldots, x_{2011}\right)$ of positive integers such that for every positive integer n there is an integer a with

$$
x_{1}^{n}+2 x_{2}^{n}+\cdots+2011 x_{2011}^{n}=a^{n+1}+1 .
$$

Answer. The only sequence that satisfies the condition is

$$
\left(x_{1}, \ldots, x_{2011}\right)=(1, k, \ldots, k) \quad \text { with } k=2+3+\cdots+2011=2023065 .
$$

Solution. Throughout this solution, the set of positive integers will be denoted by \mathbb{Z}_{+}.

Put $k=2+3+\cdots+2011=2023065$. We have

$$
1^{n}+2 k^{n}+\cdots 2011 k^{n}=1+k \cdot k^{n}=k^{n+1}+1
$$

for all n, so $(1, k, \ldots, k)$ is a valid sequence. We shall prove that it is the only one.
Let a valid sequence $\left(x_{1}, \ldots, x_{2011}\right)$ be given. For each $n \in \mathbb{Z}_{+}$we have some $y_{n} \in \mathbb{Z}_{+}$with

$$
x_{1}^{n}+2 x_{2}^{n}+\cdots+2011 x_{2011}^{n}=y_{n}^{n+1}+1 .
$$

Note that $x_{1}^{n}+2 x_{2}^{n}+\cdots+2011 x_{2011}^{n}<\left(x_{1}+2 x_{2}+\cdots+2011 x_{2011}\right)^{n+1}$, which implies that the sequence $\left(y_{n}\right)$ is bounded. In particular, there is some $y \in \mathbb{Z}_{+}$with $y_{n}=y$ for infinitely many n.

Let m be the maximum of all the x_{i}. Grouping terms with equal x_{i} together, the sum $x_{1}^{n}+$ $2 x_{2}^{n}+\cdots+2011 x_{2011}^{n}$ can be written as

$$
x_{1}^{n}+2 x_{2}^{n}+\cdots+x_{2011}^{n}=a_{m} m^{n}+a_{m-1}(m-1)^{n}+\cdots+a_{1}
$$

with $a_{i} \geq 0$ for all i and $a_{1}+\cdots+a_{m}=1+2+\cdots+2011$. So there exist arbitrarily large values of n, for which

$$
\begin{equation*}
a_{m} m^{n}+\cdots+a_{1}-1-y \cdot y^{n}=0 . \tag{1}
\end{equation*}
$$

The following lemma will help us to determine the a_{i} and y :
Lemma. Let integers b_{1}, \ldots, b_{N} be given and assume that there are arbitrarily large positive integers n with $b_{1}+b_{2} 2^{n}+\cdots+b_{N} N^{n}=0$. Then $b_{i}=0$ for all i.

Proof. Suppose that not all b_{i} are zero. We may assume without loss of generality that $b_{N} \neq 0$.

Dividing through by N^{n} gives

$$
\left|b_{N}\right|=\left|b_{N-1}\left(\frac{N-1}{N}\right)^{n}+\cdots+b_{1}\left(\frac{1}{N}\right)^{n}\right| \leq\left(\left|b_{N-1}\right|+\cdots+\left|b_{1}\right|\right)\left(\frac{N-1}{N}\right)^{n}
$$

The expression $\left(\frac{N-1}{N}\right)^{n}$ can be made arbitrarily small for n large enough, contradicting the assumption that b_{N} be non-zero.

We obviously have $y>1$. Applying the lemma to (1) we see that $a_{m}=y=m, a_{1}=1$, and all the other a_{i} are zero. This implies $\left(x_{1}, \ldots, x_{2011}\right)=(1, m, \ldots, m)$. But we also have $1+m=a_{1}+\cdots+a_{m}=1+\cdots+2011=1+k$ so $m=k$, which is what we wanted to show.

A3

Determine all pairs (f, g) of functions from the set of real numbers to itself that satisfy

$$
g(f(x+y))=f(x)+(2 x+y) g(y)
$$

for all real numbers x and y.

Answer. Either both f and g vanish identically, or there exists a real number C such that $f(x)=x^{2}+C$ and $g(x)=x$ for all real numbers x.

Solution. Clearly all these pairs of functions satisfy the functional equation in question, so it suffices to verify that there cannot be any further ones. Substituting $-2 x$ for y in the given functional equation we obtain

$$
\begin{equation*}
g(f(-x))=f(x) \tag{1}
\end{equation*}
$$

Using this equation for $-x-y$ in place of x we obtain

$$
\begin{equation*}
f(-x-y)=g(f(x+y))=f(x)+(2 x+y) g(y) . \tag{2}
\end{equation*}
$$

Now for any two real numbers a and b, setting $x=-b$ and $y=a+b$ we get

$$
f(-a)=f(-b)+(a-b) g(a+b)
$$

If c denotes another arbitrary real number we have similarly

$$
f(-b)=f(-c)+(b-c) g(b+c)
$$

as well as

$$
f(-c)=f(-a)+(c-a) g(c+a) .
$$

Adding all these equations up, we obtain

$$
((a+c)-(b+c)) g(a+b)+((a+b)-(a+c)) g(b+c)+((b+c)-(a+b)) g(a+c)=0 .
$$

Now given any three real numbers x, y, and z one may determine three reals a, b, and c such that $x=b+c, y=c+a$, and $z=a+b$, so that we get

$$
(y-x) g(z)+(z-y) g(x)+(x-z) g(y)=0 .
$$

This implies that the three points $(x, g(x)),(y, g(y))$, and $(z, g(z))$ from the graph of g are collinear. Hence that graph is a line, i.e., g is either a constant or a linear function.

Let us write $g(x)=A x+B$, where A and B are two real numbers. Substituting $(0,-y)$ for (x, y) in (2) and denoting $C=f(0)$, we have $f(y)=A y^{2}-B y+C$. Now, comparing the coefficients of x^{2} in (1) we see that $A^{2}=A$, so $A=0$ or $A=1$.

If $A=0$, then (1) becomes $B=-B x+C$ and thus $B=C=0$, which provides the first of the two solutions mentioned above.

Now suppose $A=1$. Then (1) becomes $x^{2}-B x+C+B=x^{2}-B x+C$, so $B=0$. Thus, $g(x)=x$ and $f(x)=x^{2}+C$, which is the second solution from above.
Comment. Another way to show that $g(x)$ is either a constant or a linear function is the following. If we interchange x and y in the given functional equation and subtract this new equation from the given one, we obtain

$$
f(x)-f(y)=(2 y+x) g(x)-(2 x+y) g(y) .
$$

Substituting $(x, 0),(1, x)$, and $(0,1)$ for (x, y), we get

$$
\begin{aligned}
& f(x)-f(0)=x g(x)-2 x g(0), \\
& f(1)-f(x)=(2 x+1) g(1)-(x+2) g(x), \\
& f(0)-f(1)=2 g(0)-g(1) .
\end{aligned}
$$

Taking the sum of these three equations and dividing by 2 , we obtain

$$
g(x)=x(g(1)-g(0))+g(0) .
$$

This proves that $g(x)$ is either a constant of a linear function.

A4

Determine all pairs (f, g) of functions from the set of positive integers to itself that satisfy

$$
f^{g(n)+1}(n)+g^{f(n)}(n)=f(n+1)-g(n+1)+1
$$

for every positive integer n. Here, $f^{k}(n)$ means $\underbrace{f(f(\ldots f}_{k}(n) \ldots))$.

Answer. The only pair (f, g) of functions that satisfies the equation is given by $f(n)=n$ and $g(n)=1$ for all n.

Solution. The given relation implies

$$
\begin{equation*}
f\left(f^{g(n)}(n)\right)<f(n+1) \text { for all } n, \tag{1}
\end{equation*}
$$

which will turn out to be sufficient to determine f.
Let $y_{1}<y_{2}<\ldots$ be all the values attained by f (this sequence might be either finite or infinite). We will prove that for every positive n the function f attains at least n values, and we have (i) $)_{n}: f(x)=y_{n}$ if and only if $x=n$, and (ii) $)_{n}: y_{n}=n$. The proof will follow the scheme

$$
\begin{equation*}
(\mathrm{i})_{1},(\mathrm{ii})_{1},(\mathrm{i})_{2},(\mathrm{ii})_{2}, \ldots,(\mathrm{i})_{n},(\mathrm{ii})_{n}, \ldots \tag{2}
\end{equation*}
$$

To start, consider any x such that $f(x)=y_{1}$. If $x>1$, then (1) reads $f\left(f^{g(x-1)}(x-1)\right)<y_{1}$, contradicting the minimality of y_{1}. So we have that $f(x)=y_{1}$ is equivalent to $x=1$, establishing $(i)_{1}$.

Next, assume that for some n statement $(\mathrm{i})_{n}$ is established, as well as all the previous statements in (2). Note that these statements imply that for all $k \geq 1$ and $a<n$ we have $f^{k}(x)=a$ if and only if $x=a$.

Now, each value y_{i} with $1 \leq i \leq n$ is attained at the unique integer i, so y_{n+1} exists. Choose an arbitrary x such that $f(x)=y_{n+1}$; we necessarily have $x>n$. Substituting $x-1$ into (1) we have $f\left(f^{g(x-1)}(x-1)\right)<y_{n+1}$, which implies

$$
\begin{equation*}
f^{g(x-1)}(x-1) \in\{1, \ldots, n\} \tag{3}
\end{equation*}
$$

Set $b=f^{g(x-1)}(x-1)$. If $b<n$ then we would have $x-1=b$ which contradicts $x>n$. So $b=n$, and hence $y_{n}=n$, which proves (ii) ${ }_{n}$. Next, from (i) ${ }_{n}$ we now get $f(k)=n \Longleftrightarrow k=n$, so removing all the iterations of f in (3) we obtain $x-1=b=n$, which proves (i) $)_{n+1}$.

So, all the statements in (2) are valid and hence $f(n)=n$ for all n. The given relation between f and g now reads $n+g^{n}(n)=n+1-g(n+1)+1$ or $g^{n}(n)+g(n+1)=2$, from which it
immediately follows that we have $g(n)=1$ for all n.

Comment. Several variations of the above solution are possible. For instance, one may first prove by induction that the smallest n values of f are exactly $f(1)<\cdots<f(n)$ and proceed as follows. We certainly have $f(n) \geq n$ for all n. If there is an n with $f(n)>n$, then $f(x)>x$ for all $x \geq n$. From this we conclude $f^{g(n)+1}(n)>f^{g(n)}(n)>\cdots>f(n)$. But we also have $f^{g(n)+1}<f(n+1)$. Having squeezed in a function value between $f(n)$ and $f(n+1)$, we arrive at a contradiction.

In any case, the inequality (1) plays an essential rôle.

A5

Prove that for every positive integer n, the set $\{2,3,4, \ldots, 3 n+1\}$ can be partitioned into n triples in such a way that the numbers from each triple are the lengths of the sides of some obtuse triangle.

Solution. Throughout the solution, we denote by $[a, b]$ the set $\{a, a+1, \ldots, b\}$. We say that $\{a, b, c\}$ is an obtuse triple if a, b, c are the sides of some obtuse triangle.
We prove by induction on n that there exists a partition of [2,3n+1] into n obtuse triples A_{i} $(2 \leq i \leq n+1)$ having the form $A_{i}=\left\{i, a_{i}, b_{i}\right\}$. For the base case $n=1$, one can simply set $A_{2}=\{2,3,4\}$. For the induction step, we need the following simple lemma.

Lemma. Suppose that the numbers $a<b<c$ form an obtuse triple, and let x be any positive number. Then the triple $\{a, b+x, c+x\}$ is also obtuse.

Proof. The numbers $a<b+x<c+x$ are the sides of a triangle because $(c+x)-(b+x)=$ $c-b<a$. This triangle is obtuse since $(c+x)^{2}-(b+x)^{2}=(c-b)(c+b+2 x)>(c-b)(c+b)>a^{2}$.

Now we turn to the induction step. Let $n>1$ and put $t=\lfloor n / 2\rfloor<n$. By the induction hypothesis, there exists a partition of the set $[2,3 t+1]$ into t obtuse triples $A_{i}^{\prime}=\left\{i, a_{i}^{\prime}, b_{i}^{\prime}\right\}$ $(i \in[2, t+1])$. For the same values of i, define $A_{i}=\left\{i, a_{i}^{\prime}+(n-t), b_{i}^{\prime}+(n-t)\right\}$. The constructed triples are obviously disjoint, and they are obtuse by the lemma. Moreover, we have

$$
\bigcup_{i=2}^{t+1} A_{i}=[2, t+1] \cup[n+2, n+2 t+1] .
$$

Next, for each $i \in[t+2, n+1]$, define $A_{i}=\{i, n+t+i, 2 n+i\}$. All these sets are disjoint, and

$$
\bigcup_{i=t+2}^{n+1} A_{i}=[t+2, n+1] \cup[n+2 t+2,2 n+t+1] \cup[2 n+t+2,3 n+1]
$$

so

$$
\bigcup_{i=2}^{n+1} A_{i}=[2,3 n+1]
$$

Thus, we are left to prove that the triple A_{i} is obtuse for each $i \in[t+2, n+1]$.
Since $(2 n+i)-(n+t+i)=n-t<t+2 \leq i$, the elements of A_{i} are the sides of a triangle. Next, we have
$(2 n+i)^{2}-(n+t+i)^{2}=(n-t)(3 n+t+2 i) \geq \frac{n}{2} \cdot(3 n+3(t+1)+1)>\frac{n}{2} \cdot \frac{9 n}{2} \geq(n+1)^{2} \geq i^{2}$,
so this triangle is obtuse. The proof is completed.

A6

Let f be a function from the set of real numbers to itself that satisfies

$$
\begin{equation*}
f(x+y) \leq y f(x)+f(f(x)) \tag{1}
\end{equation*}
$$

for all real numbers x and y. Prove that $f(x)=0$ for all $x \leq 0$.

Solution 1. Substituting $y=t-x$, we rewrite (1) as

$$
\begin{equation*}
f(t) \leq t f(x)-x f(x)+f(f(x)) \tag{2}
\end{equation*}
$$

Consider now some real numbers a, b and use (2) with $t=f(a), x=b$ as well as with $t=f(b)$, $x=a$. We get

$$
\begin{aligned}
& f(f(a))-f(f(b)) \leq f(a) f(b)-b f(b), \\
& f(f(b))-f(f(a)) \leq f(a) f(b)-a f(a)
\end{aligned}
$$

Adding these two inequalities yields

$$
2 f(a) f(b) \geq a f(a)+b f(b)
$$

Now, substitute $b=2 f(a)$ to obtain $2 f(a) f(b) \geq a f(a)+2 f(a) f(b)$, or $a f(a) \leq 0$. So, we get

$$
\begin{equation*}
f(a) \geq 0 \quad \text { for all } a<0 \tag{3}
\end{equation*}
$$

Now suppose $f(x)>0$ for some real number x. From (2) we immediately get that for every $t<\frac{x f(x)-f(f(x))}{f(x)}$ we have $f(t)<0$. This contradicts (3); therefore

$$
\begin{equation*}
f(x) \leq 0 \quad \text { for all real } x, \tag{4}
\end{equation*}
$$

and by (3) again we get $f(x)=0$ for all $x<0$.
We are left to find $f(0)$. Setting $t=x<0$ in (2) we get

$$
0 \leq 0-0+f(0)
$$

so $f(0) \geq 0$. Combining this with (4) we obtain $f(0)=0$.

Solution 2. We will also use the condition of the problem in form (2). For clarity we divide the argument into four steps.

Step 1. We begin by proving that f attains nonpositive values only. Assume that there exist some real number z with $f(z)>0$. Substituting $x=z$ into (2) and setting $A=f(z)$, $B=-z f(z)-f(f(z))$ we get $f(t) \leq A t+B$ for all real t. Hence, if for any positive real number t we substitute $x=-t, y=t$ into (1), we get

$$
\begin{aligned}
f(0) & \leq t f(-t)+f(f(-t)) \leq t(-A t+B)+A f(-t)+B \\
& \leq-t(A t-B)+A(-A t+B)+B=-A t^{2}-\left(A^{2}-B\right) t+(A+1) B .
\end{aligned}
$$

But surely this cannot be true if we take t to be large enough. This contradiction proves that we have indeed $f(x) \leq 0$ for all real numbers x. Note that for this reason (1) entails

$$
\begin{equation*}
f(x+y) \leq y f(x) \tag{5}
\end{equation*}
$$

for all real numbers x and y.
Step 2. We proceed by proving that f has at least one zero. If $f(0)=0$, we are done. Otherwise, in view of Step 1 we get $f(0)<0$. Observe that (5) tells us now $f(y) \leq y f(0)$ for all real numbers y. Thus we can specify a positive real number a that is so large that $f(a)^{2}>-f(0)$. Put $b=f(a)$ and substitute $x=b$ and $y=-b$ into (5); we learn $-b^{2}<f(0) \leq-b f(b)$, i.e. $b<f(b)$. Now we apply (2) to $x=b$ and $t=f(b)$, which yields

$$
f(f(b)) \leq(f(b)-b) f(b)+f(f(b))
$$

i.e. $f(b) \geq 0$. So in view of Step $1, b$ is a zero of f.

Step 3. Next we show that if $f(a)=0$ and $b<a$, then $f(b)=0$ as well. To see this, we just substitute $x=b$ and $y=a-b$ into (5), thus getting $f(b) \geq 0$, which suffices by Step 1 .

Step 4. By Step 3, the solution of the problem is reduced to showing $f(0)=0$. Pick any zero r of f and substitute $x=r$ and $y=-1$ into (1). Because of $f(r)=f(r-1)=0$ this gives $f(0) \geq 0$ and hence $f(0)=0$ by Step 1 again.

Comment 1. Both of these solutions also show $f(x) \leq 0$ for all real numbers x. As one can see from Solution 1, this task gets much easier if one already knows that f takes nonnegative values for sufficiently small arguments. Another way of arriving at this statement, suggested by the proposer, is as follows:

Put $a=f(0)$ and substitute $x=0$ into (1). This gives $f(y) \leq a y+f(a)$ for all real numbers y. Thus if for any real number x we plug $y=a-x$ into (1), we obtain

$$
f(a) \leq(a-x) f(x)+f(f(x)) \leq(a-x) f(x)+a f(x)+f(a)
$$

and hence $0 \leq(2 a-x) f(x)$. In particular, if $x<2 a$, then $f(x) \geq 0$.
Having reached this point, one may proceed almost exactly as in the first solution to deduce $f(x) \leq 0$ for all x. Afterwards the problem can be solved in a few lines as shown in steps 3 and 4 of the second
solution.
Comment 2. The original problem also contained the question whether a nonzero function satisfying the problem condition exists. Here we present a family of such functions.

Notice first that if $g:(0, \infty) \longrightarrow[0, \infty)$ denotes any function such that

$$
\begin{equation*}
g(x+y) \geq y g(x) \tag{6}
\end{equation*}
$$

for all positive real numbers x and y, then the function f given by

$$
f(x)= \begin{cases}-g(x) & \text { if } x>0 \tag{7}\\ 0 & \text { if } x \leq 0\end{cases}
$$

automatically satisfies (1). Indeed, we have $f(x) \leq 0$ and hence also $f(f(x))=0$ for all real numbers x. So (1) reduces to (5); moreover, this inequality is nontrivial only if x and y are positive. In this last case it is provided by (6).

Now it is not hard to come up with a nonzero function g obeying (6). E.g. $g(z)=C e^{z}$ (where C is a positive constant) fits since the inequality $e^{y}>y$ holds for all (positive) real numbers y. One may also consider the function $g(z)=e^{z}-1$; in this case, we even have that f is continuous.

A7

Let a, b, and c be positive real numbers satisfying $\min (a+b, b+c, c+a)>\sqrt{2}$ and $a^{2}+b^{2}+c^{2}=3$. Prove that

$$
\begin{equation*}
\frac{a}{(b+c-a)^{2}}+\frac{b}{(c+a-b)^{2}}+\frac{c}{(a+b-c)^{2}} \geq \frac{3}{(a b c)^{2}} . \tag{1}
\end{equation*}
$$

Throughout both solutions, we denote the sums of the form $f(a, b, c)+f(b, c, a)+f(c, a, b)$ by $\sum f(a, b, c)$.

Solution 1. The condition $b+c>\sqrt{2}$ implies $b^{2}+c^{2}>1$, so $a^{2}=3-\left(b^{2}+c^{2}\right)<2$, i.e. $a<\sqrt{2}<b+c$. Hence we have $b+c-a>0$, and also $c+a-b>0$ and $a+b-c>0$ for similar reasons.

We will use the variant of HÖLDER's inequality

$$
\frac{x_{1}^{p+1}}{y_{1}^{p}}+\frac{x_{1}^{p+1}}{y_{1}^{p}}+\ldots+\frac{x_{n}^{p+1}}{y_{n}^{p}} \geq \frac{\left(x_{1}+x_{2}+\ldots+x_{n}\right)^{p+1}}{\left(y_{1}+y_{2}+\ldots+y_{n}\right)^{p}}
$$

which holds for all positive real numbers $p, x_{1}, x_{2}, \ldots, x_{n}, y_{1}, y_{2}, \ldots, y_{n}$. Applying it to the left-hand side of (1) with $p=2$ and $n=3$, we get

$$
\begin{equation*}
\sum \frac{a}{(b+c-a)^{2}}=\sum \frac{\left(a^{2}\right)^{3}}{a^{5}(b+c-a)^{2}} \geq \frac{\left(a^{2}+b^{2}+c^{2}\right)^{3}}{\left(\sum a^{5 / 2}(b+c-a)\right)^{2}}=\frac{27}{\left(\sum a^{5 / 2}(b+c-a)\right)^{2}} . \tag{2}
\end{equation*}
$$

To estimate the denominator of the right-hand part, we use an instance of SchUR's inequality, namely

$$
\sum a^{3 / 2}(a-b)(a-c) \geq 0
$$

which can be rewritten as

$$
\sum a^{5 / 2}(b+c-a) \leq a b c(\sqrt{a}+\sqrt{b}+\sqrt{c}) .
$$

Moreover, by the inequality between the arithmetic mean and the fourth power mean we also have

$$
\left(\frac{\sqrt{a}+\sqrt{b}+\sqrt{c}}{3}\right)^{4} \leq \frac{a^{2}+b^{2}+c^{2}}{3}=1
$$

i.e., $\sqrt{a}+\sqrt{b}+\sqrt{c} \leq 3$. Hence, (2) yields

$$
\sum \frac{a}{(b+c-a)^{2}} \geq \frac{27}{(a b c(\sqrt{a}+\sqrt{b}+\sqrt{c}))^{2}} \geq \frac{3}{a^{2} b^{2} c^{2}}
$$

thus solving the problem.

Comment. In this solution, one may also start from the following version of Hölder's inequality

$$
\left(\sum_{i=1}^{n} a_{i}^{3}\right)\left(\sum_{i=1}^{n} b_{i}^{3}\right)\left(\sum_{i=1}^{n} c_{i}^{3}\right) \geq\left(\sum_{i=1}^{n} a_{i} b_{i} c_{i}\right)^{3}
$$

applied as

$$
\sum \frac{a}{(b+c-a)^{2}} \cdot \sum a^{3}(b+c-a) \cdot \sum a^{2}(b+c-a) \geq 27 .
$$

After doing that, one only needs the slightly better known instances

$$
\sum a^{3}(b+c-a) \leq(a+b+c) a b c \quad \text { and } \quad \sum a^{2}(b+c-a) \leq 3 a b c
$$

of Schur's Inequality.

Solution 2. As in Solution 1, we mention that all the numbers $b+c-a, a+c-b, a+b-c$ are positive. We will use only this restriction and the condition

$$
\begin{equation*}
a^{5}+b^{5}+c^{5} \geq 3 \tag{3}
\end{equation*}
$$

which is weaker than the given one. Due to the symmetry we may assume that $a \geq b \geq c$. In view of (3), it suffices to prove the inequality

$$
\sum \frac{a^{3} b^{2} c^{2}}{(b+c-a)^{2}} \geq \sum a^{5}
$$

or, moving all the terms into the left-hand part,

$$
\begin{equation*}
\sum \frac{a^{3}}{(b+c-a)^{2}}\left((b c)^{2}-(a(b+c-a))^{2}\right) \geq 0 \tag{4}
\end{equation*}
$$

Note that the signs of the expressions $(y z)^{2}-(x(y+z-x))^{2}$ and $y z-x(y+z-x)=(x-y)(x-z)$ are the same for every positive x, y, z satisfying the triangle inequality. So the terms in (4) corresponding to a and c are nonnegative, and hence it is sufficient to prove that the sum of the terms corresponding to a and b is nonnegative. Equivalently, we need the relation

$$
\frac{a^{3}}{(b+c-a)^{2}}(a-b)(a-c)(b c+a(b+c-a)) \geq \frac{b^{3}}{(a+c-b)^{2}}(a-b)(b-c)(a c+b(a+c-b)) .
$$

Obviously, we have

$$
a^{3} \geq b^{3} \geq 0, \quad 0<b+c-a \leq a+c-b, \quad \text { and } \quad a-c \geq b-c \geq 0
$$

hence it suffices to prove that

$$
\frac{a b+a c+b c-a^{2}}{b+c-a} \geq \frac{a b+a c+b c-b^{2}}{c+a-b}
$$

Since all the denominators are positive, it is equivalent to

$$
(c+a-b)\left(a b+a c+b c-a^{2}\right)-\left(a b+a c+b c-b^{2}\right)(b+c-a) \geq 0
$$

or

$$
(a-b)\left(2 a b-a^{2}-b^{2}+a c+b c\right) \geq 0 .
$$

Since $a \geq b$, the last inequality follows from

$$
c(a+b)>(a-b)^{2}
$$

which holds since $c>a-b \geq 0$ and $a+b>a-b \geq 0$.

C1

Let $n>0$ be an integer. We are given a balance and n weights of weight $2^{0}, 2^{1}, \ldots, 2^{n-1}$. In a sequence of n moves we place all weights on the balance. In the first move we choose a weight and put it on the left pan. In each of the following moves we choose one of the remaining weights and we add it either to the left or to the right pan. Compute the number of ways in which we can perform these n moves in such a way that the right pan is never heavier than the left pan.

Answer. The number $f(n)$ of ways of placing the n weights is equal to the product of all odd positive integers less than or equal to $2 n-1$, i.e. $f(n)=(2 n-1)!!=1 \cdot 3 \cdot 5 \cdot \ldots \cdot(2 n-1)$.

Solution 1. Assume $n \geq 2$. We claim

$$
\begin{equation*}
f(n)=(2 n-1) f(n-1) . \tag{1}
\end{equation*}
$$

Firstly, note that after the first move the left pan is always at least 1 heavier than the right one. Hence, any valid way of placing the n weights on the scale gives rise, by not considering weight 1 , to a valid way of placing the weights $2,2^{2}, \ldots, 2^{n-1}$.

If we divide the weight of each weight by 2 , the answer does not change. So these $n-1$ weights can be placed on the scale in $f(n-1)$ valid ways. Now we look at weight 1 . If it is put on the scale in the first move, then it has to be placed on the left side, otherwise it can be placed either on the left or on the right side, because after the first move the difference between the weights on the left pan and the weights on the right pan is at least 2 . Hence, there are exactly $2 n-1$ different ways of inserting weight 1 in each of the $f(n-1)$ valid sequences for the $n-1$ weights in order to get a valid sequence for the n weights. This proves the claim.

Since $f(1)=1$, by induction we obtain for all positive integers n

$$
f(n)=(2 n-1)!!=1 \cdot 3 \cdot 5 \cdot \ldots \cdot(2 n-1)
$$

Comment 1. The word "compute" in the statement of the problem is probably too vague. An alternative but more artificial question might ask for the smallest n for which the number of valid ways is divisible by 2011. In this case the answer would be 1006 .

Comment 2. It is useful to remark that the answer is the same for any set of weights where each weight is heavier than the sum of the lighter ones. Indeed, in such cases the given condition is equivalent to asking that during the process the heaviest weight on the balance is always on the left pan.

Comment 3. Instead of considering the lightest weight, one may also consider the last weight put on the balance. If this weight is 2^{n-1} then it should be put on the left pan. Otherwise it may be put on
any pan; the inequality would not be violated since at this moment the heaviest weight is already put onto the left pan. In view of the previous comment, in each of these $2 n-1$ cases the number of ways to place the previous weights is exactly $f(n-1)$, which yields (1).

Solution 2. We present a different way of obtaining (1). Set $f(0)=1$. Firstly, we find a recurrent formula for $f(n)$.

Assume $n \geq 1$. Suppose that weight 2^{n-1} is placed on the balance in the i-th move with $1 \leq i \leq n$. This weight has to be put on the left pan. For the previous moves we have $\binom{n-1}{i-1}$ choices of the weights and from Comment 2 there are $f(i-1)$ valid ways of placing them on the balance. For later moves there is no restriction on the way in which the weights are to be put on the pans. Therefore, all $(n-i)!2^{n-i}$ ways are possible. This gives

$$
\begin{equation*}
f(n)=\sum_{i=1}^{n}\binom{n-1}{i-1} f(i-1)(n-i)!2^{n-i}=\sum_{i=1}^{n} \frac{(n-1)!f(i-1) 2^{n-i}}{(i-1)!} . \tag{2}
\end{equation*}
$$

Now we are ready to prove (1). Using $n-1$ instead of n in (2) we get

$$
f(n-1)=\sum_{i=1}^{n-1} \frac{(n-2)!f(i-1) 2^{n-1-i}}{(i-1)!}
$$

Hence, again from (2) we get

$$
\begin{aligned}
f(n)=2(n-1) \sum_{i=1}^{n-1} & \frac{(n-2)!f(i-1) 2^{n-1-i}}{(i-1)!}+f(n-1) \\
& =(2 n-2) f(n-1)+f(n-1)=(2 n-1) f(n-1)
\end{aligned}
$$

QED.

Comment. There exist different ways of obtaining the formula (2). Here we show one of them.
Suppose that in the first move we use weight 2^{n-i+1}. Then the lighter $n-i$ weights may be put on the balance at any moment and on either pan. This gives $2^{n-i} \cdot(n-1)!/(i-1)!$ choices for the moves (moments and choices of pan) with the lighter weights. The remaining $i-1$ moves give a valid sequence for the $i-1$ heavier weights and this is the only requirement for these moves, so there are $f(i-1)$ such sequences. Summing over all $i=1,2, \ldots, n$ we again come to (2).

C2

Suppose that 1000 students are standing in a circle. Prove that there exists an integer k with $100 \leq k \leq 300$ such that in this circle there exists a contiguous group of $2 k$ students, for which the first half contains the same number of girls as the second half.

Solution. Number the students consecutively from 1 to 1000 . Let $a_{i}=1$ if the i th student is a girl, and $a_{i}=0$ otherwise. We expand this notion for all integers i by setting $a_{i+1000}=$ $a_{i-1000}=a_{i}$. Next, let

$$
S_{k}(i)=a_{i}+a_{i+1}+\cdots+a_{i+k-1} .
$$

Now the statement of the problem can be reformulated as follows:
There exist an integer k with $100 \leq k \leq 300$ and an index i such that $S_{k}(i)=S_{k}(i+k)$.
Assume now that this statement is false. Choose an index i such that $S_{100}(i)$ attains the maximal possible value. In particular, we have $S_{100}(i-100)-S_{100}(i)<0$ and $S_{100}(i)-S_{100}(i+100)>0$, for if we had an equality, then the statement would hold. This means that the function $S(j)$ $S(j+100)$ changes sign somewhere on the segment $[i-100, i]$, so there exists some index $j \in$ [$i-100, i-1]$ such that

$$
\begin{equation*}
S_{100}(j) \leq S_{100}(j+100)-1, \quad \text { but } \quad S_{100}(j+1) \geq S_{100}(j+101)+1 \tag{1}
\end{equation*}
$$

Subtracting the first inequality from the second one, we get $a_{j+100}-a_{j} \geq a_{j+200}-a_{j+100}+2$, so

$$
a_{j}=0, \quad a_{j+100}=1, \quad a_{j+200}=0 .
$$

Substituting this into the inequalities of (1), we also obtain $S_{99}(j+1) \leq S_{99}(j+101) \leq S_{99}(j+1)$, which implies

$$
\begin{equation*}
S_{99}(j+1)=S_{99}(j+101) . \tag{2}
\end{equation*}
$$

Now let k and ℓ be the least positive integers such that $a_{j-k}=1$ and $a_{j+200+\ell}=1$. By symmetry, we may assume that $k \geq \ell$. If $k \geq 200$ then we have $a_{j}=a_{j-1}=\cdots=a_{j-199}=0$, so $S_{100}(j-199)=S_{100}(j-99)=0$, which contradicts the initial assumption. Hence $\ell \leq k \leq 199$. Finally, we have

$$
\begin{gathered}
S_{100+\ell}(j-\ell+1)=\left(a_{j-\ell+1}+\cdots+a_{j}\right)+S_{99}(j+1)+a_{j+100}=S_{99}(j+1)+1 \\
S_{100+\ell}(j+101)=S_{99}(j+101)+\left(a_{j+200}+\cdots+a_{j+200+\ell-1}\right)+a_{j+200+\ell}=S_{99}(j+101)+1 .
\end{gathered}
$$

Comparing with (2) we get $S_{100+\ell}(j-\ell+1)=S_{100+\ell}(j+101)$ and $100+\ell \leq 299$, which again contradicts our assumption.

Comment. It may be seen from the solution that the number 300 from the problem statement can be
replaced by 299. Here we consider some improvements of this result. Namely, we investigate which interval can be put instead of $[100,300]$ in order to keep the problem statement valid.

First of all, the two examples

$$
\underbrace{1,1, \ldots, 1}_{167}, \underbrace{0,0, \ldots, 0}_{167}, \underbrace{1,1, \ldots, 1}_{167}, \underbrace{0,0, \ldots, 0}_{167}, \underbrace{1,1, \ldots, 1}_{167}, \underbrace{0,0, \ldots, 0}_{165}
$$

and

$$
\underbrace{1,1, \ldots, 1}_{249}, \underbrace{0,0, \ldots, 0}_{251}, \underbrace{1,1, \ldots, 1}_{249}, \underbrace{0,0, \ldots, 0}_{251}
$$

show that the interval can be changed neither to $[84,248]$ nor to $[126,374]$.
On the other hand, we claim that this interval can be changed to [125, 250]. Note that this statement is invariant under replacing all 1's by 0's and vice versa. Assume, to the contrary, that there is no admissible $k \in[125,250]$. The arguments from the solution easily yield the following lemma.

Lemma. Under our assumption, suppose that for some indices $i<j$ we have $S_{125}(i) \leq S_{125}(i+125)$ but $S_{125}(j) \geq S_{125}(j+125)$. Then there exists some $t \in[i, j-1]$ such that $a_{t}=a_{t-1}=\cdots=a_{t-125}=0$ and $a_{t+250}=a_{t+251}=\cdots=a_{t+375}=0$.

Let us call a segment $[i, j]$ of indices a crowd, if (a) $a_{i}=a_{i+1}=\cdots=a_{j}$, but $a_{i-1} \neq a_{i} \neq a_{j+1}$, and (b) $j-i \geq 125$. Now, using the lemma, one can get in the same way as in the solution that there exists some crowd. Take all the crowds in the circle, and enumerate them in cyclic order as A_{1}, \ldots, A_{d}. We also assume always that $A_{s+d}=A_{s-d}=A_{s}$.

Consider one of the crowds, say A_{1}. We have $A_{1}=[i, i+t]$ with $125 \leq t \leq 248$ (if $t \geq 249$, then $a_{i}=a_{i+1}=\cdots=a_{i+249}$ and therefore $S_{125}(i)=S_{125}(i+125)$, which contradicts our assumption). We may assume that $a_{i}=1$. Then we have $S_{125}(i+t-249) \leq 125=S_{125}(i+t-124)$ and $S_{125}(i)=125 \geq S_{125}(i+125)$, so by the lemma there exists some index $j \in[i+t-249, i-1]$ such that the segments $[j-125, j]$ and $[j+250, j+375]$ are contained in some crowds.

Let us fix such j and denote the segment $[j+1, j+249]$ by B_{1}. Clearly, $A_{1} \subseteq B_{1}$. Moreover, B_{1} cannot contain any crowd other than A_{1} since $\left|B_{1}\right|=249<2 \cdot 126$. Hence it is clear that $j \in A_{d}$ and $j+250 \in A_{2}$. In particular, this means that the genders of A_{d} and A_{2} are different from that of A_{1}.

Performing this procedure for every crowd A_{s}, we find segments $B_{s}=\left[j_{s}+1, j_{s}+249\right]$ such that $\left|B_{s}\right|=249, A_{s} \subseteq B_{s}$, and $j_{s} \in A_{s-1}, j_{s}+250 \in A_{s+1}$. So, B_{s} covers the whole segment between A_{s-1} and A_{s+1}, hence the sets B_{1}, \ldots, B_{d} cover some 1000 consecutive indices. This implies $249 d \geq 1000$, and $d \geq 5$. Moreover, the gender of A_{i} is alternating, so d is even; therefore $d \geq 6$.

Consider now three segments $A_{1}=\left[i_{1}, i_{1}^{\prime}\right], B_{2}=\left[j_{2}+1, j_{2}+249\right], A_{3}=\left[i_{3}, i_{3}^{\prime}\right]$. By construction, we have $\left[j_{2}-125, j_{2}\right] \subseteq A_{1}$ and $\left[j_{2}+250, j_{2}+375\right] \subseteq A_{3}$, whence $i_{1} \leq j_{2}-125, i_{3}^{\prime} \geq j_{2}+375$. Therefore $i_{3}^{\prime}-i_{1} \geq 500$. Analogously, if $A_{4}=\left[i_{4}, i_{4}^{\prime}\right], A_{6}=\left[i_{6}, i_{6}^{\prime}\right]$ then $i_{6}^{\prime}-i_{4} \geq 500$. But from $d \geq 6$ we get $i_{1}<i_{3}^{\prime}<i_{4}<i_{6}^{\prime}<i_{1}+1000$, so $1000>\left(i_{3}^{\prime}-i_{1}\right)+\left(i_{6}^{\prime}-i_{4}\right) \geq 500+500$. This final contradiction shows that our claim holds.

One may even show that the interval in the statement of the problem may be replaced by [125, 249] (both these numbers cannot be improved due to the examples above). But a proof of this fact is a bit messy, and we do not present it here.

C3

Let \mathcal{S} be a finite set of at least two points in the plane. Assume that no three points of \mathcal{S} are collinear. By a windmill we mean a process as follows. Start with a line ℓ going through a point $P \in \mathcal{S}$. Rotate ℓ clockwise around the pivot P until the line contains another point Q of \mathcal{S}. The point Q now takes over as the new pivot. This process continues indefinitely, with the pivot always being a point from \mathcal{S}.

Show that for a suitable $P \in \mathcal{S}$ and a suitable starting line ℓ containing P, the resulting windmill will visit each point of \mathcal{S} as a pivot infinitely often.

Solution. Give the rotating line an orientation and distinguish its sides as the oranje side and the blue side. Notice that whenever the pivot changes from some point T to another point U, after the change, T is on the same side as U was before. Therefore, the number of elements of \mathcal{S} on the oranje side and the number of those on the blue side remain the same throughout the whole process (except for those moments when the line contains two points).

First consider the case that $|\mathcal{S}|=2 n+1$ is odd. We claim that through any point $T \in \mathcal{S}$, there is a line that has n points on each side. To see this, choose an oriented line through T containing no other point of \mathcal{S} and suppose that it has $n+r$ points on its oranje side. If $r=0$ then we have established the claim, so we may assume that $r \neq 0$. As the line rotates through 180° around T, the number of points of \mathcal{S} on its oranje side changes by 1 whenever the line passes through a point; after 180°, the number of points on the oranje side is $n-r$. Therefore there is an intermediate stage at which the oranje side, and thus also the blue side, contains n points.

Now select the point P arbitrarily, and choose a line through P that has n points of \mathcal{S} on each side to be the initial state of the windmill. We will show that during a rotation over 180°, the line of the windmill visits each point of \mathcal{S} as a pivot. To see this, select any point T of \mathcal{S} and select a line ℓ through T that separates \mathcal{S} into equal halves. The point T is the unique point of \mathcal{S} through which a line in this direction can separate the points of \mathcal{S} into equal halves (parallel translation would disturb the balance). Therefore, when the windmill line is parallel to ℓ, it must be ℓ itself, and so pass through T.

Next suppose that $|\mathcal{S}|=2 n$. Similarly to the odd case, for every $T \in \mathcal{S}$ there is an oriented
line through T with $n-1$ points on its oranje side and n points on its blue side. Select such an oriented line through an arbitrary P to be the initial state of the windmill.

We will now show that during a rotation over 360°, the line of the windmill visits each point of \mathcal{S} as a pivot. To see this, select any point T of \mathcal{S} and an oriented line ℓ through T that separates \mathcal{S} into two subsets with $n-1$ points on its oranje and n points on its blue side. Again, parallel translation would change the numbers of points on the two sides, so when the windmill line is parallel to ℓ with the same orientation, the windmill line must pass through T.

Comment. One may shorten this solution in the following way.
Suppose that $|\mathcal{S}|=2 n+1$. Consider any line ℓ that separates \mathcal{S} into equal halves; this line is unique given its direction and contains some point $T \in \mathcal{S}$. Consider the windmill starting from this line. When the line has made a rotation of 180°, it returns to the same location but the oranje side becomes blue and vice versa. So, for each point there should have been a moment when it appeared as pivot, as this is the only way for a point to pass from on side to the other.

Now suppose that $|\mathcal{S}|=2 n$. Consider a line having $n-1$ and n points on the two sides; it contains some point T. Consider the windmill starting from this line. After having made a rotation of 180°, the windmill line contains some different point R, and each point different from T and R has changed the color of its side. So, the windmill should have passed through all the points.

C4

Determine the greatest positive integer k that satisfies the following property: The set of positive integers can be partitioned into k subsets $A_{1}, A_{2}, \ldots, A_{k}$ such that for all integers $n \geq 15$ and all $i \in\{1,2, \ldots, k\}$ there exist two distinct elements of A_{i} whose sum is n.

Answer. The greatest such number k is 3 .

Solution 1. There are various examples showing that $k=3$ does indeed have the property under consideration. E.g. one can take

$$
\begin{gathered}
A_{1}=\{1,2,3\} \cup\{3 m \mid m \geq 4\}, \\
A_{2}=\{4,5,6\} \cup\{3 m-1 \mid m \geq 4\}, \\
A_{3}=\{7,8,9\} \cup\{3 m-2 \mid m \geq 4\} .
\end{gathered}
$$

To check that this partition fits, we notice first that the sums of two distinct elements of A_{i} obviously represent all numbers $n \geq 1+12=13$ for $i=1$, all numbers $n \geq 4+11=15$ for $i=2$, and all numbers $n \geq 7+10=17$ for $i=3$. So, we are left to find representations of the numbers 15 and 16 as sums of two distinct elements of A_{3}. These are $15=7+8$ and $16=7+9$.

Let us now suppose that for some $k \geq 4$ there exist sets $A_{1}, A_{2}, \ldots, A_{k}$ satisfying the given property. Obviously, the sets $A_{1}, A_{2}, A_{3}, A_{4} \cup \cdots \cup A_{k}$ also satisfy the same property, so one may assume $k=4$.

Put $B_{i}=A_{i} \cap\{1,2, \ldots, 23\}$ for $i=1,2,3,4$. Now for any index i each of the ten numbers $15,16, \ldots, 24$ can be written as sum of two distinct elements of B_{i}. Therefore this set needs to contain at least five elements. As we also have $\left|B_{1}\right|+\left|B_{2}\right|+\left|B_{3}\right|+\left|B_{4}\right|=23$, there has to be some index j for which $\left|B_{j}\right|=5$. Let $B_{j}=\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right\}$. Finally, now the sums of two distinct elements of A_{j} representing the numbers $15,16, \ldots, 24$ should be exactly all the pairwise sums of the elements of B_{j}. Calculating the sum of these numbers in two different ways, we reach

$$
4\left(x_{1}+x_{2}+x_{3}+x_{4}+x_{5}\right)=15+16+\ldots+24=195 .
$$

Thus the number 195 should be divisible by 4, which is false. This contradiction completes our solution.

Comment. There are several variation of the proof that k should not exceed 3. E.g., one may consider the sets $C_{i}=A_{i} \cap\{1,2, \ldots, 19\}$ for $i=1,2,3,4$. As in the previous solution one can show that for some index j one has $\left|C_{j}\right|=4$, and the six pairwise sums of the elements of C_{j} should represent all numbers $15,16, \ldots, 20$. Let $C_{j}=\left\{y_{1}, y_{2}, y_{3}, y_{4}\right\}$ with $y_{1}<y_{2}<y_{3}<y_{4}$. It is not hard to deduce
$C_{j}=\{7,8,9,11\}$, so in particular we have $1 \notin C_{j}$. Hence it is impossible to represent 21 as sum of two distinct elements of A_{j}, which completes our argument.

Solution 2. Again we only prove that $k \leq 3$. Assume that $A_{1}, A_{2}, \ldots, A_{k}$ is a partition satisfying the given property. We construct a graph \mathcal{G} on the set $V=\{1,2, \ldots, 18\}$ of vertices as follows. For each $i \in\{1,2, \ldots, k\}$ and each $d \in\{15,16,17,19\}$ we choose one pair of distinct elements $a, b \in A_{i}$ with $a+b=d$, and we draw an edge in the $i^{\text {th }}$ color connecting a with b. By hypothesis, \mathcal{G} has exactly 4 edges of each color.

Claim. The graph \mathcal{G} contains at most one circuit.
Proof. Note that all the connected components of \mathcal{G} are monochromatic and hence contain at most four edges. Thus also all circuits of \mathcal{G} are monochromatic and have length at most four. Moreover, each component contains at most one circuit since otherwise it should contain at least five edges.

Suppose that there is a 4 -cycle in \mathcal{G}, say with vertices a, b, c, and d in order. Then $\{a+b, b+$ $c, c+d, d+a\}=\{15,16,17,19\}$. Taking sums we get $2(a+b+c+d)=15+16+17+19$ which is impossible for parity reasons. Thus all circuits of \mathcal{G} are triangles.

Now if the vertices a, b, and c form such a triangle, then by a similar reasoning the set $\{a+b, b+$ $c, c+a\}$ coincides with either $\{15,16,17\}$, or $\{15,16,19\}$, or $\{16,17,19\}$, or $\{15,17,19\}$. The last of these alternatives can be excluded for parity reasons again, whilst in the first three cases the set $\{a, b, c\}$ appears to be either $\{7,8,9\}$, or $\{6,9,10\}$, or $\{7,9,10\}$, respectively. Thus, a component containing a circuit should contain 9 as a vertex. Therefore there is at most one such component and hence at most one circuit.

By now we know that \mathcal{G} is a graph with $4 k$ edges, at least k components and at most one circuit. Consequently, \mathcal{G} must have at least $4 k+k-1$ vertices. Thus $5 k-1 \leq 18$, and $k \leq 3$.

C5

Let m be a positive integer and consider a checkerboard consisting of m by m unit squares. At the midpoints of some of these unit squares there is an ant. At time 0 , each ant starts moving with speed 1 parallel to some edge of the checkerboard. When two ants moving in opposite directions meet, they both turn 90° clockwise and continue moving with speed 1 . When more than two ants meet, or when two ants moving in perpendicular directions meet, the ants continue moving in the same direction as before they met. When an ant reaches one of the edges of the checkerboard, it falls off and will not re-appear.

Considering all possible starting positions, determine the latest possible moment at which the last ant falls off the checkerboard or prove that such a moment does not necessarily exist.

Antswer. The latest possible moment for the last ant to fall off is $\frac{3 m}{2}-1$.

Solution. For $m=1$ the answer is clearly correct, so assume $m>1$. In the sequel, the word collision will be used to denote meeting of exactly two ants, moving in opposite directions.

If at the beginning we place an ant on the southwest corner square facing east and an ant on the southeast corner square facing west, then they will meet in the middle of the bottom row at time $\frac{m-1}{2}$. After the collision, the ant that moves to the north will stay on the board for another $m-\frac{1}{2}$ time units and thus we have established an example in which the last ant falls off at time $\frac{m-1}{2}+m-\frac{1}{2}=\frac{3 m}{2}-1$. So, we are left to prove that this is the latest possible moment.

Consider any collision of two ants a and a^{\prime}. Let us change the rule for this collision, and enforce these two ants to turn anticlockwise. Then the succeeding behavior of all the ants does not change; the only difference is that a and a^{\prime} swap their positions. These arguments may be applied to any collision separately, so we may assume that at any collision, either both ants rotate clockwise or both of them rotate anticlockwise by our own choice.

For instance, we may assume that there are only two types of ants, depending on their initial direction: NE-ants, which move only north or east, and $S W$-ants, moving only south and west. Then we immediately obtain that all ants will have fallen off the board after $2 m-1$ time units. However, we can get a better bound by considering the last moment at which a given ant collides with another ant.

Choose a coordinate system such that the corners of the checkerboard are (0,0), ($m, 0$), (m, m) and $(0, m)$. At time t, there will be no NE-ants in the region $\{(x, y): x+y<t+1\}$ and no SW-ants in the region $\{(x, y): x+y>2 m-t-1\}$. So if two ants collide at (x, y) at time t, we have

$$
\begin{equation*}
t+1 \leq x+y \leq 2 m-t-1 \tag{1}
\end{equation*}
$$

Analogously, we may change the rules so that each ant would move either alternatingly north and west, or alternatingly south and east. By doing so, we find that apart from (1) we also have $|x-y| \leq m-t-1$ for each collision at point (x, y) and time t.

To visualize this, put

$$
B(t)=\left\{(x, y) \in[0, m]^{2}: t+1 \leq x+y \leq 2 m-t-1 \text { and }|x-y| \leq m-t-1\right\} .
$$

An ant can thus only collide with another ant at time t if it happens to be in the region $B(t)$. The following figure displays $B(t)$ for $t=\frac{1}{2}$ and $t=\frac{7}{2}$ in the case $m=6$:

Now suppose that an NE-ant has its last collision at time t and that it does so at the point (x, y) (if the ant does not collide at all, it will fall off the board within $m-\frac{1}{2}<\frac{3 m}{2}-1$ time units, so this case can be ignored). Then we have $(x, y) \in B(t)$ and thus $x+y \geq t+1$ and $x-y \geq-(m-t-1)$. So we get

$$
x \geq \frac{(t+1)-(m-t-1)}{2}=t+1-\frac{m}{2} .
$$

By symmetry we also have $y \geq t+1-\frac{m}{2}$, and hence $\min \{x, y\} \geq t+1-\frac{m}{2}$. After this collision, the ant will move directly to an edge, which will take at most $m-\min \{x, y\}$ units of time. In sum, the total amount of time the ant stays on the board is at most

$$
t+(m-\min \{x, y\}) \leq t+m-\left(t+1-\frac{m}{2}\right)=\frac{3 m}{2}-1
$$

By symmetry, the same bound holds for SW-ants as well.

C6

Let n be a positive integer and let $W=\ldots x_{-1} x_{0} x_{1} x_{2} \ldots$ be an infinite periodic word consisting of the letters a and b. Suppose that the minimal period N of W is greater than 2^{n}.

A finite nonempty word U is said to appear in W if there exist indices $k \leq \ell$ such that $U=x_{k} x_{k+1} \ldots x_{\ell}$. A finite word U is called ubiquitous if the four words $U a, U b, a U$, and $b U$ all appear in W. Prove that there are at least n ubiquitous finite nonempty words.

Solution. Throughout the solution, all the words are nonempty. For any word R of length m, we call the number of indices $i \in\{1,2, \ldots, N\}$ for which R coincides with the subword $x_{i+1} x_{i+2} \ldots x_{i+m}$ of W the multiplicity of R and denote it by $\mu(R)$. Thus a word R appears in W if and only if $\mu(R)>0$. Since each occurrence of a word in W is both succeeded by either the letter a or the letter b and similarly preceded by one of those two letters, we have

$$
\begin{equation*}
\mu(R)=\mu(R a)+\mu(R b)=\mu(a R)+\mu(b R) \tag{1}
\end{equation*}
$$

for all words R.
We claim that the condition that N is in fact the minimal period of W guarantees that each word of length N has multiplicity 1 or 0 depending on whether it appears or not. Indeed, if the words $x_{i+1} x_{i+2} \ldots x_{i+N}$ and $x_{j+1} \ldots x_{j+N}$ are equal for some $1 \leq i<j \leq N$, then we have $x_{i+a}=x_{j+a}$ for every integer a, and hence $j-i$ is also a period.

Moreover, since $N>2^{n}$, at least one of the two words a and b has a multiplicity that is strictly larger than 2^{n-1}.

For each $k=0,1, \ldots, n-1$, let U_{k} be a subword of W whose multiplicity is strictly larger than 2^{k} and whose length is maximal subject to this property. Note that such a word exists in view of the two observations made in the two previous paragraphs.

Fix some index $k \in\{0,1, \ldots, n-1\}$. Since the word $U_{k} b$ is longer than U_{k}, its multiplicity can be at most 2^{k}, so in particular $\mu\left(U_{k} b\right)<\mu\left(U_{k}\right)$. Therefore, the word $U_{k} a$ has to appear by (1). For a similar reason, the words $U_{k} b, a U_{k}$, and $b U_{k}$ have to appear as well. Hence, the word U_{k} is ubiquitous. Moreover, if the multiplicity of U_{k} were strictly greater than 2^{k+1}, then by (1) at least one of the two words $U_{k} a$ and $U_{k} b$ would have multiplicity greater than 2^{k} and would thus violate the maximality condition imposed on U_{k}.

So we have $\mu\left(U_{0}\right) \leq 2<\mu\left(U_{1}\right) \leq 4<\ldots \leq 2^{n-1}<\mu\left(U_{n-1}\right)$, which implies in particular that the words $U_{0}, U_{1}, \ldots, U_{n-1}$ have to be distinct. As they have been proved to be ubiquitous as well, the problem is solved.

Comment 1. There is an easy construction for obtaining ubiquitous words from appearing words whose multiplicity is at least two. Starting with any such word U we may simply extend one of its occurrences in W forwards and backwards as long as its multiplicity remains fixed, thus arriving at a
word that one might call the ubiquitous prolongation $p(U)$ of U.
There are several variants of the argument in the second half of the solution using the concept of prolongation. For instance, one may just take all ubiquitous words $U_{1}, U_{2}, \ldots, U_{\ell}$ ordered by increasing multiplicity and then prove for $i \in\{1,2, \ldots, \ell\}$ that $\mu\left(U_{i}\right) \leq 2^{i}$. Indeed, assume that i is a minimal counterexample to this statement; then by the arguments similar to those presented above, the ubiquitous prolongation of one of the words $U_{i} a, U_{i} b, a U_{i}$ or $b U_{i}$ violates the definition of U_{i}.

Now the multiplicity of one of the two letters a and b is strictly greater than 2^{n-1}, so passing to ubiquitous prolongations once more we obtain $2^{n-1}<\mu\left(U_{\ell}\right) \leq 2^{\ell}$, which entails $\ell \geq n$, as needed.

Comment 2. The bound n for the number of ubiquitous subwords in the problem statement is not optimal, but it is close to an optimal one in the following sense. There is a universal constant $C>0$ such that for each positive integer n there exists an infinite periodic word W whose minimal period is greater than 2^{n} but for which there exist fewer than $C n$ ubiquitous words.

C7

On a square table of 2011 by 2011 cells we place a finite number of napkins that each cover a square of 52 by 52 cells. In each cell we write the number of napkins covering it, and we record the maximal number k of cells that all contain the same nonzero number. Considering all possible napkin configurations, what is the largest value of k ?

Answer. $2011^{2}-\left(\left(52^{2}-35^{2}\right) \cdot 39-17^{2}\right)=4044121-57392=3986729$.

Solution 1. Let $m=39$, then $2011=52 m-17$. We begin with an example showing that there can exist 3986729 cells carrying the same positive number.

To describe it, we number the columns from the left to the right and the rows from the bottom to the top by $1,2, \ldots, 2011$. We will denote each napkin by the coordinates of its lowerleft cell. There are four kinds of napkins: first, we take all napkins $(52 i+36,52 j+1)$ with $0 \leq j \leq i \leq m-2$; second, we use all napkins $(52 i+1,52 j+36)$ with $0 \leq i \leq j \leq m-2$; third, we use all napkins $(52 i+36,52 i+36)$ with $0 \leq i \leq m-2$; and finally the napkin $(1,1)$. Different groups of napkins are shown by different types of hatchings in the picture.

Now except for those squares that carry two or more different hatchings, all squares have the number 1 written into them. The number of these exceptional cells is easily computed to be $\left(52^{2}-35^{2}\right) m-17^{2}=57392$.

We are left to prove that 3986729 is an upper bound for the number of cells containing the same number. Consider any configuration of napkins and any positive integer M. Suppose there are g cells with a number different from M. Then it suffices to show $g \geq 57392$. Throughout the solution, a line will mean either a row or a column.

Consider any line ℓ. Let $a_{1}, \ldots, a_{52 m-17}$ be the numbers written into its consecutive cells. For $i=1,2, \ldots, 52$, let $s_{i}=\sum_{t \equiv i(\bmod 52)} a_{t}$. Note that s_{1}, \ldots, s_{35} have m terms each, while s_{36}, \ldots, s_{52} have $m-1$ terms each. Every napkin intersecting ℓ contributes exactly 1 to each s_{i};
hence the number s of all those napkins satisfies $s_{1}=\cdots=s_{52}=s$. Call the line ℓ rich if $s>(m-1) M$ and poor otherwise.

Suppose now that ℓ is rich. Then in each of the sums s_{36}, \ldots, s_{52} there exists a term greater than M; consider all these terms and call the corresponding cells the rich bad cells for this line. So, each rich line contains at least 17 cells that are bad for this line.

If, on the other hand, ℓ is poor, then certainly $s<m M$ so in each of the sums s_{1}, \ldots, s_{35} there exists a term less than M; consider all these terms and call the corresponding cells the poor bad cells for this line. So, each poor line contains at least 35 cells that are bad for this line.

Let us call all indices congruent to $1,2, \ldots$, or 35 modulo 52 small, and all other indices, i.e. those congruent to $36,37, \ldots$, or 52 modulo 52 , big. Recall that we have numbered the columns from the left to the right and the rows from the bottom to the top using the numbers $1,2, \ldots, 52 m-17$; we say that a line is big or small depending on whether its index is big or small. By definition, all rich bad cells for the rows belong to the big columns, while the poor ones belong to the small columns, and vice versa.

In each line, we put a strawberry on each cell that is bad for this line. In addition, for each small rich line we put an extra strawberry on each of its (rich) bad cells. A cell gets the strawberries from its row and its column independently.

Notice now that a cell with a strawberry on it contains a number different from M. If this cell gets a strawberry by the extra rule, then it contains a number greater than M. Moreover, it is either in a small row and in a big column, or vice versa. Suppose that it is in a small row, then it is not bad for its column. So it has not more than two strawberries in this case. On the other hand, if the extra rule is not applied to some cell, then it also has not more than two strawberries. So, the total number N of strawberries is at most $2 g$.

We shall now estimate N in a different way. For each of the $2 \cdot 35 \mathrm{~m}$ small lines, we have introduced at least 34 strawberries if it is rich and at least 35 strawberries if it is poor, so at least 34 strawberries in any case. Similarly, for each of the $2 \cdot 17(m-1)$ big lines, we put at least $\min (17,35)=17$ strawberries. Summing over all lines we obtain

$$
2 g \geq N \geq 2(35 m \cdot 34+17(m-1) \cdot 17)=2(1479 m-289)=2 \cdot 57392
$$

as desired.

Comment. The same reasoning applies also if we replace 52 by R and 2011 by $R m-H$, where m, R, and H are integers with $m, R \geq 1$ and $0 \leq H \leq \frac{1}{3} R$. More detailed information is provided after the next solution.

Solution 2. We present a different proof of the estimate which is the hard part of the problem. Let $S=35, H=17, m=39$; so the table size is $2011=S m+H(m-1)$, and the napkin size is $52=S+H$. Fix any positive integer M and call a cell vicious if it contains a number distinct
from M. We will prove that there are at least $H^{2}(m-1)+2 S H m$ vicious cells.
Firstly, we introduce some terminology. As in the previous solution, we number rows and columns and we use the same notions of small and big indices and lines; so, an index is small if it is congruent to one of the numbers $1,2, \ldots, S$ modulo $(S+H)$. The numbers $1,2, \ldots, S+H$ will be known as residues. For two residues i and j, we say that a cell is of type (i, j) if the index of its row is congruent to i and the index of its column to j modulo $(S+H)$. The number of vicious cells of this type is denoted by $v_{i j}$.

Let s, s^{\prime} be two variables ranging over small residues and let h, h^{\prime} be two variables ranging over big residues. A cell is said to be of class A, B, C, or D if its type is of shape $\left(s, s^{\prime}\right),(s, h),(h, s)$, or $\left(h, h^{\prime}\right)$, respectively. The numbers of vicious cells belonging to these classes are denoted in this order by a, b, c, and d. Observe that each cell belongs to exactly one class.

Claim 1. We have

$$
\begin{equation*}
m \leq \frac{a}{S^{2}}+\frac{b+c}{2 S H} . \tag{1}
\end{equation*}
$$

Proof. Consider an arbitrary small row r. Denote the numbers of vicious cells on r belonging to the classes A and B by α and β, respectively. As in the previous solution, we obtain that $\alpha \geq S$ or $\beta \geq H$. So in each case we have $\frac{\alpha}{S}+\frac{\beta}{H} \geq 1$.

Performing this argument separately for each small row and adding up all the obtained inequalities, we get $\frac{a}{S}+\frac{b}{H} \geq m S$. Interchanging rows and columns we similarly get $\frac{a}{S}+\frac{c}{H} \geq m S$. Summing these inequalities and dividing by $2 S$ we get what we have claimed.

Claim 2. Fix two small residue s, s^{\prime} and two big residues h, h^{\prime}. Then $2 m-1 \leq v_{s s^{\prime}}+v_{s h^{\prime}}+v_{h h^{\prime}}$. Proof. Each napkin covers exactly one cell of type (s, s^{\prime}). Removing all napkins covering a vicious cell of this type, we get another collection of napkins, which covers each cell of type $\left(s, s^{\prime}\right)$ either 0 or M times depending on whether the cell is vicious or not. Hence $\left(m^{2}-v_{s s^{\prime}}\right) M$ napkins are left and throughout the proof of Claim 2 we will consider only these remaining napkins. Now, using a red pen, write in each cell the number of napkins covering it. Notice that a cell containing a red number greater than M is surely vicious.

We call two cells neighbors if they can be simultaneously covered by some napkin. So, each cell of type $\left(h, h^{\prime}\right)$ has not more than four neighbors of type $\left(s, s^{\prime}\right)$, while each cell of type $\left(s, h^{\prime}\right)$ has not more than two neighbors of each of the types $\left(s, s^{\prime}\right)$ and $\left(h, h^{\prime}\right)$. Therefore, each red number at a cell of type $\left(h, h^{\prime}\right)$ does not exceed $4 M$, while each red number at a cell of type $\left(s, h^{\prime}\right)$ does not exceed $2 M$.

Let x, y, and z be the numbers of cells of type (h, h^{\prime}) whose red number belongs to ($M, 2 M$], $(2 M, 3 M]$, and $(3 M, 4 M]$, respectively. All these cells are vicious, hence $x+y+z \leq v_{h h^{\prime}}$. The red numbers appearing in cells of type $\left(h, h^{\prime}\right)$ clearly sum up to $\left(m^{2}-v_{s s^{\prime}}\right) M$. Bounding each of these numbers by a multiple of M we get

$$
\left(m^{2}-v_{s s^{\prime}}\right) M \leq\left((m-1)^{2}-(x+y+z)\right) M+2 x M+3 y M+4 z M
$$

i.e.

$$
2 m-1 \leq v_{s s^{\prime}}+x+2 y+3 z \leq v_{s s^{\prime}}+v_{h h^{\prime}}+y+2 z
$$

So, to prove the claim it suffices to prove that $y+2 z \leq v_{s h^{\prime}}$.
For a cell δ of type $\left(h, h^{\prime}\right)$ and a cell β of type $\left(s, h^{\prime}\right)$ we say that δ forces β if there are more than M napkins covering both of them. Since each red number in a cell of type $\left(s, h^{\prime}\right)$ does not exceed $2 M$, it cannot be forced by more than one cell.

On the other hand, if a red number in a $\left(h, h^{\prime}\right)$-cell belongs to $(2 M, 3 M]$, then it forces at least one of its neighbors of type $\left(s, h^{\prime}\right)$ (since the sum of red numbers in their cells is greater than $2 M)$. Analogously, an $\left(h, h^{\prime}\right)$-cell with the red number in $(3 M, 4 M]$ forces both its neighbors of type $\left(s, h^{\prime}\right)$, since their red numbers do not exceed $2 M$. Therefore there are at least $y+2 z$ forced cells and clearly all of them are vicious, as desired.

Claim 3. We have

$$
\begin{equation*}
2 m-1 \leq \frac{a}{S^{2}}+\frac{b+c}{2 S H}+\frac{d}{H^{2}} \tag{2}
\end{equation*}
$$

Proof. Averaging the previous result over all $S^{2} H^{2}$ possibilities for the quadruple $\left(s, s^{\prime}, h, h^{\prime}\right)$, we get $2 m-1 \leq \frac{a}{S^{2}}+\frac{b}{S H}+\frac{d}{H^{2}}$. Due to the symmetry between rows and columns, the same estimate holds with b replaced by c. Averaging these two inequalities we arrive at our claim.

Now let us multiply (2) by H^{2}, multiply (1) by $\left(2 S H-H^{2}\right)$ and add them; we get
$H^{2}(2 m-1)+\left(2 S H-H^{2}\right) m \leq a \cdot \frac{H^{2}+2 S H-H^{2}}{S^{2}}+(b+c) \frac{H^{2}+2 S H-H^{2}}{2 S H}+d=a \cdot \frac{2 H}{S}+b+c+d$.
The left-hand side is exactly $H^{2}(m-1)+2 S H m$, while the right-hand side does not exceed $a+b+c+d$ since $2 H \leq S$. Hence we come to the desired inequality.

Comment 1. Claim 2 is the key difference between the two solutions, because it allows to get rid of the notions of rich and poor cells. However, one may prove it by the "strawberry method" as well. It suffices to put a strawberry on each cell which is bad for an s-row, and a strawberry on each cell which is bad for an h^{\prime}-column. Then each cell would contain not more than one strawberry.

Comment 2. Both solutions above work if the residue of the table size T modulo the napkin size R is at least $\frac{2}{3} R$, or equivalently if $T=S m+H(m-1)$ and $R=S+H$ for some positive integers S, H, m such that $S \geq 2 H$. Here we discuss all other possible combinations.

Case 1. If $2 H \geq S \geq H / 2$, then the sharp bound for the number of vicious cells is $m S^{2}+(m-1) H^{2}$; it can be obtained by the same methods as in any of the solutions. To obtain an example showing that the bound is sharp, one may simply remove the napkins of the third kind from the example in Solution 1 (with an obvious change in the numbers).

Case 2. If $2 S \leq H$, the situation is more difficult. If $(S+H)^{2}>2 H^{2}$, then the answer and the example are the same as in the previous case; otherwise the answer is $(2 m-1) S^{2}+2 S H(m-1)$, and the example is provided simply by $(m-1)^{2}$ nonintersecting napkins.

Now we sketch the proof of both estimates for Case 2. We introduce a more appropriate notation based on that from Solution 2. Denote by a_{-}and a_{+}the number of cells of class A that contain the number which is strictly less than M and strictly greater than M, respectively. The numbers $b_{ \pm}, c_{ \pm}$, and $d_{ \pm}$are defined in a similar way. One may notice that the proofs of Claim 1 and Claims 2, 3 lead in fact to the inequalities

$$
m-1 \leq \frac{b_{-}+c_{-}}{2 S H}+\frac{d_{+}}{H^{2}} \quad \text { and } \quad 2 m-1 \leq \frac{a}{S^{2}}+\frac{b_{+}+c_{+}}{2 S H}+\frac{d_{+}}{H^{2}}
$$

(to obtain the first one, one needs to look at the big lines instead of the small ones). Combining these inequalities, one may obtain the desired estimates.

These estimates can also be proved in some different ways, e.g. without distinguishing rich and poor cells.

G1

Let $A B C$ be an acute triangle. Let ω be a circle whose center L lies on the side $B C$. Suppose that ω is tangent to $A B$ at B^{\prime} and to $A C$ at C^{\prime}. Suppose also that the circumcenter O of the triangle $A B C$ lies on the shorter arc $B^{\prime} C^{\prime}$ of ω. Prove that the circumcircle of $A B C$ and ω meet at two points.

Solution. The point B^{\prime}, being the perpendicular foot of L, is an interior point of side $A B$. Analogously, C^{\prime} lies in the interior of $A C$. The point O is located inside the triangle $A B^{\prime} C^{\prime}$, hence $\angle C O B<\angle C^{\prime} O B^{\prime}$.

Let $\alpha=\angle C A B$. The angles $\angle C A B$ and $\angle C^{\prime} O B^{\prime}$ are inscribed into the two circles with centers O and L, respectively, so $\angle C O B=2 \angle C A B=2 \alpha$ and $2 \angle C^{\prime} O B^{\prime}=360^{\circ}-\angle C^{\prime} L B^{\prime}$. From the kite $A B^{\prime} L C^{\prime}$ we have $\angle C^{\prime} L B^{\prime}=180^{\circ}-\angle C^{\prime} A B^{\prime}=180^{\circ}-\alpha$. Combining these, we get

$$
2 \alpha=\angle C O B<\angle C^{\prime} O B^{\prime}=\frac{360^{\circ}-\angle C^{\prime} L B^{\prime}}{2}=\frac{360^{\circ}-\left(180^{\circ}-\alpha\right)}{2}=90^{\circ}+\frac{\alpha}{2},
$$

so

$$
\alpha<60^{\circ} .
$$

Let O^{\prime} be the reflection of O in the line $B C$. In the quadrilateral $A B O^{\prime} C$ we have

$$
\angle C O^{\prime} B+\angle C A B=\angle C O B+\angle C A B=2 \alpha+\alpha<180^{\circ},
$$

so the point O^{\prime} is outside the circle $A B C$. Hence, O and O^{\prime} are two points of ω such that one of them lies inside the circumcircle, while the other one is located outside. Therefore, the two circles intersect.

Comment. There are different ways of reducing the statement of the problem to the case $\alpha<60^{\circ}$. E.g., since the point O lies in the interior of the isosceles triangle $A B^{\prime} C^{\prime}$, we have $O A<A B^{\prime}$. So, if $A B^{\prime} \leq 2 L B^{\prime}$ then $O A<2 L O$, which means that ω intersects the circumcircle of $A B C$. Hence the only interesting case is $A B^{\prime}>2 L B^{\prime}$, and this condition implies $\angle C A B=2 \angle B^{\prime} A L<2 \cdot 30^{\circ}=60^{\circ}$.

G2

Let $A_{1} A_{2} A_{3} A_{4}$ be a non-cyclic quadrilateral. Let O_{1} and r_{1} be the circumcenter and the circumradius of the triangle $A_{2} A_{3} A_{4}$. Define O_{2}, O_{3}, O_{4} and r_{2}, r_{3}, r_{4} in a similar way. Prove that

$$
\frac{1}{O_{1} A_{1}^{2}-r_{1}^{2}}+\frac{1}{O_{2} A_{2}^{2}-r_{2}^{2}}+\frac{1}{O_{3} A_{3}^{2}-r_{3}^{2}}+\frac{1}{O_{4} A_{4}^{2}-r_{4}^{2}}=0
$$

Solution 1. Let M be the point of intersection of the diagonals $A_{1} A_{3}$ and $A_{2} A_{4}$. On each diagonal choose a direction and let x, y, z, and w be the signed distances from M to the points A_{1}, A_{2}, A_{3}, and A_{4}, respectively.

Let ω_{1} be the circumcircle of the triangle $A_{2} A_{3} A_{4}$ and let B_{1} be the second intersection point of ω_{1} and $A_{1} A_{3}$ (thus, $B_{1}=A_{3}$ if and only if $A_{1} A_{3}$ is tangent to ω_{1}). Since the expression $O_{1} A_{1}^{2}-r_{1}^{2}$ is the power of the point A_{1} with respect to ω_{1}, we get

$$
O_{1} A_{1}^{2}-r_{1}^{2}=A_{1} B_{1} \cdot A_{1} A_{3} .
$$

On the other hand, from the equality $M B_{1} \cdot M A_{3}=M A_{2} \cdot M A_{4}$ we obtain $M B_{1}=y w / z$. Hence, we have

$$
O_{1} A_{1}^{2}-r_{1}^{2}=\left(\frac{y w}{z}-x\right)(z-x)=\frac{z-x}{z}(y w-x z) .
$$

Substituting the analogous expressions into the sought sum we get

$$
\sum_{i=1}^{4} \frac{1}{O_{i} A_{i}^{2}-r_{i}^{2}}=\frac{1}{y w-x z}\left(\frac{z}{z-x}-\frac{w}{w-y}+\frac{x}{x-z}-\frac{y}{y-w}\right)=0
$$

as desired.

Comment. One might reformulate the problem by assuming that the quadrilateral $A_{1} A_{2} A_{3} A_{4}$ is convex. This should not really change the difficulty, but proofs that distinguish several cases may become shorter.

Solution 2. Introduce a Cartesian coordinate system in the plane. Every circle has an equation of the form $p(x, y)=x^{2}+y^{2}+l(x, y)=0$, where $l(x, y)$ is a polynomial of degree at most 1 . For any point $A=\left(x_{A}, y_{A}\right)$ we have $p\left(x_{A}, y_{A}\right)=d^{2}-r^{2}$, where d is the distance from A to the center of the circle and r is the radius of the circle.

For each i in $\{1,2,3,4\}$ let $p_{i}(x, y)=x^{2}+y^{2}+l_{i}(x, y)=0$ be the equation of the circle with center O_{i} and radius r_{i} and let d_{i} be the distance from A_{i} to O_{i}. Consider the equation

$$
\begin{equation*}
\sum_{i=1}^{4} \frac{p_{i}(x, y)}{d_{i}^{2}-r_{i}^{2}}=1 \tag{1}
\end{equation*}
$$

Since the coordinates of the points A_{1}, A_{2}, A_{3}, and A_{4} satisfy (1) but these four points do not lie on a circle or on an line, equation (1) defines neither a circle, nor a line. Hence, the equation is an identity and the coefficient of the quadratic term $x^{2}+y^{2}$ also has to be zero, i.e.

$$
\sum_{i=1}^{4} \frac{1}{d_{i}^{2}-r_{i}^{2}}=0
$$

Comment. Using the determinant form of the equation of the circle through three given points, the same solution can be formulated as follows.

For $i=1,2,3,4$ let $\left(u_{i}, v_{i}\right)$ be the coordinates of A_{i} and define

$$
\Delta=\left|\begin{array}{llll}
u_{1}^{2}+v_{1}^{2} & u_{1} & v_{1} & 1 \\
u_{2}^{2}+v_{2}^{2} & u_{2} & v_{2} & 1 \\
u_{3}^{2}+v_{3}^{2} & u_{3} & v_{3} & 1 \\
u_{4}^{2}+v_{4}^{2} & u_{4} & v_{4} & 1
\end{array}\right| \quad \text { and } \quad \Delta_{i}=\left|\begin{array}{lll}
u_{i+1} & v_{i+1} & 1 \\
u_{i+2} & v_{i+2} & 1 \\
u_{i+3} & v_{i+3} & 1
\end{array}\right|,
$$

where $i+1, i+2$, and $i+3$ have to be read modulo 4 as integers in the set $\{1,2,3,4\}$.
Expanding $\left|\begin{array}{llll}u_{1} & v_{1} & 1 & 1 \\ u_{2} & v_{2} & 1 & 1 \\ u_{3} & v_{3} & 1 & 1 \\ u_{4} & v_{4} & 1 & 1\end{array}\right|=0$ along the third column, we get $\Delta_{1}-\Delta_{2}+\Delta_{3}-\Delta_{4}=0$.
The circle through A_{i+1}, A_{i+2}, and A_{i+3} is given by the equation

$$
\frac{1}{\Delta_{i}}\left|\begin{array}{cccc}
x^{2}+y^{2} & x & y & 1 \tag{2}\\
u_{i+1}^{2}+v_{i+1}^{2} & u_{i+1} & v_{i+1} & 1 \\
u_{i+2}^{2}+v_{i+2}^{2} & u_{i+2} & v_{i+2} & 1 \\
u_{i+3}^{2}+v_{i+3}^{2} & u_{i+3} & v_{i+3} & 1
\end{array}\right|=0
$$

On the left-hand side, the coefficient of $x^{2}+y^{2}$ is equal to 1 . Substituting $\left(u_{i}, v_{i}\right)$ for (x, y) in (2) we obtain the power of point A_{i} with respect to the circle through A_{i+1}, A_{i+2}, and A_{i+3} :

$$
d_{i}^{2}-r_{i}^{2}=\frac{1}{\Delta_{i}}\left|\begin{array}{cccc}
u_{i}^{2}+v_{i}^{2} & u_{i} & v_{i} & 1 \\
u_{i+1}^{2}+v_{i+1}^{2} & u_{i+1} & v_{i+1} & 1 \\
u_{i+2}^{2}+v_{i+2}^{2} & u_{i+2} & v_{i+2} & 1 \\
u_{i+3}^{2}+v_{i+3}^{2} & u_{i+3} & v_{i+3} & 1
\end{array}\right|=(-1)^{i+1} \frac{\Delta}{\Delta_{i}} .
$$

Thus, we have

$$
\sum_{i=1}^{4} \frac{1}{d_{i}^{2}-r_{i}^{2}}=\frac{\Delta_{1}-\Delta_{2}+\Delta_{3}-\Delta_{4}}{\Delta}=0
$$

G3

Let $A B C D$ be a convex quadrilateral whose sides $A D$ and $B C$ are not parallel. Suppose that the circles with diameters $A B$ and $C D$ meet at points E and F inside the quadrilateral. Let ω_{E} be the circle through the feet of the perpendiculars from E to the lines $A B, B C$, and $C D$. Let ω_{F} be the circle through the feet of the perpendiculars from F to the lines $C D, D A$, and $A B$. Prove that the midpoint of the segment $E F$ lies on the line through the two intersection points of ω_{E} and ω_{F}.

Solution. Denote by P, Q, R, and S the projections of E on the lines $D A, A B, B C$, and $C D$ respectively. The points P and Q lie on the circle with diameter $A E$, so $\angle Q P E=\angle Q A E$; analogously, $\angle Q R E=\angle Q B E$. So $\angle Q P E+\angle Q R E=\angle Q A E+\angle Q B E=90^{\circ}$. By similar reasons, we have $\angle S P E+\angle S R E=90^{\circ}$, hence we get $\angle Q P S+\angle Q R S=90^{\circ}+90^{\circ}=180^{\circ}$, and the quadrilateral $P Q R S$ is inscribed in ω_{E}. Analogously, all four projections of F onto the sides of $A B C D$ lie on ω_{F}.

Denote by K the meeting point of the lines $A D$ and $B C$. Due to the arguments above, there is no loss of generality in assuming that A lies on segment $D K$. Suppose that $\angle C K D \geq 90^{\circ}$; then the circle with diameter $C D$ covers the whole quadrilateral $A B C D$, so the points E, F cannot lie inside this quadrilateral. Hence our assumption is wrong. Therefore, the lines $E P$ and $B C$ intersect at some point P^{\prime}, while the lines $E R$ and $A D$ intersect at some point R^{\prime}.

Figure 1
We claim that the points P^{\prime} and R^{\prime} also belong to ω_{E}. Since the points R, E, Q, B are concyclic, $\angle Q R K=\angle Q E B=90^{\circ}-\angle Q B E=\angle Q A E=\angle Q P E$. So $\angle Q R K=\angle Q P P^{\prime}$, which means that the point P^{\prime} lies on ω_{E}. Analogously, R^{\prime} also lies on ω_{E}.

In the same manner, denote by M and N the projections of F on the lines $A D$ and $B C$
respectively, and let $M^{\prime}=F M \cap B C, N^{\prime}=F N \cap A D$. By the same arguments, we obtain that the points M^{\prime} and N^{\prime} belong to ω_{F}.

Figure 2
Now we concentrate on Figure 2, where all unnecessary details are removed. Let $U=N N^{\prime} \cap$ $P P^{\prime}, V=M M^{\prime} \cap R R^{\prime}$. Due to the right angles at N and P, the points $N, N^{\prime}, P, P^{\prime}$ are concyclic, so $U N \cdot U N^{\prime}=U P \cdot U P^{\prime}$ which means that U belongs to the radical axis g of the circles ω_{E} and ω_{F}. Analogously, V also belongs to g.
Finally, since $E U F V$ is a parallelogram, the radical axis $U V$ of ω_{E} and ω_{F} bisects $E F$.

G4

Let $A B C$ be an acute triangle with circumcircle Ω. Let B_{0} be the midpoint of $A C$ and let C_{0} be the midpoint of $A B$. Let D be the foot of the altitude from A, and let G be the centroid of the triangle $A B C$. Let ω be a circle through B_{0} and C_{0} that is tangent to the circle Ω at a point $X \neq A$. Prove that the points D, G, and X are collinear.

Solution 1. If $A B=A C$, then the statement is trivial. So without loss of generality we may assume $A B<A C$. Denote the tangents to Ω at points A and X by a and x, respectively.

Let Ω_{1} be the circumcircle of triangle $A B_{0} C_{0}$. The circles Ω and Ω_{1} are homothetic with center A, so they are tangent at A, and a is their radical axis. Now, the lines a, x, and $B_{0} C_{0}$ are the three radical axes of the circles Ω, Ω_{1}, and ω. Since $a \nmid B_{0} C_{0}$, these three lines are concurrent at some point W.

The points A and D are symmetric with respect to the line $B_{0} C_{0}$; hence $W X=W A=W D$. This means that W is the center of the circumcircle γ of triangle $A D X$. Moreover, we have $\angle W A O=\angle W X O=90^{\circ}$, where O denotes the center of Ω. Hence $\angle A W X+\angle A O X=180^{\circ}$.

Denote by T the second intersection point of Ω and the line $D X$. Note that O belongs to Ω_{1}. Using the circles γ and Ω, we find $\angle D A T=\angle A D X-\angle A T D=\frac{1}{2}\left(360^{\circ}-\angle A W X\right)-\frac{1}{2} \angle A O X=$ $180^{\circ}-\frac{1}{2}(\angle A W X+\angle A O X)=90^{\circ}$. So, $A D \perp A T$, and hence $A T \| B C$. Thus, $A T C B$ is an isosceles trapezoid inscribed in Ω.

Denote by A_{0} the midpoint of $B C$, and consider the image of $A T C B$ under the homothety h with center G and factor $-\frac{1}{2}$. We have $h(A)=A_{0}, h(B)=B_{0}$, and $h(C)=C_{0}$. From the
symmetry about $B_{0} C_{0}$, we have $\angle T C B=\angle C B A=\angle B_{0} C_{0} A=\angle D C_{0} B_{0}$. Using $A T \| D A_{0}$, we conclude $h(T)=D$. Hence the points D, G, and T are collinear, and X lies on the same line.

Solution 2. We define the points A_{0}, O, and W as in the previous solution and we concentrate on the case $A B<A C$. Let Q be the perpendicular projection of A_{0} on $B_{0} C_{0}$.

Since $\angle W A O=\angle W Q O=\angle O X W=90^{\circ}$, the five points A, W, X, O, and Q lie on a common circle. Furthermore, the reflections with respect to $B_{0} C_{0}$ and $O W$ map A to D and X, respectively. For these reasons, we have

$$
\angle W Q D=\angle A Q W=\angle A X W=\angle W A X=\angle W Q X
$$

Thus the three points Q, D, and X lie on a common line, say ℓ.

To complete the argument, we note that the homothety centered at G sending the triangle $A B C$ to the triangle $A_{0} B_{0} C_{0}$ maps the altitude $A D$ to the altitude $A_{0} Q$. Therefore it maps D to Q, so the points D, G, and Q are collinear. Hence G lies on ℓ as well.

Comment. There are various other ways to prove the collinearity of Q, D, and X obtained in the middle part of Solution 2. Introduce for instance the point J where the lines $A W$ and $B C$ intersect. Then the four points A, D, X, and J lie at the same distance from W, so the quadrilateral $A D X J$ is cyclic. In combination with the fact that $A W X Q$ is cyclic as well, this implies

$$
\angle J D X=\angle J A X=\angle W A X=\angle W Q X
$$

Since $B C \| W Q$, it follows that Q, D, and X are indeed collinear.

G5

Let $A B C$ be a triangle with incenter I and circumcircle ω. Let D and E be the second intersection points of ω with the lines $A I$ and $B I$, respectively. The chord $D E$ meets $A C$ at a point F, and $B C$ at a point G. Let P be the intersection point of the line through F parallel to $A D$ and the line through G parallel to $B E$. Suppose that the tangents to ω at A and at B meet at a point K. Prove that the three lines $A E, B D$, and $K P$ are either parallel or concurrent.

Solution 1. Since

$$
\angle I A F=\angle D A C=\angle B A D=\angle B E D=\angle I E F
$$

the quadrilateral $A I F E$ is cyclic. Denote its circumcircle by ω_{1}. Similarly, the quadrilateral $B D G I$ is cyclic; denote its circumcircle by ω_{2}.

The line $A E$ is the radical axis of ω and ω_{1}, and the line $B D$ is the radical axis of ω and ω_{2}. Let t be the radical axis of ω_{1} and ω_{2}. These three lines meet at the radical center of the three circles, or they are parallel to each other. We will show that t is in fact the line $P K$.

Let L be the second intersection point of ω_{1} and ω_{2}, so $t=I L$. (If the two circles are tangent to each other then $L=I$ and t is the common tangent.)

Let the line t meet the circumcircles of the triangles $A B L$ and $F G L$ at $K^{\prime} \neq L$ and $P^{\prime} \neq L$, respectively. Using oriented angles we have

$$
\angle\left(A B, B K^{\prime}\right)=\angle\left(A L, L K^{\prime}\right)=\angle(A L, L I)=\angle(A E, E I)=\angle(A E, E B)=\angle(A B, B K),
$$

so $B K^{\prime} \| B K$. Similarly we have $A K^{\prime} \| A K$, and therefore $K^{\prime}=K$. Next, we have

$$
\angle\left(P^{\prime} F, F G\right)=\angle\left(P^{\prime} L, L G\right)=\angle(I L, L G)=\angle(I D, D G)=\angle(A D, D E)=\angle(P F, F G),
$$

hence $P^{\prime} F \| P F$ and similarly $P^{\prime} G \| P G$. Therefore $P^{\prime}=P$. This means that t passes through K and P, which finishes the proof.

Solution 2. Let M be the intersection point of the tangents to ω at D and E, and let the lines $A E$ and $B D$ meet at T; if $A E$ and $B D$ are parallel, then let T be their common ideal point. It is well-known that the points K and M lie on the line $T I$ (as a consequence of PASCAL's theorem, applied to the inscribed degenerate hexagons $A A D B B E$ and $A D D B E E$).

The lines $A D$ and $B E$ are the angle bisectors of the angles $\angle C A B$ and $\angle A B C$, respectively, so D and E are the midpoints of the $\operatorname{arcs} B C$ and $C A$ of the circle ω, respectively. Hence, $D M$ is parallel to $B C$ and $E M$ is parallel to $A C$.

Apply Pascal's theorem to the degenerate hexagon $C A D D E B$. By the theorem, the points $C A \cap D E=F, A D \cap E B=I$ and the common ideal point of lines $D M$ and $B C$ are collinear, therefore $F I$ is parallel to $B C$ and $D M$. Analogously, the line $G I$ is parallel to $A C$ and $E M$.

Now consider the homothety with scale factor $-\frac{F G}{E D}$ which takes E to G and D to F. Since the triangles $E D M$ and $G F I$ have parallel sides, the homothety takes M to I. Similarly, since the triangles $D E I$ and $F G P$ have parallel sides, the homothety takes I to P. Hence, the points M, I, P and the homothety center H must lie on the same line. Therefore, the point P also lies on the line TKIM.

Comment. One may prove that $I F \| B C$ and $I G \| A C$ in a more elementary way. Since $\angle A D E=$ $\angle E D C$ and $\angle D E B=\angle C E D$, the points I and C are symmetric about $D E$. Moreover, since the $\operatorname{arcs} A E$ and $E C$ are equal and the arcs $C D$ and $D B$ are equal, we have $\angle C F G=\angle F G C$, so the triangle $C F G$ is isosceles. Hence, the quadrilateral $I F C G$ is a rhombus.

G6

Let $A B C$ be a triangle with $A B=A C$, and let D be the midpoint of $A C$. The angle bisector of $\angle B A C$ intersects the circle through D, B, and C in a point E inside the triangle $A B C$. The line $B D$ intersects the circle through A, E, and B in two points B and F. The lines $A F$ and $B E$ meet at a point I, and the lines $C I$ and $B D$ meet at a point K. Show that I is the incenter of triangle $K A B$.

Solution 1. Let D^{\prime} be the midpoint of the segment $A B$, and let M be the midpoint of $B C$. By symmetry at line $A M$, the point D^{\prime} has to lie on the circle $B C D$. Since the $\operatorname{arcs} D^{\prime} E$ and $E D$ of that circle are equal, we have $\angle A B I=\angle D^{\prime} B E=\angle E B D=I B K$, so I lies on the angle bisector of $\angle A B K$. For this reason it suffices to prove in the sequel that the ray $A I$ bisects the angle $\angle B A K$.

From

$$
\angle D F A=180^{\circ}-\angle B F A=180^{\circ}-\angle B E A=\angle M E B=\frac{1}{2} \angle C E B=\frac{1}{2} \angle C D B
$$

we derive $\angle D F A=\angle D A F$ so the triangle $A F D$ is isosceles with $A D=D F$.

Applying Menelaus's theorem to the triangle $A D F$ with respect to the line $C I K$, and applying the angle bisector theorem to the triangle $A B F$, we infer

$$
1=\frac{A C}{C D} \cdot \frac{D K}{K F} \cdot \frac{F I}{I A}=2 \cdot \frac{D K}{K F} \cdot \frac{B F}{A B}=2 \cdot \frac{D K}{K F} \cdot \frac{B F}{2 \cdot A D}=\frac{D K}{K F} \cdot \frac{B F}{A D}
$$

and therefore

$$
\frac{B D}{A D}=\frac{B F+F D}{A D}=\frac{B F}{A D}+1=\frac{K F}{D K}+1=\frac{D F}{D K}=\frac{A D}{D K} .
$$

It follows that the triangles $A D K$ and $B D A$ are similar, hence $\angle D A K=\angle A B D$. Then

$$
\angle I A B=\angle A F D-\angle A B D=\angle D A F-\angle D A K=\angle K A I
$$

shows that the point K is indeed lying on the angle bisector of $\angle B A K$.

Solution 2. It can be shown in the same way as in the first solution that I lies on the angle bisector of $\angle A B K$. Here we restrict ourselves to proving that $K I$ bisects $\angle A K B$.

Denote the circumcircle of triangle $B C D$ and its center by ω_{1} and by O_{1}, respectively. Since the quadrilateral $A B F E$ is cyclic, we have $\angle D F E=\angle B A E=\angle D A E$. By the same reason, we have $\angle E A F=\angle E B F=\angle A B E=\angle A F E$. Therefore $\angle D A F=\angle D F A$, and hence $D F=D A=D C$. So triangle $A F C$ is inscribed in a circle ω_{2} with center D.

Denote the circumcircle of triangle $A B D$ by ω_{3}, and let its center be O_{3}. Since the $\operatorname{arcs} B E$ and $E C$ of circle ω_{1} are equal, and the triangles $A D E$ and $F D E$ are congruent, we have $\angle A O_{1} B=2 \angle B D E=\angle B D A$, so O_{1} lies on ω_{3}. Hence $\angle O_{3} O_{1} D=\angle O_{3} D O_{1}$.

The line $B D$ is the radical axis of ω_{1} and ω_{3}. Point C belongs to the radical axis of ω_{1} and ω_{2}, and I also belongs to it since $A I \cdot I F=B I \cdot I E$. Hence $K=B D \cap C I$ is the radical center of ω_{1}, ω_{2}, and ω_{3}, and $A K$ is the radical axis of ω_{2} and ω_{3}. Now, the radical axes $A K, B K$ and $I K$ are perpendicular to the central lines $O_{3} D, O_{3} O_{1}$ and $O_{1} D$, respectively. By $\angle O_{3} O_{1} D=\angle O_{3} D O_{1}$, we get that $K I$ is the angle bisector of $\angle A K B$.

Solution 3. Again, let M be the midpoint of $B C$. As in the previous solutions, we can deduce $\angle A B I=\angle I B K$. We show that the point I lies on the angle bisector of $\angle K A B$.

Let G be the intersection point of the circles $A F C$ and $B C D$, different from C. The lines
$C G, A F$, and $B E$ are the radical axes of the three circles $A G F C, C D B$, and $A B F E$, so $I=A F \cap B E$ is the radical center of the three circles and $C G$ also passes through I.

The angle between line $D E$ and the tangent to the circle $B C D$ at E is equal to $\angle E B D=$ $\angle E A F=\angle A B E=\angle A F E$. As the tangent at E is perpendicular to $A M$, the line $D E$ is perpendicular to $A F$. The triangle $A F E$ is isosceles, so $D E$ is the perpendicular bisector of $A F$ and thus $A D=D F$. Hence, the point D is the center of the circle $A F C$, and this circle passes through M as well since $\angle A M C=90^{\circ}$.

Let B^{\prime} be the reflection of B in the point D, so $A B C B^{\prime}$ is a parallelogram. Since $D C=D G$ we have $\angle G C D=\angle D B C=\angle K B^{\prime} A$. Hence, the quadrilateral $A K C B^{\prime}$ is cyclic and thus $\angle C A K=\angle C B^{\prime} K=\angle A B D=2 \angle M A I$. Then

$$
\angle I A B=\angle M A B-\angle M A I=\frac{1}{2} \angle C A B-\frac{1}{2} \angle C A K=\frac{1}{2} \angle K A B
$$

and therefore $A I$ is the angle bisector of $\angle K A B$.

G7

Let $A B C D E F$ be a convex hexagon all of whose sides are tangent to a circle ω with center O. Suppose that the circumcircle of triangle $A C E$ is concentric with ω. Let J be the foot of the perpendicular from B to $C D$. Suppose that the perpendicular from B to $D F$ intersects the line $E O$ at a point K. Let L be the foot of the perpendicular from K to $D E$. Prove that $D J=D L$.

Solution 1. Since ω and the circumcircle of triangle $A C E$ are concentric, the tangents from A, C, and E to ω have equal lengths; that means that $A B=B C, C D=D E$, and $E F=F A$. Moreover, we have $\angle B C D=\angle D E F=\angle F A B$.

Consider the rotation around point D mapping C to E; let B^{\prime} and L^{\prime} be the images of the points B and J, respectively, under this rotation. Then one has $D J=D L^{\prime}$ and $B^{\prime} L^{\prime} \perp D E$; moreover, the triangles $B^{\prime} E D$ and $B C D$ are congruent. Since $\angle D E O<90^{\circ}$, the lines $E O$ and $B^{\prime} L^{\prime}$ intersect at some point K^{\prime}. We intend to prove that $K^{\prime} B \perp D F$; this would imply $K=K^{\prime}$, therefore $L=L^{\prime}$, which proves the problem statement.

Analogously, consider the rotation around F mapping A to E; let $B^{\prime \prime}$ be the image of B under this rotation. Then the triangles $F A B$ and $F E B^{\prime \prime}$ are congruent. We have $E B^{\prime \prime}=A B=B C=$ $E B^{\prime}$ and $\angle F E B^{\prime \prime}=\angle F A B=\angle B C D=\angle D E B^{\prime}$, so the points B^{\prime} and $B^{\prime \prime}$ are symmetrical with respect to the angle bisector $E O$ of $\angle D E F$. So, from $K^{\prime} B^{\prime} \perp D E$ we get $K^{\prime} B^{\prime \prime} \perp E F$.

From these two relations we obtain

$$
K^{\prime} D^{2}-K^{\prime} E^{2}=B^{\prime} D^{2}-B^{\prime} E^{2} \quad \text { and } \quad K^{\prime} E^{2}-K^{\prime} F^{2}=B^{\prime \prime} E^{2}-B^{\prime \prime} F^{2} .
$$

Adding these equalities and taking into account that $B^{\prime} E=B^{\prime \prime} E$ we obtain

$$
K^{\prime} D^{2}-K^{\prime} F^{2}=B^{\prime} D^{2}-B^{\prime \prime} F^{2}=B D^{2}-B F^{2}
$$

which means exactly that $K^{\prime} B \perp D F$.

Comment. There are several variations of this solution. For instance, let us consider the intersection point M of the lines $B J$ and $O C$. Define the point K^{\prime} as the reflection of M in the line $D O$. Then one has

$$
D K^{\prime 2}-D B^{2}=D M^{2}-D B^{2}=C M^{2}-C B^{2} .
$$

Next, consider the rotation around O which maps $C M$ to $E K^{\prime}$. Let P be the image of B under this rotation; so P lies on $E D$. Then $E F \perp K^{\prime} P$, so

$$
C M^{2}-C B^{2}=E K^{\prime 2}-E P^{2}=F K^{\prime 2}-F P^{2}=F K^{\prime 2}-F B^{2},
$$

since the triangles $F E P$ and $F A B$ are congruent.

Solution 2. Let us denote the points of tangency of $A B, B C, C D, D E, E F$, and $F A$ to ω by R, S, T, U, V, and W, respectively. As in the previous solution, we mention that $A R=$ $A W=C S=C T=E U=E V$.

The reflection in the line $B O$ maps R to S, therefore A to C and thus also W to T. Hence, both lines $R S$ and $W T$ are perpendicular to $O B$, therefore they are parallel. On the other hand, the lines $U V$ and $W T$ are not parallel, since otherwise the hexagon $A B C D E F$ is symmetric with respect to the line $B O$ and the lines defining the point K coincide, which contradicts the conditions of the problem. Therefore we can consider the intersection point Z of $U V$ and $W T$.

Next, we recall a well-known fact that the points D, F, Z are collinear. Actually, D is the pole of the line $U T, F$ is the pole of $V W$, and $Z=T W \cap U V$; so all these points belong to the polar line of $T U \cap V W$.

Now, we put O into the origin, and identify each point (say X) with the vector $\overrightarrow{O X}$. So, from now on all the products of points refer to the scalar products of the corresponding vectors.
Since $O K \perp U Z$ and $O B \perp T Z$, we have $K \cdot(Z-U)=0=B \cdot(Z-T)$. Next, the condition $B K \perp D Z$ can be written as $K \cdot(D-Z)=B \cdot(D-Z)$. Adding these two equalities we get

$$
K \cdot(D-U)=B \cdot(D-T)
$$

By symmetry, we have $D \cdot(D-U)=D \cdot(D-T)$. Subtracting this from the previous equation, we obtain $(K-D) \cdot(D-U)=(B-D) \cdot(D-T)$ and rewrite it in vector form as

$$
\overrightarrow{D K} \cdot \overrightarrow{U D}=\overrightarrow{D B} \cdot \overrightarrow{T D}
$$

Finally, projecting the vectors $\overrightarrow{D K}$ and $\overrightarrow{D B}$ onto the lines $U D$ and $T D$ respectively, we can rewrite this equality in terms of segment lengths as $D L \cdot U D=D J \cdot T D$, thus $D L=D J$.

Comment. The collinearity of Z, F, and D may be shown in various more elementary ways. For instance, applying the sine theorem to the triangles $D T Z$ and $D U Z$, one gets $\frac{\sin \angle D Z T}{\sin \angle D Z U}=\frac{\sin \angle D T Z}{\sin \angle D U Z}$; analogously, $\frac{\sin \angle F Z W}{\sin \angle F Z V}=\frac{\sin \angle F W Z}{\sin \angle F V Z}$. The right-hand sides are equal, hence so are the left-hand sides, which implies the collinearity of the points D, F, and Z.

There also exist purely synthetic proofs of this fact. E.g., let Q be the point of intersection of the circumcircles of the triangles $Z T V$ and $Z W U$ different from Z. Then $Q Z$ is the bisector of $\angle V Q W$ since $\angle V Q Z=\angle V T Z=\angle V U W=\angle Z Q W$. Moreover, all these angles are equal to $\frac{1}{2} \angle V O W$, so $\angle V Q W=\angle V O W$, hence the quadrilateral $V W O Q$ is cyclic. On the other hand, the points O, V, W lie on the circle with diameter $O F$ due to the right angles; so Q also belongs to this circle. Since $F V=F W, Q F$ is also the bisector of $\angle V Q W$, so F lies on $Q Z$. Analogously, D lies on the same line.

G8

Let $A B C$ be an acute triangle with circumcircle ω. Let t be a tangent line to ω. Let t_{a}, t_{b}, and t_{c} be the lines obtained by reflecting t in the lines $B C, C A$, and $A B$, respectively. Show that the circumcircle of the triangle determined by the lines t_{a}, t_{b}, and t_{c} is tangent to the circle ω.

To avoid a large case distinction, we will use the notion of oriented angles. Namely, for two lines ℓ and m, we denote by $\angle(\ell, m)$ the angle by which one may rotate ℓ anticlockwise to obtain a line parallel to m. Thus, all oriented angles are considered modulo 180°.

Solution 1. Denote by T the point of tangency of t and ω. Let $A^{\prime}=t_{b} \cap t_{c}, B^{\prime}=t_{a} \cap t_{c}$, $C^{\prime}=t_{a} \cap t_{b}$. Introduce the point $A^{\prime \prime}$ on ω such that $T A=A A^{\prime \prime}\left(A^{\prime \prime} \neq T\right.$ unless $T A$ is a diameter). Define the points $B^{\prime \prime}$ and $C^{\prime \prime}$ in a similar way.

Since the points C and B are the midpoints of arcs $T C^{\prime \prime}$ and $T B^{\prime \prime}$, respectively, we have

$$
\begin{aligned}
\angle\left(t, B^{\prime \prime} C^{\prime \prime}\right) & =\angle\left(t, T C^{\prime \prime}\right)+\angle\left(T C^{\prime \prime}, B^{\prime \prime} C^{\prime \prime}\right)=2 \angle(t, T C)+2 \angle\left(T C^{\prime \prime}, B C^{\prime \prime}\right) \\
& =2(\angle(t, T C)+\angle(T C, B C))=2 \angle(t, B C)=\angle\left(t, t_{a}\right) .
\end{aligned}
$$

It follows that t_{a} and $B^{\prime \prime} C^{\prime \prime}$ are parallel. Similarly, $t_{b} \| A^{\prime \prime} C^{\prime \prime}$ and $t_{c} \| A^{\prime \prime} B^{\prime \prime}$. Thus, either the triangles $A^{\prime} B^{\prime} C^{\prime}$ and $A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$ are homothetic, or they are translates of each other. Now we will prove that they are in fact homothetic, and that the center K of the homothety belongs
to ω. It would then follow that their circumcircles are also homothetic with respect to K and are therefore tangent at this point, as desired.

We need the two following claims.
Claim 1. The point of intersection X of the lines $B^{\prime \prime} C$ and $B C^{\prime \prime}$ lies on t_{a}.
Proof. Actually, the points X and T are symmetric about the line $B C$, since the lines $C T$ and $C B^{\prime \prime}$ are symmetric about this line, as are the lines $B T$ and $B C^{\prime \prime}$.

Claim 2. The point of intersection I of the lines $B B^{\prime}$ and $C C^{\prime}$ lies on the circle ω.
Proof. We consider the case that t is not parallel to the sides of $A B C$; the other cases may be regarded as limit cases. Let $D=t \cap B C, E=t \cap A C$, and $F=t \cap A B$.

Due to symmetry, the line $D B$ is one of the angle bisectors of the lines $B^{\prime} D$ and $F D$; analogously, the line $F B$ is one of the angle bisectors of the lines $B^{\prime} F$ and $D F$. So B is either the incenter or one of the excenters of the triangle $B^{\prime} D F$. In any case we have $\angle(B D, D F)+\angle(D F, F B)+$ $\angle\left(B^{\prime} B, B^{\prime} D\right)=90^{\circ}$, so

$$
\angle\left(B^{\prime} B, B^{\prime} C^{\prime}\right)=\angle\left(B^{\prime} B, B^{\prime} D\right)=90^{\circ}-\angle(B C, D F)-\angle(D F, B A)=90^{\circ}-\angle(B C, A B) .
$$

Analogously, we get $\angle\left(C^{\prime} C, B^{\prime} C^{\prime}\right)=90^{\circ}-\angle(B C, A C)$. Hence,

$$
\angle(B I, C I)=\angle\left(B^{\prime} B, B^{\prime} C^{\prime}\right)+\angle\left(B^{\prime} C^{\prime}, C^{\prime} C\right)=\angle(B C, A C)-\angle(B C, A B)=\angle(A B, A C),
$$

which means exactly that the points A, B, I, C are concyclic.
Now we can complete the proof. Let K be the second intersection point of $B^{\prime} B^{\prime \prime}$ and ω. Applying Pascal's theorem to hexagon $K B^{\prime \prime} C I B C^{\prime \prime}$ we get that the points $B^{\prime}=K B^{\prime \prime} \cap I B$ and $X=B^{\prime \prime} C \cap B C^{\prime \prime}$ are collinear with the intersection point S of $C I$ and $C^{\prime \prime} K$. So $S=$ $C I \cap B^{\prime} X=C^{\prime}$, and the points $C^{\prime}, C^{\prime \prime}, K$ are collinear. Thus K is the intersection point of $B^{\prime} B^{\prime \prime}$ and $C^{\prime} C^{\prime \prime}$ which implies that K is the center of the homothety mapping $A^{\prime} B^{\prime} C^{\prime}$ to $A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$, and it belongs to ω.

Solution 2. Define the points $T, A^{\prime}, B^{\prime}$, and C^{\prime} in the same way as in the previous solution. Let X, Y, and Z be the symmetric images of T about the lines $B C, C A$, and $A B$, respectively. Note that the projections of T on these lines form a Simson line of T with respect to $A B C$, therefore the points X, Y, Z are also collinear. Moreover, we have $X \in B^{\prime} C^{\prime}, Y \in C^{\prime} A^{\prime}$, $Z \in A^{\prime} B^{\prime}$.

Denote $\alpha=\angle(t, T C)=\angle(B T, B C)$. Using the symmetry in the lines $A C$ and $B C$, we get

$$
\angle(B C, B X)=\angle(B T, B C)=\alpha \quad \text { and } \quad \angle\left(X C, X C^{\prime}\right)=\angle(t, T C)=\angle\left(Y C, Y C^{\prime}\right)=\alpha .
$$

Since $\angle\left(X C, X C^{\prime}\right)=\angle\left(Y C, Y C^{\prime}\right)$, the points X, Y, C, C^{\prime} lie on some circle ω_{c}. Define the circles ω_{a} and ω_{b} analogously. Let ω^{\prime} be the circumcircle of triangle $A^{\prime} B^{\prime} C^{\prime}$.

Now, applying Miquel's theorem to the four lines $A^{\prime} B^{\prime}, A^{\prime} C^{\prime}, B^{\prime} C^{\prime}$, and $X Y$, we obtain that the circles $\omega^{\prime}, \omega_{a}, \omega_{b}, \omega_{c}$ intersect at some point K. We will show that K lies on ω, and that the tangent lines to ω and ω^{\prime} at this point coincide; this implies the problem statement.

Due to symmetry, we have $X B=T B=Z B$, so the point B is the midpoint of one of the $\operatorname{arcs} X Z$ of circle ω_{b}. Therefore $\angle(K B, K X)=\angle(X Z, X B)$. Analogously, $\angle(K X, K C)=$ $\angle(X C, X Y)$. Adding these equalities and using the symmetry in the line $B C$ we get

$$
\angle(K B, K C)=\angle(X Z, X B)+\angle(X C, X Z)=\angle(X C, X B)=\angle(T B, T C) .
$$

Therefore, K lies on ω.
Next, let k be the tangent line to ω at K. We have

$$
\begin{aligned}
\angle\left(k, K C^{\prime}\right) & =\angle(k, K C)+\angle\left(K C, K C^{\prime}\right)=\angle(K B, B C)+\angle\left(X C, X C^{\prime}\right) \\
& =(\angle(K B, B X)-\angle(B C, B X))+\alpha=\angle\left(K B^{\prime}, B^{\prime} X\right)-\alpha+\alpha=\angle\left(K B^{\prime}, B^{\prime} C^{\prime}\right),
\end{aligned}
$$

which means exactly that k is tangent to ω^{\prime}.

Comment. There exist various solutions combining the ideas from the two solutions presented above. For instance, one may define the point X as the reflection of T with respect to the line $B C$, and then introduce the point K as the second intersection point of the circumcircles of $B B^{\prime} X$ and $C C^{\prime} X$. Using the fact that $B B^{\prime}$ and $C C^{\prime}$ are the bisectors of $\angle\left(A^{\prime} B^{\prime}, B^{\prime} C^{\prime}\right)$ and $\angle\left(A^{\prime} C^{\prime}, B^{\prime} C^{\prime}\right)$ one can show successively that $K \in \omega, K \in \omega^{\prime}$, and that the tangents to ω and ω^{\prime} at K coincide.

N1

For any integer $d>0$, let $f(d)$ be the smallest positive integer that has exactly d positive divisors (so for example we have $f(1)=1, f(5)=16$, and $f(6)=12$). Prove that for every integer $k \geq 0$ the number $f\left(2^{k}\right)$ divides $f\left(2^{k+1}\right)$.

Solution 1. For any positive integer n, let $d(n)$ be the number of positive divisors of n. Let $n=\prod_{p} p^{a(p)}$ be the prime factorization of n where p ranges over the prime numbers, the integers $a(p)$ are nonnegative and all but finitely many $a(p)$ are zero. Then we have $d(n)=\prod_{p}(a(p)+1)$. Thus, $d(n)$ is a power of 2 if and only if for every prime p there is a nonnegative integer $b(p)$ with $a(p)=2^{b(p)}-1=1+2+2^{2}+\cdots+2^{b(p)-1}$. We then have

$$
n=\prod_{p} \prod_{i=0}^{b(p)-1} p^{2^{i}}, \quad \text { and } \quad d(n)=2^{k} \quad \text { with } \quad k=\sum_{p} b(p) .
$$

Let \mathcal{S} be the set of all numbers of the form $p^{2^{r}}$ with p prime and r a nonnegative integer. Then we deduce that $d(n)$ is a power of 2 if and only if n is the product of the elements of some finite subset \mathcal{T} of \mathcal{S} that satisfies the following condition: for all $t \in \mathcal{T}$ and $s \in \mathcal{S}$ with $s \mid t$ we have $s \in \mathcal{T}$. Moreover, if $d(n)=2^{k}$ then the corresponding set \mathcal{T} has k elements.

Note that the set \mathcal{T}_{k} consisting of the smallest k elements from \mathcal{S} obviously satisfies the condition above. Thus, given k, the smallest n with $d(n)=2^{k}$ is the product of the elements of \mathcal{T}_{k}. This n is $f\left(2^{k}\right)$. Since obviously $\mathcal{T}_{k} \subset \mathcal{T}_{k+1}$, it follows that $f\left(2^{k}\right) \mid f\left(2^{k+1}\right)$.

Solution 2. This is an alternative to the second part of the Solution 1. Suppose k is a nonnegative integer. From the first part of Solution 1 we see that $f\left(2^{k}\right)=\prod_{p} p^{a(p)}$ with $a(p)=2^{b(p)}-1$ and $\sum_{p} b(p)=k$. We now claim that for any two distinct primes p, q with $b(q)>0$ we have

$$
\begin{equation*}
m=p^{2^{b(p)}}>q^{2^{b(q)-1}}=\ell . \tag{1}
\end{equation*}
$$

To see this, note first that ℓ divides $f\left(2^{k}\right)$. With the first part of Solution 1 one can see that the integer $n=f\left(2^{k}\right) m / \ell$ also satisfies $d(n)=2^{k}$. By the definition of $f\left(2^{k}\right)$ this implies that $n \geq f\left(2^{k}\right)$ so $m \geq \ell$. Since $p \neq q$ the inequality (1) follows.
Let the prime factorization of $f\left(2^{k+1}\right)$ be given by $f\left(2^{k+1}\right)=\prod_{p} p^{r(p)}$ with $r(p)=2^{s(p)}-1$. Since we have $\sum_{p} s(p)=k+1>k=\sum_{p} b(p)$ there is a prime p with $s(p)>b(p)$. For any prime $q \neq p$ with $b(q)>0$ we apply inequality (1) twice and get

$$
q^{2^{s(q)}}>p^{2^{s(p)-1}} \geq p^{2^{b(p)}}>q^{2 b(q)-1}
$$

which implies $s(q) \geq b(q)$. It follows that $s(q) \geq b(q)$ for all primes q, so $f\left(2^{k}\right) \mid f\left(2^{k+1}\right)$.

N2

Consider a polynomial $P(x)=\left(x+d_{1}\right)\left(x+d_{2}\right) \cdot \ldots \cdot\left(x+d_{9}\right)$, where $d_{1}, d_{2}, \ldots, d_{9}$ are nine distinct integers. Prove that there exists an integer N such that for all integers $x \geq N$ the number $P(x)$ is divisible by a prime number greater than 20 .

Solution 1. Note that the statement of the problem is invariant under translations of x; hence without loss of generality we may suppose that the numbers $d_{1}, d_{2}, \ldots, d_{9}$ are positive.

The key observation is that there are only eight primes below 20 , while $P(x)$ involves more than eight factors.

We shall prove that $N=d^{8}$ satisfies the desired property, where $d=\max \left\{d_{1}, d_{2}, \ldots, d_{9}\right\}$. Suppose for the sake of contradiction that there is some integer $x \geq N$ such that $P(x)$ is composed of primes below 20 only. Then for every index $i \in\{1,2, \ldots, 9\}$ the number $x+d_{i}$ can be expressed as product of powers of the first 8 primes.

Since $x+d_{i}>x \geq d^{8}$ there is some prime power $f_{i}>d$ that divides $x+d_{i}$. Invoking the pigeonhole principle we see that there are two distinct indices i and j such that f_{i} and f_{j} are powers of the same prime number. For reasons of symmetry, we may suppose that $f_{i} \leq f_{j}$. Now both of the numbers $x+d_{i}$ and $x+d_{j}$ are divisible by f_{i} and hence so is their difference $d_{i}-d_{j}$. But as

$$
0<\left|d_{i}-d_{j}\right| \leq \max \left(d_{i}, d_{j}\right) \leq d<f_{i}
$$

this is impossible. Thereby the problem is solved.

Solution 2. Observe that for each index $i \in\{1,2, \ldots, 9\}$ the product

$$
D_{i}=\prod_{1 \leq j \leq 9, j \neq i}\left|d_{i}-d_{j}\right|
$$

is positive. We claim that $N=\max \left\{D_{1}-d_{1}, D_{2}-d_{2}, \ldots, D_{9}-d_{9}\right\}+1$ satisfies the statement of the problem. Suppose there exists an integer $x \geq N$ such that all primes dividing $P(x)$ are smaller than 20. For each index i we reduce the fraction $\left(x+d_{i}\right) / D_{i}$ to lowest terms. Since $x+d_{i}>D_{i}$ the numerator of the fraction we thereby get cannot be 1 , and hence it has to be divisible by some prime number $p_{i}<20$.

By the pigeonhole principle, there are a prime number p and two distinct indices i and j such that $p_{i}=p_{j}=p$. Let $p^{\alpha_{i}}$ and $p^{\alpha_{j}}$ be the greatest powers of p dividing $x+d_{i}$ and $x+d_{j}$, respectively. Due to symmetry we may suppose $\alpha_{i} \leq \alpha_{j}$. But now $p^{\alpha_{i}}$ divides $d_{i}-d_{j}$ and hence also D_{i}, which means that all occurrences of p in the numerator of the fraction $\left(x+d_{i}\right) / D_{i}$ cancel out, contrary to the choice of $p=p_{i}$. This contradiction proves our claim.

Solution 3. Given a nonzero integer N as well as a prime number p we write $v_{p}(N)$ for the exponent with which p occurs in the prime factorization of $|N|$.

Evidently, if the statement of the problem were not true, then there would exist an infinite sequence $\left(x_{n}\right)$ of positive integers tending to infinity such that for each $n \in \mathbb{Z}_{+}$the integer $P\left(x_{n}\right)$ is not divisible by any prime number >20. Observe that the numbers $-d_{1},-d_{2}, \ldots,-d_{9}$ do not appear in this sequence.

Now clearly there exists a prime $p_{1}<20$ for which the sequence $v_{p_{1}}\left(x_{n}+d_{1}\right)$ is not bounded; thinning out the sequence $\left(x_{n}\right)$ if necessary we may even suppose that

$$
v_{p_{1}}\left(x_{n}+d_{1}\right) \longrightarrow \infty .
$$

Repeating this argument eight more times we may similarly choose primes $p_{2}, \ldots, p_{9}<20$ and suppose that our sequence $\left(x_{n}\right)$ has been thinned out to such an extent that $v_{p_{i}}\left(x_{n}+d_{i}\right) \longrightarrow \infty$ holds for $i=2, \ldots, 9$ as well. In view of the pigeonhole principle, there are distinct indices i and j as well as a prime $p<20$ such that $p_{i}=p_{j}=p$. Setting $k=v_{p}\left(d_{i}-d_{j}\right)$ there now has to be some n for which both $v_{p}\left(x_{n}+d_{i}\right)$ and $v_{p}\left(x_{n}+d_{j}\right)$ are greater than k. But now the numbers $x_{n}+d_{i}$ and $x_{n}+d_{j}$ are divisible by p^{k+1} whilst their difference $d_{i}-d_{j}$ is not -a contradiction.
Comment. This problem is supposed to be a relatively easy one, so one might consider adding the hypothesis that the numbers $d_{1}, d_{2}, \ldots, d_{9}$ be positive. Then certain merely technical issues are not going to arise while the main ideas required to solve the problems remain the same.

N3

Let $n \geq 1$ be an odd integer. Determine all functions f from the set of integers to itself such that for all integers x and y the difference $f(x)-f(y)$ divides $x^{n}-y^{n}$.

Answer. All functions f of the form $f(x)=\varepsilon x^{d}+c$, where ε is in $\{1,-1\}$, the integer d is a positive divisor of n, and c is an integer.

Solution. Obviously, all functions in the answer satisfy the condition of the problem. We will show that there are no other functions satisfying that condition.
Let f be a function satisfying the given condition. For each integer n, the function g defined by $g(x)=f(x)+n$ also satisfies the same condition. Therefore, by subtracting $f(0)$ from $f(x)$ we may assume that $f(0)=0$.

For any prime p, the condition on f with $(x, y)=(p, 0)$ states that $f(p)$ divides p^{n}. Since the set of primes is infinite, there exist integers d and ε with $0 \leq d \leq n$ and $\varepsilon \in\{1,-1\}$ such that for infinitely many primes p we have $f(p)=\varepsilon p^{d}$. Denote the set of these primes by P. Since a function g satisfies the given condition if and only if $-g$ satisfies the same condition, we may suppose $\varepsilon=1$.

The case $d=0$ is easily ruled out, because 0 does not divide any nonzero integer. Suppose $d \geq 1$ and write n as $m d+r$, where m and r are integers such that $m \geq 1$ and $0 \leq r \leq d-1$. Let x be an arbitrary integer. For each prime p in P, the difference $f(p)-f(x)$ divides $p^{n}-x^{n}$. Using the equality $f(p)=p^{d}$, we get

$$
p^{n}-x^{n}=p^{r}\left(p^{d}\right)^{m}-x^{n} \equiv p^{r} f(x)^{m}-x^{n} \equiv 0 \quad\left(\bmod p^{d}-f(x)\right)
$$

Since we have $r<d$, for large enough primes $p \in P$ we obtain

$$
\left|p^{r} f(x)^{m}-x^{n}\right|<p^{d}-f(x)
$$

Hence $p^{r} f(x)^{m}-x^{n}$ has to be zero. This implies $r=0$ and $x^{n}=\left(x^{d}\right)^{m}=f(x)^{m}$. Since m is odd, we obtain $f(x)=x^{d}$.

Comment. If n is an even positive integer, then the functions f of the form

$$
f(x)=\left\{\begin{array}{l}
x^{d}+c \text { for some integers } \\
-x^{d}+c \text { for the rest of integers },
\end{array}\right.
$$

where d is a positive divisor of $n / 2$ and c is an integer, also satisfy the condition of the problem. Together with the functions in the answer, they are all functions that satisfy the condition when n is even.

N4

For each positive integer k, let $t(k)$ be the largest odd divisor of k. Determine all positive integers a for which there exists a positive integer n such that all the differences

$$
t(n+a)-t(n), \quad t(n+a+1)-t(n+1), \quad \ldots, \quad t(n+2 a-1)-t(n+a-1)
$$

are divisible by 4 .

Answer. $\quad a=1,3$, or 5 .

Solution. A pair (a, n) satisfying the condition of the problem will be called a winning pair. It is straightforward to check that the pairs $(1,1),(3,1)$, and $(5,4)$ are winning pairs.

Now suppose that a is a positive integer not equal to 1,3 , and 5 . We will show that there are no winning pairs (a, n) by distinguishing three cases.

Case 1: a is even. In this case we have $a=2^{\alpha} d$ for some positive integer α and some odd d. Since $a \geq 2^{\alpha}$, for each positive integer n there exists an $i \in\{0,1, \ldots, a-1\}$ such that $n+i=2^{\alpha-1} e$, where e is some odd integer. Then we have $t(n+i)=t\left(2^{\alpha-1} e\right)=e$ and

$$
t(n+a+i)=t\left(2^{\alpha} d+2^{\alpha-1} e\right)=2 d+e \equiv e+2 \quad(\bmod 4) .
$$

So we get $t(n+i)-t(n+a+i) \equiv 2(\bmod 4)$, and (a, n) is not a winning pair.
Case 2: a is odd and $a>8$. For each positive integer n, there exists an $i \in\{0,1, \ldots, a-5\}$ such that $n+i=2 d$ for some odd d. We get

$$
t(n+i)=d \not \equiv d+2=t(n+i+4) \quad(\bmod 4)
$$

and

$$
t(n+a+i)=n+a+i \equiv n+a+i+4=t(n+a+i+4) \quad(\bmod 4)
$$

Therefore, the integers $t(n+a+i)-t(n+i)$ and $t(n+a+i+4)-t(n+i+4)$ cannot be both divisible by 4 , and therefore there are no winning pairs in this case.

Case 3: $a=7$. For each positive integer n, there exists an $i \in\{0,1, \ldots, 6\}$ such that $n+i$ is either of the form $8 k+3$ or of the form $8 k+6$, where k is a nonnegative integer. But we have

$$
t(8 k+3) \equiv 3 \not \equiv 1 \equiv 4 k+5=t(8 k+3+7) \quad(\bmod 4)
$$

and

$$
t(8 k+6)=4 k+3 \equiv 3 \not \equiv 1 \equiv t(8 k+6+7) \quad(\bmod 4) .
$$

Hence, there are no winning pairs of the form $(7, n)$.

N5

Let f be a function from the set of integers to the set of positive integers. Suppose that for any two integers m and n, the difference $f(m)-f(n)$ is divisible by $f(m-n)$. Prove that for all integers m, n with $f(m) \leq f(n)$ the number $f(n)$ is divisible by $f(m)$.

Solution 1. Suppose that x and y are two integers with $f(x)<f(y)$. We will show that $f(x) \mid f(y)$. By taking $m=x$ and $n=y$ we see that

$$
f(x-y)||f(x)-f(y)|=f(y)-f(x)>0
$$

so $f(x-y) \leq f(y)-f(x)<f(y)$. Hence the number $d=f(x)-f(x-y)$ satisfies

$$
-f(y)<-f(x-y)<d<f(x)<f(y)
$$

Taking $m=x$ and $n=x-y$ we see that $f(y) \mid d$, so we deduce $d=0$, or in other words $f(x)=f(x-y)$. Taking $m=x$ and $n=y$ we see that $f(x)=f(x-y) \mid f(x)-f(y)$, which implies $f(x) \mid f(y)$.

Solution 2. We split the solution into a sequence of claims; in each claim, the letters m and n denote arbitrary integers.

Claim 1. $f(n) \mid f(m n)$.
Proof. Since trivially $f(n) \mid f(1 \cdot n)$ and $f(n) \mid f((k+1) n)-f(k n)$ for all integers k, this is easily seen by using induction on m in both directions.

Claim 2. $f(n) \mid f(0)$ and $f(n)=f(-n)$.
Proof. The first part follows by plugging $m=0$ into Claim 1. Using Claim 1 twice with $m=-1$, we get $f(n)|f(-n)| f(n)$, from which the second part follows.

From Claim 1, we get $f(1) \mid f(n)$ for all integers n, so $f(1)$ is the minimal value attained by f. Next, from Claim 2, the function f can attain only a finite number of values since all these values divide $f(0)$.

Now we prove the statement of the problem by induction on the number N_{f} of values attained by f. In the base case $N_{f} \leq 2$, we either have $f(0) \neq f(1)$, in which case these two numbers are the only values attained by f and the statement is clear, or we have $f(0)=f(1)$, in which case we have $f(1)|f(n)| f(0)$ for all integers n, so f is constant and the statement is obvious again.

For the induction step, assume that $N_{f} \geq 3$, and let a be the least positive integer with $f(a)>f(1)$. Note that such a number exists due to the symmetry of f obtained in Claim 2.

Claim 3. $f(n) \neq f(1)$ if and only if $a \mid n$.
Proof. Since $f(1)=\cdots=f(a-1)<f(a)$, the claim follows from the fact that

$$
f(n)=f(1) \Longleftrightarrow f(n+a)=f(1)
$$

So it suffices to prove this fact.
Assume that $f(n)=f(1)$. Then $f(n+a) \mid f(a)-f(-n)=f(a)-f(n)>0$, so $f(n+a) \leq$ $f(a)-f(n)<f(a)$; in particular the difference $f(n+a)-f(n)$ is stricly smaller than $f(a)$. Furthermore, this difference is divisible by $f(a)$ and nonnegative since $f(n)=f(1)$ is the least value attained by f. So we have $f(n+a)-f(n)=0$, as desired. For the converse direction we only need to remark that $f(n+a)=f(1)$ entails $f(-n-a)=f(1)$, and hence $f(n)=f(-n)=f(1)$ by the forward implication.

We return to the induction step. So let us take two arbitrary integers m and n with $f(m) \leq f(n)$. If $a \nmid m$, then we have $f(m)=f(1) \mid f(n)$. On the other hand, suppose that $a \mid m$; then by Claim $3 a \mid n$ as well. Now define the function $g(x)=f(a x)$. Clearly, g satisfies the conditions of the problem, but $N_{g}<N_{f}-1$, since g does not attain $f(1)$. Hence, by the induction hypothesis, $f(m)=g(m / a) \mid g(n / a)=f(n)$, as desired.

Comment. After the fact that f attains a finite number of values has been established, there are several ways of finishing the solution. For instance, let $f(0)=b_{1}>b_{2}>\cdots>b_{k}$ be all these values. One may show (essentially in the same way as in Claim 3) that the set $S_{i}=\left\{n: f(n) \geq b_{i}\right\}$ consists exactly of all numbers divisible by some integer $a_{i} \geq 0$. One obviously has $a_{i} \mid a_{i-1}$, which implies $f\left(a_{i}\right) \mid f\left(a_{i-1}\right)$ by Claim 1. So, $b_{k}\left|b_{k-1}\right| \cdots \mid b_{1}$, thus proving the problem statement.
Moreover, now it is easy to describe all functions satisfying the conditions of the problem. Namely, all these functions can be constructed as follows. Consider a sequence of nonnegative integers $a_{1}, a_{2}, \ldots, a_{k}$ and another sequence of positive integers $b_{1}, b_{2}, \ldots, b_{k}$ such that $\left|a_{k}\right|=1, a_{i} \neq a_{j}$ and $b_{i} \neq b_{j}$ for all $1 \leq i<j \leq k$, and $a_{i} \mid a_{i-1}$ and $b_{i} \mid b_{i-1}$ for all $i=2, \ldots, k$. Then one may introduce the function

$$
f(n)=b_{i(n)}, \quad \text { where } \quad i(n)=\min \left\{i: a_{i} \mid n\right\} .
$$

These are all the functions which satisfy the conditions of the problem.

N6

Let $P(x)$ and $Q(x)$ be two polynomials with integer coefficients such that no nonconstant polynomial with rational coefficients divides both $P(x)$ and $Q(x)$. Suppose that for every positive integer n the integers $P(n)$ and $Q(n)$ are positive, and $2^{Q(n)}-1$ divides $3^{P(n)}-1$. Prove that $Q(x)$ is a constant polynomial.

Solution. First we show that there exists an integer d such that for all positive integers n we have $\operatorname{gcd}(P(n), Q(n)) \leq d$.

Since $P(x)$ and $Q(x)$ are coprime (over the polynomials with rational coefficients), Euclid's algorithm provides some polynomials $R_{0}(x), S_{0}(x)$ with rational coefficients such that $P(x) R_{0}(x)-$ $Q(x) S_{0}(x)=1$. Multiplying by a suitable positive integer d, we obtain polynomials $R(x)=$ $d \cdot R_{0}(x)$ and $S(x)=d \cdot S_{0}(x)$ with integer coefficients for which $P(x) R(x)-Q(x) S(x)=d$. Then we have $\operatorname{gcd}(P(n), Q(n)) \leq d$ for any integer n.

To prove the problem statement, suppose that $Q(x)$ is not constant. Then the sequence $Q(n)$ is not bounded and we can choose a positive integer m for which

$$
\begin{equation*}
M=2^{Q(m)}-1 \geq 3^{\max \{P(1), P(2), \ldots, P(d)\}} . \tag{1}
\end{equation*}
$$

Since $M=2^{Q(n)}-1 \mid 3^{P(n)}-1$, we have $2,3 \nmid M$. Let a and b be the multiplicative orders of 2 and 3 modulo M, respectively. Obviously, $a=Q(m)$ since the lower powers of 2 do not reach M. Since M divides $3^{P(m)}-1$, we have $b \mid P(m)$. Then $\operatorname{gcd}(a, b) \leq \operatorname{gcd}(P(m), Q(m)) \leq d$. Since the expression $a x-b y$ attains all integer values divisible by $\operatorname{gcd}(a, b)$ when x and y run over all nonnegative integer values, there exist some nonnegative integers x, y such that $1 \leq m+a x-b y \leq d$.

By $Q(m+a x) \equiv Q(m)(\bmod a)$ we have

$$
2^{Q(m+a x)} \equiv 2^{Q(m)} \equiv 1 \quad(\bmod M)
$$

and therefore

$$
M\left|2^{Q(m+a x)}-1\right| 3^{P(m+a x)}-1 .
$$

Then, by $P(m+a x-b y) \equiv P(m+a x)(\bmod b)$ we have

$$
3^{P(m+a x-b y)} \equiv 3^{P(m+a x)} \equiv 1 \quad(\bmod M)
$$

Since $P(m+a x-b y)>0$ this implies $M \leq 3^{P(m+a x-b y)}-1$. But $P(m+a x-b y)$ is listed among $P(1), P(2), \ldots, P(d)$, so

$$
M<3^{P(m+a x-b y)} \leq 3^{\max \{P(1), P(2), \ldots, P(d)\}}
$$

which contradicts (1).

Comment. We present another variant of the solution above.
Denote the degree of P by k and its leading coefficient by p. Consider any positive integer n and let $a=Q(n)$. Again, denote by b the multiplicative order of 3 modulo $2^{a}-1$. Since $2^{a}-1 \mid 3^{P(n)}-1$, we have $b \mid P(n)$. Moreover, since $2^{Q(n+a t)}-1 \mid 3^{P(n+a t)}-1$ and $a=Q(n) \mid Q(n+a t)$ for each positive integer t, we have $2^{a}-1 \mid 3^{P(n+a t)}-1$, hence $b \mid P(n+a t)$ as well.

Therefore, b divides $\operatorname{gcd}\{P(n+a t): t \geq 0\}$; hence it also divides the number

$$
\sum_{i=0}^{k}(-1)^{k-i}\binom{k}{i} P(n+a i)=p \cdot k!\cdot a^{k} .
$$

Finally, we get $b \mid \operatorname{gcd}\left(P(n), k!\cdot p \cdot Q(n)^{k}\right)$, which is bounded by the same arguments as in the beginning of the solution. So $3^{b}-1$ is bounded, and hence $2^{Q(n)}-1$ is bounded as well.

N7
Let p be an odd prime number. For every integer a, define the number

$$
S_{a}=\frac{a}{1}+\frac{a^{2}}{2}+\cdots+\frac{a^{p-1}}{p-1} .
$$

Let m and n be integers such that

$$
S_{3}+S_{4}-3 S_{2}=\frac{m}{n}
$$

Prove that p divides m.

Solution 1. For rational numbers p_{1} / q_{1} and p_{2} / q_{2} with the denominators q_{1}, q_{2} not divisible by p, we write $p_{1} / q_{1} \equiv p_{2} / q_{2}(\bmod p)$ if the numerator $p_{1} q_{2}-p_{2} q_{1}$ of their difference is divisible by p.
We start with finding an explicit formula for the residue of S_{a} modulo p. Note first that for every $k=1, \ldots, p-1$ the number $\binom{p}{k}$ is divisible by p, and

$$
\frac{1}{p}\binom{p}{k}=\frac{(p-1)(p-2) \cdots(p-k+1)}{k!} \equiv \frac{(-1) \cdot(-2) \cdots(-k+1)}{k!}=\frac{(-1)^{k-1}}{k} \quad(\bmod p)
$$

Therefore, we have

$$
S_{a}=-\sum_{k=1}^{p-1} \frac{(-a)^{k}(-1)^{k-1}}{k} \equiv-\sum_{k=1}^{p-1}(-a)^{k} \cdot \frac{1}{p}\binom{p}{k} \quad(\bmod p) .
$$

The number on the right-hand side is integer. Using the binomial formula we express it as

$$
-\sum_{k=1}^{p-1}(-a)^{k} \cdot \frac{1}{p}\binom{p}{k}=-\frac{1}{p}\left(-1-(-a)^{p}+\sum_{k=0}^{p}(-a)^{k}\binom{p}{k}\right)=\frac{(a-1)^{p}-a^{p}+1}{p}
$$

since p is odd. So, we have

$$
S_{a} \equiv \frac{(a-1)^{p}-a^{p}+1}{p} \quad(\bmod p)
$$

Finally, using the obtained formula we get

$$
\begin{aligned}
S_{3}+S_{4}-3 S_{2} & \equiv \frac{\left(2^{p}-3^{p}+1\right)+\left(3^{p}-4^{p}+1\right)-3\left(1^{p}-2^{p}+1\right)}{p} \\
& =\frac{4 \cdot 2^{p}-4^{p}-4}{p}=-\frac{\left(2^{p}-2\right)^{2}}{p} \quad(\bmod p) .
\end{aligned}
$$

By Fermat's theorem, $p \mid 2^{p}-2$, so $p^{2} \mid\left(2^{p}-2\right)^{2}$ and hence $S_{3}+S_{4}-3 S_{2} \equiv 0(\bmod p)$.

Solution 2. One may solve the problem without finding an explicit formula for S_{a}. It is enough to find the following property.

Lemma. For every integer a, we have $S_{a+1} \equiv S_{-a}(\bmod p)$.
Proof. We expand S_{a+1} using the binomial formula as

$$
S_{a+1}=\sum_{k=1}^{p-1} \frac{1}{k} \sum_{j=0}^{k}\binom{k}{j} a^{j}=\sum_{k=1}^{p-1}\left(\frac{1}{k}+\sum_{j=1}^{k} a^{j} \cdot \frac{1}{k}\binom{k}{j}\right)=\sum_{k=1}^{p-1} \frac{1}{k}+\sum_{j=1}^{p-1} a^{j} \sum_{k=j}^{p-1} \frac{1}{k}\binom{k}{j} a^{k} .
$$

Note that $\frac{1}{k}+\frac{1}{p-k}=\frac{p}{k(p-k)} \equiv 0(\bmod p)$ for all $1 \leq k \leq p-1$; hence the first sum vanishes modulo p. For the second sum, we use the relation $\frac{1}{k}\binom{k}{j}=\frac{1}{j}\binom{k-1}{j-1}$ to obtain

$$
S_{a+1} \equiv \sum_{j=1}^{p-1} \frac{a^{j}}{j} \sum_{k=1}^{p-1}\binom{k-1}{j-1} \quad(\bmod p) .
$$

Finally, from the relation

$$
\sum_{k=1}^{p-1}\binom{k-1}{j-1}=\binom{p-1}{j}=\frac{(p-1)(p-2) \ldots(p-j)}{j!} \equiv(-1)^{j} \quad(\bmod p)
$$

we obtain

$$
S_{a+1} \equiv \sum_{j=1}^{p-1} \frac{a^{j}(-1)^{j}}{j!}=S_{-a} .
$$

Now we turn to the problem. Using the lemma we get

$$
\begin{equation*}
S_{3}-3 S_{2} \equiv S_{-2}-3 S_{2}=\sum_{\substack{1 \leq k \leq p-1 \\ k \text { is even }}} \frac{-2 \cdot 2^{k}}{k}+\sum_{\substack{1 \leq k \leq p-1 \\ k \text { is odd }}} \frac{-4 \cdot 2^{k}}{k}(\bmod p) \tag{1}
\end{equation*}
$$

The first sum in (1) expands as

$$
\sum_{\ell=1}^{(p-1) / 2} \frac{-2 \cdot 2^{2 \ell}}{2 \ell}=-\sum_{\ell=1}^{(p-1) / 2} \frac{4^{\ell}}{\ell} .
$$

Next, using Fermat's theorem, we expand the second sum in (1) as

$$
-\sum_{\ell=1}^{(p-1) / 2} \frac{2^{2 \ell+1}}{2 \ell-1} \equiv-\sum_{\ell=1}^{(p-1) / 2} \frac{2^{p+2 \ell}}{p+2 \ell-1}=-\sum_{m=(p+1) / 2}^{p-1} \frac{2 \cdot 4^{m}}{2 m}=-\sum_{m=(p+1) / 2}^{p-1} \frac{4^{m}}{m} \quad(\bmod p)
$$

(here we set $m=\ell+\frac{p-1}{2}$). Hence,

$$
S_{3}-3 S_{2} \equiv-\sum_{\ell=1}^{(p-1) / 2} \frac{4^{\ell}}{\ell}-\sum_{m=(p+1) / 2}^{p-1} \frac{4^{m}}{m}=-S_{4} \quad(\bmod p) .
$$

N8

Let k be a positive integer and set $n=2^{k}+1$. Prove that n is a prime number if and only if the following holds: there is a permutation a_{1}, \ldots, a_{n-1} of the numbers $1,2, \ldots, n-1$ and a sequence of integers $g_{1}, g_{2}, \ldots, g_{n-1}$ such that n divides $g_{i}^{a_{i}}-a_{i+1}$ for every $i \in\{1,2, \ldots, n-1\}$, where we set $a_{n}=a_{1}$.

Solution. Let $N=\{1,2, \ldots, n-1\}$. For $a, b \in N$, we say that b follows a if there exists an integer g such that $b \equiv g^{a}(\bmod n)$ and denote this property as $a \rightarrow b$. This way we have a directed graph with N as set of vertices. If a_{1}, \ldots, a_{n-1} is a permutation of $1,2, \ldots, n-1$ such that $a_{1} \rightarrow a_{2} \rightarrow \ldots \rightarrow a_{n-1} \rightarrow a_{1}$ then this is a Hamiltonian cycle in the graph.

Step I. First consider the case when n is composite. Let $n=p_{1}^{\alpha_{1}} \ldots p_{s}^{\alpha_{s}}$ be its prime factorization. All primes p_{i} are odd.

Suppose that $\alpha_{i}>1$ for some i. For all integers a, g with $a \geq 2$, we have $g^{a} \not \equiv p_{i}\left(\bmod p_{i}^{2}\right)$, because g^{a} is either divisible by p_{i}^{2} or it is not divisible by p_{i}. It follows that in any Hamiltonian cycle p_{i} comes immediately after 1 . The same argument shows that $2 p_{i}$ also should come immediately after 1 , which is impossible. Hence, there is no Hamiltonian cycle in the graph.
Now suppose that n is square-free. We have $n=p_{1} p_{2} \ldots p_{s}>9$ and $s \geq 2$. Assume that there exists a Hamiltonian cycle. There are $\frac{n-1}{2}$ even numbers in this cycle, and each number which follows one of them should be a quadratic residue modulo n. So, there should be at least $\frac{n-1}{2}$ nonzero quadratic residues modulo n. On the other hand, for each p_{i} there exist exactly $\frac{p_{i}+1}{2}$ quadratic residues modulo p_{i}; by the Chinese Remainder Theorem, the number of quadratic residues modulo n is exactly $\frac{p_{1}+1}{2} \cdot \frac{p_{2}+1}{2} \cdot \ldots \cdot \frac{p_{s}+1}{2}$, including 0 . Then we have a contradiction by

$$
\frac{p_{1}+1}{2} \cdot \frac{p_{2}+1}{2} \cdot \ldots \cdot \frac{p_{s}+1}{2} \leq \frac{2 p_{1}}{3} \cdot \frac{2 p_{2}}{3} \cdot \ldots \cdot \frac{2 p_{s}}{3}=\left(\frac{2}{3}\right)^{s} n \leq \frac{4 n}{9}<\frac{n-1}{2}
$$

This proves the "if"-part of the problem.
Step II. Now suppose that n is prime. For any $a \in N$, denote by $\nu_{2}(a)$ the exponent of 2 in the prime factorization of a, and let $\mu(a)=\max \left\{t \in[0, k] \mid 2^{t} \rightarrow a\right\}$.

Lemma. For any $a, b \in N$, we have $a \rightarrow b$ if and only if $\nu_{2}(a) \leq \mu(b)$.
Proof. Let $\ell=\nu_{2}(a)$ and $m=\mu(b)$.
Suppose $\ell \leq m$. Since b follows 2^{m}, there exists some g_{0} such that $b \equiv g_{0}^{2^{m}}(\bmod n)$. By $\operatorname{gcd}(a, n-1)=2^{\ell}$ there exist some integers p and q such that $p a-q(n-1)=2^{\ell}$. Choosing $g=g_{0}^{2^{m-\ell} p}$ we have $g^{a}=g_{0}^{2^{m-\ell} p a}=g_{0}^{2^{m}+2^{m-\ell} q(n-1)} \equiv g_{0}^{2^{m}} \equiv b(\bmod n)$ by Fermat's theorem. Hence, $a \rightarrow b$.

To prove the reverse statement, suppose that $a \rightarrow b$, so $b \equiv g^{a}(\bmod n)$ with some g. Then $b \equiv\left(g^{a / 2^{\ell}}\right)^{2^{\ell}}$, and therefore $2^{\ell} \rightarrow b$. By the definition of $\mu(b)$, we have $\mu(b) \geq \ell$. The lemma is
proved.
Now for every i with $0 \leq i \leq k$, let

$$
\begin{aligned}
A_{i} & =\left\{a \in N \mid \nu_{2}(a)=i\right\}, \\
B_{i} & =\{a \in N \mid \mu(a)=i\}, \\
\text { and } C_{i} & =\{a \in N \mid \mu(a) \geq i\}=B_{i} \cup B_{i+1} \cup \ldots \cup B_{k} .
\end{aligned}
$$

We claim that $\left|A_{i}\right|=\left|B_{i}\right|$ for all $0 \leq i \leq k$. Obviously we have $\left|A_{i}\right|=2^{k-i-1}$ for all $i=$ $0, \ldots, k-1$, and $\left|A_{k}\right|=1$. Now we determine $\left|C_{i}\right|$. We have $\left|C_{0}\right|=n-1$ and by Fermat's theorem we also have $C_{k}=\{1\}$, so $\left|C_{k}\right|=1$. Next, notice that $C_{i+1}=\left\{x^{2} \bmod n \mid x \in C_{i}\right\}$. For every $a \in N$, the relation $x^{2} \equiv a(\bmod n)$ has at most two solutions in N. Therefore we have $2\left|C_{i+1}\right| \leq\left|C_{i}\right|$, with the equality achieved only if for every $y \in C_{i+1}$, there exist distinct elements $x, x^{\prime} \in C_{i}$ such that $x^{2} \equiv x^{\prime 2} \equiv y(\bmod n)$ (this implies $x+x^{\prime}=n$). Now, since $2^{k}\left|C_{k}\right|=\left|C_{0}\right|$, we obtain that this equality should be achieved in each step. Hence $\left|C_{i}\right|=2^{k-i}$ for $0 \leq i \leq k$, and therefore $\left|B_{i}\right|=2^{k-i-1}$ for $0 \leq i \leq k-1$ and $\left|B_{k}\right|=1$.

From the previous arguments we can see that for each $z \in C_{i}(0 \leq i<k)$ the equation $x^{2} \equiv z^{2}$ $(\bmod n)$ has two solutions in C_{i}, so we have $n-z \in C_{i}$. Hence, for each $i=0,1, \ldots, k-1$, exactly half of the elements of C_{i} are odd. The same statement is valid for $B_{i}=C_{i} \backslash C_{i+1}$ for $0 \leq i \leq k-2$. In particular, each such B_{i} contains an odd number. Note that $B_{k}=\{1\}$ also contains an odd number, and $B_{k-1}=\left\{2^{k}\right\}$ since C_{k-1} consists of the two square roots of 1 modulo n.

Step III. Now we construct a Hamiltonian cycle in the graph. First, for each i with $0 \leq i \leq k$, connect the elements of A_{i} to the elements of B_{i} by means of an arbitrary bijection. After performing this for every i, we obtain a subgraph with all vertices having in-degree 1 and outdegree 1 , so the subgraph is a disjoint union of cycles. If there is a unique cycle, we are done. Otherwise, we modify the subgraph in such a way that the previous property is preserved and the number of cycles decreases; after a finite number of steps we arrive at a single cycle.

For every cycle C, let $\lambda(C)=\min _{c \in C} \nu_{2}(c)$. Consider a cycle C for which $\lambda(C)$ is maximal. If $\lambda(C)=0$, then for any other cycle C^{\prime} we have $\lambda\left(C^{\prime}\right)=0$. Take two arbitrary vertices $a \in C$ and $a^{\prime} \in C^{\prime}$ such that $\nu_{2}(a)=\nu_{2}\left(a^{\prime}\right)=0$; let their direct successors be b and b^{\prime}, respectively. Then we can unify C and C^{\prime} to a single cycle by replacing the edges $a \rightarrow b$ and $a^{\prime} \rightarrow b^{\prime}$ by $a \rightarrow b^{\prime}$ and $a^{\prime} \rightarrow b$.

Now suppose that $\lambda=\lambda(C) \geq 1$; let $a \in C \cap A_{\lambda}$. If there exists some $a^{\prime} \in A_{\lambda} \backslash C$, then a^{\prime} lies in another cycle C^{\prime} and we can merge the two cycles in exactly the same way as above. So, the only remaining case is $A_{\lambda} \subset C$. Since the edges from A_{λ} lead to B_{λ}, we get also $B_{\lambda} \subset C$. If $\lambda \neq k-1$ then B_{λ} contains an odd number; this contradicts the assumption $\lambda(C)>0$. Finally, if $\lambda=k-1$, then C contains 2^{k-1} which is the only element of A_{k-1}. Since $B_{k-1}=\left\{2^{k}\right\}=A_{k}$ and $B_{k}=\{1\}$, the cycle C contains the path $2^{k-1} \rightarrow 2^{k} \rightarrow 1$ and it contains an odd number again. This completes the proof of the "only if"-part of the problem.

Comment 1. The lemma and the fact $\left|A_{i}\right|=\left|B_{i}\right|$ together show that for every edge $a \rightarrow b$ of the Hamiltonian cycle, $\nu_{2}(a)=\mu(b)$ must hold. After this observation, the Hamiltonian cycle can be built in many ways. For instance, it is possible to select edges from A_{i} to B_{i} for $i=k, k-1, \ldots, 1$ in such a way that they form disjoint paths; at the end all these paths will have odd endpoints. In the final step, the paths can be closed to form a unique cycle.

Comment 2. Step II is an easy consequence of some basic facts about the multiplicative group modulo the prime $n=2^{k}+1$. The Lemma follows by noting that this group has order 2^{k}, so the a-th powers are exactly the $2^{\nu_{2}(a)}$-th powers. Using the existence of a primitive root g modulo n one sees that the map from $\{1,2, \ldots, n-1\}$ to itself that sends a to $g^{a} \bmod n$ is a bijection that sends A_{i} to B_{i} for each $i \in\{0, \ldots, k\}$.

Shortlisted Problems with Solutions

$53{ }^{\text {rd }}$ International Mathematical Olympiad Mar del Plata, Argentina 2012

The shortlisted problems should be kept strictly confidential until IMO 2013

Contributing Countries

The Organizing Committee and the Problem Selection Committee of IMO 2012 thank the following 40 countries for contributing 136 problem proposals:

Australia, Austria, Belarus, Belgium, Bulgaria, Canada, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hong Kong, India, Iran, Ireland, Israel, Japan, Kazakhstan, Luxembourg, Malaysia, Montenegro, Netherlands, Norway, Pakistan, Romania, Russia, Serbia, Slovakia, Slovenia, South Africa, South Korea, Sweden, Thailand, Ukraine, United Kingdom, United States of America, Uzbekistan

Problem Selection Committee

Martín Avendaño
Carlos di Fiore
Géza Kós
Svetoslav Savchev

Algebra

A1. Find all the functions $f: \mathbb{Z} \rightarrow \mathbb{Z}$ such that

$$
f(a)^{2}+f(b)^{2}+f(c)^{2}=2 f(a) f(b)+2 f(b) f(c)+2 f(c) f(a)
$$

for all integers a, b, c satisfying $a+b+c=0$.
A2. Let \mathbb{Z} and \mathbb{Q} be the sets of integers and rationals respectively.
a) Does there exist a partition of \mathbb{Z} into three non-empty subsets A, B, C such that the sets $A+B, B+C, C+A$ are disjoint?
b) Does there exist a partition of \mathbb{Q} into three non-empty subsets A, B, C such that the sets $A+B, B+C, C+A$ are disjoint?

Here $X+Y$ denotes the set $\{x+y \mid x \in X, y \in Y\}$, for $X, Y \subseteq \mathbb{Z}$ and $X, Y \subseteq \mathbb{Q}$.
A3. Let a_{2}, \ldots, a_{n} be $n-1$ positive real numbers, where $n \geq 3$, such that $a_{2} a_{3} \cdots a_{n}=1$. Prove that

$$
\left(1+a_{2}\right)^{2}\left(1+a_{3}\right)^{3} \cdots\left(1+a_{n}\right)^{n}>n^{n} .
$$

A4. Let f and g be two nonzero polynomials with integer coefficients and $\operatorname{deg} f>\operatorname{deg} g$. Suppose that for infinitely many primes p the polynomial $p f+g$ has a rational root. Prove that f has a rational root.

A5. Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ that satisfy the conditions

$$
f(1+x y)-f(x+y)=f(x) f(y) \quad \text { for all } x, y \in \mathbb{R}
$$

and $f(-1) \neq 0$.
A6. Let $f: \mathbb{N} \rightarrow \mathbb{N}$ be a function, and let f^{m} be f applied m times. Suppose that for every $n \in \mathbb{N}$ there exists a $k \in \mathbb{N}$ such that $f^{2 k}(n)=n+k$, and let k_{n} be the smallest such k. Prove that the sequence k_{1}, k_{2}, \ldots is unbounded.

A7. We say that a function $f: \mathbb{R}^{k} \rightarrow \mathbb{R}$ is a metapolynomial if, for some positive integers m and n, it can be represented in the form

$$
f\left(x_{1}, \ldots, x_{k}\right)=\max _{i=1, \ldots, m} \min _{j=1, \ldots, n} P_{i, j}\left(x_{1}, \ldots, x_{k}\right)
$$

where $P_{i, j}$ are multivariate polynomials. Prove that the product of two metapolynomials is also a metapolynomial.

Combinatorics

C1. Several positive integers are written in a row. Iteratively, Alice chooses two adjacent numbers x and y such that $x>y$ and x is to the left of y, and replaces the pair (x, y) by either $(y+1, x)$ or $(x-1, x)$. Prove that she can perform only finitely many such iterations.

C2. Let $n \geq 1$ be an integer. What is the maximum number of disjoint pairs of elements of the set $\{1,2, \ldots, n\}$ such that the sums of the different pairs are different integers not exceeding n ?

C3. In a 999×999 square table some cells are white and the remaining ones are red. Let T be the number of triples $\left(C_{1}, C_{2}, C_{3}\right)$ of cells, the first two in the same row and the last two in the same column, with C_{1} and C_{3} white and C_{2} red. Find the maximum value T can attain.

C4. Players A and B play a game with $N \geq 2012$ coins and 2012 boxes arranged around a circle. Initially A distributes the coins among the boxes so that there is at least 1 coin in each box. Then the two of them make moves in the order B, A, B, A, \ldots by the following rules:

- On every move of his B passes 1 coin from every box to an adjacent box.
- On every move of hers A chooses several coins that were not involved in B 's previous move and are in different boxes. She passes every chosen coin to an adjacent box.

Player A 's goal is to ensure at least 1 coin in each box after every move of hers, regardless of how B plays and how many moves are made. Find the least N that enables her to succeed.

C5. The columns and the rows of a $3 n \times 3 n$ square board are numbered $1,2, \ldots, 3 n$. Every square (x, y) with $1 \leq x, y \leq 3 n$ is colored asparagus, byzantium or citrine according as the modulo 3 remainder of $x+y$ is 0,1 or 2 respectively. One token colored asparagus, byzantium or citrine is placed on each square, so that there are $3 n^{2}$ tokens of each color.

Suppose that one can permute the tokens so that each token is moved to a distance of at most d from its original position, each asparagus token replaces a byzantium token, each byzantium token replaces a citrine token, and each citrine token replaces an asparagus token. Prove that it is possible to permute the tokens so that each token is moved to a distance of at most $d+2$ from its original position, and each square contains a token with the same color as the square.

C6. Let k and n be fixed positive integers. In the liar's guessing game, Amy chooses integers x and N with $1 \leq x \leq N$. She tells Ben what N is, but not what x is. Ben may then repeatedly ask Amy whether $x \in S$ for arbitrary sets S of integers. Amy will always answer with yes or no, but she might lie. The only restriction is that she can lie at most k times in a row. After he has asked as many questions as he wants, Ben must specify a set of at most n positive integers. If x is in this set he wins; otherwise, he loses. Prove that:
a) If $n \geq 2^{k}$ then Ben can always win.
b) For sufficiently large k there exist $n \geq 1.99^{k}$ such that Ben cannot guarantee a win.

C7. There are given 2^{500} points on a circle labeled $1,2, \ldots, 2^{500}$ in some order. Prove that one can choose 100 pairwise disjoint chords joining some of these points so that the 100 sums of the pairs of numbers at the endpoints of the chosen chords are equal.

Geometry

G1. In the triangle $A B C$ the point J is the center of the excircle opposite to A. This excircle is tangent to the side $B C$ at M, and to the lines $A B$ and $A C$ at K and L respectively. The lines $L M$ and $B J$ meet at F, and the lines $K M$ and $C J$ meet at G. Let S be the point of intersection of the lines $A F$ and $B C$, and let T be the point of intersection of the lines $A G$ and $B C$. Prove that M is the midpoint of $S T$.

G2. Let $A B C D$ be a cyclic quadrilateral whose diagonals $A C$ and $B D$ meet at E. The extensions of the sides $A D$ and $B C$ beyond A and B meet at F. Let G be the point such that $E C G D$ is a parallelogram, and let H be the image of E under reflection in $A D$. Prove that D, H, F, G are concyclic.

G3. In an acute triangle $A B C$ the points D, E and F are the feet of the altitudes through A, B and C respectively. The incenters of the triangles $A E F$ and $B D F$ are I_{1} and I_{2} respectively; the circumcenters of the triangles $A C I_{1}$ and $B C I_{2}$ are O_{1} and O_{2} respectively. Prove that $I_{1} I_{2}$ and $O_{1} O_{2}$ are parallel.

G4. Let $A B C$ be a triangle with $A B \neq A C$ and circumcenter O. The bisector of $\angle B A C$ intersects $B C$ at D. Let E be the reflection of D with respect to the midpoint of $B C$. The lines through D and E perpendicular to $B C$ intersect the lines $A O$ and $A D$ at X and Y respectively. Prove that the quadrilateral $B X C Y$ is cyclic.

G5. Let $A B C$ be a triangle with $\angle B C A=90^{\circ}$, and let C_{0} be the foot of the altitude from C. Choose a point X in the interior of the segment $C C_{0}$, and let K, L be the points on the segments $A X, B X$ for which $B K=B C$ and $A L=A C$ respectively. Denote by M the intersection of $A L$ and $B K$. Show that $M K=M L$.

G6. Let $A B C$ be a triangle with circumcenter O and incenter I. The points D, E and F on the sides $B C, C A$ and $A B$ respectively are such that $B D+B F=C A$ and $C D+C E=A B$. The circumcircles of the triangles $B F D$ and $C D E$ intersect at $P \neq D$. Prove that $O P=O I$.

G7. Let $A B C D$ be a convex quadrilateral with non-parallel sides $B C$ and $A D$. Assume that there is a point E on the side $B C$ such that the quadrilaterals $A B E D$ and $A E C D$ are circumscribed. Prove that there is a point F on the side $A D$ such that the quadrilaterals $A B C F$ and $B C D F$ are circumscribed if and only if $A B$ is parallel to $C D$.

G8. Let $A B C$ be a triangle with circumcircle ω and ℓ a line without common points with ω. Denote by P the foot of the perpendicular from the center of ω to ℓ. The side-lines $B C, C A, A B$ intersect ℓ at the points X, Y, Z different from P. Prove that the circumcircles of the triangles $A X P, B Y P$ and $C Z P$ have a common point different from P or are mutually tangent at P.

Number Theory

N1. Call admissible a set A of integers that has the following property:

$$
\text { If } x, y \in A \text { (possibly } x=y \text {) then } x^{2}+k x y+y^{2} \in A \text { for every integer } k \text {. }
$$

Determine all pairs m, n of nonzero integers such that the only admissible set containing both m and n is the set of all integers.

N2. Find all triples (x, y, z) of positive integers such that $x \leq y \leq z$ and

$$
x^{3}\left(y^{3}+z^{3}\right)=2012(x y z+2) .
$$

N3. Determine all integers $m \geq 2$ such that every n with $\frac{m}{3} \leq n \leq \frac{m}{2}$ divides the binomial coefficient $\binom{n}{m-2 n}$.

N4. An integer a is called friendly if the equation $\left(m^{2}+n\right)\left(n^{2}+m\right)=a(m-n)^{3}$ has a solution over the positive integers.
a) Prove that there are at least 500 friendly integers in the set $\{1,2, \ldots, 2012\}$.
b) Decide whether $a=2$ is friendly.

N5. For a nonnegative integer n define $\operatorname{rad}(n)=1$ if $n=0$ or $n=1$, and $\operatorname{rad}(n)=p_{1} p_{2} \cdots p_{k}$ where $p_{1}<p_{2}<\cdots<p_{k}$ are all prime factors of n. Find all polynomials $f(x)$ with nonnegative integer coefficients such that $\operatorname{rad}(f(n))$ divides $\operatorname{rad}\left(f\left(n^{\operatorname{rad}(n)}\right)\right)$ for every nonnegative integer n.

N6. Let x and y be positive integers. If $x^{2^{n}}-1$ is divisible by $2^{n} y+1$ for every positive integer n, prove that $x=1$.

N7. Find all $n \in \mathbb{N}$ for which there exist nonnegative integers $a_{1}, a_{2}, \ldots, a_{n}$ such that

$$
\frac{1}{2^{a_{1}}}+\frac{1}{2^{a_{2}}}+\cdots+\frac{1}{2^{a_{n}}}=\frac{1}{3^{a_{1}}}+\frac{2}{3^{a_{2}}}+\cdots+\frac{n}{3^{a_{n}}}=1 .
$$

N8. Prove that for every prime $p>100$ and every integer r there exist two integers a and b such that p divides $a^{2}+b^{5}-r$.

Algebra

A1. Find all the functions $f: \mathbb{Z} \rightarrow \mathbb{Z}$ such that

$$
f(a)^{2}+f(b)^{2}+f(c)^{2}=2 f(a) f(b)+2 f(b) f(c)+2 f(c) f(a)
$$

for all integers a, b, c satisfying $a+b+c=0$.
Solution. The substitution $a=b=c=0$ gives $3 f(0)^{2}=6 f(0)^{2}$, hence

$$
\begin{equation*}
f(0)=0 \tag{1}
\end{equation*}
$$

The substitution $b=-a$ and $c=0$ gives $\left((f(a)-f(-a))^{2}=0\right.$. Hence f is an even function:

$$
\begin{equation*}
f(a)=f(-a) \quad \text { for all } a \in \mathbb{Z} \tag{2}
\end{equation*}
$$

Now set $b=a$ and $c=-2 a$ to obtain $2 f(a)^{2}+f(2 a)^{2}=2 f(a)^{2}+4 f(a) f(2 a)$. Hence

$$
\begin{equation*}
f(2 a)=0 \text { or } f(2 a)=4 f(a) \quad \text { for all } a \in \mathbb{Z} \tag{3}
\end{equation*}
$$

If $f(r)=0$ for some $r \geq 1$ then the substitution $b=r$ and $c=-a-r$ gives $(f(a+r)-f(a))^{2}=0$. So f is periodic with period r, i. e.

$$
f(a+r)=f(a) \quad \text { for all } a \in \mathbb{Z}
$$

In particular, if $f(1)=0$ then f is constant, thus $f(a)=0$ for all $a \in \mathbb{Z}$. This function clearly satisfies the functional equation. For the rest of the analysis, we assume $f(1)=k \neq 0$.

By (3) we have $f(2)=0$ or $f(2)=4 k$. If $f(2)=0$ then f is periodic of period 2 , thus $f($ even $)=0$ and $f($ odd $)=k$. This function is a solution for every k. We postpone the verification; for the sequel assume $f(2)=4 k \neq 0$.

By (3) again, we have $f(4)=0$ or $f(4)=16 k$. In the first case f is periodic of period 4 , and $f(3)=f(-1)=f(1)=k$, so we have $f(4 n)=0, f(4 n+1)=f(4 n+3)=k$, and $f(4 n+2)=4 k$ for all $n \in \mathbb{Z}$. This function is a solution too, which we justify later. For the rest of the analysis, we assume $f(4)=16 k \neq 0$.

We show now that $f(3)=9 k$. In order to do so, we need two substitutions:

$$
\begin{gathered}
a=1, b=2, c=-3 \Longrightarrow f(3)^{2}-10 k f(3)+9 k^{2}=0 \Longrightarrow f(3) \in\{k, 9 k\} \\
a=1, b=3, c=-4 \Longrightarrow f(3)^{2}-34 k f(3)+225 k^{2}=0 \Longrightarrow f(3) \in\{9 k, 25 k\}
\end{gathered}
$$

Therefore $f(3)=9 k$, as claimed. Now we prove inductively that the only remaining function is $f(x)=k x^{2}, x \in \mathbb{Z}$. We proved this for $x=0,1,2,3,4$. Assume that $n \geq 4$ and that $f(x)=k x^{2}$ holds for all integers $x \in[0, n]$. Then the substitutions $a=n, b=1, c=-n-1$ and $a=n-1$, $b=2, c=-n-1$ lead respectively to

$$
f(n+1) \in\left\{k(n+1)^{2}, k(n-1)^{2}\right\} \quad \text { and } \quad f(n+1) \in\left\{k(n+1)^{2}, k(n-3)^{2}\right\}
$$

Since $k(n-1)^{2} \neq k(n-3)^{2}$ for $n \neq 2$, the only possibility is $f(n+1)=k(n+1)^{2}$. This completes the induction, so $f(x)=k x^{2}$ for all $x \geq 0$. The same expression is valid for negative values of x since f is even. To verify that $f(x)=k x^{2}$ is actually a solution, we need to check the identity $a^{4}+b^{4}+(a+b)^{4}=2 a^{2} b^{2}+2 a^{2}(a+b)^{2}+2 b^{2}(a+b)^{2}$, which follows directly by expanding both sides.

Therefore the only possible solutions of the functional equation are the constant function $f_{1}(x)=0$ and the following functions:

$$
f_{2}(x)=k x^{2} \quad f_{3}(x)=\left\{\begin{array}{cc}
0 & x \text { even } \\
k & x \text { odd }
\end{array} \quad f_{4}(x)=\left\{\begin{array}{ccc}
0 & x \equiv 0 & (\bmod 4) \\
k & x \equiv 1 & (\bmod 2) \\
4 k & x \equiv 2 & (\bmod 4)
\end{array}\right.\right.
$$

for any non-zero integer k. The verification that they are indeed solutions was done for the first two. For f_{3} note that if $a+b+c=0$ then either a, b, c are all even, in which case $f(a)=f(b)=f(c)=0$, or one of them is even and the other two are odd, so both sides of the equation equal $2 k^{2}$. For f_{4} we use similar parity considerations and the symmetry of the equation, which reduces the verification to the triples $(0, k, k),(4 k, k, k),(0,0,0),(0,4 k, 4 k)$. They all satisfy the equation.

Comment. We used several times the same fact: For any $a, b \in \mathbb{Z}$ the functional equation is a quadratic equation in $f(a+b)$ whose coefficients depend on $f(a)$ and $f(b)$:

$$
f(a+b)^{2}-2(f(a)+f(b)) f(a+b)+(f(a)-f(b))^{2}=0 .
$$

Its discriminant is $16 f(a) f(b)$. Since this value has to be non-negative for any $a, b \in \mathbb{Z}$, we conclude that either f or $-f$ is always non-negative. Also, if f is a solution of the functional equation, then $-f$ is also a solution. Therefore we can assume $f(x) \geq 0$ for all $x \in \mathbb{Z}$. Now, the two solutions of the quadratic equation are

$$
f(a+b) \in\left\{(\sqrt{f(a)}+\sqrt{f(b)})^{2},(\sqrt{f(a)}-\sqrt{f(b)})^{2}\right\} \quad \text { for all } a, b \in \mathbb{Z}
$$

The computation of $f(3)$ from $f(1), f(2)$ and $f(4)$ that we did above follows immediately by setting $(a, b)=(1,2)$ and $(a, b)=(1,-4)$. The inductive step, where $f(n+1)$ is derived from $f(n), f(n-1)$, $f(2)$ and $f(1)$, follows immediately using $(a, b)=(n, 1)$ and $(a, b)=(n-1,2)$.

A2. Let \mathbb{Z} and \mathbb{Q} be the sets of integers and rationals respectively.
a) Does there exist a partition of \mathbb{Z} into three non-empty subsets A, B, C such that the sets $A+B, B+C, C+A$ are disjoint?
b) Does there exist a partition of \mathbb{Q} into three non-empty subsets A, B, C such that the sets $A+B, B+C, C+A$ are disjoint?

Here $X+Y$ denotes the set $\{x+y \mid x \in X, y \in Y\}$, for $X, Y \subseteq \mathbb{Z}$ and $X, Y \subseteq \mathbb{Q}$.
Solution 1. a) The residue classes modulo 3 yield such a partition:

$$
A=\{3 k \mid k \in \mathbb{Z}\}, \quad B=\{3 k+1 \mid k \in \mathbb{Z}\}, \quad C=\{3 k+2 \mid k \in \mathbb{Z}\} .
$$

b) The answer is no. Suppose that \mathbb{Q} can be partitioned into non-empty subsets A, B, C as stated. Note that for all $a \in A, b \in B, c \in C$ one has

$$
\begin{equation*}
a+b-c \in C, \quad b+c-a \in A, \quad c+a-b \in B . \tag{1}
\end{equation*}
$$

Indeed $a+b-c \notin A$ as $(A+B) \cap(A+C)=\emptyset$, and similarly $a+b-c \notin B$, hence $a+b-c \in C$. The other two relations follow by symmetry. Hence $A+B \subset C+C, B+C \subset A+A, C+A \subset B+B$.

The opposite inclusions also hold. Let $a, a^{\prime} \in A$ and $b \in B, c \in C$ be arbitrary. By (1) $a^{\prime}+c-b \in B$, and since $a \in A, c \in C$, we use (1) again to obtain

$$
a+a^{\prime}-b=a+\left(a^{\prime}+c-b\right)-c \in C .
$$

So $A+A \subset B+C$ and likewise $B+B \subset C+A, C+C \subset A+B$. In summary

$$
B+C=A+A, \quad C+A=B+B, \quad A+B=C+C .
$$

Furthermore suppose that $0 \in A$ without loss of generality. Then $B=\{0\}+B \subset A+B$ and $C=\{0\}+C \subset A+C$. So, since $B+C$ is disjoint with $A+B$ and $A+C$, it is also disjoint with B and C. Hence $B+C$ is contained in $\mathbb{Z} \backslash(B \cup C)=A$. Because $B+C=A+A$, we obtain $A+A \subset A$. On the other hand $A=\{0\}+A \subset A+A$, implying $A=A+A=B+C$.

Therefore $A+B+C=A+A+A=A$, and now $B+B=C+A$ and $C+C=A+B$ yield $B+B+B=A+B+C=A, C+C+C=A+B+C=A$. In particular if $r \in \mathbb{Q}=A \cup B \cup C$ is arbitrary then $3 r \in A$.

However such a conclusion is impossible. Take any $b \in B(B \neq \emptyset)$ and let $r=b / 3 \in \mathbb{Q}$. Then $b=3 r \in A$ which is a contradiction.

Solution 2. We prove that the example for \mathbb{Z} from the first solution is unique, and then use this fact to solve part b).

Let $\mathbb{Z}=A \cup B \cup C$ be a partition of \mathbb{Z} with $A, B, C \neq \emptyset$ and $A+B, B+C, C+A$ disjoint. We need the relations (1) which clearly hold for \mathbb{Z}. Fix two consecutive integers from different sets, say $b \in B$ and $c=b+1 \in C$. For every $a \in A$ we have, in view of (1), $a-1=a+b-c \in C$ and $a+1=a+c-b \in B$. So every $a \in A$ is preceded by a number from C and followed by a number from B.

In particular there are pairs of the form $c, c+1$ with $c \in C, c+1 \in A$. For such a pair and any $b \in B$ analogous reasoning shows that each $b \in B$ is preceded by a number from A and followed by a number from C. There are also pairs $b, b-1$ with $b \in B, b-1 \in A$. We use them in a similar way to prove that each $c \in C$ is preceded by a number from B and followed by a number from A.

By putting the observations together we infer that A, B, C are the three congruence classes modulo 3. Observe that all multiples of 3 are in the set of the partition that contains 0 .

Now we turn to part b). Suppose that there is a partition of \mathbb{Q} with the given properties. Choose three rationals $r_{i}=p_{i} / q_{i}$ from the three sets $A, B, C, i=1,2,3$, and set $N=3 q_{1} q_{2} q_{3}$.

Let $S \subset \mathbb{Q}$ be the set of fractions with denominators N (irreducible or not). It is obtained through multiplication of every integer by the constant $1 / N$, hence closed under sums and differences. Moreover, if we identify each $k \in \mathbb{Z}$ with $k / N \in S$ then S is essentially the set \mathbb{Z} with respect to addition. The numbers r_{i} belong to S because

$$
r_{1}=\frac{3 p_{1} q_{2} q_{3}}{N}, \quad r_{2}=\frac{3 p_{2} q_{3} q_{1}}{N}, \quad r_{3}=\frac{3 p_{3} q_{1} q_{2}}{N}
$$

The partition $\mathbb{Q}=A \cup B \cup C$ of \mathbb{Q} induces a partition $S=A^{\prime} \cup B^{\prime} \cup C^{\prime}$ of S, with $A^{\prime}=A \cap S$, $B^{\prime}=B \cap S, C^{\prime}=C \cap S$. Clearly $A^{\prime}+B^{\prime}, B^{\prime}+C^{\prime}, C^{\prime}+A^{\prime}$ are disjoint, so this partition has the properties we consider.

By the uniqueness of the example for \mathbb{Z} the sets $A^{\prime}, B^{\prime}, C^{\prime}$ are the congruence classes modulo 3 , multiplied by $1 / N$. Also all multiples of $3 / N$ are in the same set, A^{\prime}, B^{\prime} or C^{\prime}. This holds for r_{1}, r_{2}, r_{3} in particular as they are all multiples of $3 / N$. However r_{1}, r_{2}, r_{3} are in different sets $A^{\prime}, B^{\prime}, C^{\prime}$ since they were chosen from different sets A, B, C. The contradiction ends the proof.

Comment. The uniqueness of the example for \mathbb{Z} can also be deduced from the argument in the first solution.

A3. Let a_{2}, \ldots, a_{n} be $n-1$ positive real numbers, where $n \geq 3$, such that $a_{2} a_{3} \cdots a_{n}=1$. Prove that

$$
\left(1+a_{2}\right)^{2}\left(1+a_{3}\right)^{3} \cdots\left(1+a_{n}\right)^{n}>n^{n} .
$$

Solution. The substitution $a_{2}=\frac{x_{2}}{x_{1}}, a_{3}=\frac{x_{3}}{x_{2}}, \ldots, a_{n}=\frac{x_{1}}{x_{n-1}}$ transforms the original problem into the inequality

$$
\begin{equation*}
\left(x_{1}+x_{2}\right)^{2}\left(x_{2}+x_{3}\right)^{3} \cdots\left(x_{n-1}+x_{1}\right)^{n}>n^{n} x_{1}^{2} x_{2}^{3} \cdots x_{n-1}^{n} \tag{*}
\end{equation*}
$$

for all $x_{1}, \ldots, x_{n-1}>0$. To prove this, we use the AM-GM inequality for each factor of the left-hand side as follows:

$$
\begin{array}{rlll}
\left(x_{1}+x_{2}\right)^{2} & & & \geq 2^{2} x_{1} x_{2} \\
\left(x_{2}+x_{3}\right)^{3} & = & \left(2\left(\frac{x_{2}}{2}\right)+x_{3}\right)^{3} & \geq 3^{3}\left(\frac{x_{2}}{2}\right)^{2} x_{3} \\
\left(x_{3}+x_{4}\right)^{4} & = & \left(3\left(\frac{x_{3}}{3}\right)+x_{4}\right)^{4} & \geq 4^{4}\left(\frac{x_{3}}{3}\right)^{3} x_{4} \\
& \vdots & \vdots & \vdots \\
\left(x_{n-1}+x_{1}\right)^{n} & = & \left((n-1)\left(\frac{x_{n-1}}{n-1}\right)+x_{1}\right)^{n} & \geq n^{n}\left(\frac{x_{n-1}}{n-1}\right)^{n-1} x_{1} .
\end{array}
$$

Multiplying these inequalities together gives $\left({ }^{*}\right)$, with inequality sign \geq instead of $>$. However for the equality to occur it is necessary that $x_{1}=x_{2}, x_{2}=2 x_{3}, \ldots, x_{n-1}=(n-1) x_{1}$, implying $x_{1}=(n-1)!x_{1}$. This is impossible since $x_{1}>0$ and $n \geq 3$. Therefore the inequality is strict.

Comment. One can avoid the substitution $a_{i}=x_{i} / x_{i-1}$. Apply the weighted AM-GM inequality to each factor $\left(1+a_{k}\right)^{k}$, with the same weights like above, to obtain

$$
\left(1+a_{k}\right)^{k}=\left((k-1) \frac{1}{k-1}+a_{k}\right)^{k} \geq \frac{k^{k}}{(k-1)^{k-1}} a_{k} .
$$

Multiplying all these inequalities together gives

$$
\left(1+a_{2}\right)^{2}\left(1+a_{3}\right)^{3} \cdots\left(1+a_{n}\right)^{n} \geq n^{n} a_{2} a_{3} \cdots a_{n}=n^{n} .
$$

The same argument as in the proof above shows that the equality cannot be attained.

A4. Let f and g be two nonzero polynomials with integer coefficients and $\operatorname{deg} f>\operatorname{deg} g$. Suppose that for infinitely many primes p the polynomial $p f+g$ has a rational root. Prove that f has a rational root.

Solution 1. Since $\operatorname{deg} f>\operatorname{deg} g$, we have $|g(x) / f(x)|<1$ for sufficiently large x; more precisely, there is a real number R such that $|g(x) / f(x)|<1$ for all x with $|x|>R$. Then for all such x and all primes p we have

$$
|p f(x)+g(x)| \geq|f(x)|\left(p-\frac{|g(x)|}{|f(x)|}\right)>0 .
$$

Hence all real roots of the polynomials $p f+g$ lie in the interval $[-R, R]$.
Let $f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0}$ and $g(x)=b_{m} x^{m}+b_{m-1} x^{m-1}+\cdots+b_{0}$ where $n>m, a_{n} \neq 0$ and $b_{m} \neq 0$. Upon replacing $f(x)$ and $g(x)$ by $a_{n}^{n-1} f\left(x / a_{n}\right)$ and $a_{n}^{n-1} g\left(x / a_{n}\right)$ respectively, we reduce the problem to the case $a_{n}=1$. In other words one can assume that f is monic. Then the leading coefficient of $p f+g$ is p, and if $r=u / v$ is a rational root of $p f+g$ with $(u, v)=1$ and $v>0$, then either $v=1$ or $v=p$.

First consider the case when $v=1$ infinitely many times. If $v=1$ then $|u| \leq R$, so there are only finitely many possibilities for the integer u. Therefore there exist distinct primes p and q for which we have the same value of u. Then the polynomials $p f+g$ and $q f+g$ share this root, implying $f(u)=g(u)=0$. So in this case f and g have an integer root in common.

Now suppose that $v=p$ infinitely many times. By comparing the exponent of p in the denominators of $p f(u / p)$ and $g(u / p)$ we get $m=n-1$ and $p f(u / p)+g(u / p)=0$ reduces to an equation of the form

$$
\left(u^{n}+a_{n-1} p u^{n-1}+\ldots+a_{0} p^{n}\right)+\left(b_{n-1} u^{n-1}+b_{n-2} p u^{n-2}+\ldots+b_{0} p^{n-1}\right)=0 .
$$

The equation above implies that $u^{n}+b_{n-1} u^{n-1}$ is divisible by p and hence, since $(u, p)=1$, we have $u+b_{n-1}=p k$ with some integer k. On the other hand all roots of $p f+g$ lie in the interval $[-R, R]$, so that

$$
\begin{gathered}
\frac{\left|p k-b_{n-1}\right|}{p}=\frac{|u|}{p}<R, \\
|k|<R+\frac{\left|b_{n-1}\right|}{p}<R+\left|b_{n-1}\right| .
\end{gathered}
$$

Therefore the integer k can attain only finitely many values. Hence there exists an integer k such that the number $\frac{p k-b_{n-1}}{p}=k-\frac{b_{n-1}}{p}$ is a root of $p f+g$ for infinitely many primes p. For these primes we have

$$
f\left(k-b_{n-1} \frac{1}{p}\right)+\frac{1}{p} g\left(k-b_{n-1} \frac{1}{p}\right)=0 .
$$

So the equation

$$
\begin{equation*}
f\left(k-b_{n-1} x\right)+x g\left(k-b_{n-1} x\right)=0 \tag{1}
\end{equation*}
$$

has infinitely many solutions of the form $x=1 / p$. Since the left-hand side is a polynomial, this implies that (1) is a polynomial identity, so it holds for all real x. In particular, by substituting $x=0$ in (1) we get $f(k)=0$. Thus the integer k is a root of f.

In summary the monic polynomial f obtained after the initial reduction always has an integer root. Therefore the original polynomial f has a rational root.

Solution 2. Analogously to the first solution, there exists a real number R such that the complex roots of all polynomials of the form $p f+g$ lie in the disk $|z| \leq R$.

For each prime p such that $p f+g$ has a rational root, by GaUss' lemma $p f+g$ is the product of two integer polynomials, one with degree 1 and the other with degree $\operatorname{deg} f-1$. Since p is a prime, the leading coefficient of one of these factors divides the leading coefficient of f. Denote that factor by h_{p}.

By narrowing the set of the primes used we can assume that all polynomials h_{p} have the same degree and the same leading coefficient. Their complex roots lie in the disk $|z| \leq R$, hence Vieta's formulae imply that all coefficients of all polynomials h_{p} form a bounded set. Since these coefficients are integers, there are only finitely many possible polynomials h_{p}. Hence there is a polynomial h such that $h_{p}=h$ for infinitely many primes p.

Finally, if p and q are distinct primes with $h_{p}=h_{q}=h$ then h divides $(p-q) f$. Since $\operatorname{deg} h=1$ or $\operatorname{deg} h=\operatorname{deg} f-1$, in both cases f has a rational root.

Comment. Clearly the polynomial h is a common factor of f and g. If $\operatorname{deg} h=1$ then f and g share a rational root. Otherwise $\operatorname{deg} h=\operatorname{deg} f-1$ forces $\operatorname{deg} g=\operatorname{deg} f-1$ and g divides f over the rationals.

Solution 3. Like in the first solution, there is a real number R such that the real roots of all polynomials of the form $p f+g$ lie in the interval $[-R, R]$.

Let $p_{1}<p_{2}<\cdots$ be an infinite sequence of primes so that for every index k the polynomial $p_{k} f+g$ has a rational root r_{k}. The sequence r_{1}, r_{2}, \ldots is bounded, so it has a convergent subsequence $r_{k_{1}}, r_{k_{2}}, \ldots$. Now replace the sequences $\left(p_{1}, p_{2}, \ldots\right)$ and $\left(r_{1}, r_{2}, \ldots\right)$ by ($p_{k_{1}}, p_{k_{2}}, \ldots$) and $\left(r_{k_{1}}, r_{k_{2}}, \ldots\right)$; after this we can assume that the sequence r_{1}, r_{2}, \ldots is convergent. Let $\alpha=\lim _{k \rightarrow \infty} r_{k}$. We show that α is a rational root of f.

Over the interval $[-R, R]$, the polynomial g is bounded, $|g(x)| \leq M$ with some fixed M. Therefore

$$
\left|f\left(r_{k}\right)\right|=\left|f\left(r_{k}\right)-\frac{p_{k} f\left(r_{k}\right)+g\left(r_{k}\right)}{p_{k}}\right|=\frac{\left|g\left(r_{k}\right)\right|}{p_{k}} \leq \frac{M}{p_{k}} \rightarrow 0
$$

and

$$
f(\alpha)=f\left(\lim _{k \rightarrow \infty} r_{k}\right)=\lim _{k \rightarrow \infty} f\left(r_{k}\right)=0
$$

So α is a root of f indeed.
Now let u_{k}, v_{k} be relative prime integers for which $r_{k}=\frac{u_{k}}{v_{k}}$. Let a be the leading coefficient of f, let $b=f(0)$ and $c=g(0)$ be the constant terms of f and g, respectively. The leading coefficient of the polynomial $p_{k} f+g$ is $p_{k} a$, its constant term is $p_{k} b+c$. So v_{k} divides $p_{k} a$ and u_{k} divides $p_{k} b+c$. Let $p_{k} b+c=u_{k} e_{k}$ (if $p_{k} b+c=u_{k}=0$ then let $e_{k}=1$).

We prove that α is rational by using the following fact. Let $\left(p_{n}\right)$ and $\left(q_{n}\right)$ be sequences of integers such that the sequence $\left(p_{n} / q_{n}\right)$ converges. If $\left(p_{n}\right)$ or $\left(q_{n}\right)$ is bounded then $\lim \left(p_{n} / q_{n}\right)$ is rational.

Case 1: There is an infinite subsequence $\left(k_{n}\right)$ of indices such that $v_{k_{n}}$ divides a. Then $\left(v_{k_{n}}\right)$ is bounded, so $\alpha=\lim _{n \rightarrow \infty}\left(u_{k_{n}} / v_{k_{n}}\right)$ is rational.

Case 2: There is an infinite subsequence $\left(k_{n}\right)$ of indices such that $v_{k_{n}}$ does not divide a. For such indices we have $v_{k_{n}}=p_{k_{n}} d_{k_{n}}$ where $d_{k_{n}}$ is a divisor of a. Then

$$
\alpha=\lim _{n \rightarrow \infty} \frac{u_{k_{n}}}{v_{k_{n}}}=\lim _{n \rightarrow \infty} \frac{p_{k_{n}} b+c}{p_{k_{n}} d_{k_{n}} e_{k_{n}}}=\lim _{n \rightarrow \infty} \frac{b}{d_{k_{n}} e_{k_{n}}}+\lim _{n \rightarrow \infty} \frac{c}{p_{k_{n}} d_{k_{n}} e_{k_{n}}}=\lim _{n \rightarrow \infty} \frac{b}{d_{k_{n}} e_{k_{n}}} .
$$

Because the numerator b in the last limit is bounded, α is rational.

A5. Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ that satisfy the conditions

$$
f(1+x y)-f(x+y)=f(x) f(y) \quad \text { for all } x, y \in \mathbb{R}
$$

and $f(-1) \neq 0$.
Solution. The only solution is the function $f(x)=x-1, x \in \mathbb{R}$.
We set $g(x)=f(x)+1$ and show that $g(x)=x$ for all real x. The conditions take the form

$$
\begin{equation*}
g(1+x y)-g(x+y)=(g(x)-1)(g(y)-1) \quad \text { for all } x, y \in \mathbb{R} \text { and } g(-1) \neq 1 \tag{1}
\end{equation*}
$$

Denote $C=g(-1)-1 \neq 0$. Setting $y=-1$ in (1) gives

$$
\begin{equation*}
g(1-x)-g(x-1)=C(g(x)-1) . \tag{2}
\end{equation*}
$$

Set $x=1$ in (2) to obtain $C(g(1)-1)=0$. Hence $g(1)=1$ as $C \neq 0$. Now plugging in $x=0$ and $x=2$ yields $g(0)=0$ and $g(2)=2$ respectively.

We pass on to the key observations

$$
\begin{array}{ll}
g(x)+g(2-x)=2 & \text { for all } x \in \mathbb{R}, \\
g(x+2)-g(x)=2 & \text { for all } x \in \mathbb{R} . \tag{4}
\end{array}
$$

Replace x by $1-x$ in (2), then change x to $-x$ in the resulting equation. We obtain the relations $g(x)-g(-x)=C(g(1-x)-1), g(-x)-g(x)=C(g(1+x)-1)$. Then adding them up leads to $C(g(1-x)+g(1+x)-2)=0$. Thus $C \neq 0$ implies (3).

Let u, v be such that $u+v=1$. Apply (1) to the pairs (u, v) and $(2-u, 2-v)$:

$$
g(1+u v)-g(1)=(g(u)-1)(g(v)-1), \quad g(3+u v)-g(3)=(g(2-u)-1)(g(2-v)-1) .
$$

Observe that the last two equations have equal right-hand sides by (3). Hence $u+v=1$ implies

$$
g(u v+3)-g(u v+1)=g(3)-g(1) .
$$

Each $x \leq 5 / 4$ is expressible in the form $x=u v+1$ with $u+v=1$ (the quadratic function $t^{2}-t+(x-1)$ has real roots for $\left.x \leq 5 / 4\right)$. Hence $g(x+2)-g(x)=g(3)-g(1)$ whenever $x \leq 5 / 4$. Because $g(x)=x$ holds for $x=0,1,2$, setting $x=0$ yields $g(3)=3$. This proves (4) for $x \leq 5 / 4$. If $x>5 / 4$ then $-x<5 / 4$ and so $g(2-x)-g(-x)=2$ by the above. On the other hand (3) gives $g(x)=2-g(2-x), g(x+2)=2-g(-x)$, so that $g(x+2)-g(x)=g(2-x)-g(-x)=2$. Thus (4) is true for all $x \in \mathbb{R}$.

Now replace x by $-x$ in (3) to obtain $g(-x)+g(2+x)=2$. In view of (4) this leads to $g(x)+g(-x)=0$, i. e. $g(-x)=-g(x)$ for all x. Taking this into account, we apply (1) to the pairs $(-x, y)$ and $(x,-y)$:
$g(1-x y)-g(-x+y)=(g(x)+1)(1-g(y)), \quad g(1-x y)-g(x-y)=(1-g(x))(g(y)+1)$.
Adding up yields $g(1-x y)=1-g(x) g(y)$. Then $g(1+x y)=1+g(x) g(y)$ by (3). Now the original equation (1) takes the form $g(x+y)=g(x)+g(y)$. Hence g is additive.

By additvity $g(1+x y)=g(1)+g(x y)=1+g(x y)$; since $g(1+x y)=1+g(x) g(y)$ was shown above, we also have $g(x y)=g(x) g(y)$ (g is multiplicative). In particular $y=x$ gives $g\left(x^{2}\right)=g(x)^{2} \geq 0$ for all x, meaning that $g(x) \geq 0$ for $x \geq 0$. Since g is additive and bounded from below on $[0,+\infty)$, it is linear; more exactly $g(x)=g(1) x=x$ for all $x \in \mathbb{R}$.

In summary $f(x)=x-1, x \in \mathbb{R}$. It is straightforward that this function satisfies the requirements.

Comment. There are functions that satisfy the given equation but vanish at -1 , for instance the constant function 0 and $f(x)=x^{2}-1, x \in \mathbb{R}$.

A6. Let $f: \mathbb{N} \rightarrow \mathbb{N}$ be a function, and let f^{m} be f applied m times. Suppose that for every $n \in \mathbb{N}$ there exists a $k \in \mathbb{N}$ such that $f^{2 k}(n)=n+k$, and let k_{n} be the smallest such k. Prove that the sequence k_{1}, k_{2}, \ldots is unbounded.

Solution. We restrict attention to the set

$$
S=\left\{1, f(1), f^{2}(1), \ldots\right\}
$$

Observe that S is unbounded because for every number n in S there exists a $k>0$ such that $f^{2 k}(n)=n+k$ is in S. Clearly f maps S into itself; moreover f is injective on S. Indeed if $f^{i}(1)=f^{j}(1)$ with $i \neq j$ then the values $f^{m}(1)$ start repeating periodically from some point on, and S would be finite.

Define $g: S \rightarrow S$ by $g(n)=f^{2 k_{n}}(n)=n+k_{n}$. We prove that g is injective too. Suppose that $g(a)=g(b)$ with $a<b$. Then $a+k_{a}=f^{2 k_{a}}(a)=f^{2 k_{b}}(b)=b+k_{b}$ implies $k_{a}>k_{b}$. So, since f is injective on S, we obtain

$$
f^{2\left(k_{a}-k_{b}\right)}(a)=b=a+\left(k_{a}-k_{b}\right) .
$$

However this contradicts the minimality of k_{a} as $0<k_{a}-k_{b}<k_{a}$.
Let T be the set of elements of S that are not of the form $g(n)$ with $n \in S$. Note that $1 \in T$ by $g(n)>n$ for $n \in S$, so T is non-empty. For each $t \in T$ denote $C_{t}=\left\{t, g(t), g^{2}(t), \ldots\right\}$; call C_{t} the chain starting at t. Observe that distinct chains are disjoint because g is injective. Each $n \in S \backslash T$ has the form $n=g\left(n^{\prime}\right)$ with $n^{\prime}<n, n^{\prime} \in S$. Repeated applications of the same observation show that $n \in C_{t}$ for some $t \in T$, i. e. S is the disjoint union of the chains C_{t}.

If $f^{n}(1)$ is in the chain C_{t} starting at $t=f^{n_{t}}(1)$ then $n=n_{t}+2 a_{1}+\cdots+2 a_{j}$ with

$$
f^{n}(1)=g^{j}\left(f^{n_{t}}(1)\right)=f^{2 a_{j}}\left(f^{2 a_{j-1}}\left(\cdots f^{2 a_{1}}\left(f^{n_{t}}(1)\right)\right)\right)=f^{n_{t}}(1)+a_{1}+\cdots+a_{j} .
$$

Hence

$$
\begin{equation*}
f^{n}(1)=f^{n_{t}}(1)+\frac{n-n_{t}}{2}=t+\frac{n-n_{t}}{2} . \tag{1}
\end{equation*}
$$

Now we show that T is infinite. We argue by contradiction. Suppose that there are only finitely many chains $C_{t_{1}}, \ldots, C_{t_{r}}$, starting at $t_{1}<\cdots<t_{r}$. Fix N. If $f^{n}(1)$ with $1 \leq n \leq N$ is in C_{t} then $f^{n}(1)=t+\frac{n-n_{t}}{2} \leq t_{r}+\frac{N}{2}$ by (1). But then the $N+1$ distinct natural numbers $1, f(1), \ldots, f^{N}(1)$ are all less than $t_{r}+\frac{N}{2}$ and hence $N+1 \leq t_{r}+\frac{N}{2}$. This is a contradiction if N is sufficiently large, and hence T is infinite.

To complete the argument, choose any k in \mathbb{N} and consider the $k+1$ chains starting at the first $k+1$ numbers in T. Let t be the greatest one among these numbers. Then each of the chains in question contains a number not exceeding t, and at least one of them does not contain any number among $t+1, \ldots, t+k$. So there is a number n in this chain such that $g(n)-n>k$, i. e. $k_{n}>k$. In conclusion k_{1}, k_{2}, \ldots is unbounded.

A7. We say that a function $f: \mathbb{R}^{k} \rightarrow \mathbb{R}$ is a metapolynomial if, for some positive integers m and n, it can be represented in the form

$$
f\left(x_{1}, \ldots, x_{k}\right)=\max _{i=1, \ldots, m} \min _{j=1, \ldots, n} P_{i, j}\left(x_{1}, \ldots, x_{k}\right)
$$

where $P_{i, j}$ are multivariate polynomials. Prove that the product of two metapolynomials is also a metapolynomial.

Solution. We use the notation $f(x)=f\left(x_{1}, \ldots, x_{k}\right)$ for $x=\left(x_{1}, \ldots, x_{k}\right)$ and $[m]=\{1,2, \ldots, m\}$. Observe that if a metapolynomial $f(x)$ admits a representation like the one in the statement for certain positive integers m and n, then they can be replaced by any $m^{\prime} \geq m$ and $n^{\prime} \geq n$. For instance, if we want to replace m by $m+1$ then it is enough to define $P_{m+1, j}(x)=P_{m, j}(x)$ and note that repeating elements of a set do not change its maximum nor its minimum. So one can assume that any two metapolynomials are defined with the same m and n. We reserve letters P and Q for polynomials, so every function called $P, P_{i, j}, Q, Q_{i, j}, \ldots$ is a polynomial function.

We start with a lemma that is useful to change expressions of the form $\min \max f_{i, j}$ to ones of the form max min $g_{i, j}$.
Lemma. Let $\left\{a_{i, j}\right\}$ be real numbers, for all $i \in[m]$ and $j \in[n]$. Then

$$
\min _{i \in[m]} \max _{j \in[n]} a_{i, j}=\max _{j_{1}, \ldots, j_{m} \in[n]} \min _{i \in[m]} a_{i, j_{i}}
$$

where the max in the right-hand side is over all vectors $\left(j_{1}, \ldots, j_{m}\right)$ with $j_{1}, \ldots, j_{m} \in[n]$.
Proof. We can assume for all i that $a_{i, n}=\max \left\{a_{i, 1}, \ldots, a_{i, n}\right\}$ and $a_{m, n}=\min \left\{a_{1, n}, \ldots, a_{m, n}\right\}$. The left-hand side is $=a_{m, n}$ and hence we need to prove the same for the right-hand side. If $\left(j_{1}, j_{2}, \ldots, j_{m}\right)=(n, n, \ldots, n)$ then $\min \left\{a_{1, j_{1}}, \ldots, a_{m, j_{m}}\right\}=\min \left\{a_{1, n}, \ldots, a_{m, n}\right\}=a_{m, n}$ which implies that the right-hand side is $\geq a_{m, n}$. It remains to prove the opposite inequality and this is equivalent to $\min \left\{a_{1, j_{1}}, \ldots, a_{m, j_{m}}\right\} \leq a_{m, n}$ for all possible $\left(j_{1}, j_{2}, \ldots, j_{m}\right)$. This is true because $\min \left\{a_{1, j_{1}}, \ldots, a_{m, j_{m}}\right\} \leq a_{m, j_{m}} \leq a_{m, n}$.

We need to show that the family \mathcal{M} of metapolynomials is closed under multiplication, but it turns out easier to prove more: that it is also closed under addition, maxima and minima.

First we prove the assertions about the maxima and the minima. If f_{1}, \ldots, f_{r} are metapolynomials, assume them defined with the same m and n. Then

$$
f=\max \left\{f_{1}, \ldots, f_{r}\right\}=\max \left\{\max _{i \in[m]} \min _{j \in[n]} P_{i, j}^{1}, \ldots, \max _{i \in[m]} \min _{j \in[n]} P_{i, j}^{r}\right\}=\max _{s \in[r], i \in[m]} \min _{j \in[n]} P_{i, j}^{s}
$$

It follows that $f=\max \left\{f_{1}, \ldots, f_{r}\right\}$ is a metapolynomial. The same argument works for the minima, but first we have to replace $\min \max$ by $\max \min$, and this is done via the lemma.

Another property we need is that if $f=\max \min P_{i, j}$ is a metapolynomial then so is $-f$. Indeed, $-f=\min \left(-\min P_{i, j}\right)=\min \max P_{i, j}$.

To prove \mathcal{M} is closed under addition let $f=\max \min P_{i, j}$ and $g=\max \min Q_{i, j}$. Then

$$
\begin{gathered}
f(x)+g(x)=\max _{i \in[m]} \min _{j \in[n]} P_{i, j}(x)+\max _{i \in[m]} \min _{j \in[n]} Q_{i, j}(x) \\
=\max _{i_{1}, i_{2} \in[m]}\left(\min _{j \in[n]} P_{i_{1}, j}(x)+\min _{j \in[n]} Q_{i_{2}, j}(x)\right)=\max _{i_{1}, i_{2} \in[m]} \min _{j_{1}, j_{2} \in[n]}\left(P_{i_{1}, j_{1}}(x)+Q_{i_{2}, j_{2}}(x)\right),
\end{gathered}
$$

and hence $f(x)+g(x)$ is a metapolynomial.
We proved that \mathcal{M} is closed under sums, maxima and minima, in particular any function that can be expressed by sums, max, min, polynomials or even metapolynomials is in \mathcal{M}.

We would like to proceed with multiplication along the same lines like with addition, but there is an essential difference. In general the product of the maxima of two sets is not equal
to the maximum of the product of the sets. We need to deal with the fact that $a<b$ and $c<d$ do not imply $a c<b d$. However this is true for $a, b, c, d \geq 0$.

In view of this we decompose each function $f(x)$ into its positive part $f^{+}(x)=\max \{f(x), 0\}$ and its negative part $f^{-}(x)=\max \{0,-f(x)\}$. Note that $f=f^{+}-f^{-}$and $f^{+}, f^{-} \in \mathcal{M}$ if $f \in \mathcal{M}$. The whole problem reduces to the claim that if f and g are metapolynomials with $f, g \geq 0$ then $f g$ it is also a metapolynomial.

Assuming this claim, consider arbitrary $f, g \in \mathcal{M}$. We have

$$
f g=\left(f^{+}-f^{-}\right)\left(g^{+}-g^{-}\right)=f^{+} g^{+}-f^{+} g^{-}-f^{-} g^{+}+f^{-} g^{-},
$$

and hence $f g \in \mathcal{M}$. Indeed, \mathcal{M} is closed under addition, also $f^{+} g^{+}, f^{+} g^{-}, f^{-} g^{+}, f^{-} g^{-} \in \mathcal{M}$ because $f^{+}, f^{-}, g^{+}, g^{-} \geq 0$.

It remains to prove the claim. In this case $f, g \geq 0$, and one can try to repeat the argument for the sum. More precisely, let $f=\max \min P_{i j} \geq 0$ and $g=\max \min Q_{i j} \geq 0$. Then

$$
f g=\max \min P_{i, j} \cdot \max \min Q_{i, j}=\max \min P_{i, j}^{+} \cdot \max \min Q_{i, j}^{+}=\max \min P_{i_{1}, j_{1}}^{+} \cdot Q_{i_{2}, j_{2}}^{+} .
$$

Hence it suffices to check that $P^{+} Q^{+} \in \mathcal{M}$ for any pair of polynomials P and Q. This reduces to the identity

$$
u^{+} v^{+}=\max \left\{0, \min \{u v, u, v\}, \min \left\{u v, u v^{2}, u^{2} v\right\}, \min \left\{u v, u, u^{2} v\right\}, \min \left\{u v, u v^{2}, v\right\}\right\},
$$

with u replaced by $P(x)$ and v replaced by $Q(x)$. The formula is proved by a case-by-case analysis. If $u \leq 0$ or $v \leq 0$ then both sides equal 0 . In case $u, v \geq 0$, the right-hand side is clearly $\leq u v$. To prove the opposite inequality we use that $u v$ equals

$$
\begin{array}{ll}
\min \{u v, u, v\} & \text { if } 0 \leq u, v \leq 1, \\
\min \left\{u v, u v^{2}, u^{2} v\right\} & \text { if } 1 \leq u, v \\
\min \left\{u v, u, u^{2} v\right\} & \text { if } 0 \leq v \leq 1 \leq u, \\
\min \left\{u v, u v^{2}, v\right\} & \text { if } 0 \leq u \leq 1 \leq v
\end{array}
$$

Comment. The case $k=1$ is simpler and can be solved by proving that a function $f: \mathbb{R} \rightarrow \mathbb{R}$ is a metapolynomial if and only if it is a piecewise polinomial (and continuos) function.

It is enough to prove that all such functions are metapolynomials, and this easily reduces to the following case. Given a polynomial $P(x)$ with $P(0)=0$, the function f defined by $f(x)=P(x)$ for $x \geq 0$ and 0 otherwise is a metapolynomial. For this last claim, it suffices to prove that $\left(x^{+}\right)^{n}$ is a metapolynomial, and this follows from the formula $\left(x^{+}\right)^{n}=\max \left\{0, \min \left\{x^{n-1}, x^{n}\right\}, \min \left\{x^{n}, x^{n+1}\right\}\right\}$.

Combinatorics

C1. Several positive integers are written in a row. Iteratively, Alice chooses two adjacent numbers x and y such that $x>y$ and x is to the left of y, and replaces the pair (x, y) by either $(y+1, x)$ or $(x-1, x)$. Prove that she can perform only finitely many such iterations.

Solution 1. Note first that the allowed operation does not change the maximum M of the initial sequence. Let $a_{1}, a_{2}, \ldots, a_{n}$ be the numbers obtained at some point of the process. Consider the sum

$$
S=a_{1}+2 a_{2}+\cdots+n a_{n} .
$$

We claim that S increases by a positive integer amount with every operation. Let the operation replace the pair $\left(a_{i}, a_{i+1}\right)$ by a pair $\left(c, a_{i}\right)$, where $a_{i}>a_{i+1}$ and $c=a_{i+1}+1$ or $c=a_{i}-1$. Then the new and the old value of S differ by $d=\left(i c+(i+1) a_{i}\right)-\left(i a_{i}+(i+1) a_{i+1}\right)=a_{i}-a_{i+1}+i\left(c-a_{i+1}\right)$. The integer d is positive since $a_{i}-a_{i+1} \geq 1$ and $c-a_{i+1} \geq 0$.

On the other hand $S \leq(1+2+\cdots+n) M$ as $a_{i} \leq M$ for all $i=1, \ldots, n$. Since S increases by at least 1 at each step and never exceeds the constant $(1+2+\cdots+n) M$, the process stops after a finite number of iterations.

Solution 2. Like in the first solution note that the operations do not change the maximum M of the initial sequence. Now consider the reverse lexicographical order for n-tuples of integers. We say that $\left(x_{1}, \ldots, x_{n}\right)<\left(y_{1}, \ldots, y_{n}\right)$ if $x_{n}<y_{n}$, or if $x_{n}=y_{n}$ and $x_{n-1}<y_{n-1}$, or if $x_{n}=y_{n}$, $x_{n-1}=y_{n-1}$ and $x_{n-2}<y_{n-2}$, etc. Each iteration creates a sequence that is greater than the previous one with respect to this order, and no sequence occurs twice during the process. On the other hand there are finitely many possible sequences because their terms are always positive integers not exceeding M. Hence the process cannot continue forever.

Solution 3. Let the current numbers be $a_{1}, a_{2}, \ldots, a_{n}$. Define the score s_{i} of a_{i} as the number of a_{j} 's that are less than a_{i}. Call the sequence $s_{1}, s_{2}, \ldots, s_{n}$ the score sequence of $a_{1}, a_{2}, \ldots, a_{n}$.

Let us say that a sequence x_{1}, \ldots, x_{n} dominates a sequence y_{1}, \ldots, y_{n} if the first index i with $x_{i} \neq y_{i}$ is such that $x_{i}<y_{i}$. We show that after each operation the new score sequence dominates the old one. Score sequences do not repeat, and there are finitely many possibilities for them, no more than $(n-1)^{n}$. Hence the process will terminate.

Consider an operation that replaces (x, y) by (a, x), with $a=y+1$ or $a=x-1$. Suppose that x was originally at position i. For each $j<i$ the score s_{j} does not increase with the change because $y \leq a$ and $x \leq x$. If s_{j} decreases for some $j<i$ then the new score sequence dominates the old one. Assume that s_{j} stays the same for all $j<i$ and consider s_{i}. Since $x>y$ and $y \leq a \leq x$, we see that s_{i} decreases by at least 1 . This concludes the proof.

Comment. All three proofs work if x and y are not necessarily adjacent, and if the pair (x, y) is replaced by any pair (a, x), with a an integer satisfying $y \leq a \leq x$. There is nothing special about the "weights" $1,2, \ldots, n$ in the definition of $S=\sum_{i=1}^{n} i a_{i}$ from the first solution. For any sequence $w_{1}<w_{2}<\cdots<w_{n}$ of positive integers, the sum $\sum_{i=1}^{n} w_{i} a_{i}$ increases by at least 1 with each operation.

Consider the same problem, but letting Alice replace the pair (x, y) by (a, x), where a is any positive integer less than x. The same conclusion holds in this version, i. e. the process stops eventually. The solution using the reverse lexicographical order works without any change. The first solution would require a special set of weights like $w_{i}=M^{i}$ for $i=1, \ldots, n$.

Comment. The first and the second solutions provide upper bounds for the number of possible operations, respectively of order $M n^{2}$ and M^{n} where M is the maximum of the original sequence. The upper bound $(n-1)^{n}$ in the third solution does not depend on M.

C2. Let $n \geq 1$ be an integer. What is the maximum number of disjoint pairs of elements of the set $\{1,2, \ldots, n\}$ such that the sums of the different pairs are different integers not exceeding n ?

Solution. Consider x such pairs in $\{1,2, \ldots, n\}$. The sum S of the $2 x$ numbers in them is at least $1+2+\cdots+2 x$ since the pairs are disjoint. On the other hand $S \leq n+(n-1)+\cdots+(n-x+1)$ because the sums of the pairs are different and do not exceed n. This gives the inequality

$$
\frac{2 x(2 x+1)}{2} \leq n x-\frac{x(x-1)}{2},
$$

which leads to $x \leq \frac{2 n-1}{5}$. Hence there are at most $\left\lfloor\frac{2 n-1}{5}\right\rfloor$ pairs with the given properties.
We show a construction with exactly $\left\lfloor\frac{2 n-1}{5}\right\rfloor$ pairs. First consider the case $n=5 k+3$ with $k \geq 0$, where $\left\lfloor\frac{2 n-1}{5}\right\rfloor=2 k+1$. The pairs are displayed in the following table.

Pairs	$3 k+1$	$3 k$	\cdots	$2 k+2$	$4 k+2$	$4 k+1$	\cdots	$3 k+3$	$3 k+2$
	2	4	\cdots	$2 k$	1	3	\cdots	$2 k-1$	$2 k+1$
Sums	$3 k+3$	$3 k+4$	\cdots	$4 k+2$	$4 k+3$	$4 k+4$	\cdots	$5 k+2$	$5 k+3$

The $2 k+1$ pairs involve all numbers from 1 to $4 k+2$; their sums are all numbers from $3 k+3$ to $5 k+3$. The same construction works for $n=5 k+4$ and $n=5 k+5$ with $k \geq 0$. In these cases the required number $\left\lfloor\frac{2 n-1}{5}\right\rfloor$ of pairs equals $2 k+1$ again, and the numbers in the table do not exceed $5 k+3$. In the case $n=5 k+2$ with $k \geq 0$ one needs only $2 k$ pairs. They can be obtained by ignoring the last column of the table (thus removing $5 k+3$). Finally, $2 k$ pairs are also needed for the case $n=5 k+1$ with $k \geq 0$. Now it suffices to ignore the last column of the table and then subtract 1 from each number in the first row.

Comment. The construction above is not unique. For instance, the following table shows another set of $2 k+1$ pairs for the cases $n=5 k+3, n=5 k+4$, and $n=5 k+5$.

Pairs	1	2	\cdots	k	$k+1$	$k+2$	\cdots	$2 k+1$
	$4 k+1$	$4 k-1$	\cdots	$2 k+3$	$4 k+2$	$4 k$	\cdots	$2 k+2$
Sums	$4 k+2$	$4 k+1$	\cdots	$3 k+3$	$5 k+3$	$5 k+2$	\cdots	$4 k+3$

The table for the case $n=5 k+2$ would be the same, with the pair $(k+1,4 k+2)$ removed. For the case $n=5 k+1$ remove the last column and subtract 2 from each number in the second row.

C3. In a 999×999 square table some cells are white and the remaining ones are red. Let T be the number of triples (C_{1}, C_{2}, C_{3}) of cells, the first two in the same row and the last two in the same column, with C_{1} and C_{3} white and C_{2} red. Find the maximum value T can attain.

Solution. We prove that in an $n \times n$ square table there are at most $\frac{4 n^{4}}{27}$ such triples.
Let row i and column j contain a_{i} and b_{j} white cells respectively, and let R be the set of red cells. For every red cell (i, j) there are $a_{i} b_{j}$ admissible triples $\left(C_{1}, C_{2}, C_{3}\right)$ with $C_{2}=(i, j)$, therefore

$$
T=\sum_{(i, j) \in R} a_{i} b_{j} .
$$

We use the inequality $2 a b \leq a^{2}+b^{2}$ to obtain

$$
T \leq \frac{1}{2} \sum_{(i, j) \in R}\left(a_{i}^{2}+b_{j}^{2}\right)=\frac{1}{2} \sum_{i=1}^{n}\left(n-a_{i}\right) a_{i}^{2}+\frac{1}{2} \sum_{j=1}^{n}\left(n-b_{j}\right) b_{j}^{2} .
$$

This is because there are $n-a_{i}$ red cells in row i and $n-b_{j}$ red cells in column j. Now we maximize the right-hand side.

By the AM-GM inequality we have

$$
(n-x) x^{2}=\frac{1}{2}(2 n-2 x) \cdot x \cdot x \leq \frac{1}{2}\left(\frac{2 n}{3}\right)^{3}=\frac{4 n^{3}}{27}
$$

with equality if and only if $x=\frac{2 n}{3}$. By putting everything together, we get

$$
T \leq \frac{n}{2} \frac{4 n^{3}}{27}+\frac{n}{2} \frac{4 n^{3}}{27}=\frac{4 n^{4}}{27}
$$

If $n=999$ then any coloring of the square table with $x=\frac{2 n}{3}=666$ white cells in each row and column attains the maximum as all inequalities in the previous argument become equalities. For example color a cell (i, j) white if $i-j \equiv 1,2, \ldots, 666(\bmod 999)$, and red otherwise.

Therefore the maximum value T can attain is $T=\frac{4.999^{4}}{27}$.
Comment. One can obtain a better preliminary estimate with the Cauchy-Schwarz inequality:

$$
T=\sum_{(i, j) \in R} a_{i} b_{j} \leq\left(\sum_{(i, j) \in R} a_{i}^{2}\right)^{\frac{1}{2}} \cdot\left(\sum_{(i, j) \in R} b_{j}^{2}\right)^{\frac{1}{2}}=\left(\sum_{i=1}^{n}\left(n-a_{i}\right) a_{i}^{2}\right)^{\frac{1}{2}} \cdot\left(\sum_{j=1}^{n}\left(n-b_{j}\right) b_{j}^{2}\right)^{\frac{1}{2}}
$$

It can be used to reach the same conclusion.

C4. Players A and B play a game with $N \geq 2012$ coins and 2012 boxes arranged around a circle. Initially A distributes the coins among the boxes so that there is at least 1 coin in each box. Then the two of them make moves in the order B, A, B, A, \ldots by the following rules:

- On every move of his B passes 1 coin from every box to an adjacent box.
- On every move of hers A chooses several coins that were not involved in B 's previous move and are in different boxes. She passes every chosen coin to an adjacent box.

Player A 's goal is to ensure at least 1 coin in each box after every move of hers, regardless of how B plays and how many moves are made. Find the least N that enables her to succeed.

Solution. We argue for a general $n \geq 7$ instead of 2012 and prove that the required minimum N is $2 n-2$. For $n=2012$ this gives $N_{\text {min }}=4022$.
a) If $N=2 n-2$ player A can achieve her goal. Let her start the game with a regular distribution: $n-2$ boxes with 2 coins and 2 boxes with 1 coin. Call the boxes of the two kinds red and white respectively. We claim that on her first move A can achieve a regular distribution again, regardless of B 's first move M. She acts according as the following situation S occurs after M or not: The initial distribution contains a red box R with 2 white neighbors, and R receives no coins from them on move M.

Suppose that S does not occur. Exactly one of the coins c_{1} and c_{2} in a given red box X is involved in M, say c_{1}. If M passes c_{1} to the right neighbor of X, let A pass c_{2} to its left neighbor, and vice versa. By doing so with all red boxes A performs a legal move M^{\prime}. Thus M and M^{\prime} combined move the 2 coins of every red box in opposite directions. Hence after M and M^{\prime} are complete each neighbor of a red box X contains exactly 1 coin that was initially in X. So each box with a red neighbor is non-empty after M^{\prime}. If initially there is a box X with 2 white neighbors (X is red and unique) then X receives a coin from at least one of them on move M since S does not occur. Such a coin is not involved in M^{\prime}, so X is also non-empty after M^{\prime}. Furthermore each box Y has given away its initial content after M and M^{\prime}. A red neighbor of Y adds 1 coin to it; a white neighbor adds at most 1 coin because it is not involved in M^{\prime}. Hence each box contains 1 or 2 coins after M^{\prime}. Because $N=2 n-2$, such a distribution is regular.

Now let S occur after move M. Then A leaves untouched the exceptional red box R. With all remaining red boxes she proceeds like in the previous case, thus making a legal move $M^{\prime \prime}$. Box R receives no coins from its neighbors on either move, so there is 1 coin in it after $M^{\prime \prime}$. Like above M and $M^{\prime \prime}$ combined pass exactly 1 coin from every red box different from R to each of its neighbors. Every box except R has a red neighbor different from R, hence all boxes are non-empty after $M^{\prime \prime}$. Next, each box Y except R loses its initial content after M and $M^{\prime \prime}$. A red neighbor of Y adds at most 1 coin to it; a white neighbor also adds at most 1 coin as it does not participate in $M^{\prime \prime}$. Thus each box has 1 or 2 coins after $M^{\prime \prime}$, and the obtained distribution is regular.

Player A can apply the described strategy indefinitely, so $N=2 n-2$ enables her to succeed.
b) For $N \leq 2 n-3$ player B can achieve an empty box after some move of A. Let α be a set of ℓ consecutive boxes containing a total of $N(\alpha)$ coins. We call α an arc if $\ell \leq n-2$ and $N(\alpha) \leq 2 \ell-3$. Note that $\ell \geq 2$ by the last condition. Moreover if both extremes of α are non-empty boxes then $N(\alpha) \geq 2$, so that $N(\alpha) \leq 2 \ell-3$ implies $\ell \geq 3$. Observe also that if an extreme X of α has more than 1 coin then ignoring X yields a shorter arc. It follows that every arc contains an arc whose extremes have at most 1 coin each.

Given a clockwise labeling $1,2, \ldots, n$ of the boxes, suppose that boxes $1,2, \ldots, \ell$ form an $\operatorname{arc} \alpha$, with $\ell \leq n-2$ and $N(\alpha) \leq 2 \ell-3$. Suppose also that all $n \geq 7$ boxes are non-empty. Then B can move so that an arc α^{\prime} with $N\left(\alpha^{\prime}\right)<N(\alpha)$ will appear after any response of A.

One may assume exactly 1 coin in boxes 1 and ℓ by a previous remark. Let B pass 1 coin in counterclockwise direction from box 1 and box n, and in clockwise direction from each remaining box. This leaves $N(\alpha)-2$ coins in the boxes of α. In addition, due to $3 \leq \ell \leq n-2$, box ℓ has exactly 1 coin c, the one received from box $\ell-1$.

Let player A 's next move M pass $k \leq 2$ coins to boxes $1,2, \ldots, \ell$ from the remaining ones. Only boxes 1 and ℓ can receive such coins, at most 1 each. If $k<2$ then after move M boxes $1,2, \ldots, \ell$ form an arc α^{\prime} with $N\left(\alpha^{\prime}\right)<N(\alpha)$. If $k=2$ then M adds a coin to box ℓ. Also M does not move coin c from ℓ because c is involved in the previous move of B. In summary boxes $1,2, \ldots, \ell$ contain $N(\alpha)$ coins like before, so they form an arc. However there are 2 coins now in the extreme ℓ of the arc. Ignore ℓ to obtain a shorter arc α^{\prime} with $N\left(\alpha^{\prime}\right)<N(\alpha)$.

Consider any initial distribution without empty boxes. Since $N \leq 2 n-3$, there are at least 3 boxes in it with exactly 1 coin. It follows from $n \geq 7$ that some 2 of them are the extremes of an arc α. Hence B can make the move described above, which leads to an arc α^{\prime} with $N\left(\alpha^{\prime}\right)<N(\alpha)$ after A 's response. If all boxes in the new distribution are non-empty he can repeat the same, and so on. Because $N(\alpha)$ cannot decrease indefinitely, an empty box will occur after some move of A.

C5. The columns and the rows of a $3 n \times 3 n$ square board are numbered $1,2, \ldots, 3 n$. Every square (x, y) with $1 \leq x, y \leq 3 n$ is colored asparagus, byzantium or citrine according as the modulo 3 remainder of $x+y$ is 0,1 or 2 respectively. One token colored asparagus, byzantium or citrine is placed on each square, so that there are $3 n^{2}$ tokens of each color.

Suppose that one can permute the tokens so that each token is moved to a distance of at most d from its original position, each asparagus token replaces a byzantium token, each byzantium token replaces a citrine token, and each citrine token replaces an asparagus token. Prove that it is possible to permute the tokens so that each token is moved to a distance of at most $d+2$ from its original position, and each square contains a token with the same color as the square.

Solution. Without loss of generality it suffices to prove that the A-tokens can be moved to distinct A-squares in such a way that each A-token is moved to a distance at most $d+2$ from its original place. This means we need a perfect matching between the $3 n^{2} \mathrm{~A}$-squares and the $3 n^{2}$ A-tokens such that the distance in each pair of the matching is at most $d+2$.

To find the matching, we construct a bipartite graph. The A-squares will be the vertices in one class of the graph; the vertices in the other class will be the A-tokens.

Split the board into 3×1 horizontal triminos; then each trimino contains exactly one Asquare. Take a permutation π of the tokens which moves A-tokens to B-tokens, B-tokens to C-tokens, and C-tokens to A-tokens, in each case to a distance at most d. For each A-square S, and for each A-token T, connect S and T by an edge if $T, \pi(T)$ or $\pi^{-1}(T)$ is on the trimino containing S. We allow multiple edges; it is even possible that the same square and the same token are connected with three edges. Obviously the lengths of the edges in the graph do not exceed $d+2$. By length of an edge we mean the distance between the A -square and the A -token it connects.

Each A-token T is connected with the three A-squares whose triminos contain $T, \pi(T)$ and $\pi^{-1}(T)$. Therefore in the graph all tokens are of degree 3 . We show that the same is true for the A-squares. Let S be an arbitrary A-square, and let T_{1}, T_{2}, T_{3} be the three tokens on the trimino containing S. For $i=1,2,3$, if T_{i} is an A-token, then S is connected with T_{i}; if T_{i} is a B-token then S is connected with $\pi^{-1}\left(T_{i}\right)$; finally, if T_{i} is a C-token then S is connected with $\pi\left(T_{i}\right)$. Hence in the graph the A-squares also are of degree 3 .

Since the A-squares are of degree 3 , from every set \mathcal{S} of A-squares exactly $3|\mathcal{S}|$ edges start. These edges end in at least $|\mathcal{S}|$ tokens because the A-tokens also are of degree 3. Hence every set \mathcal{S} of A -squares has at least $|\mathcal{S}|$ neighbors among the A-tokens.

Therefore, by HALL's marriage theorem, the graph contains a perfect matching between the two vertex classes. So there is a perfect matching between the A-squares and A-tokens with edges no longer than $d+2$. It follows that the tokens can be permuted as specified in the problem statement.

Comment 1. In the original problem proposal the board was infinite and there were only two colors. Having n colors for some positive integer n was an option; we chose $n=3$. Moreover, we changed the board to a finite one to avoid dealing with infinite graphs (although Hall's theorem works in the infinite case as well).

With only two colors Hall's theorem is not needed. In this case we split the board into 2×1 dominos, and in the resulting graph all vertices are of degree 2 . The graph consists of disjoint cycles with even length and infinite paths, so the existence of the matching is trivial.

Having more than three colors would make the problem statement more complicated, because we need a matching between every two color classes of tokens. However, this would not mean a significant increase in difficulty.

Comment 2. According to Wikipedia, the color asparagus (hexadecimal code \#87A96B) is a tone of green that is named after the vegetable. Crayola created this color in 1993 as one of the 16 to be named in the Name The Color Contest. Byzantium (\#702963) is a dark tone of purple. Its first recorded use as a color name in English was in 1926. Citrine (\#E4DOOA) is variously described as yellow, greenish-yellow, brownish-yellow or orange. The first known use of citrine as a color name in English was in the 14th century.

C6. Let k and n be fixed positive integers. In the liar's guessing game, Amy chooses integers x and N with $1 \leq x \leq N$. She tells Ben what N is, but not what x is. Ben may then repeatedly ask Amy whether $x \in S$ for arbitrary sets S of integers. Amy will always answer with yes or no, but she might lie. The only restriction is that she can lie at most k times in a row. After he has asked as many questions as he wants, Ben must specify a set of at most n positive integers. If x is in this set he wins; otherwise, he loses. Prove that:
a) If $n \geq 2^{k}$ then Ben can always win.
b) For sufficiently large k there exist $n \geq 1.99^{k}$ such that Ben cannot guarantee a win.

Solution. Consider an answer $A \in\{$ yes, no $\}$ to a question of the kind "Is x in the set S ?" We say that A is inconsistent with a number i if $A=$ yes and $i \notin S$, or if $A=$ no and $i \in S$. Observe that an answer inconsistent with the target number x is a lie.
a) Suppose that Ben has determined a set T of size m that contains x. This is true initially with $m=N$ and $T=\{1,2, \ldots, N\}$. For $m>2^{k}$ we show how Ben can find a number $y \in T$ that is different from x. By performing this step repeatedly he can reduce T to be of size $2^{k} \leq n$ and thus win.

Since only the size $m>2^{k}$ of T is relevant, assume that $T=\left\{0,1, \ldots, 2^{k}, \ldots, m-1\right\}$. Ben begins by asking repeatedly whether x is 2^{k}. If Amy answers no $k+1$ times in a row, one of these answers is truthful, and so $x \neq 2^{k}$. Otherwise Ben stops asking about 2^{k} at the first answer yes. He then asks, for each $i=1, \ldots, k$, if the binary representation of x has a 0 in the i th digit. Regardless of what the k answers are, they are all inconsistent with a certain number $y \in\left\{0,1, \ldots, 2^{k}-1\right\}$. The preceding answer yes about 2^{k} is also inconsistent with y. Hence $y \neq x$. Otherwise the last $k+1$ answers are not truthful, which is impossible.

Either way, Ben finds a number in T that is different from x, and the claim is proven.
b) We prove that if $1<\lambda<2$ and $n=\left\lfloor(2-\lambda) \lambda^{k+1}\right\rfloor-1$ then Ben cannot guarantee a win. To complete the proof, then it suffices to take λ such that $1.99<\lambda<2$ and k large enough so that

$$
n=\left\lfloor(2-\lambda) \lambda^{k+1}\right\rfloor-1 \geq 1.99^{k}
$$

Consider the following strategy for Amy. First she chooses $N=n+1$ and $x \in\{1,2, \ldots, n+1\}$ arbitrarily. After every answer of hers Amy determines, for each $i=1,2, \ldots, n+1$, the number m_{i} of consecutive answers she has given by that point that are inconsistent with i. To decide on her next answer, she then uses the quantity

$$
\phi=\sum_{i=1}^{n+1} \lambda^{m_{i}}
$$

No matter what Ben's next question is, Amy chooses the answer which minimizes ϕ.
We claim that with this strategy ϕ will always stay less than λ^{k+1}. Consequently no exponent m_{i} in ϕ will ever exceed k, hence Amy will never give more than k consecutive answers inconsistent with some i. In particular this applies to the target number x, so she will never lie more than k times in a row. Thus, given the claim, Amy's strategy is legal. Since the strategy does not depend on x in any way, Ben can make no deductions about x, and therefore he cannot guarantee a win.

It remains to show that $\phi<\lambda^{k+1}$ at all times. Initially each m_{i} is 0 , so this condition holds in the beginning due to $1<\lambda<2$ and $n=\left\lfloor(2-\lambda) \lambda^{k+1}\right\rfloor-1$. Suppose that $\phi<\lambda^{k+1}$ at some point, and Ben has just asked if $x \in S$ for some set S. According as Amy answers yes or no, the new value of ϕ becomes

$$
\phi_{1}=\sum_{i \in S} 1+\sum_{i \notin S} \lambda^{m_{i}+1} \quad \text { or } \quad \phi_{2}=\sum_{i \in S} \lambda^{m_{i}+1}+\sum_{i \notin S} 1 .
$$

Since Amy chooses the option minimizing ϕ, the new ϕ will equal $\min \left(\phi_{1}, \phi_{2}\right)$. Now we have

$$
\min \left(\phi_{1}, \phi_{2}\right) \leq \frac{1}{2}\left(\phi_{1}+\phi_{2}\right)=\frac{1}{2}\left(\sum_{i \in S}\left(1+\lambda^{m_{i}+1}\right)+\sum_{i \notin S}\left(\lambda^{m_{i}+1}+1\right)\right)=\frac{1}{2}(\lambda \phi+n+1) .
$$

Because $\phi<\lambda^{k+1}$, the assumptions $\lambda<2$ and $n=\left\lfloor(2-\lambda) \lambda^{k+1}\right\rfloor-1$ lead to

$$
\min \left(\phi_{1}, \phi_{2}\right)<\frac{1}{2}\left(\lambda^{k+2}+(2-\lambda) \lambda^{k+1}\right)=\lambda^{k+1} .
$$

The claim follows, which completes the solution.

Comment. Given a fixed k, let $f(k)$ denote the minimum value of n for which Ben can guarantee a victory. The problem asks for a proof that for large k

$$
1.99^{k} \leq f(k) \leq 2^{k} .
$$

A computer search shows that $f(k)=2,3,4,7,11,17$ for $k=1,2,3,4,5,6$.

C7. There are given 2^{500} points on a circle labeled $1,2, \ldots, 2^{500}$ in some order. Prove that one can choose 100 pairwise disjoint chords joining some of these points so that the 100 sums of the pairs of numbers at the endpoints of the chosen chords are equal.

Solution. The proof is based on the following general fact.
Lemma. In a graph G each vertex v has degree d_{v}. Then G contains an independent set S of vertices such that $|S| \geq f(G)$ where

$$
f(G)=\sum_{v \in G} \frac{1}{d_{v}+1}
$$

Proof. Induction on $n=|G|$. The base $n=1$ is clear. For the inductive step choose a vertex v_{0} in G of minimum degree d. Delete v_{0} and all of its neighbors v_{1}, \ldots, v_{d} and also all edges with endpoints $v_{0}, v_{1}, \ldots, v_{d}$. This gives a new graph G^{\prime}. By the inductive assumption G^{\prime} contains an independent set S^{\prime} of vertices such that $\left|S^{\prime}\right| \geq f\left(G^{\prime}\right)$. Since no vertex in S^{\prime} is a neighbor of v_{0} in G, the set $S=S^{\prime} \cup\left\{v_{0}\right\}$ is independent in G.

Let d_{v}^{\prime} be the degree of a vertex v in G^{\prime}. Clearly $d_{v}^{\prime} \leq d_{v}$ for every such vertex v, and also $d_{v_{i}} \geq d$ for all $i=0,1, \ldots, d$ by the minimal choice of v_{0}. Therefore

$$
f\left(G^{\prime}\right)=\sum_{v \in G^{\prime}} \frac{1}{d_{v}^{\prime}+1} \geq \sum_{v \in G^{\prime}} \frac{1}{d_{v}+1}=f(G)-\sum_{i=0}^{d} \frac{1}{d_{v_{i}}+1} \geq f(G)-\frac{d+1}{d+1}=f(G)-1 .
$$

Hence $|S|=\left|S^{\prime}\right|+1 \geq f\left(G^{\prime}\right)+1 \geq f(G)$, and the induction is complete.
We pass on to our problem. For clarity denote $n=2^{499}$ and draw all chords determined by the given $2 n$ points. Color each chord with one of the colors $3,4, \ldots, 4 n-1$ according to the sum of the numbers at its endpoints. Chords with a common endpoint have different colors. For each color c consider the following graph G_{c}. Its vertices are the chords of color c, and two chords are neighbors in G_{c} if they intersect. Let $f\left(G_{c}\right)$ have the same meaning as in the lemma for all graphs G_{c}.

Every chord ℓ divides the circle into two arcs, and one of them contains $m(\ell) \leq n-1$ given points. (In particular $m(\ell)=0$ if ℓ joins two consecutive points.) For each $i=0,1, \ldots, n-2$ there are $2 n$ chords ℓ with $m(\ell)=i$. Such a chord has degree at most i in the respective graph. Indeed let A_{1}, \ldots, A_{i} be all points on either arc determined by a chord ℓ with $m(\ell)=i$ and color c. Every A_{j} is an endpoint of at most 1 chord colored $c, j=1, \ldots, i$. Hence at most i chords of color c intersect ℓ.

It follows that for each $i=0,1, \ldots, n-2$ the $2 n$ chords ℓ with $m(\ell)=i$ contribute at least $\frac{2 n}{i+1}$ to the sum $\sum_{c} f\left(G_{c}\right)$. Summation over $i=0,1, \ldots, n-2$ gives

$$
\sum_{c} f\left(G_{c}\right) \geq 2 n \sum_{i=1}^{n-1} \frac{1}{i}
$$

Because there are $4 n-3$ colors in all, averaging yields a color c such that

$$
f\left(G_{c}\right) \geq \frac{2 n}{4 n-3} \sum_{i=1}^{n-1} \frac{1}{i}>\frac{1}{2} \sum_{i=1}^{n-1} \frac{1}{i} .
$$

By the lemma there are at least $\frac{1}{2} \sum_{i=1}^{n-1} \frac{1}{i}$ pairwise disjoint chords of color c, i. e. with the same sum c of the pairs of numbers at their endpoints. It remains to show that $\frac{1}{2} \sum_{i=1}^{n-1} \frac{1}{i} \geq 100$ for $n=2^{499}$. Indeed we have

$$
\sum_{i=1}^{n-1} \frac{1}{i}>\sum_{i=1}^{2^{400}} \frac{1}{i}=1+\sum_{k=1}^{400} \sum_{i=2^{k-1+1}}^{2^{k}} \frac{1}{i}>1+\sum_{k=1}^{400} \frac{2^{k-1}}{2^{k}}=201>200
$$

This completes the solution.

Geometry

G1. In the triangle $A B C$ the point J is the center of the excircle opposite to A. This excircle is tangent to the side $B C$ at M, and to the lines $A B$ and $A C$ at K and L respectively. The lines $L M$ and $B J$ meet at F, and the lines $K M$ and $C J$ meet at G. Let S be the point of intersection of the lines $A F$ and $B C$, and let T be the point of intersection of the lines $A G$ and $B C$. Prove that M is the midpoint of $S T$.

Solution. Let $\alpha=\angle C A B, \beta=\angle A B C$ and $\gamma=\angle B C A$. The line $A J$ is the bisector of $\angle C A B$, so $\angle J A K=\angle J A L=\frac{\alpha}{2}$. By $\angle A K J=\angle A L J=90^{\circ}$ the points K and L lie on the circle ω with diameter $A J$.

The triangle $K B M$ is isosceles as $B K$ and $B M$ are tangents to the excircle. Since $B J$ is the bisector of $\angle K B M$, we have $\angle M B J=90^{\circ}-\frac{\beta}{2}$ and $\angle B M K=\frac{\beta}{2}$. Likewise $\angle M C J=90^{\circ}-\frac{\gamma}{2}$ and $\angle C M L=\frac{\gamma}{2}$. Also $\angle B M F=\angle C M L$, therefore

$$
\angle L F J=\angle M B J-\angle B M F=\left(90^{\circ}-\frac{\beta}{2}\right)-\frac{\gamma}{2}=\frac{\alpha}{2}=\angle L A J .
$$

Hence F lies on the circle ω. (By the angle computation, F and A are on the same side of $B C$.) Analogously, G also lies on ω. Since $A J$ is a diameter of ω, we obtain $\angle A F J=\angle A G J=90^{\circ}$.

The lines $A B$ and $B C$ are symmetric with respect to the external bisector $B F$. Because $A F \perp B F$ and $K M \perp B F$, the segments $S M$ and $A K$ are symmetric with respect to $B F$, hence $S M=A K$. By symmetry $T M=A L$. Since $A K$ and $A L$ are equal as tangents to the excircle, it follows that $S M=T M$, and the proof is complete.

Comment. After discovering the circle $A F K J L G$, there are many other ways to complete the solution. For instance, from the cyclic quadrilaterals $J M F S$ and $J M G T$ one can find $\angle T S J=\angle S T J=\frac{\alpha}{2}$. Another possibility is to use the fact that the lines $A S$ and $G M$ are parallel (both are perpendicular to the external angle bisector $B J$), so $\frac{M S}{M T}=\frac{A G}{G T}=1$.

G2. Let $A B C D$ be a cyclic quadrilateral whose diagonals $A C$ and $B D$ meet at E. The extensions of the sides $A D$ and $B C$ beyond A and B meet at F. Let G be the point such that $E C G D$ is a parallelogram, and let H be the image of E under reflection in $A D$. Prove that D, H, F, G are concyclic.

Solution. We show first that the triangles $F D G$ and $F B E$ are similar. Since $A B C D$ is cyclic, the triangles $E A B$ and $E D C$ are similar, as well as $F A B$ and $F C D$. The parallelogram $E C G D$ yields $G D=E C$ and $\angle C D G=\angle D C E$; also $\angle D C E=\angle D C A=\angle D B A$ by inscribed angles. Therefore

$$
\begin{gathered}
\angle F D G=\angle F D C+\angle C D G=\angle F B A+\angle A B D=\angle F B E, \\
\frac{G D}{E B}=\frac{C E}{E B}=\frac{C D}{A B}=\frac{F D}{F B} .
\end{gathered}
$$

It follows that $F D G$ and $F B E$ are similar, and so $\angle F G D=\angle F E B$.

Since H is the reflection of E with respect to $F D$, we conclude that

$$
\angle F H D=\angle F E D=180^{\circ}-\angle F E B=180^{\circ}-\angle F G D .
$$

This proves that D, H, F, G are concyclic.

Comment. Points E and G are always in the half-plane determined by the line $F D$ that contains B and C, but H is always in the other half-plane. In particular, $D H F G$ is cyclic if and only if $\angle F H D+\angle F G D=180^{\circ}$.

G3. In an acute triangle $A B C$ the points D, E and F are the feet of the altitudes through A, B and C respectively. The incenters of the triangles $A E F$ and $B D F$ are I_{1} and I_{2} respectively; the circumcenters of the triangles $A C I_{1}$ and $B C I_{2}$ are O_{1} and O_{2} respectively. Prove that $I_{1} I_{2}$ and $O_{1} O_{2}$ are parallel.

Solution. Let $\angle C A B=\alpha, \angle A B C=\beta, \angle B C A=\gamma$. We start by showing that A, B, I_{1} and I_{2} are concyclic. Since $A I_{1}$ and $B I_{2}$ bisect $\angle C A B$ and $\angle A B C$, their extensions beyond I_{1} and I_{2} meet at the incenter I of the triangle. The points E and F are on the circle with diameter $B C$, so $\angle A E F=\angle A B C$ and $\angle A F E=\angle A C B$. Hence the triangles $A E F$ and $A B C$ are similar with ratio of similitude $\frac{A E}{A B}=\cos \alpha$. Because I_{1} and I are their incenters, we obtain $I_{1} A=I A \cos \alpha$ and $I I_{1}=I A-I_{1} A=2 I A \sin ^{2} \frac{\alpha}{2}$. By symmetry $I I_{2}=2 I B \sin ^{2} \frac{\beta}{2}$. The law of sines in the triangle $A B I$ gives $I A \sin \frac{\alpha}{2}=I B \sin \frac{\beta}{2}$. Hence

$$
I I_{1} \cdot I A=2\left(I A \sin \frac{\alpha}{2}\right)^{2}=2\left(I B \sin \frac{\beta}{2}\right)^{2}=I I_{2} \cdot I B .
$$

Therefore A, B, I_{1} and I_{2} are concyclic, as claimed.

In addition $I I_{1} \cdot I A=I I_{2} \cdot I B$ implies that I has the same power with respect to the circles $\left(A C I_{1}\right),\left(B C I_{2}\right)$ and $\left(A B I_{1} I_{2}\right)$. Then $C I$ is the radical axis of $\left(A C I_{1}\right)$ and $\left(B C I_{2}\right)$; in particular $C I$ is perpendicular to the line of centers $O_{1} O_{2}$.

Now it suffices to prove that $C I \perp I_{1} I_{2}$. Let $C I$ meet $I_{1} I_{2}$ at Q, then it is enough to check that $\angle I I_{1} Q+\angle I_{1} I Q=90^{\circ}$. Since $\angle I_{1} I Q$ is external for the triangle $A C I$, we have

$$
\angle I I_{1} Q+\angle I_{1} I Q=\angle I I_{1} Q+(\angle A C I+\angle C A I)=\angle I I_{1} I_{2}+\angle A C I+\angle C A I
$$

It remains to note that $\angle I I_{1} I_{2}=\frac{\beta}{2}$ from the cyclic quadrilateral $A B I_{1} I_{2}$, and $\angle A C I=\frac{\gamma}{2}$, $\angle C A I=\frac{\alpha}{2}$. Therefore $\angle I I_{1} Q+\angle I_{1} I Q=\frac{\alpha}{2}+\frac{\beta}{2}+\frac{\gamma}{2}=90^{\circ}$, completing the proof.

Comment. It follows from the first part of the solution that the common point $I_{3} \neq C$ of the circles $\left(A C I_{1}\right)$ and $\left(B C I_{2}\right)$ is the incenter of the triangle $C D E$.

G4. Let $A B C$ be a triangle with $A B \neq A C$ and circumcenter O. The bisector of $\angle B A C$ intersects $B C$ at D. Let E be the reflection of D with respect to the midpoint of $B C$. The lines through D and E perpendicular to $B C$ intersect the lines $A O$ and $A D$ at X and Y respectively. Prove that the quadrilateral $B X C Y$ is cyclic.

Solution. The bisector of $\angle B A C$ and the perpendicular bisector of $B C$ meet at P, the midpoint of the minor arc $\widehat{B C}$ (they are different lines as $A B \neq A C$). In particular $O P$ is perpendicular to $B C$ and intersects it at M, the midpoint of $B C$.

Denote by Y^{\prime} the reflexion of Y with respect to $O P$. Since $\angle B Y C=\angle B Y^{\prime} C$, it suffices to prove that $B X C Y^{\prime}$ is cyclic.

We have

$$
\angle X A P=\angle O P A=\angle E Y P
$$

The first equality holds because $O A=O P$, and the second one because $E Y$ and $O P$ are both perpendicular to $B C$ and hence parallel. But $\left\{Y, Y^{\prime}\right\}$ and $\{E, D\}$ are pairs of symmetric points with respect to $O P$, it follows that $\angle E Y P=\angle D Y^{\prime} P$ and hence

$$
\angle X A P=\angle D Y^{\prime} P=\angle X Y^{\prime} P
$$

The last equation implies that $X A Y^{\prime} P$ is cyclic. By the powers of D with respect to the circles $\left(X A Y^{\prime} P\right)$ and $(A B P C)$ we obtain

$$
X D \cdot D Y^{\prime}=A D \cdot D P=B D \cdot D C
$$

It follows that $B X C Y^{\prime}$ is cyclic, as desired.

G5. Let $A B C$ be a triangle with $\angle B C A=90^{\circ}$, and let C_{0} be the foot of the altitude from C. Choose a point X in the interior of the segment $C C_{0}$, and let K, L be the points on the segments $A X, B X$ for which $B K=B C$ and $A L=A C$ respectively. Denote by M the intersection of $A L$ and $B K$. Show that $M K=M L$.

Solution. Let C^{\prime} be the reflection of C in the line $A B$, and let ω_{1} and ω_{2} be the circles with centers A and B, passing through L and K respectively. Since $A C^{\prime}=A C=A L$ and $B C^{\prime}=B C=B K$, both ω_{1} and ω_{2} pass through C and C^{\prime}. By $\angle B C A=90^{\circ}, A C$ is tangent to ω_{2} at C, and $B C$ is tangent to ω_{1} at C. Let $K_{1} \neq K$ be the second intersection of $A X$ and ω_{2}, and let $L_{1} \neq L$ be the second intersection of $B X$ and ω_{1}.

By the powers of X with respect to ω_{2} and ω_{1},

$$
X K \cdot X K_{1}=X C \cdot X C^{\prime}=X L \cdot X L_{1}
$$

so the points K_{1}, L, K, L_{1} lie on a circle ω_{3}.
The power of A with respect to ω_{2} gives

$$
A L^{2}=A C^{2}=A K \cdot A K_{1}
$$

indicating that $A L$ is tangent to ω_{3} at L. Analogously, $B K$ is tangent to ω_{3} at K. Hence $M K$ and $M L$ are the two tangents from M to ω_{3} and therefore $M K=M L$.

G6. Let $A B C$ be a triangle with circumcenter O and incenter I. The points D, E and F on the sides $B C, C A$ and $A B$ respectively are such that $B D+B F=C A$ and $C D+C E=A B$. The circumcircles of the triangles $B F D$ and $C D E$ intersect at $P \neq D$. Prove that $O P=O I$.

Solution. By Miquel's theorem the circles $(A E F)=\omega_{A},(B F D)=\omega_{B}$ and $(C D E)=\omega_{C}$ have a common point, for arbitrary points D, E and F on $B C, C A$ and $A B$. So ω_{A} passes through the common point $P \neq D$ of ω_{B} and ω_{C}.

Let ω_{A}, ω_{B} and ω_{C} meet the bisectors $A I, B I$ and $C I$ at $A \neq A^{\prime}, B \neq B^{\prime}$ and $C \neq C^{\prime}$ respectively. The key observation is that A^{\prime}, B^{\prime} and C^{\prime} do not depend on the particular choice of D, E and F, provided that $B D+B F=C A, C D+C E=A B$ and $A E+A F=B C$ hold true (the last equality follows from the other two). For a proof we need the following fact.

Lemma. Given is an angle with vertex A and measure α. A circle ω through A intersects the angle bisector at L and sides of the angle at X and Y. Then $A X+A Y=2 A L \cos \frac{\alpha}{2}$.
Proof. Note that L is the midpoint of arc $\widehat{X L Y}$ in ω and set $X L=Y L=u, X Y=v$. By Ptolemy's theorem $A X \cdot Y L+A Y \cdot X L=A L \cdot X Y$, which rewrites as $(A X+A Y) u=A L \cdot v$. Since $\angle L X Y=\frac{\alpha}{2}$ and $\angle X L Y=180^{\circ}-\alpha$, we have $v=2 \cos \frac{\alpha}{2} u$ by the law of sines, and the claim follows.

Apply the lemma to $\angle B A C=\alpha$ and the circle $\omega=\omega_{A}$, which intersects $A I$ at A^{\prime}. This gives $2 A A^{\prime} \cos \frac{\alpha}{2}=A E+A F=B C$; by symmetry analogous relations hold for $B B^{\prime}$ and $C C^{\prime}$. It follows that A^{\prime}, B^{\prime} and C^{\prime} are independent of the choice of D, E and F, as stated.

We use the lemma two more times with $\angle B A C=\alpha$. Let ω be the circle with diameter $A I$. Then X and Y are the tangency points of the incircle of $A B C$ with $A B$ and $A C$, and hence $A X=A Y=\frac{1}{2}(A B+A C-B C)$. So the lemma yields $2 A I \cos \frac{\alpha}{2}=A B+A C-B C$. Next, if ω is the circumcircle of $A B C$ and $A I$ intersects ω at $M \neq A$ then $\{X, Y\}=\{B, C\}$, and so $2 A M \cos \frac{\alpha}{2}=A B+A C$ by the lemma. To summarize,

$$
\begin{equation*}
2 A A^{\prime} \cos \frac{\alpha}{2}=B C, \quad 2 A I \cos \frac{\alpha}{2}=A B+A C-B C, \quad 2 A M \cos \frac{\alpha}{2}=A B+A C . \tag{*}
\end{equation*}
$$

These equalities imply $A A^{\prime}+A I=A M$, hence the segments $A M$ and $I A^{\prime}$ have a common midpoint. It follows that I and A^{\prime} are equidistant from the circumcenter O. By symmetry $O I=O A^{\prime}=O B^{\prime}=O C^{\prime}$, so $I, A^{\prime}, B^{\prime}, C^{\prime}$ are on a circle centered at O.

To prove $O P=O I$, now it suffices to show that $I, A^{\prime}, B^{\prime}, C^{\prime}$ and P are concyclic. Clearly one can assume $P \neq I, A^{\prime}, B^{\prime}, C^{\prime}$.

We use oriented angles to avoid heavy case distinction. The oriented angle between the lines l and m is denoted by $\angle(l, m)$. We have $\angle(l, m)=-\angle(m, l)$ and $\angle(l, m)+\angle(m, n)=\angle(l, n)$ for arbitrary lines l, m and n. Four distinct non-collinear points U, V, X, Y are concyclic if and only if $\angle(U X, V X)=\angle(U Y, V Y)$.

Suppose for the moment that $A^{\prime}, B^{\prime}, P, I$ are distinct and noncollinear; then it is enough to check the equality $\angle\left(A^{\prime} P, B^{\prime} P\right)=\angle\left(A^{\prime} I, B^{\prime} I\right)$. Because A, F, P, A^{\prime} are on the circle ω_{A}, we have $\angle\left(A^{\prime} P, F P\right)=\angle\left(A^{\prime} A, F A\right)=\angle\left(A^{\prime} I, A B\right)$. Likewise $\angle\left(B^{\prime} P, F P\right)=\angle\left(B^{\prime} I, A B\right)$. Therefore

$$
\angle\left(A^{\prime} P, B^{\prime} P\right)=\angle\left(A^{\prime} P, F P\right)+\angle\left(F P, B^{\prime} P\right)=\angle\left(A^{\prime} I, A B\right)-\angle\left(B^{\prime} I, A B\right)=\angle\left(A^{\prime} I, B^{\prime} I\right) .
$$

Here we assumed that $P \neq F$. If $P=F$ then $P \neq D, E$ and the conclusion follows similarly (use $\angle\left(A^{\prime} F, B^{\prime} F\right)=\angle\left(A^{\prime} F, E F\right)+\angle(E F, D F)+\angle\left(D F, B^{\prime} F\right)$ and inscribed angles in $\left.\omega_{A}, \omega_{B}, \omega_{C}\right)$.

There is no loss of generality in assuming $A^{\prime}, B^{\prime}, P, I$ distinct and noncollinear. If $A B C$ is an equilateral triangle then the equalities $\left(^{*}\right)$ imply that $A^{\prime}, B^{\prime}, C^{\prime}, I, O$ and P coincide, so $O P=O I$. Otherwise at most one of $A^{\prime}, B^{\prime}, C^{\prime}$ coincides with I. If say $C^{\prime}=I$ then $O I \perp C I$ by the previous reasoning. It follows that $A^{\prime}, B^{\prime} \neq I$ and hence $A^{\prime} \neq B^{\prime}$. Finally A^{\prime}, B^{\prime} and I are noncollinear because $I, A^{\prime}, B^{\prime}, C^{\prime}$ are concyclic.

Comment. The proposer remarks that the locus γ of the points P is an arc of the circle $\left(A^{\prime} B^{\prime} C^{\prime} I\right)$. The reflection I^{\prime} of I in O belongs to γ; it is obtained by choosing D, E and F to be the tangency points of the three excircles with their respective sides. The rest of the circle ($\left.A^{\prime} B^{\prime} C^{\prime} I\right)$, except I, can be included in γ by letting D, E and F vary on the extensions of the sides and assuming signed lengths. For instance if B is between C and D then the length $B D$ must be taken with a negative sign. The incenter I corresponds to the limit case where D tends to infinity.

G7. Let $A B C D$ be a convex quadrilateral with non-parallel sides $B C$ and $A D$. Assume that there is a point E on the side $B C$ such that the quadrilaterals $A B E D$ and $A E C D$ are circumscribed. Prove that there is a point F on the side $A D$ such that the quadrilaterals $A B C F$ and $B C D F$ are circumscribed if and only if $A B$ is parallel to $C D$.

Solution. Let ω_{1} and ω_{2} be the incircles and O_{1} and O_{2} the incenters of the quadrilaterals $A B E D$ and $A E C D$ respectively. A point F with the stated property exists only if ω_{1} and ω_{2} are also the incircles of the quadrilaterals $A B C F$ and $B C D F$.

Let the tangents from B to ω_{2} and from C to ω_{1} (other than $B C$) meet $A D$ at F_{1} and F_{2} respectively. We need to prove that $F_{1}=F_{2}$ if and only if $A B \| C D$.
Lemma. The circles ω_{1} and ω_{2} with centers O_{1} and O_{2} are inscribed in an angle with vertex O. The points P, S on one side of the angle and Q, R on the other side are such that ω_{1} is the incircle of the triangle $P Q O$, and ω_{2} is the excircle of the triangle $R S O$ opposite to O. Denote $p=O O_{1} \cdot O O_{2}$. Then exactly one of the following relations holds:

$$
O P \cdot O R<p<O Q \cdot O S, \quad O P \cdot O R>p>O Q \cdot O S, \quad O P \cdot O R=p=O Q \cdot O S
$$

Proof. Denote $\angle O P O_{1}=u, \angle O Q O_{1}=v, \angle O O_{2} R=x, \angle O O_{2} S=y, \angle P O Q=2 \varphi$. Because $P O_{1}, Q O_{1}, R O_{2}, S O_{2}$ are internal or external bisectors in the triangles $P Q O$ and $R S O$, we have

$$
\begin{equation*}
u+v=x+y\left(=90^{\circ}-\varphi\right) . \tag{1}
\end{equation*}
$$

By the law of sines

$$
\frac{O P}{O O_{1}}=\frac{\sin (u+\varphi)}{\sin u} \quad \text { and } \quad \frac{O O_{2}}{O R}=\frac{\sin (x+\varphi)}{\sin x}
$$

Therefore, since x, u and φ are acute,
$O P \cdot O R \geq p \Leftrightarrow \frac{O P}{O O_{1}} \geq \frac{O O_{2}}{O R} \Leftrightarrow \sin x \sin (u+\varphi) \geq \sin u \sin (x+\varphi) \Leftrightarrow \sin (x-u) \geq 0 \Leftrightarrow x \geq u$.
Thus $O P \cdot O R \geq p$ is equivalent to $x \geq u$, with $O P \cdot O R=p$ if and only if $x=u$.
Analogously, $p \geq O Q \cdot O S$ is equivalent to $v \geq y$, with $p=O Q \cdot O S$ if and only if $v=y$. On the other hand $x \geq u$ and $v \geq y$ are equivalent by (1), with $x=u$ if and only if $v=y$. The conclusion of the lemma follows from here.

Going back to the problem, apply the lemma to the quadruples $\left\{B, E, D, F_{1}\right\},\{A, B, C, D\}$ and $\left\{A, E, C, F_{2}\right\}$. Assuming $O E \cdot O F_{1}>p$, we obtain

$$
O E \cdot O F_{1}>p \Rightarrow O B \cdot O D<p \Rightarrow O A \cdot O C>p \Rightarrow O E \cdot O F_{2}<p
$$

In other words, $O E \cdot O F_{1}>p$ implies

$$
O B \cdot O D<p<O A \cdot O C \quad \text { and } \quad O E \cdot O F_{1}>p>O E \cdot O F_{2} .
$$

Similarly, $O E \cdot O F_{1}<p$ implies

$$
O B \cdot O D>p>O A \cdot O C \quad \text { and } \quad O E \cdot O F_{1}<p<O E \cdot O F_{2} .
$$

In these cases $F_{1} \neq F_{2}$ and $O B \cdot O D \neq O A \cdot O C$, so the lines $A B$ and $C D$ are not parallel.
There remains the case $O E \cdot O F_{1}=p$. Here the lemma leads to $O B \cdot O D=p=O A \cdot O C$ and $O E \cdot O F_{1}=p=O E \cdot O F_{2}$. Therefore $F_{1}=F_{2}$ and $A B \| C D$.

Comment. The conclusion is also true if $B C$ and $A D$ are parallel. One can prove a limit case of the lemma for the configuration shown in the figure below, where r_{1} and r_{2} are parallel rays starting at O^{\prime} and $O^{\prime \prime}$, with $O^{\prime} O^{\prime \prime} \perp r_{1}, r_{2}$ and O the midpoint of $O^{\prime} O^{\prime \prime}$. Two circles with centers O_{1} and O_{2} are inscribed in the strip between r_{1} and r_{2}. The lines $P Q$ and $R S$ are tangent to the circles, with P, S on r_{1}, and Q, R on r_{2}, so that O, O_{1} are on the same side of $P Q$ and O, O_{2} are on different sides of $R S$. Denote $s=O O_{1}+O O_{2}$. Then exactly one of the following relations holds:

$$
O^{\prime} P+O^{\prime \prime} R<s<O^{\prime \prime} Q+O^{\prime} S, \quad O^{\prime} P+O^{\prime \prime} R>s>O^{\prime \prime} Q+O^{\prime} S, \quad O^{\prime} P+O^{\prime \prime} R=s=O^{\prime \prime} Q+O^{\prime} S
$$

Once this is established, the proof of the original statement for $B C \| A D$ is analogous to the one in the intersecting case. One replaces products by sums of relevant segments.

G8. Let $A B C$ be a triangle with circumcircle ω and ℓ a line without common points with ω. Denote by P the foot of the perpendicular from the center of ω to ℓ. The side-lines $B C, C A, A B$ intersect ℓ at the points X, Y, Z different from P. Prove that the circumcircles of the triangles $A X P, B Y P$ and $C Z P$ have a common point different from P or are mutually tangent at P.

Solution 1. Let $\omega_{A}, \omega_{B}, \omega_{C}$ and ω be the circumcircles of triangles $A X P, B Y P, C Z P$ and $A B C$ respectively. The strategy of the proof is to construct a point Q with the same power with respect to the four circles. Then each of P and Q has the same power with respect to $\omega_{A}, \omega_{B}, \omega_{C}$ and hence the three circles are coaxial. In other words they have another common point P^{\prime} or the three of them are tangent at P.

We first give a description of the point Q. Let $A^{\prime} \neq A$ be the second intersection of ω and ω_{A}; define B^{\prime} and C^{\prime} analogously. We claim that $A A^{\prime}, B B^{\prime}$ and $C C^{\prime}$ have a common point. Once this claim is established, the point just constructed will be on the radical axes of the three pairs of circles $\left\{\omega, \omega_{A}\right\},\left\{\omega, \omega_{B}\right\},\left\{\omega, \omega_{C}\right\}$. Hence it will have the same power with respect to $\omega, \omega_{A}, \omega_{B}, \omega_{C}$.

We proceed to prove that $A A^{\prime}, B B^{\prime}$ and $C C^{\prime}$ intersect at one point. Let r be the circumradius of triangle $A B C$. Define the points $X^{\prime}, Y^{\prime}, Z^{\prime}$ as the intersections of $A A^{\prime}, B B^{\prime}, C C^{\prime}$ with ℓ. Observe that $X^{\prime}, Y^{\prime}, Z^{\prime}$ do exist. If $A A^{\prime}$ is parallel to ℓ then ω_{A} is tangent to ℓ; hence $X=P$ which is a contradiction. Similarly, $B B^{\prime}$ and $C C^{\prime}$ are not parallel to ℓ.

From the powers of the point X^{\prime} with respect to the circles ω_{A} and ω we get

$$
X^{\prime} P \cdot\left(X^{\prime} P+P X\right)=X^{\prime} P \cdot X^{\prime} X=X^{\prime} A^{\prime} \cdot X^{\prime} A=X^{\prime} O^{2}-r^{2}
$$

hence

$$
X^{\prime} P \cdot P X=X^{\prime} O^{2}-r^{2}-X^{\prime} P^{2}=O P^{2}-r^{2}
$$

We argue analogously for the points Y^{\prime} and Z^{\prime}, obtaining

$$
\begin{equation*}
X^{\prime} P \cdot P X=Y^{\prime} P \cdot P Y=Z^{\prime} P \cdot P Z=O P^{2}-r^{2}=k^{2} \tag{1}
\end{equation*}
$$

In these computations all segments are regarded as directed segments. We keep the same convention for the sequel.

We prove that the lines $A A^{\prime}, B B^{\prime}, C C^{\prime}$ intersect at one point by CEvA's theorem. To avoid distracting remarks we interpret everything projectively, i. e. whenever two lines are parallel they meet at a point on the line at infinity.

Let U, V, W be the intersections of $A A^{\prime}, B B^{\prime}, C C^{\prime}$ with $B C, C A, A B$ respectively. The idea is that although it is difficult to calculate the ratio $\frac{B U}{C U}$, it is easier to deal with the cross-ratio $\frac{B U}{C U} / \frac{B X}{C X}$ because we can send it to the line ℓ. With this in mind we apply Menelaus' theorem to the triangle $A B C$ and obtain $\frac{B X}{C X} \cdot \frac{C Y}{A Y} \cdot \frac{A Z}{B Z}=1$. Hence Ceva's ratio can be expressed as

$$
\frac{B U}{C U} \cdot \frac{C V}{A V} \cdot \frac{A W}{B W}=\frac{B U}{C U} / \frac{B X}{C X} \cdot \frac{C V}{A V} / \frac{C Y}{A Y} \cdot \frac{A W}{B W} / \frac{A Z}{B Z} .
$$

Project the line $B C$ to ℓ from A. The cross-ratio between $B C$ and $U X$ equals the cross-ratio between $Z Y$ and $X^{\prime} X$. Repeating the same argument with the lines $C A$ and $A B$ gives

$$
\frac{B U}{C U} \cdot \frac{C V}{A V} \cdot \frac{A W}{B W}=\frac{Z X^{\prime}}{Y X^{\prime}} / \frac{Z X}{Y X} \cdot \frac{X Y^{\prime}}{Z Y^{\prime}} / \frac{X Y}{Z Y} \cdot \frac{Y Z^{\prime}}{X Z^{\prime}} / \frac{Y Z}{X Z}
$$

and hence

$$
\frac{B U}{C U} \cdot \frac{C V}{A V} \cdot \frac{A W}{B W}=(-1) \cdot \frac{Z X^{\prime}}{Y X^{\prime}} \cdot \frac{X Y^{\prime}}{Z Y^{\prime}} \cdot \frac{Y Z^{\prime}}{X Z^{\prime}}
$$

The equations (1) reduce the problem to a straightforward computation on the line ℓ. For instance, the transformation $t \mapsto-k^{2} / t$ preserves cross-ratio and interchanges the points X, Y, Z with the points $X^{\prime}, Y^{\prime}, Z^{\prime}$. Then

$$
\frac{B U}{C U} \cdot \frac{C V}{A V} \cdot \frac{A W}{B W}=(-1) \cdot \frac{Z X^{\prime}}{Y X^{\prime}} / \frac{Z Z^{\prime}}{Y Z^{\prime}} \cdot \frac{X Y^{\prime}}{Z Y^{\prime}} / \frac{X Z^{\prime}}{Z Z^{\prime}}=-1 .
$$

We proved that Ceva's ratio equals -1 , so $A A^{\prime}, B B^{\prime}, C C^{\prime}$ intersect at one point Q.

Comment 1. There is a nice projective argument to prove that $A X^{\prime}, B Y^{\prime}, C Z^{\prime}$ intersect at one point. Suppose that ℓ and ω intersect at a pair of complex conjugate points D and E. Consider a projective transformation that takes D and E to $[i ; 1,0]$ and $[-i, 1,0]$. Then ℓ is the line at infinity, and ω is a conic through the special points $[i ; 1,0]$ and $[-i, 1,0]$, hence it is a circle. So one can assume that $A X, B Y, C Z$ are parallel to $B C, C A, A B$. The involution on ℓ taking X, Y, Z to $X^{\prime}, Y^{\prime}, Z^{\prime}$ and leaving D, E fixed is the involution changing each direction to its perpendicular one. Hence $A X, B Y, C Z$ are also perpendicular to $A X^{\prime}, B Y^{\prime}, C Z^{\prime}$.

It follows from the above that $A X^{\prime}, B Y^{\prime}, C Z^{\prime}$ intersect at the orthocenter of triangle $A B C$.
Comment 2. The restriction that the line ℓ does not intersect the circumcricle ω is unnecessary. The proof above works in general. In case ℓ intersects ω at D and E point P is the midpoint of $D E$, and some equations can be interpreted differently. For instance

$$
X^{\prime} P \cdot X^{\prime} X=X^{\prime} A^{\prime} \cdot X^{\prime} A=X^{\prime} D \cdot X^{\prime} E,
$$

and hence the pairs $X^{\prime} X$ and $D E$ are harmonic conjugates. This means that $X^{\prime}, Y^{\prime}, Z^{\prime}$ are the harmonic conjugates of X, Y, Z with respect to the segment $D E$.

Solution 2. First we prove that there is an inversion in space that takes ℓ and ω to parallel circles on a sphere. Let $Q R$ be the diameter of ω whose extension beyond Q passes through P. Let Π be the plane carrying our objects. In space, choose a point O such that the line $Q O$ is perpendicular to Π and $\angle P O R=90^{\circ}$, and apply an inversion with pole O (the radius of the inversion does not matter). For any object \mathcal{T} denote by \mathcal{T}^{\prime} the image of \mathcal{T} under this inversion.

The inversion takes the plane Π to a sphere Π^{\prime}. The lines in Π are taken to circles through O, and the circles in Π also are taken to circles on Π^{\prime}.

Since the line ℓ and the circle ω are perpendicular to the plane $O P Q$, the circles ℓ^{\prime} and ω^{\prime} also are perpendicular to this plane. Hence, the planes of the circles ℓ^{\prime} and ω^{\prime} are parallel.

Now consider the circles $A^{\prime} X^{\prime} P^{\prime}, B^{\prime} Y^{\prime} P^{\prime}$ and $C^{\prime} Z^{\prime} P^{\prime}$. We want to prove that either they have a common point (on Π^{\prime}), different from P^{\prime}, or they are tangent to each other.

The point X^{\prime} is the second intersection of the circles $B^{\prime} C^{\prime} O$ and ℓ^{\prime}, other than O. Hence, the lines $O X^{\prime}$ and $B^{\prime} C^{\prime}$ are coplanar. Moreover, they lie in the parallel planes of ℓ^{\prime} and ω^{\prime}. Therefore, $O X^{\prime}$ and $B^{\prime} C^{\prime}$ are parallel. Analogously, $O Y^{\prime}$ and $O Z^{\prime}$ are parallel to $A^{\prime} C^{\prime}$ and $A^{\prime} B^{\prime}$.

Let A_{1} be the second intersection of the circles $A^{\prime} X^{\prime} P^{\prime}$ and ω^{\prime}, other than A^{\prime}. The segments $A^{\prime} A_{1}$ and $P^{\prime} X^{\prime}$ are coplanar, and therefore parallel. Now we know that $B^{\prime} C^{\prime}$ and $A^{\prime} A_{1}$ are parallel to $O X^{\prime}$ and $X^{\prime} P^{\prime}$ respectively, but these two segments are perpendicular because $O P^{\prime}$ is a diameter in ℓ^{\prime}. We found that $A^{\prime} A_{1}$ and $B^{\prime} C^{\prime}$ are perpendicular, hence $A^{\prime} A_{1}$ is the altitude in the triangle $A^{\prime} B^{\prime} C^{\prime}$, starting from A.

Analogously, let B_{1} and C_{1} be the second intersections of ω^{\prime} with the circles $B^{\prime} P^{\prime} Y^{\prime}$ and $C^{\prime} P^{\prime} Z^{\prime}$, other than B^{\prime} and C^{\prime} respectively. Then $B^{\prime} B_{1}$ and $C^{\prime} C_{1}$ are the other two altitudes in the triangle $A^{\prime} B^{\prime} C^{\prime}$.

Let H be the orthocenter of the triangle $A^{\prime} B^{\prime} C^{\prime}$. Let W be the second intersection of the line $P^{\prime} H$ with the sphere Π^{\prime}, other than P^{\prime}. The point W lies on the sphere Π^{\prime}, in the plane of the circle $A^{\prime} P^{\prime} X^{\prime}$, so W lies on the circle $A^{\prime} P^{\prime} X^{\prime}$. Similarly, W lies on the circles $B^{\prime} P^{\prime} Y^{\prime}$ and $C^{\prime} P^{\prime} Z^{\prime}$ as well; indeed W is the second common point of the three circles.

If the line $P^{\prime} H$ is tangent to the sphere then W coincides with P^{\prime}, and $P^{\prime} H$ is the common tangent of the three circles.

Number Theory

N1. Call admissible a set A of integers that has the following property:

$$
\text { If } x, y \in A \text { (possibly } x=y \text {) then } x^{2}+k x y+y^{2} \in A \text { for every integer } k \text {. }
$$

Determine all pairs m, n of nonzero integers such that the only admissible set containing both m and n is the set of all integers.

Solution. A pair of integers m, n fulfills the condition if and only if $\operatorname{gcd}(m, n)=1$. Suppose that $\operatorname{gcd}(m, n)=d>1$. The set

$$
A=\{\ldots,-2 d,-d, 0, d, 2 d, \ldots\}
$$

is admissible, because if d divides x and y then it divides $x^{2}+k x y+y^{2}$ for every integer k. Also $m, n \in A$ and $A \neq \mathbb{Z}$.

Now let $\operatorname{gcd}(m, n)=1$, and let A be an admissible set containing m and n. We use the following observations to prove that $A=\mathbb{Z}$:
(i) $k x^{2} \in A$ for every $x \in A$ and every integer k.
(ii) $(x+y)^{2} \in A$ for all $x, y \in A$.

To justify (i) let $y=x$ in the definition of an admissible set; to justify (ii) let $k=2$.
Since $\operatorname{gcd}(m, n)=1$, we also have $\operatorname{gcd}\left(m^{2}, n^{2}\right)=1$. Hence one can find integers a, b such that $a m^{2}+b n^{2}=1$. It follows from (i) that $a m^{2} \in A$ and $b n^{2} \in A$. Now we deduce from (ii) that $1=\left(a m^{2}+b n^{2}\right)^{2} \in A$. But if $1 \in A$ then (i) implies $k \in A$ for every integer k.

N2. Find all triples (x, y, z) of positive integers such that $x \leq y \leq z$ and

$$
x^{3}\left(y^{3}+z^{3}\right)=2012(x y z+2) .
$$

Solution. First note that x divides $2012 \cdot 2=2^{3} \cdot 503$. If $503 \mid x$ then the right-hand side of the equation is divisible by 503^{3}, and it follows that $503^{2} \mid x y z+2$. This is false as $503 \mid x$. Hence $x=2^{m}$ with $m \in\{0,1,2,3\}$. If $m \geq 2$ then $2^{6} \mid 2012(x y z+2)$. However the highest powers of 2 dividing 2012 and $x y z+2=2^{m} y z+2$ are 2^{2} and 2^{1} respectively. So $x=1$ or $x=2$, yielding the two equations

$$
y^{3}+z^{3}=2012(y z+2), \quad \text { and } \quad y^{3}+z^{3}=503(y z+1) .
$$

In both cases the prime $503=3 \cdot 167+2$ divides $y^{3}+z^{3}$. We claim that $503 \mid y+z$. This is clear if $503 \mid y$, so let $503 \nmid y$ and $503 \nmid z$. Then $y^{502} \equiv z^{502}(\bmod 503)$ by Fermat's little theorem. On the other hand $y^{3} \equiv-z^{3}(\bmod 503)$ implies $y^{3 \cdot 167} \equiv-z^{3 \cdot 167}(\bmod 503)$, i. e. $y^{501} \equiv-z^{501}(\bmod 503)$. It follows that $y \equiv-z(\bmod 503)$ as claimed.

Therefore $y+z=503 k$ with $k \geq 1$. In view of $y^{3}+z^{3}=(y+z)\left((y-z)^{2}+y z\right)$ the two equations take the form

$$
\begin{align*}
& k(y-z)^{2}+(k-4) y z=8, \tag{1}\\
& k(y-z)^{2}+(k-1) y z=1 . \tag{2}
\end{align*}
$$

In (1) we have $(k-4) y z \leq 8$, which implies $k \leq 4$. Indeed if $k>4$ then $1 \leq(k-4) y z \leq 8$, so that $y \leq 8$ and $z \leq 8$. This is impossible as $y+z=503 k \geq 503$. Note next that $y^{3}+z^{3}$ is even in the first equation. Hence $y+z=503 k$ is even too, meaning that k is even. Thus $k=2$ or $k=4$. Clearly (1) has no integer solutions for $k=4$. If $k=2$ then (1) takes the form $(y+z)^{2}-5 y z=4$. Since $y+z=503 k=503 \cdot 2$, this leads to $5 y z=503^{2} \cdot 2^{2}-4$. However $503^{2} \cdot 2^{2}-4$ is not a multiple of 5 . Therefore (1) has no integer solutions.

Equation (2) implies $0 \leq(k-1) y z \leq 1$, so that $k=1$ or $k=2$. Also $0 \leq k(y-z)^{2} \leq 1$, hence $k=2$ only if $y=z$. However then $y=z=1$, which is false in view of $y+z \geq 503$. Therefore $k=1$ and (2) takes the form $(y-z)^{2}=1$, yielding $z-y=|y-z|=1$. Combined with $k=1$ and $y+z=503 k$, this leads to $y=251, z=252$.

In summary the triple $(2,251,252)$ is the only solution.

N3. Determine all integers $m \geq 2$ such that every n with $\frac{m}{3} \leq n \leq \frac{m}{2}$ divides the binomial coefficient $\binom{n}{m-2 n}$.

Solution. The integers in question are all prime numbers.
First we check that all primes satisfy the condition, and even a stronger one. Namely, if p is a prime then every n with $1 \leq n \leq \frac{p}{2}$ divides $\binom{n}{p-2 n}$. This is true for $p=2$ where $n=1$ is the only possibility. For an odd prime p take $n \in\left[1, \frac{p}{2}\right]$ and consider the following identity of binomial coefficients:

$$
(p-2 n) \cdot\binom{n}{p-2 n}=n \cdot\binom{n-1}{p-2 n-1} .
$$

Since $p \geq 2 n$ and p is odd, all factors are non-zero. If $d=\operatorname{gcd}(p-2 n, n)$ then d divides p, but $d \leq n<p$ and hence $d=1$. It follows that $p-2 n$ and n are relatively prime, and so the factor n in the right-hand side divides the binomial coefficient $\binom{n}{p-2 n}$.

Next we show that no composite number m has the stated property. Consider two cases.

- If $m=2 k$ with $k>1$, pick $n=k$. Then $\frac{m}{3} \leq n \leq \frac{m}{2}$ but $\binom{n}{m-2 n}=\binom{k}{0}=1$ is not divisible by $k>1$.
- If m is odd then there exist an odd prime p and an integer $k \geq 1$ with $m=p(2 k+1)$. Pick $n=p k$, then $\frac{m}{3} \leq n \leq \frac{m}{2}$ by $k \geq 1$. However

$$
\frac{1}{n}\binom{n}{m-2 n}=\frac{1}{p k}\binom{p k}{p}=\frac{(p k-1)(p k-2) \cdots(p k-(p-1))}{p!}
$$

is not an integer, because p divides the denominator but not the numerator.

N4. An integer a is called friendly if the equation $\left(m^{2}+n\right)\left(n^{2}+m\right)=a(m-n)^{3}$ has a solution over the positive integers.
a) Prove that there are at least 500 friendly integers in the set $\{1,2, \ldots, 2012\}$.
b) Decide whether $a=2$ is friendly.

Solution. a) Every a of the form $a=4 k-3$ with $k \geq 2$ is friendly. Indeed the numbers $m=2 k-1>0$ and $n=k-1>0$ satisfy the given equation with $a=4 k-3$:

$$
\left(m^{2}+n\right)\left(n^{2}+m\right)=\left((2 k-1)^{2}+(k-1)\right)\left((k-1)^{2}+(2 k-1)\right)=(4 k-3) k^{3}=a(m-n)^{3} .
$$

Hence $5,9, \ldots, 2009$ are friendly and so $\{1,2, \ldots, 2012\}$ contains at least 502 friendly numbers.
b) We show that $a=2$ is not friendly. Consider the equation with $a=2$ and rewrite its left-hand side as a difference of squares:

$$
\frac{1}{4}\left(\left(m^{2}+n+n^{2}+m\right)^{2}-\left(m^{2}+n-n^{2}-m\right)^{2}\right)=2(m-n)^{3} .
$$

Since $m^{2}+n-n^{2}-m=(m-n)(m+n-1)$, we can further reformulate the equation as

$$
\left(m^{2}+n+n^{2}+m\right)^{2}=(m-n)^{2}\left(8(m-n)+(m+n-1)^{2}\right) .
$$

It follows that $8(m-n)+(m+n-1)^{2}$ is a perfect square. Clearly $m>n$, hence there is an integer $s \geq 1$ such that

$$
(m+n-1+2 s)^{2}=8(m-n)+(m+n-1)^{2} .
$$

Subtracting the squares gives $s(m+n-1+s)=2(m-n)$. Since $m+n-1+s>m-n$, we conclude that $s<2$. Therefore the only possibility is $s=1$ and $m=3 n$. However then the left-hand side of the given equation (with $a=2$) is greater than $m^{3}=27 n^{3}$, whereas its right-hand side equals $16 n^{3}$. The contradiction proves that $a=2$ is not friendly.

Comment. A computer search shows that there are 561 friendly numbers in $\{1,2, \ldots, 2012\}$.

N5. For a nonnegative integer n define $\operatorname{rad}(n)=1$ if $n=0$ or $n=1$, and $\operatorname{rad}(n)=p_{1} p_{2} \cdots p_{k}$ where $p_{1}<p_{2}<\cdots<p_{k}$ are all prime factors of n. Find all polynomials $f(x)$ with nonnegative integer coefficients such that $\operatorname{rad}(f(n))$ divides $\operatorname{rad}\left(f\left(n^{\operatorname{rad}(n)}\right)\right)$ for every nonnegative integer n.

Solution 1. We are going to prove that $f(x)=a x^{m}$ for some nonnegative integers a and m. If $f(x)$ is the zero polynomial we are done, so assume that $f(x)$ has at least one positive coefficient. In particular $f(1)>0$.

Let p be a prime number. The condition is that $f(n) \equiv 0(\bmod p)$ implies

$$
\begin{equation*}
f\left(n^{\operatorname{rad}(n)}\right) \equiv 0 \quad(\bmod p) \tag{1}
\end{equation*}
$$

Since $\operatorname{rad}\left(n^{\operatorname{rad}(n)^{k}}\right)=\operatorname{rad}(n)$ for all k, repeated applications of the preceding implication show that if p divides $f(n)$ then

$$
f\left(n^{\operatorname{rad}(n)^{k}}\right) \equiv 0 \quad(\bmod p) \quad \text { for all } k
$$

The idea is to construct a prime p and a positive integer n such that $p-1$ divides n and p divides $f(n)$. In this case, for k large enough $p-1$ divides $\operatorname{rad}(n)^{k}$. Hence if $(p, n)=1$ then $n^{\operatorname{rad}(n)^{k}} \equiv 1(\bmod p)$ by Fermat's little theorem, so that

$$
\begin{equation*}
f(1) \equiv f\left(n^{\operatorname{rad}(n)^{k}}\right) \equiv 0 \quad(\bmod p) \tag{2}
\end{equation*}
$$

Suppose that $f(x)=g(x) x^{m}$ with $g(0) \neq 0$. Let t be a positive integer, p any prime factor of $g(-t)$ and $n=(p-1) t$. So $p-1$ divides n and $f(n)=f((p-1) t) \equiv f(-t) \equiv 0(\bmod p)$, hence either $(p, n)>1$ or (2) holds. If $(p,(p-1) t)>1$ then p divides t and $g(0) \equiv g(-t) \equiv 0(\bmod p)$, meaning that p divides $g(0)$.

In conclusion we proved that each prime factor of $g(-t)$ divides $g(0) f(1) \neq 0$, and thus the set of prime factors of $g(-t)$ when t ranges through the positive integers is finite. This is known to imply that $g(x)$ is a constant polynomial, and so $f(x)=a x^{m}$.

Solution 2. Let $f(x)$ be a polynomial with integer coefficients (not necessarily nonnegative) such that $\operatorname{rad}(f(n))$ divides $\operatorname{rad}\left(f\left(n^{\operatorname{rad}(n)}\right)\right)$ for any nonnegative integer n. We give a complete description of all polynomials with this property. More precisely, we claim that if $f(x)$ is such a polynomial and ξ is a root of $f(x)$ then so is ξ^{d} for every positive integer d.

Therefore each root of $f(x)$ is zero or a root of unity. In particular, if a root of unity ξ is a root of $f(x)$ then $1=\xi^{d}$ is a root too (for some positive integer d). In the original problem $f(x)$ has nonnegative coefficients. Then either $f(x)$ is the zero polynomial or $f(1)>0$ and $\xi=0$ is the only possible root. In either case $f(x)=a x^{m}$ with a and m nonnegative integers.

To prove the claim let ξ be a root of $f(x)$, and let $g(x)$ be an irreducible factor of $f(x)$ such that $g(\xi)=0$. If 0 or 1 are roots of $g(x)$ then either $\xi=0$ or $\xi=1$ (because $g(x)$ is irreducible) and we are done. So assume that $g(0), g(1) \neq 0$. By decomposing d as a product of prime numbers, it is enough to consider the case $d=p$ prime. We argue for $p=2$. Since $\operatorname{rad}\left(2^{k}\right)=2$ for every k, we have

$$
\operatorname{rad}\left(f\left(2^{k}\right)\right) \mid \operatorname{rad}\left(f\left(2^{2 k}\right)\right)
$$

Now we prove that $g(x)$ divides $f\left(x^{2}\right)$. Suppose that this is not the case. Then, since $g(x)$ is irreducible, there are integer-coefficient polynomials $a(x), b(x)$ and an integer N such that

$$
\begin{equation*}
a(x) g(x)+b(x) f\left(x^{2}\right)=N \tag{3}
\end{equation*}
$$

Each prime factor p of $g\left(2^{k}\right)$ divides $f\left(2^{k}\right)$, so by $\operatorname{rad}\left(f\left(2^{k}\right)\right) \mid \operatorname{rad}\left(f\left(2^{2 k}\right)\right)$ it also divides $f\left(2^{2 k}\right)$. From the equation above with $x=2^{k}$ it follows that p divides N.

In summary, each prime divisor of $g\left(2^{k}\right)$ divides N, for all $k \geq 0$. Let p_{1}, \ldots, p_{n} be the odd primes dividing N, and suppose that

$$
g(1)=2^{\alpha} p_{1}^{\alpha_{1}} \cdots p_{n}^{\alpha_{n}} .
$$

If k is divisible by $\varphi\left(p_{1}^{\alpha_{1}+1} \cdots p_{n}^{\alpha_{n}+1}\right)$ then

$$
2^{k} \equiv 1 \quad\left(\bmod p_{1}^{\alpha_{1}+1} \cdots p_{n}^{\alpha_{n}+1}\right)
$$

yielding

$$
g\left(2^{k}\right) \equiv g(1) \quad\left(\bmod p_{1}^{\alpha_{1}+1} \cdots p_{n}^{\alpha_{n}+1}\right)
$$

It follows that for each i the maximal power of p_{i} dividing $g\left(2^{k}\right)$ and $g(1)$ is the same, namely $p_{i}^{\alpha_{i}}$. On the other hand, for large enough k, the maximal power of 2 dividing $g\left(2^{k}\right)$ and $g(0) \neq 0$ is the same. From the above, for k divisible by $\varphi\left(p_{1}^{\alpha_{1}+1} \cdots p_{n}^{\alpha_{n}+1}\right)$ and large enough, we obtain that $g\left(2^{k}\right)$ divides $g(0) \cdot g(1)$. This is impossible because $g(0), g(1) \neq 0$ are fixed and $g\left(2^{k}\right)$ is arbitrarily large.

In conclusion, $g(x)$ divides $f\left(x^{2}\right)$. Recall that ξ is a root of $f(x)$ such that $g(\xi)=0$; then $f\left(\xi^{2}\right)=0$, i. e. ξ^{2} is a root of $f(x)$.

Likewise if ξ is a root of $f(x)$ and p an arbitrary prime then ξ^{p} is a root too. The argument is completely analogous, in the proof above just replace 2 by p and "odd prime" by "prime different from p."

Comment. The claim in the second solution can be proved by varying $n(\bmod p)$ in (1). For instance, we obtain

$$
f\left(n^{r a d(n+p k)}\right) \equiv 0 \quad(\bmod p)
$$

for every positive integer k. One can prove that if $(n, p)=1$ then $\operatorname{rad}(n+p k)$ runs through all residue classes $r(\bmod p-1)$ with $(r, p-1)$ squarefree. Hence if $f(n) \equiv 0(\bmod p)$ then $f\left(n^{r}\right) \equiv 0(\bmod p)$ for all integers r. This implies the claim by an argument leading to the identity (3).

N6. Let x and y be positive integers. If $x^{2^{n}}-1$ is divisible by $2^{n} y+1$ for every positive integer n, prove that $x=1$.

Solution. First we prove the following fact: For every positive integer y there exist infinitely many primes $p \equiv 3(\bmod 4)$ such that p divides some number of the form $2^{n} y+1$.

Clearly it is enough to consider the case y odd. Let

$$
2 y+1=p_{1}^{e_{1}} \cdots p_{r}^{e_{r}}
$$

be the prime factorization of $2 y+1$. Suppose on the contrary that there are finitely many primes $p_{r+1}, \ldots, p_{r+s} \equiv 3(\bmod 4)$ that divide some number of the form $2^{n} y+1$ but do not divide $2 y+1$.

We want to find an n such that $p_{i}^{e_{i}} \| 2^{n} y+1$ for $1 \leq i \leq r$ and $p_{i} \nmid 2^{n} y+1$ for $r+1 \leq i \leq r+s$. For this it suffices to take

$$
n=1+\varphi\left(p_{1}^{e_{1}+1} \cdots p_{r}^{e_{r}+1} p_{r+1}^{1} \cdots p_{r+s}^{1}\right)
$$

because then

$$
2^{n} y+1 \equiv 2 y+1 \quad\left(\bmod p_{1}^{e_{1}+1} \cdots p_{r}^{e_{r}+1} p_{r+1}^{1} \cdots p_{r+s}^{1}\right)
$$

The last congruence means that $p_{1}^{e_{1}}, \ldots, p_{r}^{e_{r}}$ divide exactly $2^{n} y+1$ and no prime p_{r+1}, \ldots, p_{r+s} divides $2^{n} y+1$. It follows that the prime factorization of $2^{n} y+1$ consists of the prime powers $p_{1}^{e_{1}}, \ldots, p_{r}^{e_{r}}$ and powers of primes $\equiv 1(\bmod 4)$. Because y is odd, we obtain

$$
2^{n} y+1 \equiv p_{1}^{e_{1}} \cdots p_{r}^{e_{r}} \equiv 2 y+1 \equiv 3 \quad(\bmod 4)
$$

This is a contradiction since $n>1$, and so $2^{n} y+1 \equiv 1(\bmod 4)$.
Now we proceed to the problem. If p is a prime divisor of $2^{n} y+1$ the problem statement implies that $x^{d} \equiv 1(\bmod p)$ for $d=2^{n}$. By Fermat's little theorem the same congruence holds for $d=p-1$, so it must also hold for $d=\left(2^{n}, p-1\right)$. For $p \equiv 3(\bmod 4)$ we have $\left(2^{n}, p-1\right)=2$, therefore in this case $x^{2} \equiv 1(\bmod p)$.

In summary, we proved that every prime $p \equiv 3(\bmod 4)$ that divides some number of the form $2^{n} y+1$ also divides $x^{2}-1$. This is possible only if $x=1$, otherwise by the above $x^{2}-1$ would be a positive integer with infinitely many prime factors.

Comment. For each x and each odd prime p the maximal power of p dividing $x^{2^{n}}-1$ for some n is bounded and hence the same must be true for the numbers $2^{n} y+1$. We infer that p^{2} divides $2^{p-1}-1$ for each prime divisor p of $2^{n} y+1$. However trying to reach a contradiction with this conclusion alone seems hopeless, since it is not even known if there are infinitely many primes p without this property.

N7. Find all $n \in \mathbb{N}$ for which there exist nonnegative integers $a_{1}, a_{2}, \ldots, a_{n}$ such that

$$
\frac{1}{2^{a_{1}}}+\frac{1}{2^{a_{2}}}+\cdots+\frac{1}{2^{a_{n}}}=\frac{1}{3^{a_{1}}}+\frac{2}{3^{a_{2}}}+\cdots+\frac{n}{3^{a_{n}}}=1 .
$$

Solution. Such numbers $a_{1}, a_{2}, \ldots, a_{n}$ exist if and only if $n \equiv 1(\bmod 4)$ or $n \equiv 2(\bmod 4)$.
Let $\sum_{k=1}^{n} \frac{k}{3^{a_{k}}}=1$ with $a_{1}, a_{2}, \ldots, a_{n}$ nonnegative integers. Then $1 \cdot x_{1}+2 \cdot x_{2}+\cdots+n \cdot x_{n}=3^{a}$ with x_{1}, \ldots, x_{n} powers of 3 and $a \geq 0$. The right-hand side is odd, and the left-hand side has the same parity as $1+2+\cdots+n$. Hence the latter sum is odd, which implies $n \equiv 1,2(\bmod 4)$. Now we prove the converse.

Call feasible a sequence $b_{1}, b_{2}, \ldots, b_{n}$ if there are nonnegative integers $a_{1}, a_{2}, \ldots, a_{n}$ such that

$$
\frac{1}{2^{a_{1}}}+\frac{1}{2^{a_{2}}}+\cdots+\frac{1}{2^{a_{n}}}=\frac{b_{1}}{3^{a_{1}}}+\frac{b_{2}}{3^{a_{2}}}+\cdots+\frac{b_{n}}{3^{a_{n}}}=1 .
$$

Let b_{k} be a term of a feasible sequence $b_{1}, b_{2}, \ldots, b_{n}$ with exponents $a_{1}, a_{2}, \ldots, a_{n}$ like above, and let u, v be nonnegative integers with sum $3 b_{k}$. Observe that

$$
\frac{1}{2^{a_{k}+1}}+\frac{1}{2^{a_{k}+1}}=\frac{1}{2^{a_{k}}} \quad \text { and } \quad \frac{u}{3^{a_{k}+1}}+\frac{v}{3^{a_{k}+1}}=\frac{b_{k}}{3^{a_{k}}} .
$$

It follows that the sequence $b_{1}, \ldots, b_{k-1}, u, v, b_{k+1}, \ldots, b_{n}$ is feasible. The exponents a_{i} are the same for the unchanged terms $b_{i}, i \neq k$; the new terms u, v have exponents $a_{k}+1$.

We state the conclusion in reverse. If two terms u, v of a sequence are replaced by one term $\frac{u+v}{3}$ and the obtained sequence is feasible, then the original sequence is feasible too. Denote by α_{n} the sequence $1,2, \ldots, n$. To show that α_{n} is feasible for $n \equiv 1,2(\bmod 4)$, we transform it by $n-1$ replacements $\{u, v\} \mapsto \frac{u+v}{3}$ to the one-term sequence α_{1}. The latter is feasible, with $a_{1}=0$. Note that if m and $2 m$ are terms of a sequence then $\{m, 2 m\} \mapsto m$, so $2 m$ can be ignored if necessary.

Let $n \geq 16$. We prove that α_{n} can be reduced to α_{n-12} by 12 operations. Write $n=12 k+r$ where $k \geq 1$ and $0 \leq r \leq 11$. If $0 \leq r \leq 5$ then the last 12 terms of α_{n} can be partitioned into 2 singletons $\{12 k-6\},\{12 k\}$ and the following 5 pairs:

$$
\{12 k-6-i, 12 k-6+i\}, i=1, \ldots, 5-r ; \quad\{12 k-j, 12 k+j\}, j=1, \ldots, r .
$$

(There is only one kind of pairs if $r \in\{0,5\}$.) One can ignore $12 k-6$ and $12 k$ since α_{n} contains $6 k-3$ and $6 k$. Furthermore the 5 operations $\{12 k-6-i, 12 k-6+i\} \mapsto 8 k-4$ and $\{12 k-j, 12 k+j\} \mapsto 8 k$ remove the 10 terms in the pairs and bring in 5 new terms equal to $8 k-4$ or $8 k$. All of these can be ignored too as $4 k-2$ and $4 k$ are still present in the sequence. Indeed $4 k \leq n-12$ is equivalent to $8 k \geq 12-r$, which is true for $r \in\{4,5\}$. And if $r \in\{0,1,2,3\}$ then $n \geq 16$ implies $k \geq 2$, so $8 k \geq 12-r$ also holds. Thus α_{n} reduces to α_{n-12}.

The case $6 \leq r \leq 11$ is analogous. Consider the singletons $\{12 k\},\{12 k+6\}$ and the 5 pairs

$$
\{12 k-i, 12 k+i\}, i=1, \ldots, 11-r ; \quad\{12 k+6-j, 12 k+6+j\}, j=1, \ldots, r-6
$$

Ignore the singletons like before, then remove the pairs via operations $\{12 k-i, 12 k+i\} \mapsto 8 k$ and $\{12 k+6-j, 12 k+6+j\} \mapsto 8 k+4$. The 5 newly-appeared terms $8 k$ and $8 k+4$ can be ignored too since $4 k+2 \leq n-12$ (this follows from $k \geq 1$ and $r \geq 6$). We obtain α_{n-12} again.

The problem reduces to $2 \leq n \leq 15$. In fact $n \in\{2,5,6,9,10,13,14\}$ by $n \equiv 1,2(\bmod 4)$. The cases $n=2,6,10,14$ reduce to $n=1,5,9,13$ respectively because the last even term of α_{n} can be ignored. For $n=5$ apply $\{4,5\} \mapsto 3$, then $\{3,3\} \mapsto 2$, then ignore the 2 occurrences of 2 . For $n=9$ ignore 6 first, then apply $\{5,7\} \mapsto 4,\{4,8\} \mapsto 4,\{3,9\} \mapsto 4$. Now ignore the 3 occurrences of 4 , then ignore 2. Finally $n=13$ reduces to $n=10$ by $\{11,13\} \mapsto 8$ and ignoring 8 and 12. The proof is complete.

N8. Prove that for every prime $p>100$ and every integer r there exist two integers a and b such that p divides $a^{2}+b^{5}-r$.

Solution 1. Throughout the solution, all congruence relations are meant modulo p.
Fix p, and let $\mathcal{P}=\{0,1, \ldots, p-1\}$ be the set of residue classes modulo p. For every $r \in \mathcal{P}$, let $S_{r}=\left\{(a, b) \in \mathcal{P} \times \mathcal{P}: a^{2}+b^{5} \equiv r\right\}$, and let $s_{r}=\left|S_{r}\right|$. Our aim is to prove $s_{r}>0$ for all $r \in \mathcal{P}$.

We will use the well-known fact that for every residue class $r \in \mathcal{P}$ and every positive integer k, there are at most k values $x \in \mathcal{P}$ such that $x^{k} \equiv r$.
Lemma. Let N be the number of quadruples $(a, b, c, d) \in \mathcal{P}^{4}$ for which $a^{2}+b^{5} \equiv c^{2}+d^{5}$. Then

$$
\begin{equation*}
N=\sum_{r \in \mathcal{P}} s_{r}^{2} \tag{a}
\end{equation*}
$$

and

$$
\begin{equation*}
N \leq p\left(p^{2}+4 p-4\right) \tag{b}
\end{equation*}
$$

Proof. (a) For each residue class r there exist exactly s_{r} pairs (a, b) with $a^{2}+b^{5} \equiv r$ and s_{r} pairs (c, d) with $c^{2}+d^{5} \equiv r$. So there are s_{r}^{2} quadruples with $a^{2}+b^{5} \equiv c^{2}+d^{5} \equiv r$. Taking the sum over all $r \in \mathcal{P}$, the statement follows.
(b) Choose an arbitrary pair $(b, d) \in \mathcal{P}$ and look for the possible values of a, c.

1. Suppose that $b^{5} \equiv d^{5}$, and let k be the number of such pairs (b, d). The value b can be chosen in p different ways. For $b \equiv 0$ only $d=0$ has this property; for the nonzero values of b there are at most 5 possible values for d. So we have $k \leq 1+5(p-1)=5 p-4$.

The values a and c must satisfy $a^{2} \equiv c^{2}$, so $a \equiv \pm c$, and there are exactly $2 p-1$ such pairs (a, c).
2. Now suppose $b^{5} \not \equiv d^{5}$. In this case a and c must be distinct. By $(a-c)(a+c)=d^{5}-b^{5}$, the value of $a-c$ uniquely determines $a+c$ and thus a and c as well. Hence, there are $p-1$ suitable pairs (a, c).

Thus, for each of the k pairs (b, d) with $b^{5} \equiv d^{5}$ there are $2 p-1$ pairs (a, c), and for each of the other $p^{2}-k$ pairs (b, d) there are $p-1$ pairs (a, c). Hence,

$$
N=k(2 p-1)+\left(p^{2}-k\right)(p-1)=p^{2}(p-1)+k p \leq p^{2}(p-1)+(5 p-4) p=p\left(p^{2}+4 p-4\right)
$$

To prove the statement of the problem, suppose that $S_{r}=\emptyset$ for some $r \in \mathcal{P}$; obviously $r \not \equiv 0$. Let $T=\left\{x^{10}: x \in \mathcal{P} \backslash\{0\}\right\}$ be the set of nonzero 10 th powers modulo p. Since each residue class is the 10 th power of at most 10 elements in \mathcal{P}, we have $|T| \geq \frac{p-1}{10} \geq 4$ by $p>100$.

For every $t \in T$, we have $S_{t r}=\emptyset$. Indeed, if $(x, y) \in S_{t r}$ and $t \equiv z^{10}$ then

$$
\left(z^{-5} x\right)^{2}+\left(z^{-2} y\right)^{5} \equiv t^{-1}\left(x^{2}+y^{5}\right) \equiv r,
$$

so $\left(z^{-5} x, z^{-2} y\right) \in S_{r}$. So, there are at least $\frac{p-1}{10} \geq 4$ empty sets among S_{1}, \ldots, S_{p-1}, and there are at most $p-4$ nonzero values among $s_{0}, s_{2}, \ldots, s_{p-1}$. Then by the AM-QM inequality we obtain

$$
N=\sum_{r \in \mathcal{P} \backslash r T} s_{r}^{2} \geq \frac{1}{p-4}\left(\sum_{r \in \mathcal{P} \backslash r T} s_{r}\right)^{2}=\frac{|\mathcal{P} \times \mathcal{P}|^{2}}{p-4}=\frac{p^{4}}{p-4}>p\left(p^{2}+4 p-4\right)
$$

which is impossible by the lemma.

Solution 2. If $5 \nmid p-1$, then all modulo p residue classes are complete fifth powers and the statement is trivial. So assume that $p=10 k+1$ where $k \geq 10$. Let g be a primitive root modulo p.

We will use the following facts:
(F1) If some residue class x is not quadratic then $x^{(p-1) / 2} \equiv-1(\bmod p)$.
(F2) For every integer d, as a simple corollary of the summation formula for geometric progressions,

$$
\sum_{i=0}^{2 k-1} g^{5 d i} \equiv\left\{\begin{array}{ll}
2 k & \text { if } 2 k \mid d \\
0 & \text { if } 2 k \nmid d
\end{array} \quad(\bmod p)\right.
$$

Suppose that, contrary to the statement, some modulo p residue class r cannot be expressed as $a^{2}+b^{5}$. Of course $r \not \equiv 0(\bmod p)$. By (F1) we have $\left(r-b^{5}\right)^{(p-1) / 2}=\left(r-b^{5}\right)^{5 k} \equiv-1(\bmod p)$ for all residue classes b.

For $t=1,2 \ldots, k-1$ consider the sums

$$
S(t)=\sum_{i=0}^{2 k-1}\left(r-g^{5 i}\right)^{5 k} g^{5 t i}
$$

By the indirect assumption and (F2),

$$
S(t)=\sum_{i=0}^{2 k-1}\left(r-\left(g^{i}\right)^{5}\right)^{5 k} g^{5 t i} \equiv \sum_{i=0}^{2 k-1}(-1) g^{5 t i} \equiv-\sum_{i=0}^{2 k-1} g^{5 t i} \equiv 0 \quad(\bmod p)
$$

because $2 k$ cannot divide t.
On the other hand, by the binomial theorem,

$$
\begin{aligned}
S(t) & =\sum_{i=0}^{2 k-1}\left(\sum_{j=0}^{5 k}\binom{5 k}{j} r^{5 k-j}\left(-g^{5 i}\right)^{j}\right) g^{5 t i}=\sum_{j=0}^{5 k}(-1)^{j}\binom{5 k}{j} r^{5 k-j}\left(\sum_{i=0}^{2 k-1} g^{5(j+t) i}\right) \equiv \\
& \equiv \sum_{j=0}^{5 k}(-1)^{j}\binom{5 k}{j} r^{5 k-j}\left\{\begin{array}{ll}
2 k & \text { if } 2 k \mid j+t \\
0 & \text { if } 2 k \nmid j+t
\end{array} \quad(\bmod p) .\right.
\end{aligned}
$$

Since $1 \leq j+t<6 k$, the number $2 k$ divides $j+t$ only for $j=2 k-t$ and $j=4 k-t$. Hence,

$$
\begin{gathered}
0 \equiv S(t) \equiv(-1)^{t}\left(\binom{5 k}{2 k-t} r^{3 k+t}+\binom{5 k}{4 k-t} r^{k+t}\right) \cdot 2 k \quad(\bmod p) \\
\binom{5 k}{2 k-t} r^{2 k}+\binom{5 k}{4 k-t} \equiv 0 \quad(\bmod p) .
\end{gathered}
$$

Taking this for $t=1,2$ and eliminating r, we get

$$
\begin{aligned}
0 & \equiv\binom{5 k}{2 k-2}\left(\binom{5 k}{2 k-1} r^{2 k}+\binom{5 k}{4 k-1}\right)-\binom{5 k}{2 k-1}\left(\binom{5 k}{2 k-2} r^{2 k}+\binom{5 k}{4 k-2}\right) \\
& =\binom{5 k}{2 k-2}\binom{5 k}{4 k-1}-\binom{5 k}{2 k-1}\binom{5 k}{4 k-2} \\
& =\frac{(5 k)!^{2}}{(2 k-1)!(3 k+2)!(4 k-1)!(k+2)!}((2 k-1)(k+2)-(3 k+2)(4 k-1)) \\
& =\frac{-(5 k)!^{2} \cdot 2 k(5 k+1)}{(2 k-1)!(3 k+2)!(4 k-1)!(k+2)!}(\bmod p) .
\end{aligned}
$$

But in the last expression none of the numbers is divisible by $p=10 k+1$, a contradiction.

Comment 1. The argument in the second solution is valid whenever $k \geq 3$, that is for all primes $p=10 k+1$ except $p=11$. This is an exceptional case when the statement is not true; $r=7$ cannot be expressed as desired.

Comment 2. The statement is true in a more general setting: for every positive integer n, for all sufficiently large p, each residue class modulo p can be expressed as $a^{2}+b^{n}$. Choosing $t=3$ would allow using the Cauchy-Davenport theorem (together with some analysis on the case of equality).

In the literature more general results are known. For instance, the statement easily follows from the Hasse-Weil bound.

Shortlisted Problems with Solutions

$54^{\text {th }}$ International Mathematical Olympiad
Santa Marta, Colombia 2013

Note of Confidentiality

The Shortlisted Problems should be kept strictly confidential until IMO 2014.

Contributing Countries

The Organizing Committee and the Problem Selection Committee of IMO 2013 thank the following 50 countries for contributing 149 problem proposals.

Argentina, Armenia, Australia, Austria, Belgium, Belarus, Brazil, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, El Salvador, Estonia, Finland, France, Georgia, Germany, Greece, Hungary, India, Indonesia, Iran, Ireland, Israel, Italy, Japan, Latvia, Lithuania, Luxembourg, Malaysia, Mexico, Netherlands, Nicaragua, Pakistan, Panama, Poland, Romania, Russia, Saudi Arabia, Serbia, Slovenia, Sweden, Switzerland, Tajikistan, Thailand, Turkey, U.S.A., Ukraine, United Kingdom

Problem Selection Committee

Federico Ardila (chairman)
Ilya I. Bogdanov
Géza Kós
Carlos Gustavo Tamm de Araújo Moreira (Gugu)
Christian Reiher

Problems

Algebra

A1. Let n be a positive integer and let a_{1}, \ldots, a_{n-1} be arbitrary real numbers. Define the sequences u_{0}, \ldots, u_{n} and v_{0}, \ldots, v_{n} inductively by $u_{0}=u_{1}=v_{0}=v_{1}=1$, and

$$
u_{k+1}=u_{k}+a_{k} u_{k-1}, \quad v_{k+1}=v_{k}+a_{n-k} v_{k-1} \quad \text { for } k=1, \ldots, n-1
$$

Prove that $u_{n}=v_{n}$.
(France)
A2. Prove that in any set of 2000 distinct real numbers there exist two pairs $a>b$ and $c>d$ with $a \neq c$ or $b \neq d$, such that

$$
\left|\frac{a-b}{c-d}-1\right|<\frac{1}{100000}
$$

(Lithuania)
A3. Let $\mathbb{Q}_{>0}$ be the set of positive rational numbers. Let $f: \mathbb{Q}_{>0} \rightarrow \mathbb{R}$ be a function satisfying the conditions

$$
f(x) f(y) \geqslant f(x y) \quad \text { and } \quad f(x+y) \geqslant f(x)+f(y)
$$

for all $x, y \in \mathbb{Q}_{>0}$. Given that $f(a)=a$ for some rational $a>1$, prove that $f(x)=x$ for all $x \in \mathbb{Q}_{>0}$.
(Bulgaria)
A4. Let n be a positive integer, and consider a sequence $a_{1}, a_{2}, \ldots, a_{n}$ of positive integers. Extend it periodically to an infinite sequence a_{1}, a_{2}, \ldots by defining $a_{n+i}=a_{i}$ for all $i \geqslant 1$. If

$$
a_{1} \leqslant a_{2} \leqslant \cdots \leqslant a_{n} \leqslant a_{1}+n
$$

and

$$
a_{a_{i}} \leqslant n+i-1 \quad \text { for } i=1,2, \ldots, n
$$

prove that

$$
a_{1}+\cdots+a_{n} \leqslant n^{2}
$$

(Germany)
A5. Let $\mathbb{Z}_{\geqslant 0}$ be the set of all nonnegative integers. Find all the functions $f: \mathbb{Z}_{\geqslant 0} \rightarrow \mathbb{Z}_{\geqslant 0}$ satisfying the relation

$$
f(f(f(n)))=f(n+1)+1
$$

for all $n \in \mathbb{Z}_{\geqslant 0}$.
(Serbia)
A6. Let $m \neq 0$ be an integer. Find all polynomials $P(x)$ with real coefficients such that

$$
\left(x^{3}-m x^{2}+1\right) P(x+1)+\left(x^{3}+m x^{2}+1\right) P(x-1)=2\left(x^{3}-m x+1\right) P(x)
$$

for all real numbers x.

Combinatorics

C1. Let n be a positive integer. Find the smallest integer k with the following property: Given any real numbers a_{1}, \ldots, a_{d} such that $a_{1}+a_{2}+\cdots+a_{d}=n$ and $0 \leqslant a_{i} \leqslant 1$ for $i=1,2, \ldots, d$, it is possible to partition these numbers into k groups (some of which may be empty) such that the sum of the numbers in each group is at most 1.
(Poland)
C2. In the plane, 2013 red points and 2014 blue points are marked so that no three of the marked points are collinear. One needs to draw k lines not passing through the marked points and dividing the plane into several regions. The goal is to do it in such a way that no region contains points of both colors.

Find the minimal value of k such that the goal is attainable for every possible configuration of 4027 points.
(Australia)
C3. A crazy physicist discovered a new kind of particle which he called an imon, after some of them mysteriously appeared in his lab. Some pairs of imons in the lab can be entangled, and each imon can participate in many entanglement relations. The physicist has found a way to perform the following two kinds of operations with these particles, one operation at a time.
(i) If some imon is entangled with an odd number of other imons in the lab, then the physicist can destroy it.
(ii) At any moment, he may double the whole family of imons in his lab by creating a copy I^{\prime} of each imon I. During this procedure, the two copies I^{\prime} and J^{\prime} become entangled if and only if the original imons I and J are entangled, and each copy I^{\prime} becomes entangled with its original imon I; no other entanglements occur or disappear at this moment.

Prove that the physicist may apply a sequence of such operations resulting in a family of imons, no two of which are entangled.
(Japan)
C4. Let n be a positive integer, and let A be a subset of $\{1, \ldots, n\}$. An A-partition of n into k parts is a representation of n as a sum $n=a_{1}+\cdots+a_{k}$, where the parts a_{1}, \ldots, a_{k} belong to A and are not necessarily distinct. The number of different parts in such a partition is the number of (distinct) elements in the set $\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$.

We say that an A-partition of n into k parts is optimal if there is no A-partition of n into r parts with $r<k$. Prove that any optimal A-partition of n contains at most $\sqrt[3]{6 n}$ different parts.
(Germany)
C5. Let r be a positive integer, and let a_{0}, a_{1}, \ldots be an infinite sequence of real numbers. Assume that for all nonnegative integers m and s there exists a positive integer $n \in[m+1, m+r]$ such that

$$
a_{m}+a_{m+1}+\cdots+a_{m+s}=a_{n}+a_{n+1}+\cdots+a_{n+s}
$$

Prove that the sequence is periodic, i. e. there exists some $p \geqslant 1$ such that $a_{n+p}=a_{n}$ for all $n \geqslant 0$.

C6. In some country several pairs of cities are connected by direct two-way flights. It is possible to go from any city to any other by a sequence of flights. The distance between two cities is defined to be the least possible number of flights required to go from one of them to the other. It is known that for any city there are at most 100 cities at distance exactly three from it. Prove that there is no city such that more than 2550 other cities have distance exactly four from it.
(Russia)
C7. Let $n \geqslant 2$ be an integer. Consider all circular arrangements of the numbers $0,1, \ldots, n$; the $n+1$ rotations of an arrangement are considered to be equal. A circular arrangement is called beautiful if, for any four distinct numbers $0 \leqslant a, b, c, d \leqslant n$ with $a+c=b+d$, the chord joining numbers a and c does not intersect the chord joining numbers b and d.

Let M be the number of beautiful arrangements of $0,1, \ldots, n$. Let N be the number of pairs (x, y) of positive integers such that $x+y \leqslant n$ and $\operatorname{gcd}(x, y)=1$. Prove that

$$
M=N+1 .
$$

(Russia)
C8. Players A and B play a paintful game on the real line. Player A has a pot of paint with four units of black ink. A quantity p of this ink suffices to blacken a (closed) real interval of length p. In every round, player A picks some positive integer m and provides $1 / 2^{m}$ units of ink from the pot. Player B then picks an integer k and blackens the interval from $k / 2^{m}$ to $(k+1) / 2^{m}$ (some parts of this interval may have been blackened before). The goal of player A is to reach a situation where the pot is empty and the interval $[0,1]$ is not completely blackened.

Decide whether there exists a strategy for player A to win in a finite number of moves.
(Austria)

Geometry

G1. Let $A B C$ be an acute-angled triangle with orthocenter H, and let W be a point on side $B C$. Denote by M and N the feet of the altitudes from B and C, respectively. Denote by ω_{1} the circumcircle of $B W N$, and let X be the point on ω_{1} which is diametrically opposite to W. Analogously, denote by ω_{2} the circumcircle of $C W M$, and let Y be the point on ω_{2} which is diametrically opposite to W. Prove that X, Y and H are collinear.
(Thaliand)
G2. Let ω be the circumcircle of a triangle $A B C$. Denote by M and N the midpoints of the sides $A B$ and $A C$, respectively, and denote by T the midpoint of the arc $B C$ of ω not containing A. The circumcircles of the triangles $A M T$ and $A N T$ intersect the perpendicular bisectors of $A C$ and $A B$ at points X and Y, respectively; assume that X and Y lie inside the triangle $A B C$. The lines $M N$ and $X Y$ intersect at K. Prove that $K A=K T$.

> (Iran)

G3. In a triangle $A B C$, let D and E be the feet of the angle bisectors of angles A and B, respectively. A rhombus is inscribed into the quadrilateral $A E D B$ (all vertices of the rhombus lie on different sides of $A E D B$). Let φ be the non-obtuse angle of the rhombus. Prove that $\varphi \leqslant \max \{\angle B A C, \angle A B C\}$.

(Serbia)

G4. Let $A B C$ be a triangle with $\angle B>\angle C$. Let P and Q be two different points on line $A C$ such that $\angle P B A=\angle Q B A=\angle A C B$ and A is located between P and C. Suppose that there exists an interior point D of segment $B Q$ for which $P D=P B$. Let the ray $A D$ intersect the circle $A B C$ at $R \neq A$. Prove that $Q B=Q R$.
(Georgia)
G5. Let $A B C D E F$ be a convex hexagon with $A B=D E, B C=E F, C D=F A$, and $\angle A-\angle D=\angle C-\angle F=\angle E-\angle B$. Prove that the diagonals $A D, B E$, and $C F$ are concurrent.
(Ukraine)
G6. Let the excircle of the triangle $A B C$ lying opposite to A touch its side $B C$ at the point A_{1}. Define the points B_{1} and C_{1} analogously. Suppose that the circumcentre of the triangle $A_{1} B_{1} C_{1}$ lies on the circumcircle of the triangle $A B C$. Prove that the triangle $A B C$ is right-angled.

Number Theory

N1. Let $\mathbb{Z}_{>0}$ be the set of positive integers. Find all functions $f: \mathbb{Z}_{>0} \rightarrow \mathbb{Z}_{>0}$ such that

$$
m^{2}+f(n) \mid m f(m)+n
$$

for all positive integers m and n.
(Malaysia)
N2. Prove that for any pair of positive integers k and n there exist k positive integers $m_{1}, m_{2}, \ldots, m_{k}$ such that

$$
1+\frac{2^{k}-1}{n}=\left(1+\frac{1}{m_{1}}\right)\left(1+\frac{1}{m_{2}}\right) \cdots\left(1+\frac{1}{m_{k}}\right) .
$$

(Japan)
N3. Prove that there exist infinitely many positive integers n such that the largest prime divisor of $n^{4}+n^{2}+1$ is equal to the largest prime divisor of $(n+1)^{4}+(n+1)^{2}+1$.
(Belgium)
N4. Determine whether there exists an infinite sequence of nonzero digits $a_{1}, a_{2}, a_{3}, \ldots$ and a positive integer N such that for every integer $k>N$, the number $\overline{a_{k} a_{k-1} \ldots a_{1}}$ is a perfect square.
(Iran)
N5. Fix an integer $k \geqslant 2$. Two players, called Ana and Banana, play the following game of numbers: Initially, some integer $n \geqslant k$ gets written on the blackboard. Then they take moves in turn, with Ana beginning. A player making a move erases the number m just written on the blackboard and replaces it by some number m^{\prime} with $k \leqslant m^{\prime}<m$ that is coprime to m. The first player who cannot move anymore loses.

An integer $n \geqslant k$ is called good if Banana has a winning strategy when the initial number is n, and bad otherwise.

Consider two integers $n, n^{\prime} \geqslant k$ with the property that each prime number $p \leqslant k$ divides n if and only if it divides n^{\prime}. Prove that either both n and n^{\prime} are good or both are bad.
(Italy)
N6. Determine all functions $f: \mathbb{Q} \longrightarrow \mathbb{Z}$ satisfying

$$
f\left(\frac{f(x)+a}{b}\right)=f\left(\frac{x+a}{b}\right)
$$

for all $x \in \mathbb{Q}, a \in \mathbb{Z}$, and $b \in \mathbb{Z}_{>0}$. (Here, $\mathbb{Z}_{>0}$ denotes the set of positive integers.)

N7. Let ν be an irrational positive number, and let m be a positive integer. A pair (a, b) of positive integers is called good if

$$
a\lceil b \nu\rceil-b\lfloor a \nu\rfloor=m .
$$

A good pair (a, b) is called excellent if neither of the pairs $(a-b, b)$ and $(a, b-a)$ is good. (As usual, by $\lfloor x\rfloor$ and $\lceil x\rceil$ we denote the integer numbers such that $x-1<\lfloor x\rfloor \leqslant x$ and $x \leqslant\lceil x\rceil<x+1$.)

Prove that the number of excellent pairs is equal to the sum of the positive divisors of m.
(U.S.A.)

Solutions

Algebra

A1. Let n be a positive integer and let a_{1}, \ldots, a_{n-1} be arbitrary real numbers. Define the sequences u_{0}, \ldots, u_{n} and v_{0}, \ldots, v_{n} inductively by $u_{0}=u_{1}=v_{0}=v_{1}=1$, and

$$
u_{k+1}=u_{k}+a_{k} u_{k-1}, \quad v_{k+1}=v_{k}+a_{n-k} v_{k-1} \quad \text { for } k=1, \ldots, n-1
$$

Prove that $u_{n}=v_{n}$.
(France)
Solution 1. We prove by induction on k that

$$
\begin{equation*}
u_{k}=\sum_{\substack{0<i_{1}<\ldots<i_{t}<k \\ i_{j+1}-i_{j} \geqslant 2}} a_{i_{1}} \ldots a_{i_{t}} \tag{1}
\end{equation*}
$$

Note that we have one trivial summand equal to 1 (which corresponds to $t=0$ and the empty sequence, whose product is 1).

For $k=0,1$ the sum on the right-hand side only contains the empty product, so (1) holds due to $u_{0}=u_{1}=1$. For $k \geqslant 1$, assuming the result is true for $0,1, \ldots, k$, we have

$$
\begin{aligned}
& u_{k+1}=\sum_{\substack{0<i_{1}<\ldots<i_{t}<k, i_{j}+1-i_{j} \geqslant 2}} a_{i_{1}} \ldots a_{i_{t}}+\sum_{\substack{0<i_{1}<\ldots<i_{t}<k-1, i_{j}+1-i_{j} \geqslant 2}} a_{i_{1}} \ldots a_{i_{t}} \cdot a_{k} \\
& =\sum_{\substack{0<i_{1}<\ldots<i_{t}<k+1, i_{j+1}+1-i_{j} \geqslant 2, k \notin\left\{i_{1}, \ldots, i_{t}\right\}}} a_{i_{1}} \ldots a_{i_{t}}+\sum_{\substack{0<i_{1}<\ldots<i_{t}<k+1, i_{j}+1-i_{j} \geqslant 2, k \in\left\{i_{1}, \ldots, i_{t}\right\}}} a_{i_{1}} \ldots a_{i_{t}} \\
& =\sum_{\substack{0<i_{1}<\ldots<i_{t}<k+1, i_{j+1}-i_{j} \geqslant 2}} a_{i_{1}} \ldots a_{i_{t}},
\end{aligned}
$$

as required.
Applying (1) to the sequence b_{1}, \ldots, b_{n} given by $b_{k}=a_{n-k}$ for $1 \leqslant k \leqslant n$, we get

$$
\begin{equation*}
v_{k}=\sum_{\substack{0<i_{1}<\ldots<i_{t}<k, i_{j+1}-i_{j} \geqslant 2}} b_{i_{1}} \ldots b_{i_{t}}=\sum_{\substack{n>i_{1}>\ldots>i_{t}>n-k, i_{j}-i_{j+1} \geqslant 2}} a_{i_{1}} \ldots a_{i_{t}} . \tag{2}
\end{equation*}
$$

For $k=n$ the expressions (1) and (2) coincide, so indeed $u_{n}=v_{n}$.
Solution 2. Define recursively a sequence of multivariate polynomials by

$$
P_{0}=P_{1}=1, \quad P_{k+1}\left(x_{1}, \ldots, x_{k}\right)=P_{k}\left(x_{1}, \ldots, x_{k-1}\right)+x_{k} P_{k-1}\left(x_{1}, \ldots, x_{k-2}\right)
$$

so P_{n} is a polynomial in $n-1$ variables for each $n \geqslant 1$. Two easy inductive arguments show that

$$
u_{n}=P_{n}\left(a_{1}, \ldots, a_{n-1}\right), \quad v_{n}=P_{n}\left(a_{n-1}, \ldots, a_{1}\right)
$$

so we need to prove $P_{n}\left(x_{1}, \ldots, x_{n-1}\right)=P_{n}\left(x_{n-1}, \ldots, x_{1}\right)$ for every positive integer n. The cases $n=1,2$ are trivial, and the cases $n=3,4$ follow from $P_{3}(x, y)=1+x+y$ and $P_{4}(x, y, z)=$ $1+x+y+z+x z$.

Now we proceed by induction, assuming that $n \geqslant 5$ and the claim hold for all smaller cases. Using $F(a, b)$ as an abbreviation for $P_{|a-b|+1}\left(x_{a}, \ldots, x_{b}\right)$ (where the indices a, \ldots, b can be either in increasing or decreasing order),

$$
\begin{aligned}
F(n, 1) & =F(n, 2)+x_{1} F(n, 3)=F(2, n)+x_{1} F(3, n) \\
& =\left(F(2, n-1)+x_{n} F(2, n-2)\right)+x_{1}\left(F(3, n-1)+x_{n} F(3, n-2)\right) \\
& =\left(F(n-1,2)+x_{1} F(n-1,3)\right)+x_{n}\left(F(n-2,2)+x_{1} F(n-2,3)\right) \\
& =F(n-1,1)+x_{n} F(n-2,1)=F(1, n-1)+x_{n} F(1, n-2) \\
& =F(1, n),
\end{aligned}
$$

as we wished to show.
Solution 3. Using matrix notation, we can rewrite the recurrence relation as

$$
\binom{u_{k+1}}{u_{k+1}-u_{k}}=\binom{u_{k}+a_{k} u_{k-1}}{a_{k} u_{k-1}}=\left(\begin{array}{cc}
1+a_{k} & -a_{k} \\
a_{k} & -a_{k}
\end{array}\right)\binom{u_{k}}{u_{k}-u_{k-1}}
$$

for $1 \leqslant k \leqslant n-1$, and similarly

$$
\left(v_{k+1} ; v_{k}-v_{k+1}\right)=\left(v_{k}+a_{n-k} v_{k-1} ;-a_{n-k} v_{k-1}\right)=\left(v_{k} ; v_{k-1}-v_{k}\right)\left(\begin{array}{cc}
1+a_{n-k} & -a_{n-k} \\
a_{n-k} & -a_{n-k}
\end{array}\right)
$$

for $1 \leqslant k \leqslant n-1$. Hence, introducing the 2×2 matrices $A_{k}=\left(\begin{array}{cc}1+a_{k} & -a_{k} \\ a_{k} & -a_{k}\end{array}\right)$ we have

$$
\binom{u_{k+1}}{u_{k+1}-u_{k}}=A_{k}\binom{u_{k}}{u_{k}-u_{k-1}} \quad \text { and } \quad\left(v_{k+1} ; v_{k}-v_{k+1}\right)=\left(v_{k} ; v_{k-1}-v_{k}\right) A_{n-k} .
$$

for $1 \leqslant k \leqslant n-1$. Since $\binom{u_{1}}{u_{1}-u_{0}}=\binom{1}{0}$ and $\left(v_{1} ; v_{0}-v_{1}\right)=(1 ; 0)$, we get

$$
\binom{u_{n}}{u_{n}-u_{n-1}}=A_{n-1} A_{n-2} \cdots A_{1} \cdot\binom{1}{0} \quad \text { and } \quad\left(v_{n} ; v_{n-1}-v_{n}\right)=(1 ; 0) \cdot A_{n-1} A_{n-2} \cdots A_{1} .
$$

It follows that

$$
\left(u_{n}\right)=(1 ; 0)\binom{u_{n}}{u_{n}-u_{n-1}}=(1 ; 0) \cdot A_{n-1} A_{n-2} \cdots A_{1} \cdot\binom{1}{0}=\left(v_{n} ; v_{n-1}-v_{n}\right)\binom{1}{0}=\left(v_{n}\right) .
$$

Comment 1. These sequences are related to the Fibonacci sequence; when $a_{1}=\cdots=a_{n-1}=1$, we have $u_{k}=v_{k}=F_{k+1}$, the $(k+1)$ st Fibonacci number. Also, for every positive integer k, the polynomial $P_{k}\left(x_{1}, \ldots, x_{k-1}\right)$ from Solution 2 is the sum of F_{k+1} monomials.

Comment 2. One may notice that the condition is equivalent to

$$
\frac{u_{k+1}}{u_{k}}=1+\frac{a_{k}}{1+\frac{a_{k-1}}{1+\ldots+\frac{a_{2}}{1+a_{1}}}} \quad \text { and } \quad \frac{v_{k+1}}{v_{k}}=1+\frac{a_{n-k}}{1+\frac{a_{n-k+1}}{1+\ldots+\frac{a_{n-2}}{1+a_{n-1}}}}
$$

so the problem claims that the corresponding continued fractions for u_{n} / u_{n-1} and v_{n} / v_{n-1} have the same numerator.

Comment 3. An alternative variant of the problem is the following.
Let n be a positive integer and let a_{1}, \ldots, a_{n-1} be arbitrary real numbers. Define the sequences u_{0}, \ldots, u_{n} and v_{0}, \ldots, v_{n} inductively by $u_{0}=v_{0}=0, u_{1}=v_{1}=1$, and

$$
u_{k+1}=a_{k} u_{k}+u_{k-1}, \quad v_{k+1}=a_{n-k} v_{k}+v_{k-1} \quad \text { for } k=1, \ldots, n-1 .
$$

Prove that $u_{n}=v_{n}$.
All three solutions above can be reformulated to prove this statement; one may prove

$$
u_{n}=v_{n}=\sum_{\substack{0=i_{0}<i_{1}<\ldots<i_{t}=n, i_{j+1}-i_{j} \text { is odd }}} a_{i_{1}} \ldots a_{i_{t-1}} \quad \text { for } n>0
$$

or observe that

$$
\binom{u_{k+1}}{u_{k}}=\left(\begin{array}{cc}
a_{k} & 1 \\
1 & 0
\end{array}\right)\binom{u_{k}}{u_{k-1}} \quad \text { and } \quad\left(v_{k+1} ; v_{k}\right)=\left(v_{k} ; v_{k-1}\right)\left(\begin{array}{cc}
a_{k} & 1 \\
1 & 0
\end{array}\right) .
$$

Here we have

$$
\frac{u_{k+1}}{u_{k}}=a_{k}+\frac{1}{a_{k-1}+\frac{1}{a_{k-2}+\ldots+\frac{1}{a_{1}}}}=\left[a_{k} ; a_{k-1}, \ldots, a_{1}\right]
$$

and

$$
\frac{v_{k+1}}{v_{k}}=a_{n-k}+\frac{1}{a_{n-k+1}+\frac{1}{a_{n-k+2}+\ldots+\frac{1}{a_{n-1}}}}=\left[a_{n-k} ; a_{n-k+1}, \ldots, a_{n-1}\right],
$$

so this alternative statement is equivalent to the known fact that the continued fractions $\left[a_{n-1} ; a_{n-2}, \ldots, a_{1}\right]$ and $\left[a_{1} ; a_{2}, \ldots, a_{n-1}\right]$ have the same numerator.

A2. Prove that in any set of 2000 distinct real numbers there exist two pairs $a>b$ and $c>d$ with $a \neq c$ or $b \neq d$, such that

$$
\left|\frac{a-b}{c-d}-1\right|<\frac{1}{100000}
$$

(Lithuania)
Solution. For any set S of $n=2000$ distinct real numbers, let $D_{1} \leqslant D_{2} \leqslant \cdots \leqslant D_{m}$ be the distances between them, displayed with their multiplicities. Here $m=n(n-1) / 2$. By rescaling the numbers, we may assume that the smallest distance D_{1} between two elements of S is $D_{1}=1$. Let $D_{1}=1=y-x$ for $x, y \in S$. Evidently $D_{m}=v-u$ is the difference between the largest element v and the smallest element u of S.

If $D_{i+1} / D_{i}<1+10^{-5}$ for some $i=1,2, \ldots, m-1$ then the required inequality holds, because $0 \leqslant D_{i+1} / D_{i}-1<10^{-5}$. Otherwise, the reverse inequality

$$
\frac{D_{i+1}}{D_{i}} \geqslant 1+\frac{1}{10^{5}}
$$

holds for each $i=1,2, \ldots, m-1$, and therefore

$$
v-u=D_{m}=\frac{D_{m}}{D_{1}}=\frac{D_{m}}{D_{m-1}} \cdots \frac{D_{3}}{D_{2}} \cdot \frac{D_{2}}{D_{1}} \geqslant\left(1+\frac{1}{10^{5}}\right)^{m-1} .
$$

From $m-1=n(n-1) / 2-1=1000 \cdot 1999-1>19 \cdot 10^{5}$, together with the fact that for all $n \geqslant 1$, $\left(1+\frac{1}{n}\right)^{n} \geqslant 1+\binom{n}{1} \cdot \frac{1}{n}=2$, we get

$$
\left(1+\frac{1}{10^{5}}\right)^{19 \cdot 10^{5}}=\left(\left(1+\frac{1}{10^{5}}\right)^{10^{5}}\right)^{19} \geqslant 2^{19}=2^{9} \cdot 2^{10}>500 \cdot 1000>2 \cdot 10^{5}
$$

and so $v-u=D_{m}>2 \cdot 10^{5}$.
Since the distance of x to at least one of the numbers u, v is at least $(u-v) / 2>10^{5}$, we have

$$
|x-z|>10^{5} .
$$

for some $z \in\{u, v\}$. Since $y-x=1$, we have either $z>y>x$ (if $z=v$) or $y>x>z$ (if $z=u$). If $z>y>x$, selecting $a=z, b=y, c=z$ and $d=x$ (so that $b \neq d$), we obtain

$$
\left|\frac{a-b}{c-d}-1\right|=\left|\frac{z-y}{z-x}-1\right|=\left|\frac{x-y}{z-x}\right|=\frac{1}{z-x}<10^{-5} .
$$

Otherwise, if $y>x>z$, we may choose $a=y, b=z, c=x$ and $d=z$ (so that $a \neq c$), and obtain

$$
\left|\frac{a-b}{c-d}-1\right|=\left|\frac{y-z}{x-z}-1\right|=\left|\frac{y-x}{x-z}\right|=\frac{1}{x-z}<10^{-5} .
$$

The desired result follows.
Comment. As the solution shows, the numbers 2000 and $\frac{1}{100000}$ appearing in the statement of the problem may be replaced by any $n \in \mathbb{Z}_{>0}$ and $\delta>0$ satisfying

$$
\delta(1+\delta)^{n(n-1) / 2-1}>2 .
$$

A3. Let $\mathbb{Q}_{>0}$ be the set of positive rational numbers. Let $f: \mathbb{Q}_{>0} \rightarrow \mathbb{R}$ be a function satisfying the conditions

$$
\begin{align*}
& f(x) f(y) \geqslant f(x y) \tag{1}\\
& f(x+y) \geqslant f(x)+f(y) \tag{2}
\end{align*}
$$

for all $x, y \in \mathbb{Q}_{>0}$. Given that $f(a)=a$ for some rational $a>1$, prove that $f(x)=x$ for all $x \in \mathbb{Q}_{>0}$.
(Bulgaria)
Solution. Denote by $\mathbb{Z}_{>0}$ the set of positive integers.
Plugging $x=1, y=a$ into (1) we get $f(1) \geqslant 1$. Next, by an easy induction on n we get from (2) that

$$
\begin{equation*}
f(n x) \geqslant n f(x) \text { for all } n \in \mathbb{Z}_{>0} \text { and } x \in \mathbb{Q}_{>0} \tag{3}
\end{equation*}
$$

In particular, we have

$$
\begin{equation*}
f(n) \geqslant n f(1) \geqslant n \quad \text { for all } n \in \mathbb{Z}_{>0} \tag{4}
\end{equation*}
$$

From (1) again we have $f(m / n) f(n) \geqslant f(m)$, so $f(q)>0$ for all $q \in \mathbb{Q}_{>0}$.
Now, (2) implies that f is strictly increasing; this fact together with (4) yields

$$
f(x) \geqslant f(\lfloor x\rfloor) \geqslant\lfloor x\rfloor>x-1 \quad \text { for all } x \geqslant 1
$$

By an easy induction we get from (1) that $f(x)^{n} \geqslant f\left(x^{n}\right)$, so

$$
f(x)^{n} \geqslant f\left(x^{n}\right)>x^{n}-1 \quad \Longrightarrow \quad f(x) \geqslant \sqrt[n]{x^{n}-1} \quad \text { for all } x>1 \text { and } n \in \mathbb{Z}_{>0}
$$

This yields

$$
\begin{equation*}
f(x) \geqslant x \quad \text { for every } x>1 \tag{5}
\end{equation*}
$$

(Indeed, if $x>y>1$ then $x^{n}-y^{n}=(x-y)\left(x^{n-1}+x^{n-2} y+\cdots+y^{n}\right)>n(x-y)$, so for a large n we have $x^{n}-1>y^{n}$ and thus $f(x)>y$.)

Now, (1) and (5) give $a^{n}=f(a)^{n} \geqslant f\left(a^{n}\right) \geqslant a^{n}$, so $f\left(a^{n}\right)=a^{n}$. Now, for $x>1$ let us choose $n \in \mathbb{Z}_{>0}$ such that $a^{n}-x>1$. Then by (2) and (5) we get

$$
a^{n}=f\left(a^{n}\right) \geqslant f(x)+f\left(a^{n}-x\right) \geqslant x+\left(a^{n}-x\right)=a^{n}
$$

and therefore $f(x)=x$ for $x>1$. Finally, for every $x \in \mathbb{Q}_{>0}$ and every $n \in \mathbb{Z}_{>0}$, from (1) and (3) we get

$$
n f(x)=f(n) f(x) \geqslant f(n x) \geqslant n f(x)
$$

which gives $f(n x)=n f(x)$. Therefore $f(m / n)=f(m) / n=m / n$ for all $m, n \in \mathbb{Z}_{>0}$.
Comment. The condition $f(a)=a>1$ is essential. Indeed, for $b \geqslant 1$ the function $f(x)=b x^{2}$ satisfies (1) and (2) for all $x, y \in \mathbb{Q}_{>0}$, and it has a unique fixed point $1 / b \leqslant 1$.

A4. Let n be a positive integer, and consider a sequence $a_{1}, a_{2}, \ldots, a_{n}$ of positive integers. Extend it periodically to an infinite sequence a_{1}, a_{2}, \ldots by defining $a_{n+i}=a_{i}$ for all $i \geqslant 1$. If

$$
\begin{equation*}
a_{1} \leqslant a_{2} \leqslant \cdots \leqslant a_{n} \leqslant a_{1}+n \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
a_{a_{i}} \leqslant n+i-1 \quad \text { for } i=1,2, \ldots, n, \tag{2}
\end{equation*}
$$

prove that

$$
a_{1}+\cdots+a_{n} \leqslant n^{2} .
$$

Solution 1. First, we claim that

$$
\begin{equation*}
a_{i} \leqslant n+i-1 \quad \text { for } i=1,2, \ldots, n \text {. } \tag{3}
\end{equation*}
$$

Assume contrariwise that i is the smallest counterexample. From $a_{n} \geqslant a_{n-1} \geqslant \cdots \geqslant a_{i} \geqslant n+i$ and $a_{a_{i}} \leqslant n+i-1$, taking into account the periodicity of our sequence, it follows that

$$
\begin{equation*}
a_{i} \text { cannot be congruent to } i, i+1, \ldots, n-1, \text { or } n \quad(\bmod n) \text {. } \tag{4}
\end{equation*}
$$

Thus our assumption that $a_{i} \geqslant n+i$ implies the stronger statement that $a_{i} \geqslant 2 n+1$, which by $a_{1}+n \geqslant a_{n} \geqslant a_{i}$ gives $a_{1} \geqslant n+1$. The minimality of i then yields $i=1$, and (4) becomes contradictory. This establishes our first claim.

In particular we now know that $a_{1} \leqslant n$. If $a_{n} \leqslant n$, then $a_{1} \leqslant \cdots \leqslant \cdots a_{n} \leqslant n$ and the desired inequality holds trivially. Otherwise, consider the number t with $1 \leqslant t \leqslant n-1$ such that

$$
\begin{equation*}
a_{1} \leqslant a_{2} \leqslant \ldots \leqslant a_{t} \leqslant n<a_{t+1} \leqslant \ldots \leqslant a_{n} . \tag{5}
\end{equation*}
$$

Since $1 \leqslant a_{1} \leqslant n$ and $a_{a_{1}} \leqslant n$ by (2), we have $a_{1} \leqslant t$ and hence $a_{n} \leqslant n+t$. Therefore if for each positive integer i we let b_{i} be the number of indices $j \in\{t+1, \ldots, n\}$ satisfying $a_{j} \geqslant n+i$, we have

$$
b_{1} \geqslant b_{2} \geqslant \ldots \geqslant b_{t} \geqslant b_{t+1}=0 .
$$

Next we claim that $a_{i}+b_{i} \leqslant n$ for $1 \leqslant i \leqslant t$. Indeed, by $n+i-1 \geqslant a_{a_{i}}$ and $a_{i} \leqslant n$, each j with $a_{j} \geqslant n+i$ (thus $a_{j}>a_{a_{i}}$) belongs to $\left\{a_{i}+1, \ldots, n\right\}$, and for this reason $b_{i} \leqslant n-a_{i}$.

It follows from the definition of the $b_{i} \mathrm{~s}$ and (5) that

$$
a_{t+1}+\ldots+a_{n} \leqslant n(n-t)+b_{1}+\ldots+b_{t} .
$$

Adding $a_{1}+\ldots+a_{t}$ to both sides and using that $a_{i}+b_{i} \leqslant n$ for $1 \leqslant i \leqslant t$, we get

$$
a_{1}+a_{2}+\cdots+a_{n} \leqslant n(n-t)+n t=n^{2}
$$

as we wished to prove.

Solution 2. In the first quadrant of an infinite grid, consider the increasing "staircase" obtained by shading in dark the bottom a_{i} cells of the i th column for $1 \leqslant i \leqslant n$. We will prove that there are at most n^{2} dark cells.

To do it, consider the $n \times n$ square S in the first quadrant with a vertex at the origin. Also consider the $n \times n$ square directly to the left of S. Starting from its lower left corner, shade in light the leftmost a_{j} cells of the j th row for $1 \leqslant j \leqslant n$. Equivalently, the light shading is obtained by reflecting the dark shading across the line $x=y$ and translating it n units to the left. The figure below illustrates this construction for the sequence $6,6,6,7,7,7,8,12,12,14$.

We claim that there is no cell in S which is both dark and light. Assume, contrariwise, that there is such a cell in column i. Consider the highest dark cell in column i which is inside S. Since it is above a light cell and inside S, it must be light as well. There are two cases:

Case 1. $a_{i} \leqslant n$
If $a_{i} \leqslant n$ then this dark and light cell is $\left(i, a_{i}\right)$, as highlighted in the figure. However, this is the ($n+i$)-th cell in row a_{i}, and we only shaded $a_{a_{i}}<n+i$ light cells in that row, a contradiction.

Case 2. $a_{i} \geqslant n+1$
If $a_{i} \geqslant n+1$, this dark and light cell is (i, n). This is the $(n+i)$-th cell in row n and we shaded $a_{n} \leqslant a_{1}+n$ light cells in this row, so we must have $i \leqslant a_{1}$. But $a_{1} \leqslant a_{a_{1}} \leqslant n$ by (1) and (2), so $i \leqslant a_{1}$ implies $a_{i} \leqslant a_{a_{1}} \leqslant n$, contradicting our assumption.

We conclude that there are no cells in S which are both dark and light. It follows that the number of shaded cells in S is at most n^{2}.

Finally, observe that if we had a light cell to the right of S, then by symmetry we would have a dark cell above S, and then the cell (n, n) would be dark and light. It follows that the number of light cells in S equals the number of dark cells outside of S, and therefore the number of shaded cells in S equals $a_{1}+\cdots+a_{n}$. The desired result follows.

Solution 3. As in Solution 1, we first establish that $a_{i} \leqslant n+i-1$ for $1 \leqslant i \leqslant n$. Now define $c_{i}=\max \left(a_{i}, i\right)$ for $1 \leqslant i \leqslant n$ and extend the sequence c_{1}, c_{2}, \ldots periodically modulo n. We claim that this sequence also satisfies the conditions of the problem.

For $1 \leqslant i<j \leqslant n$ we have $a_{i} \leqslant a_{j}$ and $i<j$, so $c_{i} \leqslant c_{j}$. Also $a_{n} \leqslant a_{1}+n$ and $n<1+n$ imply $c_{n} \leqslant c_{1}+n$. Finally, the definitions imply that $c_{c_{i}} \in\left\{a_{a_{i}}, a_{i}, a_{i}-n, i\right\}$ so $c_{c_{i}} \leqslant n+i-1$ by (2) and (3). This establishes (1) and (2) for c_{1}, c_{2}, \ldots.

Our new sequence has the additional property that

$$
\begin{equation*}
c_{i} \geqslant i \quad \text { for } i=1,2, \ldots, n \tag{6}
\end{equation*}
$$

which allows us to construct the following visualization: Consider n equally spaced points on a circle, sequentially labelled $1,2, \ldots, n(\bmod n)$, so point k is also labelled $n+k$. We draw arrows from vertex i to vertices $i+1, \ldots, c_{i}$ for $1 \leqslant i \leqslant n$, keeping in mind that $c_{i} \geqslant i$ by (6). Since $c_{i} \leqslant n+i-1$ by (3), no arrow will be drawn twice, and there is no arrow from a vertex to itself. The total number of arrows is

$$
\text { number of arrows }=\sum_{i=1}^{n}\left(c_{i}-i\right)=\sum_{i=1}^{n} c_{i}-\binom{n+1}{2}
$$

Now we show that we never draw both arrows $i \rightarrow j$ and $j \rightarrow i$ for $1 \leqslant i<j \leqslant n$. Assume contrariwise. This means, respectively, that

$$
i<j \leqslant c_{i} \quad \text { and } \quad j<n+i \leqslant c_{j}
$$

We have $n+i \leqslant c_{j} \leqslant c_{1}+n$ by (1), so $i \leqslant c_{1}$. Since $c_{1} \leqslant n$ by (3), this implies that $c_{i} \leqslant c_{c_{1}} \leqslant n$ using (1) and (3). But then, using (1) again, $j \leqslant c_{i} \leqslant n$ implies $c_{j} \leqslant c_{c_{i}}$, which combined with $n+i \leqslant c_{j}$ gives us that $n+i \leqslant c_{c_{i}}$. This contradicts (2).

This means that the number of arrows is at most $\binom{n}{2}$, which implies that

$$
\sum_{i=1}^{n} c_{i} \leqslant\binom{ n}{2}+\binom{n+1}{2}=n^{2}
$$

Recalling that $a_{i} \leqslant c_{i}$ for $1 \leqslant i \leqslant n$, the desired inequality follows.

Comment 1. We sketch an alternative proof by induction. Begin by verifying the initial case $n=1$ and the simple cases when $a_{1}=1, a_{1}=n$, or $a_{n} \leqslant n$. Then, as in Solution 1, consider the index t such that $a_{1} \leqslant \cdots \leqslant a_{t} \leqslant n<a_{t+1} \leqslant \cdots \leqslant a_{n}$. Observe again that $a_{1} \leqslant t$. Define the sequence d_{1}, \ldots, d_{n-1} by

$$
d_{i}= \begin{cases}a_{i+1}-1 & \text { if } i \leqslant t-1 \\ a_{i+1}-2 & \text { if } i \geqslant t\end{cases}
$$

and extend it periodically modulo $n-1$. One may verify that this sequence also satisfies the hypotheses of the problem. The induction hypothesis then gives $d_{1}+\cdots+d_{n-1} \leqslant(n-1)^{2}$, which implies that

$$
\sum_{i=1}^{n} a_{i}=a_{1}+\sum_{i=2}^{t}\left(d_{i-1}+1\right)+\sum_{i=t+1}^{n}\left(d_{i-1}+2\right) \leqslant t+(t-1)+2(n-t)+(n-1)^{2}=n^{2}
$$

Comment 2. One unusual feature of this problem is that there are many different sequences for which equality holds. The discovery of such optimal sequences is not difficult, and it is useful in guiding the steps of a proof.

In fact, Solution 2 gives a complete description of the optimal sequences. Start with any lattice path P from the lower left to the upper right corner of the $n \times n$ square S using only steps up and right, such that the total number of steps along the left and top edges of S is at least n. Shade the cells of S below P dark, and the cells of S above P light. Now reflect the light shape across the line $x=y$ and shift it up n units, and shade it dark. As Solution 2 shows, the dark region will then correspond to an optimal sequence, and every optimal sequence arises in this way.

A5. Let $\mathbb{Z}_{\geqslant 0}$ be the set of all nonnegative integers. Find all the functions $f: \mathbb{Z}_{\geqslant 0} \rightarrow \mathbb{Z}_{\geqslant 0}$ satisfying the relation

$$
\begin{equation*}
f(f(f(n)))=f(n+1)+1 \tag{*}
\end{equation*}
$$

for all $n \in \mathbb{Z}_{\geqslant 0}$.
(Serbia)
Answer. There are two such functions: $f(n)=n+1$ for all $n \in \mathbb{Z}_{\geqslant 0}$, and

$$
f(n)=\left\{\begin{array}{ll}
n+1, & n \equiv 0(\bmod 4) \text { or } n \equiv 2(\bmod 4), \tag{1}\\
n+5, & n \equiv 1(\bmod 4), \\
n-3, & n \equiv 3(\bmod 4)
\end{array} \quad \text { for all } n \in \mathbb{Z}_{\geqslant 0}\right.
$$

Throughout all the solutions, we write $h^{k}(x)$ to abbreviate the k th iteration of function h, so h^{0} is the identity function, and $h^{k}(x)=\underbrace{h(\ldots h}_{k \text { times }}(x) \ldots))$ for $k \geqslant 1$.
Solution 1. To start, we get from (*) that

$$
f^{4}(n)=f\left(f^{3}(n)\right)=f(f(n+1)+1) \quad \text { and } \quad f^{4}(n+1)=f^{3}(f(n+1))=f(f(n+1)+1)+1
$$

thus

$$
\begin{equation*}
f^{4}(n)+1=f^{4}(n+1) \tag{2}
\end{equation*}
$$

I. Let us denote by R_{i} the range of f^{i}; note that $R_{0}=\mathbb{Z}_{\geqslant 0}$ since f^{0} is the identity function. Obviously, $R_{0} \supseteq R_{1} \supseteq \ldots$ Next, from (2) we get that if $a \in R_{4}$ then also $a+1 \in R_{4}$. This implies that $\mathbb{Z}_{\geqslant 0} \backslash R_{4}$ - and hence $\mathbb{Z}_{\geqslant 0} \backslash R_{1}$ - is finite. In particular, R_{1} is unbounded.

Assume that $f(m)=f(n)$ for some distinct m and n. Then from (*) we obtain $f(m+1)=$ $f(n+1)$; by an easy induction we then get that $f(m+c)=f(n+c)$ for every $c \geqslant 0$. So the function $f(k)$ is periodic with period $|m-n|$ for $k \geqslant m$, and thus R_{1} should be bounded, which is false. So, f is injective.
II. Denote now $S_{i}=R_{i-1} \backslash R_{i}$; all these sets are finite for $i \leqslant 4$. On the other hand, by the injectivity we have $n \in S_{i} \Longleftrightarrow f(n) \in S_{i+1}$. By the injectivity again, f implements a bijection between S_{i} and S_{i+1}, thus $\left|S_{1}\right|=\left|S_{2}\right|=\ldots$; denote this common cardinality by k. If $0 \in R_{3}$ then $0=f(f(f(n)))$ for some n, thus from (*) we get $f(n+1)=-1$ which is impossible. Therefore $0 \in R_{0} \backslash R_{3}=S_{1} \cup S_{2} \cup S_{3}$, thus $k \geqslant 1$.

Next, let us describe the elements b of $R_{0} \backslash R_{3}=S_{1} \cup S_{2} \cup S_{3}$. We claim that each such element satisfies at least one of three conditions (i) $b=0$, (ii) $b=f(0)+1$, and (iii) $b-1 \in S_{1}$. Otherwise $b-1 \in \mathbb{Z}_{\geq 0}$, and there exists some $n>0$ such that $f(n)=b-1$; but then $f^{3}(n-1)=f(n)+1=b$, so $b \in R_{3}$.

This yields

$$
3 k=\left|S_{1} \cup S_{2} \cup S_{3}\right| \leqslant 1+1+\left|S_{1}\right|=k+2
$$

or $k \leqslant 1$. Therefore $k=1$, and the inequality above comes to equality. So we have $S_{1}=\{a\}$, $S_{2}=\{f(a)\}$, and $S_{3}=\left\{f^{2}(a)\right\}$ for some $a \in \mathbb{Z}_{\geqslant 0}$, and each one of the three options (i), (ii), and (iii) should be realized exactly once, which means that

$$
\begin{equation*}
\left\{a, f(a), f^{2}(a)\right\}=\{0, a+1, f(0)+1\} . \tag{3}
\end{equation*}
$$

III. From (3), we get $a+1 \in\left\{f(a), f^{2}(a)\right\}$ (the case $a+1=a$ is impossible). If $a+1=f^{2}(a)$ then we have $f(a+1)=f^{3}(a)=f(a+1)+1$ which is absurd. Therefore

$$
\begin{equation*}
f(a)=a+1 . \tag{4}
\end{equation*}
$$

Next, again from (3) we have $0 \in\left\{a, f^{2}(a)\right\}$. Let us consider these two cases separately.
Case 1. Assume that $a=0$, then $f(0)=f(a)=a+1=1$. Also from (3) we get $f(1)=f^{2}(a)=$ $f(0)+1=2$. Now, let us show that $f(n)=n+1$ by induction on n; the base cases $n \leqslant 1$ are established. Next, if $n \geqslant 2$ then the induction hypothesis implies

$$
n+1=f(n-1)+1=f^{3}(n-2)=f^{2}(n-1)=f(n),
$$

establishing the step. In this case we have obtained the first of two answers; checking that is satisfies (*) is straightforward.
Case 2. Assume now that $f^{2}(a)=0$; then by (3) we get $a=f(0)+1$. By (4) we get $f(a+1)=$ $f^{2}(a)=0$, then $f(0)=f^{3}(a)=f(a+1)+1=1$, hence $a=f(0)+1=2$ and $f(2)=3$ by (4). To summarize,

$$
f(0)=1, \quad f(2)=3, \quad f(3)=0 .
$$

Now let us prove by induction on m that (1) holds for all $n=4 k, 4 k+2,4 k+3$ with $k \leqslant m$ and for all $n=4 k+1$ with $k<m$. The base case $m=0$ is established above. For the step, assume that $m \geqslant 1$. From (*) we get $f^{3}(4 m-3)=f(4 m-2)+1=4 m$. Next, by (2) we have

$$
f(4 m)=f^{4}(4 m-3)=f^{4}(4 m-4)+1=f^{3}(4 m-3)+1=4 m+1 .
$$

Then by the induction hypothesis together with (*) we successively obtain

$$
\begin{aligned}
& f(4 m-3)=f^{3}(4 m-1)=f(4 m)+1=4 m+2, \\
& f(4 m+2)=f^{3}(4 m-4)=f(4 m-3)+1=4 m+3, \\
& f(4 m+3)=f^{3}(4 m-3)=f(4 m-2)+1=4 m,
\end{aligned}
$$

thus finishing the induction step.
Finally, it is straightforward to check that the constructed function works:

$$
\begin{array}{rlrl}
f^{3}(4 k) & =4 k+7 & =f(4 k+1)+1, & \\
f^{3}(4 k+2) & =4 k+1 & =f(4 k+3)+1, & \\
f^{3}(4 k+1) & =4 k+4=f(4 k+2)+1, \\
f^{3}(4 k+3) & =4 k+6=f(4 k+4)+1 .
\end{array}
$$

Solution 2. I. For convenience, let us introduce the function $g(n)=f(n)+1$. Substituting $f(n)$ instead of n into (*) we obtain

$$
\begin{equation*}
f^{4}(n)=f(f(n)+1)+1, \quad \text { or } \quad f^{4}(n)=g^{2}(n) . \tag{5}
\end{equation*}
$$

Applying f to both parts of (*) and using (5) we get

$$
\begin{equation*}
f^{4}(n)+1=f(f(n+1)+1)+1=f^{4}(n+1) . \tag{6}
\end{equation*}
$$

Thus, if $g^{2}(0)=f^{4}(0)=c$ then an easy induction on n shows that

$$
\begin{equation*}
g^{2}(n)=f^{4}(n)=n+c, \quad n \in \mathbb{Z}_{\geqslant 0} . \tag{7}
\end{equation*}
$$

This relation implies that both f and g are injective: if, say, $f(m)=f(n)$ then $m+c=$ $f^{4}(m)=f^{4}(n)=n+c$. Next, since $g(n) \geqslant 1$ for every n, we have $c=g^{2}(0) \geqslant 1$. Thus from (7) again we obtain $f(n) \neq n$ and $g(n) \neq n$ for all $n \in \mathbb{Z}_{\geqslant 0}$.
II. Next, application of f and g to (7) yields

$$
\begin{equation*}
f(n+c)=f^{5}(n)=f^{4}(f(n))=f(n)+c \quad \text { and } \quad g(n+c)=g^{3}(n)=g(n)+c \tag{8}
\end{equation*}
$$

In particular, this means that if $m \equiv n(\bmod c)$ then $f(m) \equiv f(n)(\bmod c)$. Conversely, if $f(m) \equiv f(n)(\bmod c)$ then we get $m+c=f^{4}(m) \equiv f^{4}(n)=n+c(\bmod c)$. Thus,

$$
\begin{equation*}
m \equiv n \quad(\bmod c) \Longleftrightarrow f(m) \equiv f(n) \quad(\bmod c) \Longleftrightarrow g(m) \equiv g(n) \quad(\bmod c) \tag{9}
\end{equation*}
$$

Now, let us introduce the function $\delta(n)=f(n)-n=g(n)-n-1$. Set

$$
S=\sum_{n=0}^{c-1} \delta(n)
$$

Using (8), we get that for every complete residue system n_{1}, \ldots, n_{c} modulo c we also have

$$
S=\sum_{i=1}^{c} \delta\left(n_{i}\right)
$$

By (9), we get that $\left\{f^{k}(n): n=0, \ldots, c-1\right\}$ and $\left\{g^{k}(n): n=0, \ldots, c-1\right\}$ are complete residue systems modulo c for all k. Thus we have

$$
c^{2}=\sum_{n=0}^{c-1}\left(f^{4}(n)-n\right)=\sum_{k=0}^{3} \sum_{n=0}^{c-1}\left(f^{k+1}(n)-f^{k}(n)\right)=\sum_{k=0}^{3} \sum_{n=0}^{c-1} \delta\left(f^{k}(n)\right)=4 S
$$

and similarly

$$
c^{2}=\sum_{n=0}^{c-1}\left(g^{2}(n)-n\right)=\sum_{k=0}^{1} \sum_{n=0}^{c-1}\left(g^{k+1}(n)-g^{k}(n)\right)=\sum_{k=0}^{1} \sum_{n=0}^{c-1}\left(\delta\left(g^{k}(n)\right)+1\right)=2 S+2 c
$$

Therefore $c^{2}=4 S=2 \cdot 2 S=2\left(c^{2}-2 c\right)$, or $c^{2}=4 c$. Since $c \neq 0$, we get $c=4$. Thus, in view of (8) it is sufficient to determine the values of f on the numbers $0,1,2,3$.
III. Let $d=g(0) \geqslant 1$. Then $g(d)=g^{2}(0)=0+c=4$. Now, if $d \geqslant 4$, then we would have $g(d-4)=g(d)-4=0$ which is impossible. Thus $d \in\{1,2,3\}$. If $d=1$ then we have $f(0)=g(0)-1=0$ which is impossible since $f(n) \neq n$ for all n. If $d=3$ then $g(3)=g^{2}(0)=4$ and hence $f(3)=3$ which is also impossible. Thus $g(0)=2$ and hence $g(2)=g^{2}(0)=4$.

Next, if $g(1)=1+4 k$ for some integer k, then $5=g^{2}(1)=g(1+4 k)=g(1)+4 k=1+8 k$ which is impossible. Thus, since $\{g(n): n=0,1,2,3\}$ is a complete residue system modulo 4 , we get $g(1)=3+4 k$ and hence $g(3)=g^{2}(1)-4 k=5-4 k$, leading to $k=0$ or $k=1$. So, we obtain iether

$$
f(0)=1, f(1)=2, f(2)=3, f(3)=4, \quad \text { or } \quad f(0)=1, f(1)=6, f(2)=3, f(3)=0
$$

thus arriving to the two functions listed in the answer.
Finally, one can check that these two function work as in Solution 1. One may simplify the checking by noticing that (8) allows us to reduce it to $n=0,1,2,3$.

A6. Let $m \neq 0$ be an integer. Find all polynomials $P(x)$ with real coefficients such that

$$
\begin{equation*}
\left(x^{3}-m x^{2}+1\right) P(x+1)+\left(x^{3}+m x^{2}+1\right) P(x-1)=2\left(x^{3}-m x+1\right) P(x) \tag{1}
\end{equation*}
$$

for all real numbers x.
(Serbia)
Answer. $P(x)=t x$ for any real number t.
Solution. Let $P(x)=a_{n} x^{n}+\cdots+a_{0} x^{0}$ with $a_{n} \neq 0$. Comparing the coefficients of x^{n+1} on both sides gives $a_{n}(n-2 m)(n-1)=0$, so $n=1$ or $n=2 m$.

If $n=1$, one easily verifies that $P(x)=x$ is a solution, while $P(x)=1$ is not. Since the given condition is linear in P, this means that the linear solutions are precisely $P(x)=t x$ for $t \in \mathbb{R}$.

Now assume that $n=2 m$. The polynomial $x P(x+1)-(x+1) P(x)=(n-1) a_{n} x^{n}+\cdots$ has degree n, and therefore it has at least one (possibly complex) root r. If $r \notin\{0,-1\}$, define $k=P(r) / r=P(r+1) /(r+1)$. If $r=0$, let $k=P(1)$. If $r=-1$, let $k=-P(-1)$. We now consider the polynomial $S(x)=P(x)-k x$. It also satisfies (1) because $P(x)$ and $k x$ satisfy it. Additionally, it has the useful property that r and $r+1$ are roots.

Let $A(x)=x^{3}-m x^{2}+1$ and $B(x)=x^{3}+m x^{2}+1$. Plugging in $x=s$ into (1) implies that:
If $s-1$ and s are roots of S and s is not a root of A, then $s+1$ is a root of S.
If s and $s+1$ are roots of S and s is not a root of B, then $s-1$ is a root of S.
Let $a \geqslant 0$ and $b \geqslant 1$ be such that $r-a, r-a+1, \ldots, r, r+1, \ldots, r+b-1, r+b$ are roots of S, while $r-a-1$ and $r+b+1$ are not. The two statements above imply that $r-a$ is a root of B and $r+b$ is a root of A.

Since $r-a$ is a root of $B(x)$ and of $A(x+a+b)$, it is also a root of their greatest common divisor $C(x)$ as integer polynomials. If $C(x)$ was a non-trivial divisor of $B(x)$, then B would have a rational root α. Since the first and last coefficients of B are $1, \alpha$ can only be 1 or -1 ; but $B(-1)=m>0$ and $B(1)=m+2>0$ since $n=2 m$.

Therefore $B(x)=A(x+a+b)$. Writing $c=a+b \geqslant 1$ we compute

$$
0=A(x+c)-B(x)=(3 c-2 m) x^{2}+c(3 c-2 m) x+c^{2}(c-m) .
$$

Then we must have $3 c-2 m=c-m=0$, which gives $m=0$, a contradiction. We conclude that $f(x)=t x$ is the only solution.

Solution 2. Multiplying (1) by x, we rewrite it as

$$
x\left(x^{3}-m x^{2}+1\right) P(x+1)+x\left(x^{3}+m x^{2}+1\right) P(x-1)=[(x+1)+(x-1)]\left(x^{3}-m x+1\right) P(x) .
$$

After regrouping, it becomes

$$
\begin{equation*}
\left(x^{3}-m x^{2}+1\right) Q(x)=\left(x^{3}+m x^{2}+1\right) Q(x-1), \tag{2}
\end{equation*}
$$

where $Q(x)=x P(x+1)-(x+1) P(x)$. If $\operatorname{deg} P \geqslant 2$ then $\operatorname{deg} Q=\operatorname{deg} P$, so $Q(x)$ has a finite multiset of complex roots, which we denote R_{Q}. Each root is taken with its multiplicity. Then the multiset of complex roots of $Q(x-1)$ is $R_{Q}+1=\left\{z+1: z \in R_{Q}\right\}$.

Let $\left\{x_{1}, x_{2}, x_{3}\right\}$ and $\left\{y_{1}, y_{2}, y_{3}\right\}$ be the multisets of roots of the polynomials $A(x)=x^{3}-m x^{2}+1$ and $B(x)=x^{3}+m x^{2}+1$, respectively. From (2) we get the equality of multisets

$$
\left\{x_{1}, x_{2}, x_{3}\right\} \cup R_{Q}=\left\{y_{1}, y_{2}, y_{3}\right\} \cup\left(R_{Q}+1\right)
$$

For every $r \in R_{Q}$, since $r+1$ is in the set of the right hand side, we must have $r+1 \in R_{Q}$ or $r+1=x_{i}$ for some i. Similarly, since r is in the set of the left hand side, either $r-1 \in R_{Q}$ or $r=y_{i}$ for some i. This implies that, possibly after relabelling y_{1}, y_{2}, y_{3}, all the roots of (2) may be partitioned into three chains of the form $\left\{y_{i}, y_{i}+1, \ldots, y_{i}+k_{i}=x_{i}\right\}$ for $i=1,2,3$ and some integers $k_{1}, k_{2}, k_{3} \geqslant 0$.

Now we analyze the roots of the polynomial $A_{a}(x)=x^{3}+a x^{2}+1$. Using calculus or elementary methods, we find that the local extrema of $A_{a}(x)$ occur at $x=0$ and $x=-2 a / 3$; their values are $A_{a}(0)=1>0$ and $A_{a}(-2 a / 3)=1+4 a^{3} / 27$, which is positive for integers $a \geqslant-1$ and negative for integers $a \leqslant-2$. So when $a \in \mathbb{Z}, A_{a}$ has three real roots if $a \leqslant-2$ and one if $a \geqslant-1$.

Now, since $y_{i}-x_{i} \in \mathbb{Z}$ for $i=1,2,3$, the cubics A_{m} and A_{-m} must have the same number of real roots. The previous analysis then implies that $m=1$ or $m=-1$. Therefore the real root α of $A_{1}(x)=x^{3}+x^{2}+1$ and the real root β of $A_{-1}(x)=x^{3}-x^{2}+1$ must differ by an integer. But this is impossible, because $A_{1}\left(-\frac{3}{2}\right)=-\frac{1}{8}$ and $A_{1}(-1)=1$ so $-1.5<\alpha<-1$, while $A_{-1}(-1)=-1$ and $A_{-1}\left(-\frac{1}{2}\right)=\frac{5}{8}$, so $-1<\beta<-0.5$.

It follows that $\operatorname{deg} P \leqslant 1$. Then, as shown in Solution 1, we conclude that the solutions are $P(x)=t x$ for all real numbers t.

Combinatorics

C1. Let n be a positive integer. Find the smallest integer k with the following property: Given any real numbers a_{1}, \ldots, a_{d} such that $a_{1}+a_{2}+\cdots+a_{d}=n$ and $0 \leqslant a_{i} \leqslant 1$ for $i=1,2, \ldots, d$, it is possible to partition these numbers into k groups (some of which may be empty) such that the sum of the numbers in each group is at most 1 .
(Poland)
Answer. $k=2 n-1$.
Solution 1. If $d=2 n-1$ and $a_{1}=\cdots=a_{2 n-1}=n /(2 n-1)$, then each group in such a partition can contain at most one number, since $2 n /(2 n-1)>1$. Therefore $k \geqslant 2 n-1$. It remains to show that a suitable partition into $2 n-1$ groups always exists.

We proceed by induction on d. For $d \leqslant 2 n-1$ the result is trivial. If $d \geqslant 2 n$, then since

$$
\left(a_{1}+a_{2}\right)+\ldots+\left(a_{2 n-1}+a_{2 n}\right) \leqslant n
$$

we may find two numbers a_{i}, a_{i+1} such that $a_{i}+a_{i+1} \leqslant 1$. We "merge" these two numbers into one new number $a_{i}+a_{i+1}$. By the induction hypothesis, a suitable partition exists for the $d-1$ numbers $a_{1}, \ldots, a_{i-1}, a_{i}+a_{i+1}, a_{i+2}, \ldots, a_{d}$. This induces a suitable partition for a_{1}, \ldots, a_{d}.

Solution 2. We will show that it is even possible to split the sequence a_{1}, \ldots, a_{d} into $2 n-1$ contiguous groups so that the sum of the numbers in each groups does not exceed 1. Consider a segment S of length n, and partition it into segments S_{1}, \ldots, S_{d} of lengths a_{1}, \ldots, a_{d}, respectively, as shown below. Consider a second partition of S into n equal parts by $n-1$ "empty dots".

Assume that the $n-1$ empty dots are in segments $S_{i_{1}}, \ldots, S_{i_{n-1}}$. (If a dot is on the boundary of two segments, we choose the right segment). These $n-1$ segments are distinct because they have length at most 1. Consider the partition:

$$
\left\{a_{1}, \ldots, a_{i_{1}-1}\right\},\left\{a_{i_{1}}\right\},\left\{a_{i_{1}+1}, \ldots, a_{i_{2}-1}\right\},\left\{a_{i_{2}}\right\}, \ldots\left\{a_{i_{n-1}}\right\},\left\{a_{i_{n-1}+1}, \ldots, a_{d}\right\} .
$$

In the example above, this partition is $\left\{a_{1}, a_{2}\right\},\left\{a_{3}\right\},\left\{a_{4}, a_{5}\right\},\left\{a_{6}\right\}, \varnothing,\left\{a_{7}\right\},\left\{a_{8}, a_{9}, a_{10}\right\}$. We claim that in this partition, the sum of the numbers in this group is at most 1 .

For the sets $\left\{a_{i_{t}}\right\}$ this is obvious since $a_{i_{t}} \leqslant 1$. For the sets $\left\{a_{i_{t}}+1, \ldots, a_{i_{t+1}-1}\right\}$ this follows from the fact that the corresponding segments lie between two neighboring empty dots, or between an endpoint of S and its nearest empty dot. Therefore the sum of their lengths cannot exceed 1.

Solution 3. First put all numbers greater than $\frac{1}{2}$ in their own groups. Then, form the remaining groups as follows: For each group, add new a_{i} s one at a time until their sum exceeds $\frac{1}{2}$. Since the last summand is at most $\frac{1}{2}$, this group has sum at most 1 . Continue this procedure until we have used all the $a_{i} \mathrm{~s}$. Notice that the last group may have sum less than $\frac{1}{2}$. If the sum of the numbers in the last two groups is less than or equal to 1 , we merge them into one group. In the end we are left with m groups. If $m=1$ we are done. Otherwise the first $m-2$ have sums greater than $\frac{1}{2}$ and the last two have total sum greater than 1 . Therefore $n>(m-2) / 2+1$ so $m \leqslant 2 n-1$ as desired.

Comment 1. The original proposal asked for the minimal value of k when $n=2$.
Comment 2. More generally, one may ask the same question for real numbers between 0 and 1 whose sum is a real number r. In this case the smallest value of k is $k=\lceil 2 r\rceil-1$, as Solution 3 shows.

Solutions 1 and 2 lead to the slightly weaker bound $k \leqslant 2\lceil r\rceil-1$. This is actually the optimal bound for partitions into consecutive groups, which are the ones contemplated in these two solutions. To see this, assume that r is not an integer and let $c=(r+1-\lceil r\rceil) /(1+\lceil r\rceil)$. One easily checks that $0<c<\frac{1}{2}$ and $\lceil r\rceil(2 c)+(\lceil r\rceil-1)(1-c)=r$, so the sequence

$$
2 c, 1-c, 2 c, 1-c, \ldots, 1-c, 2 c
$$

of $2\lceil r\rceil-1$ numbers satisfies the given conditions. For this sequence, the only suitable partition into consecutive groups is the trivial partition, which requires $2\lceil r\rceil-1$ groups.

C2. In the plane, 2013 red points and 2014 blue points are marked so that no three of the marked points are collinear. One needs to draw k lines not passing through the marked points and dividing the plane into several regions. The goal is to do it in such a way that no region contains points of both colors.

Find the minimal value of k such that the goal is attainable for every possible configuration of 4027 points.
(Australia)
Answer. $k=2013$.
Solution 1. Firstly, let us present an example showing that $k \geqslant 2013$. Mark 2013 red and 2013 blue points on some circle alternately, and mark one more blue point somewhere in the plane. The circle is thus split into 4026 arcs, each arc having endpoints of different colors. Thus, if the goal is reached, then each arc should intersect some of the drawn lines. Since any line contains at most two points of the circle, one needs at least 4026/2 $=2013$ lines.

It remains to prove that one can reach the goal using 2013 lines. First of all, let us mention that for every two points A and B having the same color, one can draw two lines separating these points from all other ones. Namely, it suffices to take two lines parallel to $A B$ and lying on different sides of $A B$ sufficiently close to it: the only two points between these lines will be A and B.

Now, let P be the convex hull of all marked points. Two cases are possible.
Case 1. Assume that P has a red vertex A. Then one may draw a line separating A from all the other points, pair up the other 2012 red points into 1006 pairs, and separate each pair from the other points by two lines. Thus, 2013 lines will be used.
Case 2. Assume now that all the vertices of P are blue. Consider any two consecutive vertices of P, say A and B. One may separate these two points from the others by a line parallel to $A B$. Then, as in the previous case, one pairs up all the other 2012 blue points into 1006 pairs, and separates each pair from the other points by two lines. Again, 2013 lines will be used.

Comment 1. Instead of considering the convex hull, one may simply take a line containing two marked points A and B such that all the other marked points are on one side of this line. If one of A and B is red, then one may act as in Case 1; otherwise both are blue, and one may act as in Case 2.
Solution 2. Let us present a different proof of the fact that $k=2013$ suffices. In fact, we will prove a more general statement:

If n points in the plane, no three of which are collinear, are colored in red and blue arbitrarily, then it suffices to draw $\lfloor n / 2\rfloor$ lines to reach the goal.

We proceed by induction on n. If $n \leqslant 2$ then the statement is obvious. Now assume that $n \geqslant 3$, and consider a line ℓ containing two marked points A and B such that all the other marked points are on one side of ℓ; for instance, any line containing a side of the convex hull works.

Remove for a moment the points A and B. By the induction hypothesis, for the remaining configuration it suffices to draw $\lfloor n / 2\rfloor-1$ lines to reach the goal. Now return the points A and B back. Three cases are possible.
Case 1. If A and B have the same color, then one may draw a line parallel to ℓ and separating A and B from the other points. Obviously, the obtained configuration of $\lfloor n / 2\rfloor$ lines works.
Case 2. If A and B have different colors, but they are separated by some drawn line, then again the same line parallel to ℓ works.

Case 3. Finally, assume that A and B have different colors and lie in one of the regions defined by the drawn lines. By the induction assumption, this region contains no other points of one of the colors - without loss of generality, the only blue point it contains is A. Then it suffices to draw a line separating A from all other points.

Thus the step of the induction is proved.
Comment 2. One may ask a more general question, replacing the numbers 2013 and 2014 by any positive integers m and n, say with $m \leqslant n$. Denote the answer for this problem by $f(m, n)$.

One may show along the lines of Solution 1 that $m \leqslant f(m, n) \leqslant m+1$; moreover, if m is even then $f(m, n)=m$. On the other hand, for every odd m there exists an N such that $f(m, n)=m$ for all $m \leqslant n \leqslant N$, and $f(m, n)=m+1$ for all $n>N$.

C3. A crazy physicist discovered a new kind of particle which he called an imon, after some of them mysteriously appeared in his lab. Some pairs of imons in the lab can be entangled, and each imon can participate in many entanglement relations. The physicist has found a way to perform the following two kinds of operations with these particles, one operation at a time.
(i) If some imon is entangled with an odd number of other imons in the lab, then the physicist can destroy it.
(ii) At any moment, he may double the whole family of imons in his lab by creating a copy I^{\prime} of each imon I. During this procedure, the two copies I^{\prime} and J^{\prime} become entangled if and only if the original imons I and J are entangled, and each copy I^{\prime} becomes entangled with its original imon I; no other entanglements occur or disappear at this moment.

Prove that the physicist may apply a sequence of such operations resulting in a family of imons, no two of which are entangled.
(Japan)
Solution 1. Let us consider a graph with the imons as vertices, and two imons being connected if and only if they are entangled. Recall that a proper coloring of a graph G is a coloring of its vertices in several colors so that every two connected vertices have different colors.
Lemma. Assume that a graph G admits a proper coloring in n colors $(n>1)$. Then one may perform a sequence of operations resulting in a graph which admits a proper coloring in $n-1$ colors.
Proof. Let us apply repeatedly operation (i) to any appropriate vertices while it is possible. Since the number of vertices decreases, this process finally results in a graph where all the degrees are even. Surely this graph also admits a proper coloring in n colors $1, \ldots, n$; let us fix this coloring.

Now apply the operation (ii) to this graph. A proper coloring of the resulting graph in n colors still exists: one may preserve the colors of the original vertices and color the vertex I^{\prime} in a color $k+1(\bmod n)$ if the vertex I has color k. Then two connected original vertices still have different colors, and so do their two connected copies. On the other hand, the vertices I and I^{\prime} have different colors since $n>1$.

All the degrees of the vertices in the resulting graph are odd, so one may apply operation (i) to delete consecutively all the vertices of color n one by one; no two of them are connected by an edge, so their degrees do not change during the process. Thus, we obtain a graph admitting a proper coloring in $n-1$ colors, as required. The lemma is proved.

Now, assume that a graph G has n vertices; then it admits a proper coloring in n colors. Applying repeatedly the lemma we finally obtain a graph admitting a proper coloring in one color, that is - a graph with no edges, as required.

Solution 2. Again, we will use the graph language.
I. We start with the following observation.

Lemma. Assume that a graph G contains an isolated vertex A, and a graph G° is obtained from G by deleting this vertex. Then, if one can apply a sequence of operations which makes a graph with no edges from G°, then such a sequence also exists for G.
Proof. Consider any operation applicable to G° resulting in a graph G_{1}°; then there exists a sequence of operations applicable to G and resulting in a graph G_{1} differing from G_{1}° by an addition of an isolated vertex A. Indeed, if this operation is of type (i), then one may simply repeat it in G.

Otherwise, the operation is of type (ii), and one may apply it to G and then delete the vertex A^{\prime} (it will have degree 1).

Thus one may change the process for G° into a corresponding process for G step by step.
In view of this lemma, if at some moment a graph contains some isolated vertex, then we may simply delete it; let us call this operation (iii).
II. Let $V=\left\{A_{1}^{0}, \ldots, A_{n}^{0}\right\}$ be the vertices of the initial graph. Let us describe which graphs can appear during our operations. Assume that operation (ii) was applied m times. If these were the only operations applied, then the resulting graph G_{n}^{m} has the set of vertices which can be enumerated as

$$
V_{n}^{m}=\left\{A_{i}^{j}: 1 \leqslant i \leqslant n, 0 \leqslant j \leqslant 2^{m}-1\right\}
$$

where A_{i}^{0} is the common "ancestor" of all the vertices A_{i}^{j}, and the binary expansion of j (adjoined with some zeroes at the left to have m digits) "keeps the history" of this vertex: the d th digit from the right is 0 if at the d th doubling the ancestor of A_{i}^{j} was in the original part, and this digit is 1 if it was in the copy.

Next, the two vertices A_{i}^{j} and A_{k}^{ℓ} in G_{n}^{m} are connected with an edge exactly if either (1) $j=\ell$ and there was an edge between A_{i}^{0} and A_{k}^{0} (so these vertices appeared at the same application of operation (ii)); or (2) $i=k$ and the binary expansions of j and ℓ differ in exactly one digit (so their ancestors became connected as a copy and the original vertex at some application of (ii)).

Now, if some operations (i) were applied during the process, then simply some vertices in G_{n}^{m} disappeared. So, in any case the resulting graph is some induced subgraph of G_{n}^{m}.
III. Finally, we will show that from each (not necessarily induced) subgraph of G_{n}^{m} one can obtain a graph with no vertices by applying operations $(i),(i i)$ and $(i i i)$. We proceed by induction on n; the base case $n=0$ is trivial.

For the induction step, let us show how to apply several operations so as to obtain a graph containing no vertices of the form A_{n}^{j} for $j \in \mathbb{Z}$. We will do this in three steps.
Step 1. We apply repeatedly operation (i) to any appropriate vertices while it is possible. In the resulting graph, all vertices have even degrees.
Step 2. Apply operation (ii) obtaining a subgraph of G_{n}^{m+1} with all degrees being odd. In this graph, we delete one by one all the vertices A_{n}^{j} where the sum of the binary digits of j is even; it is possible since there are no edges between such vertices, so all their degrees remain odd. After that, we delete all isolated vertices.
Step 3. Finally, consider any remaining vertex A_{n}^{j} (then the sum of digits of j is odd). If its degree is odd, then we simply delete it. Otherwise, since A_{n}^{j} is not isolated, we consider any vertex adjacent to it. It has the form A_{k}^{j} for some $k<n$ (otherwise it would have the form A_{n}^{ℓ}, where ℓ has an even digit sum; but any such vertex has already been deleted at Step 2). No neighbor of A_{k}^{j} was deleted at Steps 2 and 3 , so it has an odd degree. Then we successively delete A_{k}^{j} and A_{n}^{j}.

Notice that this deletion does not affect the applicability of this step to other vertices, since no two vertices A_{i}^{j} and A_{k}^{ℓ} for different j, ℓ with odd digit sum are connected with an edge. Thus we will delete all the remaining vertices of the form A_{n}^{j}, obtaining a subgraph of G_{n-1}^{m+1}. The application of the induction hypothesis finishes the proof.

Comment. In fact, the graph G_{n}^{m} is a Cartesian product of G and the graph of an m-dimensional hypercube.

C4. Let n be a positive integer, and let A be a subset of $\{1, \ldots, n\}$. An A-partition of n into k parts is a representation of n as a sum $n=a_{1}+\cdots+a_{k}$, where the parts a_{1}, \ldots, a_{k} belong to A and are not necessarily distinct. The number of different parts in such a partition is the number of (distinct) elements in the set $\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$.

We say that an A-partition of n into k parts is optimal if there is no A-partition of n into r parts with $r<k$. Prove that any optimal A-partition of n contains at most $\sqrt[3]{6 n}$ different parts.
(Germany)
Solution 1. If there are no A-partitions of n, the result is vacuously true. Otherwise, let $k_{\text {min }}$ be the minimum number of parts in an A-partition of n, and let $n=a_{1}+\cdots+a_{k_{\min }}$ be an optimal partition. Denote by s the number of different parts in this partition, so we can write $S=\left\{a_{1}, \ldots, a_{k_{\min }}\right\}=\left\{b_{1}, \ldots, b_{s}\right\}$ for some pairwise different numbers $b_{1}<\cdots<b_{s}$ in A.

If $s>\sqrt[3]{6 n}$, we will prove that there exist subsets X and Y of S such that $|X|<|Y|$ and $\sum_{x \in X} x=\sum_{y \in Y} y$. Then, deleting the elements of Y from our partition and adding the elements of X to it, we obtain an A-partition of n into less than $k_{\text {min }}$ parts, which is the desired contradiction.

For each positive integer $k \leqslant s$, we consider the k-element subset

$$
S_{1,0}^{k}:=\left\{b_{1}, \ldots, b_{k}\right\}
$$

as well as the following k-element subsets $S_{i, j}^{k}$ of S :

$$
S_{i, j}^{k}:=\left\{b_{1}, \ldots, b_{k-i}, b_{k-i+j+1}, b_{s-i+2}, \ldots, b_{s}\right\}, \quad i=1, \ldots, k, \quad j=1, \ldots, s-k .
$$

Pictorially, if we represent the elements of S by a sequence of dots in increasing order, and represent a subset of S by shading in the appropriate dots, we have:

Denote by $\Sigma_{i, j}^{k}$ the sum of elements in $S_{i, j}^{k}$. Clearly, $\Sigma_{1,0}^{k}$ is the minimum sum of a k-element subset of S. Next, for all appropriate indices i and j we have

$$
\Sigma_{i, j}^{k}=\Sigma_{i, j+1}^{k}+b_{k-i+j+1}-b_{k-i+j+2}<\Sigma_{i, j+1}^{k} \quad \text { and } \quad \sum_{i, s-k}^{k}=\sum_{i+1,1}^{k}+b_{k-i}-b_{k-i+1}<\Sigma_{i+1,1}^{k} .
$$

Therefore

$$
1 \leqslant \sum_{1,0}^{k}<\Sigma_{1,1}^{k}<\sum_{1,2}^{k}<\cdots<\sum_{1, s-k}^{k}<\sum_{2,1}^{k}<\cdots<\Sigma_{2, s-k}^{k}<\sum_{3,1}^{k}<\cdots<\Sigma_{k, s-k}^{k} \leqslant n .
$$

To see this in the picture, we start with the k leftmost points marked. At each step, we look for the rightmost point which can move to the right, and move it one unit to the right. We continue until the k rightmost points are marked. As we do this, the corresponding sums clearly increase.

For each k we have found $k(s-k)+1$ different integers of the form $\sum_{i, j}^{k}$ between 1 and n. As we vary k, the total number of integers we are considering is

$$
\sum_{k=1}^{s}(k(s-k)+1)=s \cdot \frac{s(s+1)}{2}-\frac{s(s+1)(2 s+1)}{6}+s=\frac{s\left(s^{2}+5\right)}{6}>\frac{s^{3}}{6}>n .
$$

Since they are between 1 and n, at least two of these integers are equal. Consequently, there exist $1 \leqslant k<k^{\prime} \leqslant s$ and $X=S_{i, j}^{k}$ as well as $Y=S_{i^{\prime}, j^{\prime}}^{k^{\prime}}$ such that

$$
\sum_{x \in X} x=\sum_{y \in Y} y, \quad \text { but } \quad|X|=k<k^{\prime}=|Y|,
$$

as required. The result follows.

Solution 2. Assume, to the contrary, that the statement is false, and choose the minimum number n for which it fails. So there exists a set $A \subseteq\{1, \ldots, n\}$ together with an optimal A partition $n=a_{1}+\cdots+a_{k_{\min }}$ of n refuting our statement, where, of course, $k_{\text {min }}$ is the minimum number of parts in an A-partition of n. Again, we define $S=\left\{a_{1}, \ldots, a_{k_{\min }}\right\}=\left\{b_{1}, \ldots, b_{s}\right\}$ with $b_{1}<\cdots<b_{s}$; by our assumption we have $s>\sqrt[3]{6 n}>1$. Without loss of generality we assume that $a_{k_{\text {min }}}=b_{s}$. Let us distinguish two cases.
Case 1. $b_{s} \geqslant \frac{s(s-1)}{2}+1$.
Consider the partition $n-b_{s}=a_{1}+\cdots+a_{k_{\min -1}-1}$, which is clearly a minimum A-partition of $n-b_{s}$ with at least $s-1 \geqslant 1$ different parts. Now, from $n<\frac{s^{3}}{6}$ we obtain

$$
n-b_{s} \leqslant n-\frac{s(s-1)}{2}-1<\frac{s^{3}}{6}-\frac{s(s-1)}{2}-1<\frac{(s-1)^{3}}{6}
$$

so $s-1>\sqrt[3]{6\left(n-b_{s}\right)}$, which contradicts the choice of n.
Case 2. $b_{s} \leqslant \frac{s(s-1)}{2}$.
Set $b_{0}=0, \Sigma_{0,0}=0$, and $\Sigma_{i, j}=b_{1}+\cdots+b_{i-1}+b_{j}$ for $1 \leqslant i \leqslant j<s$. There are $\frac{s(s-1)}{2}+1>b_{s}$ such sums; so at least two of them, say $\Sigma_{i, j}$ and $\Sigma_{i^{\prime}, j^{\prime}}$, are congruent modulo b_{s} (where $\left.(i, j) \neq\left(i^{\prime}, j^{\prime}\right)\right)$. This means that $\sum_{i, j}-\Sigma_{i^{\prime}, j^{\prime}}=r b_{s}$ for some integer r. Notice that for $i \leqslant j<k<s$ we have

$$
0<\Sigma_{i, k}-\Sigma_{i, j}=b_{k}-b_{j}<b_{s}
$$

so the indices i and i^{\prime} are distinct, and we may assume that $i>i^{\prime}$. Next, we observe that $\Sigma_{i, j}-\Sigma_{i^{\prime}, j^{\prime}}=\left(b_{i^{\prime}}-b_{j^{\prime}}\right)+b_{j}+b_{i^{\prime}+1}+\cdots+b_{i-1}$ and $b_{i^{\prime}} \leqslant b_{j^{\prime}}$ imply

$$
-b_{s}<-b_{j^{\prime}}<\Sigma_{i, j}-\Sigma_{i^{\prime}, j^{\prime}}<\left(i-i^{\prime}\right) b_{s}
$$

so $0 \leqslant r \leqslant i-i^{\prime}-1$.
Thus, we may remove the i terms of $\Sigma_{i, j}$ in our A-partition, and replace them by the i^{\prime} terms of $\Sigma_{i^{\prime}, j^{\prime}}$ and r terms equal to b_{s}, for a total of $r+i^{\prime}<i$ terms. The result is an A-partition of n into a smaller number of parts, a contradiction.

Comment. The original proposal also contained a second part, showing that the estimate appearing in the problem has the correct order of magnitude:
For every positive integer n, there exist a set A and an optimal A-partition of n that contains $\lfloor\sqrt[3]{2 n}\rfloor$ different parts.

The Problem Selection Committee removed this statement from the problem, since it seems to be less suitable for the competiton; but for completeness we provide an outline of its proof here.

Let $k=\lfloor\sqrt[3]{2 n}\rfloor-1$. The statement is trivial for $n<4$, so we assume $n \geqslant 4$ and hence $k \geqslant 1$. Let $h=\left\lfloor\frac{n-1}{k}\right\rfloor$. Notice that $h \geqslant \frac{n}{k}-1$.

Now let $A=\{1, \ldots, h\}$, and set $a_{1}=h, a_{2}=h-1, \ldots, a_{k}=h-k+1$, and $a_{k+1}=n-\left(a_{1}+\cdots+a_{k}\right)$. It is not difficult to prove that $a_{k}>a_{k+1} \geqslant 1$, which shows that

$$
n=a_{1}+\ldots+a_{k+1}
$$

is an A-partition of n into $k+1$ different parts. Since $k h<n$, any A-partition of n has at least $k+1$ parts. Therefore our A-partition is optimal, and it has $\lfloor\sqrt[3]{2 n}\rfloor$ distinct parts, as desired.

C5. Let r be a positive integer, and let a_{0}, a_{1}, \ldots be an infinite sequence of real numbers. Assume that for all nonnegative integers m and s there exists a positive integer $n \in[m+1, m+r]$ such that

$$
a_{m}+a_{m+1}+\cdots+a_{m+s}=a_{n}+a_{n+1}+\cdots+a_{n+s} .
$$

Prove that the sequence is periodic, i. e. there exists some $p \geqslant 1$ such that $a_{n+p}=a_{n}$ for all $n \geqslant 0$.

Solution. For every indices $m \leqslant n$ we will denote $S(m, n)=a_{m}+a_{m+1}+\cdots+a_{n-1}$; thus $S(n, n)=0$. Let us start with the following lemma.
Lemma. Let b_{0}, b_{1}, \ldots be an infinite sequence. Assume that for every nonnegative integer m there exists a nonnegative integer $n \in[m+1, m+r]$ such that $b_{m}=b_{n}$. Then for every indices $k \leqslant \ell$ there exists an index $t \in[\ell, \ell+r-1]$ such that $b_{t}=b_{k}$. Moreover, there are at most r distinct numbers among the terms of $\left(b_{i}\right)$.
Proof. To prove the first claim, let us notice that there exists an infinite sequence of indices $k_{1}=k, k_{2}, k_{3}, \ldots$ such that $b_{k_{1}}=b_{k_{2}}=\cdots=b_{k}$ and $k_{i}<k_{i+1} \leqslant k_{i}+r$ for all $i \geqslant 1$. This sequence is unbounded from above, thus it hits each segment of the form $[\ell, \ell+r-1]$ with $\ell \geqslant k$, as required.

To prove the second claim, assume, to the contrary, that there exist $r+1$ distinct numbers $b_{i_{1}}, \ldots, b_{i_{r+1}}$. Let us apply the first claim to $k=i_{1}, \ldots, i_{r+1}$ and $\ell=\max \left\{i_{1}, \ldots, i_{r+1}\right\}$; we obtain that for every $j \in\{1, \ldots, r+1\}$ there exists $t_{j} \in[s, s+r-1]$ such that $b_{t_{j}}=b_{i_{j}}$. Thus the segment [$s, s+r-1$] should contain $r+1$ distinct integers, which is absurd.

Setting $s=0$ in the problem condition, we see that the sequence $\left(a_{i}\right)$ satisfies the condition of the lemma, thus it attains at most r distinct values. Denote by A_{i} the ordered r-tuple $\left(a_{i}, \ldots, a_{i+r-1}\right)$; then among A_{i} 's there are at most r^{r} distinct tuples, so for every $k \geqslant 0$ two of the tuples $A_{k}, A_{k+1}, \ldots, A_{k+r^{r}}$ are identical. This means that there exists a positive integer $p \leqslant r^{r}$ such that the equality $A_{d}=A_{d+p}$ holds infinitely many times. Let D be the set of indices d satisfying this relation.

Now we claim that D coincides with the set of all nonnegative integers. Since D is unbounded, it suffices to show that $d \in D$ whenever $d+1 \in D$. For that, denote $b_{k}=S(k, p+k)$. The sequence b_{0}, b_{1}, \ldots satisfies the lemma conditions, so there exists an index $t \in[d+1, d+r]$ such that $S(t, t+p)=S(d, d+p)$. This last relation rewrites as $S(d, t)=S(d+p, t+p)$. Since $A_{d+1}=A_{d+p+1}$, we have $S(d+1, t)=S(d+p+1, t+p)$, therefore we obtain

$$
a_{d}=S(d, t)-S(d+1, t)=S(d+p, t+p)-S(d+p+1, t+p)=a_{d+p}
$$

and thus $A_{d}=A_{d+p}$, as required.
Finally, we get $A_{d}=A_{d+p}$ for all d, so in particular $a_{d}=a_{d+p}$ for all d, QED.
Comment 1. In the present proof, the upper bound for the minimal period length is r^{r}. This bound is not sharp; for instance, one may improve it to $(r-1)^{r}$ for $r \geqslant 3$..

On the other hand, this minimal length may happen to be greater than r. For instance, it is easy to check that the sequence with period $(3,-3,3,-3,3,-1,-1,-1)$ satisfies the problem condition for $r=7$.

Comment 2. The conclusion remains true even if the problem condition only holds for every $s \geqslant N$ for some positive integer N. To show that, one can act as follows. Firstly, the sums of the form $S(i, i+N)$ attain at most r values, as well as the sums of the form $S(i, i+N+1)$. Thus the terms $a_{i}=S(i, i+N+1)-$ $S(i+1, i+N+1)$ attain at most r^{2} distinct values. Then, among the tuples $A_{k}, A_{k+N}, \ldots, A_{k+r^{2 r} N}$ two
are identical, so for some $p \leqslant r^{2 r}$ the set $D=\left\{d: A_{d}=A_{d+N p}\right\}$ is infinite. The further arguments apply almost literally, with p being replaced by $N p$.

After having proved that such a sequence is also necessarily periodic, one may reduce the bound for the minimal period length to r^{r} - essentially by verifying that the sequence satisfies the original version of the condition.

C6. In some country several pairs of cities are connected by direct two-way flights. It is possible to go from any city to any other by a sequence of flights. The distance between two cities is defined to be the least possible number of flights required to go from one of them to the other. It is known that for any city there are at most 100 cities at distance exactly three from it. Prove that there is no city such that more than 2550 other cities have distance exactly four from it.
(Russia)
Solution. Let us denote by $d(a, b)$ the distance between the cities a and b, and by

$$
S_{i}(a)=\{c: d(a, c)=i\}
$$

the set of cities at distance exactly i from city a.
Assume that for some city x the set $D=S_{4}(x)$ has size at least 2551 . Let $A=S_{1}(x)$. A subset A^{\prime} of A is said to be substantial, if every city in D can be reached from x with four flights while passing through some member of A^{\prime}; in other terms, every city in D has distance 3 from some member of A^{\prime}, or $D \subseteq \bigcup_{a \in A^{\prime}} S_{3}(a)$. For instance, A itself is substantial. Now let us fix some substantial subset A^{*} of A having the minimal cardinality $m=\left|A^{*}\right|$.

Since

$$
m(101-m) \leqslant 50 \cdot 51=2550,
$$

there has to be a city $a \in A^{*}$ such that $\left|S_{3}(a) \cap D\right| \geqslant 102-m$. As $\left|S_{3}(a)\right| \leqslant 100$, we obtain that $S_{3}(a)$ may contain at most $100-(102-m)=m-2$ cities c with $d(c, x) \leqslant 3$. Let us denote by $T=\left\{c \in S_{3}(a): d(x, c) \leqslant 3\right\}$ the set of all such cities, so $|T| \leqslant m-2$. Now, to get a contradiction, we will construct $m-1$ distinct elements in T, corresponding to $m-1$ elements of the set $A_{a}=A^{*} \backslash\{a\}$.

Firstly, due to the minimality of A^{*}, for each $y \in A_{a}$ there exists some city $d_{y} \in D$ which can only be reached with four flights from x by passing through y. So, there is a way to get from x to d_{y} along $x-y-b_{y}-c_{y}-d_{y}$ for some cities b_{y} and c_{y}; notice that $d\left(x, b_{y}\right)=2$ and $d\left(x, c_{y}\right)=3$ since this path has the minimal possible length.

Now we claim that all $2(m-1)$ cities of the form b_{y}, c_{y} with $y \in A_{a}$ are distinct. Indeed, no b_{y} may coincide with any c_{z} since their distances from x are different. On the other hand, if one had $b_{y}=b_{z}$ for $y \neq z$, then there would exist a path of length 4 from x to d_{z} via y, namely $x-y-b_{z}-c_{z}-d_{z}$; this is impossible by the choice of d_{z}. Similarly, $c_{y} \neq c_{z}$ for $y \neq z$.

So, it suffices to prove that for every $y \in A_{a}$, one of the cities b_{y} and c_{y} has distance 3 from a (and thus belongs to T). For that, notice that $d(a, y) \leqslant 2$ due to the path $a-x-y$, while $d\left(a, d_{y}\right) \geqslant d\left(x, d_{y}\right)-d(x, a)=3$. Moreover, $d\left(a, d_{y}\right) \neq 3$ by the choice of d_{y}; thus $d\left(a, d_{y}\right)>3$. Finally, in the sequence $d(a, y), d\left(a, b_{y}\right), d\left(a, c_{y}\right), d\left(a, d_{y}\right)$ the neighboring terms differ by at most 1 , the first term is less than 3 , and the last one is greater than 3 ; thus there exists one which is equal to 3 , as required.

Comment 1. The upper bound 2550 is sharp. This can be seen by means of various examples; one of them is the "Roman Empire": it has one capital, called "Rome", that is connected to 51 semicapitals by internally disjoint paths of length 3 . Moreover, each of these semicapitals is connected to 50 rural cities by direct flights.

Comment 2. Observe that, under the conditions of the problem, there exists no bound for the size of $S_{1}(x)$ or $S_{2}(x)$.

Comment 3. The numbers 100 and 2550 appearing in the statement of the problem may be replaced by n and $\left\lfloor\frac{(n+1)^{2}}{4}\right\rfloor$ for any positive integer n. Still more generally, one can also replace the pair $(3,4)$ of distances under consideration by any pair (r, s) of positive integers satisfying $r<s \leqslant \frac{3}{2} r$.

To adapt the above proof to this situation, one takes $A=S_{s-r}(x)$ and defines the concept of substantiality as before. Then one takes A^{*} to be a minimal substantial subset of A, and for each $y \in A^{*}$ one fixes an element $d_{y} \in S_{s}(x)$ which is only reachable from x by a path of length s by passing through y. As before, it suffices to show that for distinct $a, y \in A^{*}$ and a path $y=y_{0}-y_{1}-\ldots-y_{r}=d_{y}$, at least one of the cities y_{0}, \ldots, y_{r-1} has distance r from a. This can be done as above; the relation $s \leqslant \frac{3}{2} r$ is used here to show that $d\left(a, y_{0}\right) \leqslant r$.

Moreover, the estimate $\left\lfloor\frac{(n+1)^{2}}{4}\right\rfloor$ is also sharp for every positive integer n and every positive integers r, s with $r<s \leqslant \frac{3}{2} r$. This may be shown by an example similar to that in the previous comment.

C7. Let $n \geqslant 2$ be an integer. Consider all circular arrangements of the numbers $0,1, \ldots, n$; the $n+1$ rotations of an arrangement are considered to be equal. A circular arrangement is called beautiful if, for any four distinct numbers $0 \leqslant a, b, c, d \leqslant n$ with $a+c=b+d$, the chord joining numbers a and c does not intersect the chord joining numbers b and d.

Let M be the number of beautiful arrangements of $0,1, \ldots, n$. Let N be the number of pairs (x, y) of positive integers such that $x+y \leqslant n$ and $\operatorname{gcd}(x, y)=1$. Prove that

$$
M=N+1 .
$$

(Russia)
Solution 1. Given a circular arrangement of $[0, n]=\{0,1, \ldots, n\}$, we define a k-chord to be a (possibly degenerate) chord whose (possibly equal) endpoints add up to k. We say that three chords of a circle are aligned if one of them separates the other two. Say that $m \geqslant 3$ chords are aligned if any three of them are aligned. For instance, in Figure $1, A, B$, and C are aligned, while B, C, and D are not.

Figure 1

Figure 2

Claim. In a beautiful arrangement, the k-chords are aligned for any integer k.
Proof. We proceed by induction. For $n \leqslant 3$ the statement is trivial. Now let $n \geqslant 4$, and proceed by contradiction. Consider a beautiful arrangement S where the three k-chords A, B, C are not aligned. If n is not among the endpoints of A, B, and C, then by deleting n from S we obtain a beautiful arrangement $S \backslash\{n\}$ of $[0, n-1]$, where A, B, and C are aligned by the induction hypothesis. Similarly, if 0 is not among these endpoints, then deleting 0 and decreasing all the numbers by 1 gives a beautiful arrangement $S \backslash\{0\}$ where A, B, and C are aligned. Therefore both 0 and n are among the endpoints of these segments. If x and y are their respective partners, we have $n \geqslant 0+x=k=n+y \geqslant n$. Thus 0 and n are the endpoints of one of the chords; say it is C.

Let D be the chord formed by the numbers u and v which are adjacent to 0 and n and on the same side of C as A and B, as shown in Figure 2. Set $t=u+v$. If we had $t=n$, the n-chords A, B, and D would not be aligned in the beautiful arrangement $S \backslash\{0, n\}$, contradicting the induction hypothesis. If $t<n$, then the t-chord from 0 to t cannot intersect D, so the chord C separates t and D. The chord E from t to $n-t$ does not intersect C, so t and $n-t$ are on the same side of C. But then the chords A, B, and E are not aligned in $S \backslash\{0, n\}$, a contradiction. Finally, the case $t>n$ is equivalent to the case $t<n$ via the beauty-preserving relabelling $x \mapsto n-x$ for $0 \leqslant x \leqslant n$, which sends t-chords to $(2 n-t)$-chords. This proves the Claim.

Having established the Claim, we prove the desired result by induction. The case $n=2$ is trivial. Now assume that $n \geqslant 3$. Let S be a beautiful arrangement of $[0, n]$ and delete n to obtain
the beautiful arrangement T of $[0, n-1]$. The n-chords of T are aligned, and they contain every point except 0 . Say T is of Type 1 if 0 lies between two of these n-chords, and it is of Type 2 otherwise; i.e., if 0 is aligned with these n-chords. We will show that each Type 1 arrangement of $[0, n-1]$ arises from a unique arrangement of $[0, n]$, and each Type 2 arrangement of $[0, n-1]$ arises from exactly two beautiful arrangements of $[0, n]$.

If T is of Type 1 , let 0 lie between chords A and B. Since the chord from 0 to n must be aligned with A and B in S, n must be on the other arc between A and B. Therefore S can be recovered uniquely from T. In the other direction, if T is of Type 1 and we insert n as above, then we claim the resulting arrangement S is beautiful. For $0<k<n$, the k-chords of S are also k-chords of T, so they are aligned. Finally, for $n<k<2 n$, notice that the n-chords of S are parallel by construction, so there is an antisymmetry axis ℓ such that x is symmetric to $n-x$ with respect to ℓ for all x. If we had two k-chords which intersect, then their reflections across ℓ would be two $(2 n-k)$-chords which intersect, where $0<2 n-k<n$, a contradiction.

If T is of Type 2, there are two possible positions for n in S, on either side of 0 . As above, we check that both positions lead to beautiful arrangements of $[0, n]$.

Hence if we let M_{n} be the number of beautiful arrangements of [$0, n$], and let L_{n} be the number of beautiful arrangements of [$0, n-1$] of Type 2, we have

$$
M_{n}=\left(M_{n-1}-L_{n-1}\right)+2 L_{n-1}=M_{n-1}+L_{n-1}
$$

It then remains to show that L_{n-1} is the number of pairs (x, y) of positive integers with $x+y=n$ and $\operatorname{gcd}(x, y)=1$. Since $n \geqslant 3$, this number equals $\varphi(n)=\#\{x: 1 \leqslant x \leqslant n, \operatorname{gcd}(x, n)=1\}$.

To prove this, consider a Type 2 beautiful arrangement of $[0, n-1]$. Label the positions $0, \ldots, n-1(\bmod n)$ clockwise around the circle, so that number 0 is in position 0 . Let $f(i)$ be the number in position i; note that f is a permutation of $[0, n-1]$. Let a be the position such that $f(a)=n-1$.

Since the n-chords are aligned with 0 , and every point is in an n-chord, these chords are all parallel and

$$
f(i)+f(-i)=n \quad \text { for all } i
$$

Similarly, since the ($n-1$)-chords are aligned and every point is in an $(n-1)$-chord, these chords are also parallel and

$$
f(i)+f(a-i)=n-1 \quad \text { for all } i .
$$

Therefore $f(a-i)=f(-i)-1$ for all i; and since $f(0)=0$, we get

$$
\begin{equation*}
f(-a k)=k \quad \text { for all } k . \tag{1}
\end{equation*}
$$

Recall that this is an equality modulo n. Since f is a permutation, we must have $(a, n)=1$. Hence $L_{n-1} \leqslant \varphi(n)$.

To prove equality, it remains to observe that the labeling (1) is beautiful. To see this, consider four numbers w, x, y, z on the circle with $w+y=x+z$. Their positions around the circle satisfy $(-a w)+(-a y)=(-a x)+(-a z)$, which means that the chord from w to y and the chord from x to z are parallel. Thus (1) is beautiful, and by construction it has Type 2. The desired result follows.

Solution 2. Notice that there are exactly N irreducible fractions $f_{1}<\cdots<f_{N}$ in $(0,1)$ whose denominator is at most n, since the pair (x, y) with $x+y \leqslant n$ and $(x, y)=1$ corresponds to the fraction $x /(x+y)$. Write $f_{i}=\frac{a_{i}}{b_{i}}$ for $1 \leqslant i \leqslant N$.

We begin by constructing $N+1$ beautiful arrangements. Take any $\alpha \in(0,1)$ which is not one of the above N fractions. Consider a circle of perimeter 1 . Successively mark points $0,1,2, \ldots, n$ where 0 is arbitrary, and the clockwise distance from i to $i+1$ is α. The point k will be at clockwise distance $\{k \alpha\}$ from 0 , where $\{r\}$ denotes the fractional part of r. Call such a circular arrangement cyclic and denote it by $A(\alpha)$. If the clockwise order of the points is the same in $A\left(\alpha_{1}\right)$ and $A\left(\alpha_{2}\right)$, we regard them as the same circular arrangement. Figure 3 shows the cyclic arrangement $A(3 / 5+\epsilon)$ of $[0,13]$ where $\epsilon>0$ is very small.

Figure 3

If $0 \leqslant a, b, c, d \leqslant n$ satisfy $a+c=b+d$, then $a \alpha+c \alpha=b \alpha+d \alpha$, so the chord from a to c is parallel to the chord from b to d in $A(\alpha)$. Hence in a cyclic arrangement all k-chords are parallel. In particular every cyclic arrangement is beautiful.

Next we show that there are exactly $N+1$ distinct cyclic arrangements. To see this, let us see how $A(\alpha)$ changes as we increase α from 0 to 1 . The order of points p and q changes precisely when we cross a value $\alpha=f$ such that $\{p f\}=\{q f\}$; this can only happen if f is one of the N fractions f_{1}, \ldots, f_{N}. Therefore there are at most $N+1$ different cyclic arrangements.

To show they are all distinct, recall that $f_{i}=a_{i} / b_{i}$ and let $\epsilon>0$ be a very small number. In the arrangement $A\left(f_{i}+\epsilon\right)$, point k lands at $\frac{k a_{i}\left(\bmod b_{i}\right)}{b_{i}}+k \epsilon$. Therefore the points are grouped into b_{i} clusters next to the points $0, \frac{1}{b_{i}}, \ldots, \frac{b_{i}-1}{b_{i}}$ of the circle. The cluster following $\frac{k}{b_{i}}$ contains the numbers congruent to $k a_{i}^{-1}$ modulo b_{i}, listed clockwise in increasing order. It follows that the first number after 0 in $A\left(f_{i}+\epsilon\right)$ is b_{i}, and the first number after 0 which is less than b_{i} is $a_{i}^{-1}\left(\bmod b_{i}\right)$, which uniquely determines a_{i}. In this way we can recover f_{i} from the cyclic arrangement. Note also that $A\left(f_{i}+\epsilon\right)$ is not the trivial arrangement where we list $0,1, \ldots, n$ in order clockwise. It follows that the $N+1$ cyclic arrangements $A(\epsilon), A\left(f_{1}+\epsilon\right), \ldots, A\left(f_{N}+\epsilon\right)$ are distinct.

Let us record an observation which will be useful later:

$$
\begin{equation*}
\text { if } f_{i}<\alpha<f_{i+1} \text { then } 0 \text { is immediately after } b_{i+1} \text { and before } b_{i} \text { in } A(\alpha) . \tag{2}
\end{equation*}
$$

Indeed, we already observed that b_{i} is the first number after 0 in $A\left(f_{i}+\epsilon\right)=A(\alpha)$. Similarly we see that b_{i+1} is the last number before 0 in $A\left(f_{i+1}-\epsilon\right)=A(\alpha)$.

Finally, we show that any beautiful arrangement of $[0, n]$ is cyclic by induction on n. For $n \leqslant 2$ the result is clear. Now assume that all beautiful arrangements of $[0, n-1]$ are cyclic, and consider a beautiful arrangement A of $[0, n]$. The subarrangement $A_{n-1}=A \backslash\{n\}$ of $[0, n-1]$ obtained by deleting n is cyclic; say $A_{n-1}=A_{n-1}(\alpha)$.

Let α be between the consecutive fractions $\frac{p_{1}}{q_{1}}<\frac{p_{2}}{q_{2}}$ among the irreducible fractions of denominator at most $n-1$. There is at most one fraction $\frac{i}{n}$ in $\left(\frac{p_{1}}{q_{1}}, \frac{p_{2}}{q_{2}}\right)$, since $\frac{i}{n}<\frac{i}{n-1} \leqslant \frac{i+1}{n}$ for $0<i \leqslant n-1$.

Case 1. There is no fraction with denominator n between $\frac{p_{1}}{q_{1}}$ and $\frac{p_{2}}{q_{2}}$.
In this case the only cyclic arrangement extending $A_{n-1}(\alpha)$ is $A_{n}(\alpha)$. We know that A and $A_{n}(\alpha)$ can only differ in the position of n. Assume n is immediately after x and before y in $A_{n}(\alpha)$. Since the neighbors of 0 are q_{1} and q_{2} by (2), we have $x, y \geqslant 1$.

Figure 4
In $A_{n}(\alpha)$ the chord from $n-1$ to x is parallel and adjacent to the chord from n to $x-1$, so $n-1$ is between $x-1$ and x in clockwise order, as shown in Figure 4. Similarly, $n-1$ is between y and $y-1$. Therefore $x, y, x-1, n-1$, and $y-1$ occur in this order in $A_{n}(\alpha)$ and hence in A (possibly with $y=x-1$ or $x=y-1$).

Now, A may only differ from $A_{n}(\alpha)$ in the location of n. In A, since the chord from $n-1$ to x and the chord from n to $x-1$ do not intersect, n is between x and $n-1$. Similarly, n is between $n-1$ and y. Then n must be between x and y and $A=A_{n}(\alpha)$. Therefore A is cyclic as desired.

Case 2. There is exactly one i with $\frac{p_{1}}{q_{1}}<\frac{i}{n}<\frac{p_{2}}{q_{2}}$.
In this case there exist two cyclic arrangements $A_{n}\left(\alpha_{1}\right)$ and $A_{n}\left(\alpha_{2}\right)$ of the numbers $0, \ldots, n$ extending $A_{n-1}(\alpha)$, where $\frac{p_{1}}{q_{1}}<\alpha_{1}<\frac{i}{n}$ and $\frac{i}{n}<\alpha_{2}<\frac{p_{2}}{q_{2}}$. In $A_{n-1}(\alpha), 0$ is the only number between q_{2} and q_{1} by (2). For the same reason, n is between q_{2} and 0 in $A_{n}\left(\alpha_{1}\right)$, and between 0 and q_{1} in $A_{n}\left(\alpha_{2}\right)$.

Letting $x=q_{2}$ and $y=q_{1}$, the argument of Case 1 tells us that n must be between x and y in A. Therefore A must equal $A_{n}\left(\alpha_{1}\right)$ or $A_{n}\left(\alpha_{2}\right)$, and therefore it is cyclic.

This concludes the proof that every beautiful arrangement is cyclic. It follows that there are exactly $N+1$ beautiful arrangements of $[0, n]$ as we wished to show.

C8. Players A and B play a paintful game on the real line. Player A has a pot of paint with four units of black ink. A quantity p of this ink suffices to blacken a (closed) real interval of length p. In every round, player A picks some positive integer m and provides $1 / 2^{m}$ units of ink from the pot. Player B then picks an integer k and blackens the interval from $k / 2^{m}$ to $(k+1) / 2^{m}$ (some parts of this interval may have been blackened before). The goal of player A is to reach a situation where the pot is empty and the interval $[0,1]$ is not completely blackened.

Decide whether there exists a strategy for player A to win in a finite number of moves.
(Austria)
Answer. No. Such a strategy for player A does not exist.
Solution. We will present a strategy for player B that guarantees that the interval $[0,1]$ is completely blackened, once the paint pot has become empty.

At the beginning of round r, let x_{r} denote the largest real number for which the interval between 0 and x_{r} has already been blackened; for completeness we define $x_{1}=0$. Let m be the integer picked by player A in this round; we define an integer y_{r} by

$$
\frac{y_{r}}{2^{m}} \leqslant x_{r}<\frac{y_{r}+1}{2^{m}} .
$$

Note that $I_{0}^{r}=\left[y_{r} / 2^{m},\left(y_{r}+1\right) / 2^{m}\right]$ is the leftmost interval that may be painted in round r and that still contains some uncolored point.

Player B now looks at the next interval $I_{1}^{r}=\left[\left(y_{r}+1\right) / 2^{m},\left(y_{r}+2\right) / 2^{m}\right]$. If I_{1}^{r} still contains an uncolored point, then player B blackens the interval I_{1}^{r}; otherwise he blackens the interval I_{0}^{r}. We make the convention that, at the beginning of the game, the interval $[1,2]$ is already blackened; thus, if $y_{r}+1=2^{m}$, then B blackens I_{0}^{r}.

Our aim is to estimate the amount of ink used after each round. Firstly, we will prove by induction that, if before r th round the segment $[0,1]$ is not completely colored, then, before this move,
(i) the amount of ink used for the segment $\left[0, x_{r}\right]$ is at most $3 x_{r}$; and
(ii) for every m, B has blackened at most one interval of length $1 / 2^{m}$ to the right of x_{r}.

Obviously, these conditions are satisfied for $r=0$. Now assume that they were satisfied before the r th move, and consider the situation after this move; let m be the number A has picked at this move.

If B has blackened the interval I_{1}^{r} at this move, then $x_{r+1}=x_{r}$, and (i) holds by the induction hypothesis. Next, had B blackened before the r th move any interval of length $1 / 2^{m}$ to the right of x_{r}, this interval would necessarily coincide with I_{1}^{r}. By our strategy, this cannot happen. So, condition (ii) also remains valid.

Assume now that B has blackened the interval I_{0}^{r} at the r th move, but the interval $[0,1]$ still contains uncolored parts (which means that I_{1}^{r} is contained in $[0,1]$). Then condition (ii) clearly remains true, and we need to check (i) only. In our case, the intervals I_{0}^{r} and I_{1}^{r} are completely colored after the r th move, so x_{r+1} either reaches the right endpoint of I_{1} or moves even further to the right. So, $x_{r+1}=x_{r}+\alpha$ for some $\alpha>1 / 2^{m}$.

Next, any interval blackened by B before the r th move which intersects $\left(x_{r}, x_{r+1}\right)$ should be contained in $\left[x_{r}, x_{r+1}\right]$; by (ii), all such intervals have different lengths not exceeding $1 / 2^{m}$, so the total amount of ink used for them is less than $2 / 2^{m}$. Thus, the amount of ink used for the segment $\left[0, x_{r+1}\right]$ does not exceed the sum of $2 / 2^{m}, 3 x_{r}$ (used for $\left[0, x_{r}\right]$), and $1 / 2^{m}$ used for the
segment I_{0}^{r}. In total it gives at most $3\left(x_{r}+1 / 2^{m}\right)<3\left(x_{r}+\alpha\right)=3 x_{r+1}$. Thus condition (i) is also verified in this case. The claim is proved.

Finally, we can perform the desired estimation. Consider any situation in the game, say after the $(r-1)$ st move; assume that the segment $[0,1]$ is not completely black. By $(i i)$, in the segment $\left[x_{r}, 1\right]$ player B has colored several segments of different lengths; all these lengths are negative powers of 2 not exceeding $1-x_{r}$; thus the total amount of ink used for this interval is at most $2\left(1-x_{r}\right)$. Using (i), we obtain that the total amount of ink used is at most $3 x_{r}+2\left(1-x_{r}\right)<3$. Thus the pot is not empty, and therefore A never wins.

Comment 1. Notice that this strategy works even if the pot contains initially only 3 units of ink.
Comment 2. There exist other strategies for B allowing him to prevent emptying the pot before the whole interval is colored. On the other hand, let us mention some idea which does not work.

Player B could try a strategy in which the set of blackened points in each round is an interval of the type $[0, x]$. Such a strategy cannot work (even if there is more ink available). Indeed, under the assumption that B uses such a strategy, let us prove by induction on s the following statement:

For any positive integer s, player A has a strategy picking only positive integers $m \leqslant s$ in which, if player B ever paints a point $x \geqslant 1-1 / 2^{s}$ then after some move, exactly the interval $\left[0,1-1 / 2^{s}\right]$ is blackened, and the amount of ink used up to this moment is at least $s / 2$.

For the base case $s=1$, player A just picks $m=1$ in the first round. If for some positive integer k player A has such a strategy, for $s+1$ he can first rescale his strategy to the interval [$0,1 / 2$] (sending in each round half of the amount of ink he would give by the original strategy). Thus, after some round, the interval $\left[0,1 / 2-1 / 2^{s+1}\right]$ becomes blackened, and the amount of ink used is at least $s / 4$. Now player A picks $m=1 / 2$, and player B spends $1 / 2$ unit of ink to blacken the interval [$0,1 / 2]$. After that, player A again rescales his strategy to the interval $[1 / 2,1]$, and player B spends at least $s / 4$ units of ink to blacken the interval $\left[1 / 2,1-1 / 2^{s+1}\right]$, so he spends in total at least $s / 4+1 / 2+s / 4=(s+1) / 2$ units of ink.

Comment 3. In order to avoid finiteness issues, the statement could be replaced by the following one:
Players A and B play a paintful game on the real numbers. Player A has a paint pot with four units of black ink. A quantity p of this ink suffices to blacken a (closed) real interval of length p. In the beginning of the game, player A chooses (and announces) a positive integer N. In every round, player A picks some positive integer $m \leqslant N$ and provides $1 / 2^{m}$ units of ink from the pot. The player B picks an integer k and blackens the interval from $k / 2^{m}$ to $(k+1) / 2^{m}$ (some parts of this interval may happen to be blackened before). The goal of player A is to reach a situation where the pot is empty and the interval $[0,1]$ is not completely blackened.
Decide whether there exists a strategy for player A to win.
However, the Problem Selection Committee believes that this version may turn out to be harder than the original one.

Geometry

G1. Let $A B C$ be an acute-angled triangle with orthocenter H, and let W be a point on side $B C$. Denote by M and N the feet of the altitudes from B and C, respectively. Denote by ω_{1} the circumcircle of $B W N$, and let X be the point on ω_{1} which is diametrically opposite to W. Analogously, denote by ω_{2} the circumcircle of $C W M$, and let Y be the point on ω_{2} which is diametrically opposite to W. Prove that X, Y and H are collinear.
(Thaliand)
Solution. Let L be the foot of the altitude from A, and let Z be the second intersection point of circles ω_{1} and ω_{2}, other than W. We show that X, Y, Z and H lie on the same line.

Due to $\angle B N C=\angle B M C=90^{\circ}$, the points B, C, N and M are concyclic; denote their circle by ω_{3}. Observe that the line $W Z$ is the radical axis of ω_{1} and ω_{2}; similarly, $B N$ is the radical axis of ω_{1} and ω_{3}, and $C M$ is the radical axis of ω_{2} and ω_{3}. Hence $A=B N \cap C M$ is the radical center of the three circles, and therefore $W Z$ passes through A.

Since $W X$ and $W Y$ are diameters in ω_{1} and ω_{2}, respectively, we have $\angle W Z X=\angle W Z Y=90^{\circ}$, so the points X and Y lie on the line through Z, perpendicular to $W Z$.

The quadrilateral BLHN is cyclic, because it has two opposite right angles. From the power of A with respect to the circles ω_{1} and $B L H N$ we find $A L \cdot A H=A B \cdot A N=A W \cdot A Z$. If H lies on the line $A W$ then this implies $H=Z$ immediately. Otherwise, by $\frac{A Z}{A H}=\frac{A L}{A W}$ the triangles $A H Z$ and $A W L$ are similar. Then $\angle H Z A=\angle W L A=90^{\circ}$, so the point H also lies on the line $X Y Z$.

Comment. The original proposal also included a second statement:
Let P be the point on ω_{1} such that $W P$ is parallel to $C N$, and let Q be the point on ω_{2} such that $W Q$ is parallel to $B M$. Prove that P, Q and H are collinear if and only if $B W=C W$ or $A W \perp B C$.

The Problem Selection Committee considered the first part more suitable for the competition.

G2. Let ω be the circumcircle of a triangle $A B C$. Denote by M and N the midpoints of the sides $A B$ and $A C$, respectively, and denote by T the midpoint of the arc $B C$ of ω not containing A. The circumcircles of the triangles $A M T$ and $A N T$ intersect the perpendicular bisectors of $A C$ and $A B$ at points X and Y, respectively; assume that X and Y lie inside the triangle $A B C$. The lines $M N$ and $X Y$ intersect at K. Prove that $K A=K T$.
(Iran)
Solution 1. Let O be the center of ω, thus $O=M Y \cap N X$. Let ℓ be the perpendicular bisector of $A T$ (it also passes through O). Denote by r the operation of reflection about ℓ. Since $A T$ is the angle bisector of $\angle B A C$, the line $r(A B)$ is parallel to $A C$. Since $O M \perp A B$ and $O N \perp A C$, this means that the line $r(O M)$ is parallel to the line $O N$ and passes through O, so $r(O M)=O N$. Finally, the circumcircle γ of the triangle $A M T$ is symmetric about ℓ, so $r(\gamma)=\gamma$. Thus the point M maps to the common point of $O N$ with the arc $A M T$ of γ - that is, $r(M)=X$.

Similarly, $r(N)=Y$. Thus, we get $r(M N)=X Y$, and the common point K of $M N$ nd $X Y$ lies on ℓ. This means exactly that $K A=K T$.

Solution 2. Let L be the second common point of the line $A C$ with the circumcircle γ of the triangle $A M T$. From the cyclic quadrilaterals $A B T C$ and $A M T L$ we get $\angle B T C=180^{\circ}-$ $\angle B A C=\angle M T L$, which implies $\angle B T M=\angle C T L$. Since $A T$ is an angle bisector in these quadrilaterals, we have $B T=T C$ and $M T=T L$. Thus the triangles $B T M$ and $C T L$ are congruent, so $C L=B M=A M$.

Let X^{\prime} be the common point of the line $N X$ with the external bisector of $\angle B A C$; notice that it lies outside the triangle $A B C$. Then we have $\angle T A X^{\prime}=90^{\circ}$ and $X^{\prime} A=X^{\prime} C$, so we get $\angle X^{\prime} A M=90^{\circ}+\angle B A C / 2=180^{\circ}-\angle X^{\prime} A C=180^{\circ}-\angle X^{\prime} C A=\angle X^{\prime} C L$. Thus the triangles $X^{\prime} A M$ and $X^{\prime} C L$ are congruent, and therefore

$$
\angle M X^{\prime} L=\angle A X^{\prime} C+\left(\angle C X^{\prime} L-\angle A X^{\prime} M\right)=\angle A X^{\prime} C=180^{\circ}-2 \angle X^{\prime} A C=\angle B A C=\angle M A L .
$$

This means that X^{\prime} lies on γ.
Thus we have $\angle T X N=\angle T X X^{\prime}=\angle T A X^{\prime}=90^{\circ}$, so $T X \| A C$. Then $\angle X T A=\angle T A C=$ $\angle T A M$, so the cyclic quadrilateral MATX is an isosceles trapezoid. Similarly, NATY is an isosceles trapezoid, so again the lines $M N$ and $X Y$ are the reflections of each other about the perpendicular bisector of $A T$. Thus K belongs to this perpendicular bisector.

Comment. There are several different ways of showing that the points X and M are symmetrical with respect to ℓ. For instance, one can show that the quadrilaterals $A M O N$ and $T X O Y$ are congruent. We chose Solution 1 as a simple way of doing it. On the other hand, Solution 2 shows some other interesting properties of the configuration.

Let us define Y^{\prime}, analogously to X^{\prime}, as the common point of $M Y$ and the external bisector of $\angle B A C$. One may easily see that in general the lines $M N$ and $X^{\prime} Y^{\prime}$ (which is the external bisector of $\angle B A C$) do not intersect on the perpendicular bisector of $A T$. Thus, any solution should involve some argument using the choice of the intersection points X and Y.

G3. In a triangle $A B C$, let D and E be the feet of the angle bisectors of angles A and B, respectively. A rhombus is inscribed into the quadrilateral $A E D B$ (all vertices of the rhombus lie on different sides of $A E D B$). Let φ be the non-obtuse angle of the rhombus. Prove that $\varphi \leqslant \max \{\angle B A C, \angle A B C\}$.
(Serbia)
Solution 1. Let K, L, M, and N be the vertices of the rhombus lying on the sides $A E, E D, D B$, and $B A$, respectively. Denote by $d(X, Y Z)$ the distance from a point X to a line $Y Z$. Since D and E are the feet of the bisectors, we have $d(D, A B)=d(D, A C), d(E, A B)=d(E, B C)$, and $d(D, B C)=d(E, A C)=0$, which implies

$$
d(D, A C)+d(D, B C)=d(D, A B) \quad \text { and } \quad d(E, A C)+d(E, B C)=d(E, A B)
$$

Since L lies on the segment $D E$ and the relation $d(X, A C)+d(X, B C)=d(X, A B)$ is linear in X inside the triangle, these two relations imply

$$
\begin{equation*}
d(L, A C)+d(L, B C)=d(L, A B) \tag{1}
\end{equation*}
$$

Denote the angles as in the figure below, and denote $a=K L$. Then we have $d(L, A C)=a \sin \mu$ and $d(L, B C)=a \sin \nu$. Since $K L M N$ is a parallelogram lying on one side of $A B$, we get

$$
d(L, A B)=d(L, A B)+d(N, A B)=d(K, A B)+d(M, A B)=a(\sin \delta+\sin \varepsilon) .
$$

Thus the condition (1) reads

$$
\begin{equation*}
\sin \mu+\sin \nu=\sin \delta+\sin \varepsilon \tag{2}
\end{equation*}
$$

If one of the angles α and β is non-acute, then the desired inequality is trivial. So we assume that $\alpha, \beta<\pi / 2$. It suffices to show then that $\psi=\angle N K L \leqslant \max \{\alpha, \beta\}$.

Assume, to the contrary, that $\psi>\max \{\alpha, \beta\}$. Since $\mu+\psi=\angle C K N=\alpha+\delta$, by our assumption we obtain $\mu=(\alpha-\psi)+\delta<\delta$. Similarly, $\nu<\varepsilon$. Next, since $K N \| M L$, we have $\beta=\delta+\nu$, so $\delta<\beta<\pi / 2$. Similarly, $\varepsilon<\pi / 2$. Finally, by $\mu<\delta<\pi / 2$ and $\nu<\varepsilon<\pi / 2$, we obtain

$$
\sin \mu<\sin \delta \quad \text { and } \quad \sin \nu<\sin \varepsilon
$$

This contradicts (2).
Comment. One can see that the equality is achieved if $\alpha=\beta$ for every rhombus inscribed into the quadrilateral $A E D B$.

G4. Let $A B C$ be a triangle with $\angle B>\angle C$. Let P and Q be two different points on line $A C$ such that $\angle P B A=\angle Q B A=\angle A C B$ and A is located between P and C. Suppose that there exists an interior point D of segment $B Q$ for which $P D=P B$. Let the ray $A D$ intersect the circle $A B C$ at $R \neq A$. Prove that $Q B=Q R$.
(Georgia)
Solution 1. Denote by ω the circumcircle of the triangle $A B C$, and let $\angle A C B=\gamma$. Note that the condition $\gamma<\angle C B A$ implies $\gamma<90^{\circ}$. Since $\angle P B A=\gamma$, the line $P B$ is tangent to ω, so $P A \cdot P C=P B^{2}=P D^{2}$. By $\frac{P A}{P D}=\frac{P D}{P C}$ the triangles $P A D$ and $P D C$ are similar, and $\angle A D P=\angle D C P$.

Next, since $\angle A B Q=\angle A C B$, the triangles $A B C$ and $A Q B$ are also similar. Then $\angle A Q B=$ $\angle A B C=\angle A R C$, which means that the points D, R, C, and Q are concyclic. Therefore $\angle D R Q=$ $\angle D C Q=\angle A D P$.

Figure 1
Now from $\angle A R B=\angle A C B=\gamma$ and $\angle P D B=\angle P B D=2 \gamma$ we get

$$
\angle Q B R=\angle A D B-\angle A R B=\angle A D P+\angle P D B-\angle A R B=\angle D R Q+\gamma=\angle Q R B,
$$

so the triangle $Q R B$ is isosceles, which yields $Q B=Q R$.
Solution 2. Again, denote by ω the circumcircle of the triangle $A B C$. Denote $\angle A C B=\gamma$. Since $\angle P B A=\gamma$, the line $P B$ is tangent to ω.

Let E be the second intersection point of $B Q$ with ω. If V^{\prime} is any point on the ray $C E$ beyond E, then $\angle B E V^{\prime}=180^{\circ}-\angle B E C=180^{\circ}-\angle B A C=\angle P A B$; together with $\angle A B Q=$ $\angle P B A$ this shows firstly, that the rays $B A$ and $C E$ intersect at some point V, and secondly that the triangle $V E B$ is similar to the triangle $P A B$. Thus we have $\angle B V E=\angle B P A$. Next, $\angle A E V=\angle B E V-\gamma=\angle P A B-\angle A B Q=\angle A Q B$; so the triangles $P B Q$ and $V A E$ are also similar.

Let $P H$ be an altitude in the isosceles triangle $P B D$; then $B H=H D$. Let G be the intersection point of $P H$ and $A B$. By the symmetry with respect to $P H$, we have $\angle B D G=\angle D B G=\gamma=$ $\angle B E A$; thus $D G \| A E$ and hence $\frac{B G}{G A}=\frac{B D}{D E}$. Thus the points G and D correspond to each other in the similar triangles $P A B$ and $V E B$, so $\angle D V B=\angle G P B=90^{\circ}-\angle P B Q=90^{\circ}-\angle V A E$. Thus $V D \perp A E$.

Let T be the common point of $V D$ and $A E$, and let $D S$ be an altitude in the triangle $B D R$. The points S and T are the feet of corresponding altitudes in the similar triangles $A D E$ and $B D R$, so $\frac{B S}{S R}=\frac{A T}{T E}$. On the other hand, the points T and H are feet of corresponding altitudes in the similar triangles $V A E$ and $P B Q$, so $\frac{A T}{T E}=\frac{B H}{H Q}$. Thus $\frac{B S}{S R}=\frac{A T}{T E}=\frac{B H}{H Q}$, and the triangles $B H S$ and $B Q R$ are similar.

Finally, $S H$ is a median in the right-angled triangle $S B D$; so $B H=H S$, and hence $B Q=Q R$.

Figure 2

Solution 3. Denote by ω and O the circumcircle of the triangle $A B C$ and its center, respectively. From the condition $\angle P B A=\angle B C A$ we know that $B P$ is tangent to ω.

Let E be the second point of intersection of ω and $B D$. Due to the isosceles triangle $B D P$, the tangent of ω at E is parallel to $D P$ and consequently it intersects $B P$ at some point L. Of course, $P D \| L E$. Let M be the midpoint of $B E$, and let H be the midpoint of $B R$. Notice that $\angle A E B=\angle A C B=\angle A B Q=\angle A B E$, so A lies on the perpendicular bisector of $B E$; thus the points L, A, M, and O are collinear. Let ω_{1} be the circle with diameter $B O$. Let $Q^{\prime}=H O \cap B E$; since $H O$ is the perpendicular bisector of $B R$, the statement of the problem is equivalent to $Q^{\prime}=Q$.

Consider the following sequence of projections (see Fig. 3).

1. Project the line $B E$ to the line $L B$ through the center A. (This maps Q to P.)
2. Project the line $L B$ to $B E$ in parallel direction with $L E$. ($P \mapsto D$.)
3. Project the line $B E$ to the circle ω through its point A. $(D \mapsto R$.)
4. Scale ω by the ratio $\frac{1}{2}$ from the point B to the circle ω_{1}. $(R \mapsto H$.
5. Project ω_{1} to the line $B E$ through its point O. $\left(H \mapsto Q^{\prime}\right.$.)

We prove that the composition of these transforms, which maps the line $B E$ to itself, is the identity. To achieve this, it suffices to show three fixed points. An obvious fixed point is B which is fixed by all the transformations above. Another fixed point is M, its path being $M \mapsto L \mapsto$ $E \mapsto E \mapsto M \mapsto M$.

Figure 3

Figure 4

In order to show a third fixed point, draw a line parallel with $L E$ through A; let that line intersect $B E, L B$ and ω at X, Y and $Z \neq A$, respectively (see Fig. 4). We show that X is a fixed point. The images of X at the first three transformations are $X \mapsto Y \mapsto X \mapsto Z$. From $\angle X B Z=\angle E A Z=\angle A E L=\angle L B A=\angle B Z X$ we can see that the triangle $X B Z$ is isosceles. Let U be the midpoint of $B Z$; then the last two transformations do $Z \mapsto U \mapsto X$, and the point X is fixed.

Comment. Verifying that the point E is fixed seems more natural at first, but it appears to be less straightforward. Here we outline a possible proof.

Let the images of E at the first three transforms above be F, G and I. After comparing the angles depicted in Fig. 5 (noticing that the quadrilateral $A F B G$ is cyclic) we can observe that the tangent $L E$ of ω is parallel to $B I$. Then, similarly to the above reasons, the point E is also fixed.

Figure 5

G5. Let $A B C D E F$ be a convex hexagon with $A B=D E, B C=E F, C D=F A$, and $\angle A-\angle D=\angle C-\angle F=\angle E-\angle B$. Prove that the diagonals $A D, B E$, and $C F$ are concurrent.
(Ukraine)
In all three solutions, we denote $\theta=\angle A-\angle D=\angle C-\angle F=\angle E-\angle B$ and assume without loss of generality that $\theta \geqslant 0$.

Solution 1. Let $x=A B=D E, y=C D=F A, z=E F=B C$. Consider the points P, Q, and R such that the quadrilaterals $C D E P, E F A Q$, and $A B C R$ are parallelograms. We compute

$$
\begin{aligned}
\angle P E Q & =\angle F E Q+\angle D E P-\angle E=\left(180^{\circ}-\angle F\right)+\left(180^{\circ}-\angle D\right)-\angle E \\
& =360^{\circ}-\angle D-\angle E-\angle F=\frac{1}{2}(\angle A+\angle B+\angle C-\angle D-\angle E-\angle F)=\theta / 2 .
\end{aligned}
$$

Similarly, $\angle Q A R=\angle R C P=\theta / 2$.

If $\theta=0$, since $\triangle R C P$ is isosceles, $R=P$. Therefore $A B\|R C=P C\| E D$, so $A B D E$ is a parallelogram. Similarly, $B C E F$ and $C D F A$ are parallelograms. It follows that $A D, B E$ and $C F$ meet at their common midpoint.

Now assume $\theta>0$. Since $\triangle P E Q, \triangle Q A R$, and $\triangle R C P$ are isosceles and have the same angle at the apex, we have $\triangle P E Q \sim \triangle Q A R \sim \triangle R C P$ with ratios of similarity $y: z: x$. Thus
$\triangle P Q R$ is similar to the triangle with sidelengths y, z, and x.
Next, notice that

$$
\frac{R Q}{Q P}=\frac{z}{y}=\frac{R A}{A F}
$$

and, using directed angles between rays,

$$
\begin{aligned}
\Varangle(R Q, Q P) & =\Varangle(R Q, Q E)+\Varangle(Q E, Q P) \\
& =\Varangle(R Q, Q E)+\Varangle(R A, R Q)=\Varangle(R A, Q E)=\Varangle(R A, A F) .
\end{aligned}
$$

Thus $\triangle P Q R \sim \triangle F A R$. Since $F A=y$ and $A R=z$, (1) then implies that $F R=x$. Similarly $F P=x$. Therefore $C R F P$ is a rhombus.

We conclude that $C F$ is the perpendicular bisector of $P R$. Similarly, $B E$ is the perpendicular bisector of $P Q$ and $A D$ is the perpendicular bisector of $Q R$. It follows that $A D, B E$, and $C F$ are concurrent at the circumcenter of $P Q R$.

Solution 2. Let $X=C D \cap E F, Y=E F \cap A B, Z=A B \cap C D, X^{\prime}=F A \cap B C, Y^{\prime}=$ $B C \cap D E$, and $Z^{\prime}=D E \cap F A$. From $\angle A+\angle B+\angle C=360^{\circ}+\theta / 2$ we get $\angle A+\angle B>180^{\circ}$ and $\angle B+\angle C>180^{\circ}$, so Z and X^{\prime} are respectively on the opposite sides of $B C$ and $A B$ from the hexagon. Similar conclusions hold for X, Y, Y^{\prime}, and Z^{\prime}. Then

$$
\angle Y Z X=\angle B+\angle C-180^{\circ}=\angle E+\angle F-180^{\circ}=\angle Y^{\prime} Z^{\prime} X^{\prime},
$$

and similarly $\angle Z X Y=\angle Z^{\prime} X^{\prime} Y^{\prime}$ and $\angle X Y Z=\angle X^{\prime} Y^{\prime} Z^{\prime}$, so $\triangle X Y Z \sim \triangle X^{\prime} Y^{\prime} Z^{\prime}$. Thus there is a rotation R which sends $\triangle X Y Z$ to a triangle with sides parallel to $\triangle X^{\prime} Y^{\prime} Z^{\prime}$. Since $A B=D E$ we have $R(\overrightarrow{A B})=\overrightarrow{D E}$. Similarly, $R(\overrightarrow{C D})=\overrightarrow{F A}$ and $R(\overrightarrow{E F})=\overrightarrow{B C}$. Therefore

$$
\overrightarrow{0}=\overrightarrow{A B}+\overrightarrow{B C}+\overrightarrow{C D}+\overrightarrow{D E}+\overrightarrow{E F}+\overrightarrow{F A}=(\overrightarrow{A B}+\overrightarrow{C D}+\overrightarrow{E F})+R(\overrightarrow{A B}+\overrightarrow{C D}+\overrightarrow{E F})
$$

If R is a rotation by 180°, then any two opposite sides of our hexagon are equal and parallel, so the three diagonals meet at their common midpoint. Otherwise, we must have

$$
\overrightarrow{A B}+\overrightarrow{C D}+\overrightarrow{E F}=\overrightarrow{0},
$$

or else we would have two vectors with different directions whose sum is $\overrightarrow{0}$.

This allows us to consider a triangle $L M N$ with $\overrightarrow{L M}=\overrightarrow{E F}, \overrightarrow{M N}=\overrightarrow{A B}$, and $\overrightarrow{N L}=\overrightarrow{C D}$. Let O be the circumcenter of $\triangle L M N$ and consider the points O_{1}, O_{2}, O_{3} such that $\triangle A O_{1} B, \triangle C O_{2} D$, and $\triangle E O_{3} F$ are translations of $\triangle M O N, \triangle N O L$, and $\triangle L O M$, respectively. Since $F O_{3}$ and $A O_{1}$ are translations of $M O$, quadrilateral $A F O_{3} O_{1}$ is a parallelogram and $O_{3} O_{1}=F A=C D=N L$. Similarly, $O_{1} O_{2}=L M$ and $O_{2} O_{3}=M N$. Therefore $\triangle O_{1} O_{2} O_{3} \cong \triangle L M N$. Moreover, by means of the rotation R one may check that these triangles have the same orientation.

Let T be the circumcenter of $\triangle O_{1} O_{2} O_{3}$. We claim that $A D, B E$, and $C F$ meet at T. Let us show that C, T, and F are collinear. Notice that $C O_{2}=O_{2} T=T O_{3}=O_{3} F$ since they are all equal to the circumradius of $\triangle L M N$. Therefore $\triangle T O_{3} F$ and $\triangle C O_{2} T$ are isosceles. Using directed angles between rays again, we get

$$
\begin{equation*}
\Varangle\left(T F, T O_{3}\right)=\Varangle\left(F O_{3}, F T\right) \quad \text { and } \quad \Varangle\left(T O_{2}, T C\right)=\Varangle\left(C T, C O_{2}\right) . \tag{2}
\end{equation*}
$$

Also, T and O are the circumcenters of the congruent triangles $\triangle O_{1} O_{2} O_{3}$ and $\triangle L M N$ so we have $\Varangle\left(T O_{3}, T O_{2}\right)=\Varangle(O N, O M)$. Since $C O_{2}$ and $F O_{3}$ are translations of $N O$ and $M O$ respectively, this implies

$$
\begin{equation*}
\Varangle\left(T O_{3}, T O_{2}\right)=\Varangle\left(C O_{2}, F O_{3}\right) . \tag{3}
\end{equation*}
$$

Adding the three equations in (2) and (3) gives

$$
\npreceq(T F, T C)=\npreceq(C T, F T)=-\Varangle(T F, T C)
$$

which implies that T is on $C F$. Analogous arguments show that it is on $A D$ and $B E$ also. The desired result follows.

Solution 3. Place the hexagon on the complex plane, with A at the origin and vertices labelled clockwise. Now A, B, C, D, E, F represent the corresponding complex numbers. Also consider the complex numbers $a, b, c, a^{\prime}, b^{\prime}, c^{\prime}$ given by $B-A=a, D-C=b, F-E=c, E-D=a^{\prime}$, $A-F=b^{\prime}$, and $C-B=c^{\prime}$. Let $k=|a| /|b|$. From $a / b^{\prime}=-k e^{i \angle A}$ and $a^{\prime} / b=-k e^{i \angle D}$ we get that $\left(a^{\prime} / a\right)\left(b^{\prime} / b\right)=e^{-i \theta}$ and similarly $\left(b^{\prime} / b\right)\left(c^{\prime} / c\right)=e^{-i \theta}$ and $\left(c^{\prime} / c\right)\left(a^{\prime} / a\right)=e^{-i \theta}$. It follows that $a^{\prime}=a r$, $b^{\prime}=b r$, and $c^{\prime}=c r$ for a complex number r with $|r|=1$, as shown below.

We have

$$
0=a+c r+b+a r+c+b r=(a+b+c)(1+r) .
$$

If $r=-1$, then the hexagon is centrally symmetric and its diagonals intersect at its center of symmetry. Otherwise

$$
a+b+c=0 .
$$

Therefore

$$
A=0, \quad B=a, \quad C=a+c r, \quad D=c(r-1), \quad E=-b r-c, \quad F=-b r .
$$

Now consider a point W on $A D$ given by the complex number $c(r-1) \lambda$, where λ is a real number with $0<\lambda<1$. Since $D \neq A$, we have $r \neq 1$, so we can define $s=1 /(r-1)$. From $r \bar{r}=|r|^{2}=1$ we get

$$
1+s=\frac{r}{r-1}=\frac{r}{r-r \bar{r}}=\frac{1}{1-\bar{r}}=-\bar{s} .
$$

Now,

$$
\begin{aligned}
W \text { is on } B E & \Longleftrightarrow c(r-1) \lambda-a\|a-(-b r-c)=b(r-1) \Longleftrightarrow c \lambda-a s\| b \\
& \Longleftrightarrow-a \lambda-b \lambda-a s\|b \Longleftrightarrow a(\lambda+s)\| b .
\end{aligned}
$$

One easily checks that $r \neq \pm 1$ implies that $\lambda+s \neq 0$ since s is not real. On the other hand,

$$
\begin{aligned}
W \text { on } C F & \Longleftrightarrow c(r-1) \lambda+b r\|-b r-(a+c r)=a(r-1) \Longleftrightarrow c \lambda+b(1+s)\| a \\
& \Longleftrightarrow-a \lambda-b \lambda-b \bar{s}\|a \Longleftrightarrow b(\lambda+\bar{s})\| a \Longleftrightarrow b \| a(\lambda+s),
\end{aligned}
$$

where in the last step we use that $(\lambda+s)(\lambda+\bar{s})=|\lambda+s|^{2} \in \mathbb{R}_{>0}$. We conclude that $A D \cap B E=$ $C F \cap B E$, and the desired result follows.

G6. Let the excircle of the triangle $A B C$ lying opposite to A touch its side $B C$ at the point A_{1}. Define the points B_{1} and C_{1} analogously. Suppose that the circumcentre of the triangle $A_{1} B_{1} C_{1}$ lies on the circumcircle of the triangle $A B C$. Prove that the triangle $A B C$ is right-angled.
(Russia)
Solution 1. Denote the circumcircles of the triangles $A B C$ and $A_{1} B_{1} C_{1}$ by Ω and Γ, respectively. Denote the midpoint of the arc $C B$ of Ω containing A by A_{0}, and define B_{0} as well as C_{0} analogously. By our hypothesis the centre Q of Γ lies on Ω.

Lemma. One has $A_{0} B_{1}=A_{0} C_{1}$. Moreover, the points A, A_{0}, B_{1}, and C_{1} are concyclic. Finally, the points A and A_{0} lie on the same side of $B_{1} C_{1}$. Similar statements hold for B and C.
Proof. Let us consider the case $A=A_{0}$ first. Then the triangle $A B C$ is isosceles at A, which implies $A B_{1}=A C_{1}$ while the remaining assertions of the Lemma are obvious. So let us suppose $A \neq A_{0}$ from now on.

By the definition of A_{0}, we have $A_{0} B=A_{0} C$. It is also well known and easy to show that $B C_{1}=$ $C B_{1}$. Next, we have $\angle C_{1} B A_{0}=\angle A B A_{0}=\angle A C A_{0}=\angle B_{1} C A_{0}$. Hence the triangles $A_{0} B C_{1}$ and $A_{0} C B_{1}$ are congruent. This implies $A_{0} C_{1}=A_{0} B_{1}$, establishing the first part of the Lemma. It also follows that $\angle A_{0} C_{1} A=\angle A_{0} B_{1} A$, as these are exterior angles at the corresponding vertices C_{1} and B_{1} of the congruent triangles $A_{0} B C_{1}$ and $A_{0} C B_{1}$. For that reason the points A, A_{0}, B_{1}, and C_{1} are indeed the vertices of some cyclic quadrilateral two opposite sides of which are $A A_{0}$ and $B_{1} C_{1}$.

Now we turn to the solution. Evidently the points A_{1}, B_{1}, and C_{1} lie interior to some semicircle arc of Γ, so the triangle $A_{1} B_{1} C_{1}$ is obtuse-angled. Without loss of generality, we will assume that its angle at B_{1} is obtuse. Thus Q and B_{1} lie on different sides of $A_{1} C_{1}$; obviously, the same holds for the points B and B_{1}. So, the points Q and B are on the same side of $A_{1} C_{1}$.

Notice that the perpendicular bisector of $A_{1} C_{1}$ intersects Ω at two points lying on different sides of $A_{1} C_{1}$. By the first statement from the Lemma, both points B_{0} and Q are among these points of intersection; since they share the same side of $A_{1} C_{1}$, they coincide (see Figure 1).

Figure 1

Now, by the first part of the Lemma again, the lines $Q A_{0}$ and $Q C_{0}$ are the perpendicular bisectors of $B_{1} C_{1}$ and $A_{1} B_{1}$, respectively. Thus

$$
\angle C_{1} B_{0} A_{1}=\angle C_{1} B_{0} B_{1}+\angle B_{1} B_{0} A_{1}=2 \angle A_{0} B_{0} B_{1}+2 \angle B_{1} B_{0} C_{0}=2 \angle A_{0} B_{0} C_{0}=180^{\circ}-\angle A B C,
$$

recalling that A_{0} and C_{0} are the midpoints of the arcs $C B$ and $B A$, respectively.
On the other hand, by the second part of the Lemma we have

$$
\angle C_{1} B_{0} A_{1}=\angle C_{1} B A_{1}=\angle A B C .
$$

From the last two equalities, we get $\angle A B C=90^{\circ}$, whereby the problem is solved.
Solution 2. Let Q again denote the centre of the circumcircle of the triangle $A_{1} B_{1} C_{1}$, that lies on the circumcircle Ω of the triangle $A B C$. We first consider the case where Q coincides with one of the vertices of $A B C$, say $Q=B$. Then $B C_{1}=B A_{1}$ and consequently the triangle $A B C$ is isosceles at B. Moreover we have $B C_{1}=B_{1} C$ in any triangle, and hence $B B_{1}=B C_{1}=B_{1} C$; similarly, $B B_{1}=B_{1} A$. It follows that B_{1} is the centre of Ω and that the triangle $A B C$ has a right angle at B.

So from now on we may suppose $Q \notin\{A, B, C\}$. We start with the following well known fact. Lemma. Let $X Y Z$ and $X^{\prime} Y^{\prime} Z^{\prime}$ be two triangles with $X Y=X^{\prime} Y^{\prime}$ and $Y Z=Y^{\prime} Z^{\prime}$.
(i) If $X Z \neq X^{\prime} Z^{\prime}$ and $\angle Y Z X=\angle Y^{\prime} Z^{\prime} X^{\prime}$, then $\angle Z X Y+\angle Z^{\prime} X^{\prime} Y^{\prime}=180^{\circ}$.
(ii) If $\angle Y Z X+\angle X^{\prime} Z^{\prime} Y^{\prime}=180^{\circ}$, then $\angle Z X Y=\angle Y^{\prime} X^{\prime} Z^{\prime}$.

Proof. For both parts, we may move the triangle $X Y Z$ through the plane until $Y=Y^{\prime}$ and $Z=Z^{\prime}$. Possibly after reflecting one of the two triangles about $Y Z$, we may also suppose that X and X^{\prime} lie on the same side of $Y Z$ if we are in case (i) and on different sides if we are in case (ii). In both cases, the points X, Z, and X^{\prime} are collinear due to the angle condition (see Fig. 2). Moreover we have $X \neq X^{\prime}$, because in case (i) we assumed $X Z \neq X^{\prime} Z^{\prime}$ and in case (ii) these points even lie on different sides of $Y Z$. Thus the triangle $X X^{\prime} Y$ is isosceles at Y. The claim now follows by considering the equal angles at its base.

Figure 2(i)

Figure 2(ii)

Relabeling the vertices of the triangle $A B C$ if necessary we may suppose that Q lies in the interior of the arc $A B$ of Ω not containing C. We will sometimes use tacitly that the six triangles $Q B A_{1}, Q A_{1} C, Q C B_{1}, Q B_{1} A, Q C_{1} A$, and $Q B C_{1}$ have the same orientation.

As Q cannot be the circumcentre of the triangle $A B C$, it is impossible that $Q A=Q B=Q C$ and thus we may also suppose that $Q C \neq Q B$. Now the above Lemma (i) is applicable to the triangles $Q B_{1} C$ and $Q C_{1} B$, since $Q B_{1}=Q C_{1}$ and $B_{1} C=C_{1} B$, while $\angle B_{1} C Q=\angle C_{1} B Q$ holds as both angles appear over the same side of the chord $Q A$ in Ω (see Fig. 3). So we get

$$
\begin{equation*}
\angle C Q B_{1}+\angle B Q C_{1}=180^{\circ} \tag{1}
\end{equation*}
$$

We claim that $Q C=Q A$. To see this, let us assume for the sake of a contradiction that $Q C \neq Q A$. Then arguing similarly as before but now with the triangles $Q A_{1} C$ and $Q C_{1} A$ we get

$$
\angle A_{1} Q C+\angle C_{1} Q A=180^{\circ} .
$$

Adding this equation to (1), we get $\angle A_{1} Q B_{1}+\angle B Q A=360^{\circ}$, which is absurd as both summands lie in the interval $\left(0^{\circ}, 180^{\circ}\right)$.

This proves $Q C=Q A$; so the triangles $Q A_{1} C$ and $Q C_{1} A$ are congruent their sides being equal, which in turn yields

$$
\begin{equation*}
\angle A_{1} Q C=\angle C_{1} Q A . \tag{2}
\end{equation*}
$$

Finally our Lemma (ii) is applicable to the triangles $Q A_{1} B$ and $Q B_{1} A$. Indeed we have $Q A_{1}=Q B_{1}$ and $A_{1} B=B_{1} A$ as usual, and the angle condition $\angle A_{1} B Q+\angle Q A B_{1}=180^{\circ}$ holds as A and B lie on different sides of the chord $Q C$ in Ω. Consequently we have

$$
\begin{equation*}
\angle B Q A_{1}=\angle B_{1} Q A . \tag{3}
\end{equation*}
$$

From (1) and (3) we get

$$
\left(\angle B_{1} Q C+\angle B_{1} Q A\right)+\left(\angle C_{1} Q B-\angle B Q A_{1}\right)=180^{\circ},
$$

i.e. $\angle C Q A+\angle A_{1} Q C_{1}=180^{\circ}$. In light of (2) this may be rewritten as $2 \angle C Q A=180^{\circ}$ and as Q lies on Ω this implies that the triangle $A B C$ has a right angle at B.

Figure 3

Comment 1. One may also check that Q is in the interior of Ω if and only if the triangle $A B C$ is acute-angled.

Comment 2. The original proposal asked to prove the converse statement as well: if the triangle $A B C$ is right-angled, then the point Q lies on its circumcircle. The Problem Selection Committee thinks that the above simplified version is more suitable for the competition.

Number Theory

N1. Let $\mathbb{Z}_{>0}$ be the set of positive integers. Find all functions $f: \mathbb{Z}_{>0} \rightarrow \mathbb{Z}_{>0}$ such that

$$
m^{2}+f(n) \mid m f(m)+n
$$

for all positive integers m and n.
(Malaysia)
Answer. $f(n)=n$.
Solution 1. Setting $m=n=2$ tells us that $4+f(2) \mid 2 f(2)+2$. Since $2 f(2)+2<2(4+f(2))$, we must have $2 f(2)+2=4+f(2)$, so $f(2)=2$. Plugging in $m=2$ then tells us that $4+f(n) \mid 4+n$, which implies that $f(n) \leqslant n$ for all n.

Setting $m=n$ gives $n^{2}+f(n) \mid n f(n)+n$, so $n f(n)+n \geqslant n^{2}+f(n)$ which we rewrite as $(n-1)(f(n)-n) \geqslant 0$. Therefore $f(n) \geqslant n$ for all $n \geqslant 2$. This is trivially true for $n=1$ also.

It follows that $f(n)=n$ for all n. This function obviously satisfies the desired property.
Solution 2. Setting $m=f(n)$ we get $f(n)(f(n)+1) \mid f(n) f(f(n))+n$. This implies that $f(n) \mid n$ for all n.

Now let m be any positive integer, and let $p>2 m^{2}$ be a prime number. Note that $p>m f(m)$ also. Plugging in $n=p-m f(m)$ we learn that $m^{2}+f(n)$ divides p. Since $m^{2}+f(n)$ cannot equal 1 , it must equal p. Therefore $p-m^{2}=f(n) \mid n=p-m f(m)$. But $p-m f(m)<p<2\left(p-m^{2}\right)$, so we must have $p-m f(m)=p-m^{2}$, i.e., $f(m)=m$.

Solution 3. Plugging $m=1$ we obtain $1+f(n) \leqslant f(1)+n$, so $f(n) \leqslant n+c$ for the constant $c=$ $f(1)-1$. Assume that $f(n) \neq n$ for some fixed n. When m is large enough (e.g. $m \geqslant \max (n, c+1)$) we have

$$
m f(m)+n \leqslant m(m+c)+n \leqslant 2 m^{2}<2\left(m^{2}+f(n)\right)
$$

so we must have $m f(m)+n=m^{2}+f(n)$. This implies that

$$
0 \neq f(n)-n=m(f(m)-m)
$$

which is impossible for $m>|f(n)-n|$. It follows that f is the identity function.

N2. Prove that for any pair of positive integers k and n there exist k positive integers $m_{1}, m_{2}, \ldots, m_{k}$ such that

$$
1+\frac{2^{k}-1}{n}=\left(1+\frac{1}{m_{1}}\right)\left(1+\frac{1}{m_{2}}\right) \cdots\left(1+\frac{1}{m_{k}}\right) .
$$

(Japan)
Solution 1. We proceed by induction on k. For $k=1$ the statement is trivial. Assuming we have proved it for $k=j-1$, we now prove it for $k=j$.

Case 1. $n=2 t-1$ for some positive integer t.
Observe that

$$
1+\frac{2^{j}-1}{2 t-1}=\frac{2\left(t+2^{j-1}-1\right)}{2 t} \cdot \frac{2 t}{2 t-1}=\left(1+\frac{2^{j-1}-1}{t}\right)\left(1+\frac{1}{2 t-1}\right) .
$$

By the induction hypothesis we can find m_{1}, \ldots, m_{j-1} such that

$$
1+\frac{2^{j-1}-1}{t}=\left(1+\frac{1}{m_{1}}\right)\left(1+\frac{1}{m_{2}}\right) \cdots\left(1+\frac{1}{m_{j-1}}\right),
$$

so setting $m_{j}=2 t-1$ gives the desired expression.
Case 2. $n=2 t$ for some positive integer t.
Now we have

$$
1+\frac{2^{j}-1}{2 t}=\frac{2 t+2^{j}-1}{2 t+2^{j}-2} \cdot \frac{2 t+2^{j}-2}{2 t}=\left(1+\frac{1}{2 t+2^{j}-2}\right)\left(1+\frac{2^{j-1}-1}{t}\right),
$$

noting that $2 t+2^{j}-2>0$. Again, we use that

$$
1+\frac{2^{j-1}-1}{t}=\left(1+\frac{1}{m_{1}}\right)\left(1+\frac{1}{m_{2}}\right) \cdots\left(1+\frac{1}{m_{j-1}}\right) .
$$

Setting $m_{j}=2 t+2^{j}-2$ then gives the desired expression.
Solution 2. Consider the base 2 expansions of the residues of $n-1$ and $-n$ modulo 2^{k} :

$$
\begin{aligned}
n-1 & \equiv 2^{a_{1}}+2^{a_{2}}+\cdots+2^{a_{r}}\left(\bmod 2^{k}\right) & & \text { where } 0 \leqslant a_{1}<a_{2}<\ldots<a_{r} \leqslant k-1, \\
-n & \equiv 2^{b_{1}}+2^{b_{2}}+\cdots+2^{b_{s}}\left(\bmod 2^{k}\right) & & \text { where } 0 \leqslant b_{1}<b_{2}<\ldots<b_{s} \leqslant k-1 .
\end{aligned}
$$

Since $-1 \equiv 2^{0}+2^{1}+\cdots+2^{k-1}\left(\bmod 2^{k}\right)$, we have $\left\{a_{1}, \ldots, a_{r}\right\} \cup\left\{b_{1} \ldots, b_{s}\right\}=\{0,1, \ldots, k-1\}$ and $r+s=k$. Write

$$
\begin{aligned}
& S_{p}=2^{a_{p}}+2^{a_{p+1}}+\cdots+2^{a_{r}} \quad \text { for } 1 \leqslant p \leqslant r, \\
& T_{q}=2^{b_{1}}+2^{b_{2}}+\cdots+2^{b_{q}} \quad \text { for } \quad 1 \leqslant q \leqslant s .
\end{aligned}
$$

Also set $S_{r+1}=T_{0}=0$. Notice that $S_{1}+T_{s}=2^{k}-1$ and $n+T_{s} \equiv 0\left(\bmod 2^{k}\right)$. We have

$$
\begin{aligned}
1+\frac{2^{k}-1}{n} & =\frac{n+S_{1}+T_{s}}{n}=\frac{n+S_{1}+T_{s}}{n+T_{s}} \cdot \frac{n+T_{s}}{n} \\
& =\prod_{p=1}^{r} \frac{n+S_{p}+T_{s}}{n+S_{p+1}+T_{s}} \cdot \prod_{q=1}^{s} \frac{n+T_{q}}{n+T_{q-1}} \\
& =\prod_{p=1}^{r}\left(1+\frac{2^{a_{p}}}{n+S_{p+1}+T_{s}}\right) \cdot \prod_{q=1}^{s}\left(1+\frac{2^{b_{q}}}{n+T_{q-1}}\right)
\end{aligned}
$$

so if we define

$$
m_{p}=\frac{n+S_{p+1}+T_{s}}{2^{a_{p}}} \quad \text { for } 1 \leqslant p \leqslant r \quad \text { and } \quad m_{r+q}=\frac{n+T_{q-1}}{2^{b_{q}}} \quad \text { for } 1 \leqslant q \leqslant s
$$

the desired equality holds. It remains to check that every m_{i} is an integer. For $1 \leqslant p \leqslant r$ we have

$$
n+S_{p+1}+T_{s} \equiv n+T_{s} \equiv 0 \quad\left(\bmod 2^{a_{p}}\right)
$$

and for $1 \leqslant q \leqslant r$ we have

$$
n+T_{q-1} \equiv n+T_{s} \equiv 0 \quad\left(\bmod 2^{b_{q}}\right)
$$

The desired result follows.

N3. Prove that there exist infinitely many positive integers n such that the largest prime divisor of $n^{4}+n^{2}+1$ is equal to the largest prime divisor of $(n+1)^{4}+(n+1)^{2}+1$.
(Belgium)
Solution. Let p_{n} be the largest prime divisor of $n^{4}+n^{2}+1$ and let q_{n} be the largest prime divisor of $n^{2}+n+1$. Then $p_{n}=q_{n^{2}}$, and from

$$
n^{4}+n^{2}+1=\left(n^{2}+1\right)^{2}-n^{2}=\left(n^{2}-n+1\right)\left(n^{2}+n+1\right)=\left((n-1)^{2}+(n-1)+1\right)\left(n^{2}+n+1\right)
$$

it follows that $p_{n}=\max \left\{q_{n}, q_{n-1}\right\}$ for $n \geqslant 2$. Keeping in mind that $n^{2}-n+1$ is odd, we have

$$
\operatorname{gcd}\left(n^{2}+n+1, n^{2}-n+1\right)=\operatorname{gcd}\left(2 n, n^{2}-n+1\right)=\operatorname{gcd}\left(n, n^{2}-n+1\right)=1
$$

Therefore $q_{n} \neq q_{n-1}$.
To prove the result, it suffices to show that the set

$$
S=\left\{n \in \mathbb{Z}_{\geqslant 2} \mid q_{n}>q_{n-1} \text { and } q_{n}>q_{n+1}\right\}
$$

is infinite, since for each $n \in S$ one has

$$
p_{n}=\max \left\{q_{n}, q_{n-1}\right\}=q_{n}=\max \left\{q_{n}, q_{n+1}\right\}=p_{n+1}
$$

Suppose on the contrary that S is finite. Since $q_{2}=7<13=q_{3}$ and $q_{3}=13>7=q_{4}$, the set S is non-empty. Since it is finite, we can consider its largest element, say m.

Note that it is impossible that $q_{m}>q_{m+1}>q_{m+2}>\ldots$ because all these numbers are positive integers, so there exists a $k \geqslant m$ such that $q_{k}<q_{k+1}$ (recall that $q_{k} \neq q_{k+1}$). Next observe that it is impossible to have $q_{k}<q_{k+1}<q_{k+2}<\ldots$, because $q_{(k+1)^{2}}=p_{k+1}=\max \left\{q_{k}, q_{k+1}\right\}=q_{k+1}$, so let us take the smallest $\ell \geqslant k+1$ such that $q_{\ell}>q_{\ell+1}$. By the minimality of ℓ we have $q_{\ell-1}<q_{\ell}$, so $\ell \in S$. Since $\ell \geqslant k+1>k \geqslant m$, this contradicts the maximality of m, and hence S is indeed infinite.

Comment. Once the factorization of $n^{4}+n^{2}+1$ is found and the set S is introduced, the problem is mainly about ruling out the case that

$$
\begin{equation*}
q_{k}<q_{k+1}<q_{k+2}<\ldots \tag{1}
\end{equation*}
$$

might hold for some $k \in \mathbb{Z}_{>0}$. In the above solution, this is done by observing $q_{(k+1)^{2}}=\max \left(q_{k}, q_{k+1}\right)$. Alternatively one may notice that (1) implies that $q_{j+2}-q_{j} \geqslant 6$ for $j \geqslant k+1$, since every prime greater than 3 is congruent to -1 or 1 modulo 6 . Then there is some integer $C \geqslant 0$ such that $q_{n} \geqslant 3 n-C$ for all $n \geqslant k$.

Now let the integer t be sufficiently large (e.g. $t=\max \{k+1, C+3\}$) and set $p=q_{t-1} \geqslant 2 t$. Then $p \mid(t-1)^{2}+(t-1)+1$ implies that $p \mid(p-t)^{2}+(p-t)+1$, so p and q_{p-t} are prime divisors of $(p-t)^{2}+(p-t)+1$. But $p-t>t-1 \geqslant k$, so $q_{p-t}>q_{t-1}=p$ and $p \cdot q_{p-t}>p^{2}>(p-t)^{2}+(p-t)+1$, a contradiction.
$\mathbf{N 4}$. Determine whether there exists an infinite sequence of nonzero digits $a_{1}, a_{2}, a_{3}, \ldots$ and a positive integer N such that for every integer $k>N$, the number $\overline{a_{k} a_{k-1} \ldots a_{1}}$ is a perfect square.

(Iran)

Answer. No.
Solution. Assume that $a_{1}, a_{2}, a_{3}, \ldots$ is such a sequence. For each positive integer k, let $y_{k}=$ $\overline{a_{k} a_{k-1} \ldots a_{1}}$. By the assumption, for each $k>N$ there exists a positive integer x_{k} such that $y_{k}=x_{k}^{2}$.
I. For every n, let $5^{\gamma_{n}}$ be the greatest power of 5 dividing x_{n}. Let us show first that $2 \gamma_{n} \geqslant n$ for every positive integer $n>N$.

Assume, to the contrary, that there exists a positive integer $n>N$ such that $2 \gamma_{n}<n$, which yields

$$
y_{n+1}=\overline{a_{n+1} a_{n} \ldots a_{1}}=10^{n} a_{n+1}+\overline{a_{n} a_{n-1} \ldots a_{1}}=10^{n} a_{n+1}+y_{n}=5^{2 \gamma_{n}}\left(2^{n} 5^{n-2 \gamma_{n}} a_{n+1}+\frac{y_{n}}{5^{2 \gamma_{n}}}\right)
$$

Since $5 \backslash y_{n} / 5^{2 \gamma_{n}}$, we obtain $\gamma_{n+1}=\gamma_{n}<n<n+1$. By the same arguments we obtain that $\gamma_{n}=\gamma_{n+1}=\gamma_{n+2}=\ldots$. Denote this common value by γ.

Now, for each $k \geqslant n$ we have

$$
\left(x_{k+1}-x_{k}\right)\left(x_{k+1}+x_{k}\right)=x_{k+1}^{2}-x_{k}^{2}=y_{k+1}-y_{k}=a_{k+1} \cdot 10^{k} .
$$

One of the numbers $x_{k+1}-x_{k}$ and $x_{k+1}+x_{k}$ is not divisible by $5^{\gamma+1}$ since otherwise one would have $5^{\gamma+1} \mid\left(\left(x_{k+1}-x_{k}\right)+\left(x_{k+1}+x_{k}\right)\right)=2 x_{k+1}$. On the other hand, we have $5^{k} \mid\left(x_{k+1}-x_{k}\right)\left(x_{k+1}+x_{k}\right)$, so $5^{k-\gamma}$ divides one of these two factors. Thus we get

$$
5^{k-\gamma} \leqslant \max \left\{x_{k+1}-x_{k}, x_{k+1}+x_{k}\right\}<2 x_{k+1}=2 \sqrt{y_{k+1}}<2 \cdot 10^{(k+1) / 2}
$$

which implies $5^{2 k}<4 \cdot 5^{2 \gamma} \cdot 10^{k+1}$, or $(5 / 2)^{k}<40 \cdot 5^{2 \gamma}$. The last inequality is clearly false for sufficiently large values of k. This contradiction shows that $2 \gamma_{n} \geqslant n$ for all $n>N$.
II. Consider now any integer $k>\max \{N / 2,2\}$. Since $2 \gamma_{2 k+1} \geqslant 2 k+1$ and $2 \gamma_{2 k+2} \geqslant 2 k+2$, we have $\gamma_{2 k+1} \geqslant k+1$ and $\gamma_{2 k+2} \geqslant k+1$. So, from $y_{2 k+2}=a_{2 k+2} \cdot 10^{2 k+1}+y_{2 k+1}$ we obtain $5^{2 k+2} \mid y_{2 k+2}-y_{2 k+1}=a_{2 k+2} \cdot 10^{2 k+1}$ and thus $5 \mid a_{2 k+2}$, which implies $a_{2 k+2}=5$. Therefore,

$$
\left(x_{2 k+2}-x_{2 k+1}\right)\left(x_{2 k+2}+x_{2 k+1}\right)=x_{2 k+2}^{2}-x_{2 k+1}^{2}=y_{2 k+2}-y_{2 k+1}=5 \cdot 10^{2 k+1}=2^{2 k+1} \cdot 5^{2 k+2} .
$$

Setting $A_{k}=x_{2 k+2} / 5^{k+1}$ and $B_{k}=x_{2 k+1} / 5^{k+1}$, which are integers, we obtain

$$
\begin{equation*}
\left(A_{k}-B_{k}\right)\left(A_{k}+B_{k}\right)=2^{2 k+1} \tag{1}
\end{equation*}
$$

Both A_{k} and B_{k} are odd, since otherwise $y_{2 k+2}$ or $y_{2 k+1}$ would be a multiple of 10 which is false by $a_{1} \neq 0$; so one of the numbers $A_{k}-B_{k}$ and $A_{k}+B_{k}$ is not divisible by 4. Therefore (1) yields $A_{k}-B_{k}=2$ and $A_{k}+B_{k}=2^{2 k}$, hence $A_{k}=2^{2 k-1}+1$ and thus

$$
x_{2 k+2}=5^{k+1} A_{k}=10^{k+1} \cdot 2^{k-2}+5^{k+1}>10^{k+1}
$$

since $k \geqslant 2$. This implies that $y_{2 k+2}>10^{2 k+2}$ which contradicts the fact that $y_{2 k+2}$ contains $2 k+2$ digits. The desired result follows.

Solution 2. Again, we assume that a sequence $a_{1}, a_{2}, a_{3}, \ldots$ satisfies the problem conditions, introduce the numbers x_{k} and y_{k} as in the previous solution, and notice that

$$
\begin{equation*}
y_{k+1}-y_{k}=\left(x_{k+1}-x_{k}\right)\left(x_{k+1}+x_{k}\right)=10^{k} a_{k+1} \tag{2}
\end{equation*}
$$

for all $k>N$. Consider any such k. Since $a_{1} \neq 0$, the numbers x_{k} and x_{k+1} are not multiples of 10 , and therefore the numbers $p_{k}=x_{k+1}-x_{k}$ and $q_{k}=x_{k+1}+x_{k}$ cannot be simultaneously multiples of 20 , and hence one of them is not divisible either by 4 or by 5 . In view of (2), this means that the other one is divisible by either 5^{k} or by 2^{k-1}. Notice also that p_{k} and q_{k} have the same parity, so both are even.

On the other hand, we have $x_{k+1}^{2}=x_{k}^{2}+10^{k} a_{k+1} \geqslant x_{k}^{2}+10^{k}>2 x_{k}^{2}$, so $x_{k+1} / x_{k}>\sqrt{2}$, which implies that

$$
\begin{equation*}
1<\frac{q_{k}}{p_{k}}=1+\frac{2}{x_{k+1} / x_{k}-1}<1+\frac{2}{\sqrt{2}-1}<6 . \tag{3}
\end{equation*}
$$

Thus, if one of the numbers p_{k} and q_{k} is divisible by 5^{k}, then we have

$$
10^{k+1}>10^{k} a_{k+1}=p_{k} q_{k} \geqslant \frac{\left(5^{k}\right)^{2}}{6}
$$

and hence $(5 / 2)^{k}<60$ which is false for sufficiently large k. So, assuming that k is large, we get that 2^{k-1} divides one of the numbers p_{k} and q_{k}. Hence
$\left\{p_{k}, q_{k}\right\}=\left\{2^{k-1} \cdot 5^{r_{k}} b_{k}, 2 \cdot 5^{k-r_{k}} c_{k}\right\} \quad$ with nonnegative integers b_{k}, c_{k}, r_{k} such that $b_{k} c_{k}=a_{k+1}$.
Moreover, from (3) we get

$$
6>\frac{2^{k-1} \cdot 5^{r_{k}} b_{k}}{2 \cdot 5^{k-r_{k}} c_{k}} \geqslant \frac{1}{36} \cdot\left(\frac{2}{5}\right)^{k} \cdot 5^{2 r_{k}} \quad \text { and } \quad 6>\frac{2 \cdot 5^{k-r_{k}} c_{k}}{2^{k-1} \cdot 5^{r_{k}} b_{k}} \geqslant \frac{4}{9} \cdot\left(\frac{5}{2}\right)^{k} \cdot 5^{-2 r_{k}}
$$

so

$$
\begin{equation*}
\alpha k+c_{1}<r_{k}<\alpha k+c_{2} \quad \text { for } \alpha=\frac{1}{2} \log _{5}\left(\frac{5}{2}\right)<1 \text { and some constants } c_{2}>c_{1} . \tag{4}
\end{equation*}
$$

Consequently, for $C=c_{2}-c_{1}+1-\alpha>0$ we have

$$
\begin{equation*}
(k+1)-r_{k+1} \leqslant k-r_{k}+C . \tag{5}
\end{equation*}
$$

Next, we will use the following easy lemma.
Lemma. Let s be a positive integer. Then $5^{s+2^{s}} \equiv 5^{s}\left(\bmod 10^{s}\right)$.
Proof. Euler's theorem gives $5^{2^{s}} \equiv 1\left(\bmod 2^{s}\right)$, so $5^{s+2^{s}}-5^{s}=5^{s}\left(5^{2^{s}}-1\right)$ is divisible by 2^{s} and 5^{s}.
Now, for every large k we have

$$
\begin{equation*}
x_{k+1}=\frac{p_{k}+q_{k}}{2}=5^{r_{k}} \cdot 2^{k-2} b_{k}+5^{k-r_{k}} c_{k} \equiv 5^{k-r_{k}} c_{k} \quad\left(\bmod 10^{r_{k}}\right) \tag{6}
\end{equation*}
$$

since $r_{k} \leqslant k-2$ by (4); hence $y_{k+1} \equiv 5^{2\left(k-r_{k}\right)} c_{k}^{2}\left(\bmod 10^{r_{k}}\right)$. Let us consider some large integer s, and choose the minimal k such that $2\left(k-r_{k}\right) \geqslant s+2^{s}$; it exists by (4). Set $d=2\left(k-r_{k}\right)-\left(s+2^{s}\right)$. By (4) we have $2^{s}<2\left(k-r_{k}\right)<\left(\frac{2}{\alpha}-2\right) r_{k}-\frac{2 c_{1}}{\alpha}$; if s is large this implies $r_{k}>s$, so (6) also holds modulo 10^{s}. Then (6) and the lemma give

$$
\begin{equation*}
y_{k+1} \equiv 5^{2\left(k-r_{k}\right)} c_{k}^{2}=5^{s+2^{s}} \cdot 5^{d} c_{k}^{2} \equiv 5^{s} \cdot 5^{d} c_{k}^{2} \quad\left(\bmod 10^{s}\right) \tag{7}
\end{equation*}
$$

By (5) and the minimality of k we have $d \leqslant 2 C$, so $5^{d} c_{k}^{2} \leqslant 5^{2 C} \cdot 81=D$. Using $5^{4}<10^{3}$ we obtain

$$
5^{s} \cdot 5^{d} c_{k}^{2}<10^{3 s / 4} D<10^{s-1}
$$

for sufficiently large s. This, together with (7), shows that the s th digit from the right in y_{k+1}, which is a_{s}, is zero. This contradicts the problem condition.

N5. Fix an integer $k \geqslant 2$. Two players, called Ana and Banana, play the following game of numbers: Initially, some integer $n \geqslant k$ gets written on the blackboard. Then they take moves in turn, with Ana beginning. A player making a move erases the number m just written on the blackboard and replaces it by some number m^{\prime} with $k \leqslant m^{\prime}<m$ that is coprime to m. The first player who cannot move anymore loses.

An integer $n \geqslant k$ is called good if Banana has a winning strategy when the initial number is n, and bad otherwise.

Consider two integers $n, n^{\prime} \geqslant k$ with the property that each prime number $p \leqslant k$ divides n if and only if it divides n^{\prime}. Prove that either both n and n^{\prime} are good or both are bad.

(Italy)

Solution 1. Let us first observe that the number appearing on the blackboard decreases after every move; so the game necessarily ends after at most n steps, and consequently there always has to be some player possessing a winning strategy. So if some $n \geqslant k$ is bad, then Ana has a winning strategy in the game with starting number n.

More precisely, if $n \geqslant k$ is such that there is a good integer m with $n>m \geqslant k$ and $\operatorname{gcd}(m, n)=1$, then n itself is bad, for Ana has the following winning strategy in the game with initial number n : She proceeds by first playing m and then using Banana's strategy for the game with starting number m.

Otherwise, if some integer $n \geqslant k$ has the property that every integer m with $n>m \geqslant k$ and $\operatorname{gcd}(m, n)=1$ is bad, then n is good. Indeed, if Ana can make a first move at all in the game with initial number n, then she leaves it in a position where the first player has a winning strategy, so that Banana can defeat her.

In particular, this implies that any two good numbers have a non-trivial common divisor. Also, k itself is good.

For brevity, we say that $n \longrightarrow x$ is a move if n and x are two coprime integers with $n>x \geqslant k$.
Claim 1. If n is good and n^{\prime} is a multiple of n, then n^{\prime} is also good. Proof. If n^{\prime} were bad, there would have to be some move $n^{\prime} \longrightarrow x$, where x is good. As n^{\prime} is a multiple of n this implies that the two good numbers n and x are coprime, which is absurd.

Claim 2. If r and s denote two positive integers for which $r s \geqslant k$ is bad, then $r^{2} s$ is also bad. Proof. Since $r s$ is bad, there is a move $r s \longrightarrow x$ for some good x. Evidently x is coprime to $r^{2} s$ as well, and hence the move $r^{2} s \longrightarrow x$ shows that $r^{2} s$ is indeed bad.

Claim 3. If $p>k$ is prime and $n \geqslant k$ is bad, then np is also bad.

Proof. Otherwise we choose a counterexample with n being as small as possible. In particular, $n p$ is good. Since n is bad, there is a move $n \longrightarrow x$ for some good x. Now $n p \longrightarrow x$ cannot be a valid move, which tells us that x has to be divisible by p. So we can write $x=p^{r} y$, where r and y denote some positive integers, the latter of which is not divisible by p.

Note that $y=1$ is impossible, for then we would have $x=p^{r}$ and the move $x \longrightarrow k$ would establish that x is bad. In view of this, there is a least power y^{α} of y that is at least as large as k. Since the numbers $n p$ and y^{α} are coprime and the former is good, the latter has to be bad. Moreover, the minimality of α implies $y^{\alpha}<k y<p y=\frac{x}{p^{r-1}}<\frac{n}{p^{r-1}}$. So $p^{r-1} \cdot y^{\alpha}<n$ and consequently all the numbers $y^{\alpha}, p y^{\alpha}, \ldots, p^{r} \cdot y^{\alpha}=p\left(p^{r-1} \cdot y^{\alpha}\right)$ are bad due to the minimal choice of n. But now by Claim 1 the divisor x of $p^{r} \cdot y^{\alpha}$ cannot be good, whereby we have reached a contradiction that proves Claim 3.

We now deduce the statement of the problem from these three claims. To this end, we call two integers $a, b \geqslant k$ similar if they are divisible by the same prime numbers not exceeding k. We are to prove that if a and b are similar, then either both of them are good or both are bad. As in this case the product $a b$ is similar to both a and b, it suffices to show the following: if $c \geqslant k$ is similar to some of its multiples d, then either both c and d are good or both are bad.

Assuming that this is not true in general, we choose a counterexample $\left(c_{0}, d_{0}\right)$ with d_{0} being as small as possible. By Claim $1, c_{0}$ is bad whilst d_{0} is good. Plainly d_{0} is strictly greater than c_{0} and hence the quotient $\frac{d_{0}}{c_{0}}$ has some prime factor p. Clearly p divides d_{0}. If $p \leqslant k$, then p divides c_{0} as well due to the similarity, and hence d_{0} is actually divisible by p^{2}. So $\frac{d_{0}}{p}$ is good by the contrapositive of Claim 2. Since $c_{0} \left\lvert\, \frac{d_{0}}{p}\right.$, the pair $\left(c_{0}, \frac{d_{0}}{p}\right)$ contradicts the supposed minimality of d_{0}. This proves $p>k$, but now we get the same contradiction using Claim 3 instead of Claim 2. Thereby the problem is solved.

Solution 2. We use the same analysis of the game of numbers as in the first five paragraphs of the first solution. Let us call a prime number p small in case $p \leqslant k$ and big otherwise. We again call two integers similar if their sets of small prime factors coincide.

Claim 4. For each integer $b \geqslant k$ having some small prime factor, there exists an integer x similar to it with $b \geqslant x \geqslant k$ and having no big prime factors.
Proof. Unless b has a big prime factor we may simply choose $x=b$. Now let p and q denote a small and a big prime factor of b, respectively. Let a be the product of all small prime factors of b. Further define n to be the least non-negative integer for which the number $x=p^{n} a$ is at least as large as k. It suffices to show that $b>x$. This is clear in case $n=0$, so let us assume $n>0$ from now on. Then we have $x<p k$ due to the minimality of $n, p \leqslant a$ because p divides a by construction, and $k<q$. Therefore $x<a q$ and, as the right hand side is a product of distinct prime factors of b, this implies indeed $x<b$.

Let us now assume that there is a pair (a, b) of similar numbers such that a is bad and b is good. Take such a pair with $\max (a, b)$ being as small as possible. Since a is bad, there exists a move $a \longrightarrow r$ for some good r. Since the numbers k and r are both good, they have a common prime factor, which necessarily has to be small. Thus Claim 4 is applicable to r, which yields an integer r^{\prime} similar to r containing small prime factors only and satisfying $r \geqslant r^{\prime} \geqslant k$. Since $\max \left(r, r^{\prime}\right)=r<a \leqslant \max (a, b)$ the number r^{\prime} is also good. Now let p denote a common prime factor of the good numbers r^{\prime} and b. By our construction of r^{\prime}, this prime is small and due to the similarities it consequently divides a and r, contrary to $a \longrightarrow r$ being a move. Thereby the problem is solved.

Comment 1. Having reached Claim 4 of Solution 2, there are various other ways to proceed. For instance, one may directly obtain the following fact, which seems to be interesting in its own right:

Claim 5. Any two good numbers have a common small prime factor.
Proof. Otherwise there exists a pair $\left(b, b^{\prime}\right)$ of good numbers with $b^{\prime} \geqslant b \geqslant k$ all of whose common prime factors are big. Choose such a pair with b^{\prime} being as small as possible. Since b and k are both good, there has to be a common prime factor p of b and k. Evidently p is small and thus it cannot divide b^{\prime}, which in turn tells us $b^{\prime}>b$. Applying Claim 4 to b we get an integer x with $b \geqslant x \geqslant k$ that is similar to b and has no big prime divisors at all. By our assumption, b^{\prime} and x are coprime, and as b^{\prime} is good this implies that x is bad. Consequently there has to be some move $x \longrightarrow b^{*}$ such that b^{*} is good. But now all the small prime factors of b also appear in x and thus they cannot divide b^{*}. Therefore the pair $\left(b^{*}, b\right)$ contradicts the supposed minimality of b^{\prime}.

From that point, it is easy to complete the solution: assume that there are two similar integers a and b such that a is bad and b is good. Since a is bad, there is a move $a \longrightarrow b^{\prime}$ for some good b^{\prime}. By Claim 5, there is a small prime p dividing b and b^{\prime}. Due to the similarity of a and b, the prime p has to divide a as well, but this contradicts the fact that $a \longrightarrow b^{\prime}$ is a valid move. Thereby the problem is solved.

Comment 2. There are infinitely many good numbers, e.g. all multiples of k. The increasing sequence b_{0}, b_{1}, \ldots, of all good numbers may be constructed recursively as follows:

- Start with $b_{0}=k$.
- If b_{n} has just been defined for some $n \geqslant 0$, then b_{n+1} is the smallest number $b>b_{n}$ that is coprime to none of b_{0}, \ldots, b_{n}.

This construction can be used to determine the set of good numbers for any specific k as explained in the next comment. It is already clear that if $k=p^{\alpha}$ is a prime power, then a number $b \geqslant k$ is good if and only if it is divisible by p.

Comment 3. Let $P>1$ denote the product of all small prime numbers. Then any two integers $a, b \geqslant k$ that are congruent modulo P are similar. Thus the infinite word $W_{k}=\left(X_{k}, X_{k+1}, \ldots\right)$ defined by

$$
X_{i}= \begin{cases}A & \text { if } i \text { is bad } \\ B & \text { if } i \text { is good }\end{cases}
$$

for all $i \geqslant k$ is periodic and the length of its period divides P. As the prime power example shows, the true period can sometimes be much smaller than P. On the other hand, there are cases where the period is rather large; e.g., if $k=15$, the sequence of good numbers begins with $15,18,20,24,30,36,40,42,45$ and the period of W_{15} is 30 .

Comment 4. The original proposal contained two questions about the game of numbers, namely (a) to show that if two numbers have the same prime factors then either both are good or both are bad, and (b) to show that the word W_{k} introduced in the previous comment is indeed periodic. The Problem Selection Committee thinks that the above version of the problem is somewhat easier, even though it demands to prove a stronger result.

N6. Determine all functions $f: \mathbb{Q} \longrightarrow \mathbb{Z}$ satisfying

$$
\begin{equation*}
f\left(\frac{f(x)+a}{b}\right)=f\left(\frac{x+a}{b}\right) \tag{1}
\end{equation*}
$$

for all $x \in \mathbb{Q}, a \in \mathbb{Z}$, and $b \in \mathbb{Z}_{>0}$. (Here, $\mathbb{Z}_{>0}$ denotes the set of positive integers.)

Answer. There are three kinds of such functions, which are: all constant functions, the floor function, and the ceiling function.
Solution 1. I. We start by verifying that these functions do indeed satisfy (1). This is clear for all constant functions. Now consider any triple $(x, a, b) \in \mathbb{Q} \times \mathbb{Z} \times \mathbb{Z}_{>0}$ and set

$$
q=\left\lfloor\frac{x+a}{b}\right\rfloor .
$$

This means that q is an integer and $b q \leqslant x+a<b(q+1)$. It follows that $b q \leqslant\lfloor x\rfloor+a<b(q+1)$ holds as well, and thus we have

$$
\left\lfloor\frac{\lfloor x\rfloor+a}{b}\right\rfloor=\left\lfloor\frac{x+a}{b}\right\rfloor,
$$

meaning that the floor function does indeed satisfy (1). One can check similarly that the ceiling function has the same property.
II. Let us now suppose conversely that the function $f: \mathbb{Q} \longrightarrow \mathbb{Z}$ satisfies (1) for all $(x, a, b) \in$ $\mathbb{Q} \times \mathbb{Z} \times \mathbb{Z}_{>0}$. According to the behaviour of the restriction of f to the integers we distinguish two cases.

Case 1: There is some $m \in \mathbb{Z}$ such that $f(m) \neq m$.
Write $f(m)=C$ and let $\eta \in\{-1,+1\}$ and b denote the sign and absolute value of $f(m)-m$, respectively. Given any integer r, we may plug the triple ($m, r b-C, b$) into (1), thus getting $f(r)=f(r-\eta)$. Starting with m and using induction in both directions, we deduce from this that the equation $f(r)=C$ holds for all integers r. Now any rational number y can be written in the form $y=\frac{p}{q}$ with $(p, q) \in \mathbb{Z} \times \mathbb{Z}_{>0}$, and substituting $(C-p, p-C, q)$ into (1) we get $f(y)=f(0)=C$. Thus f is the constant function whose value is always C.

Case 2: One has $f(m)=m$ for all integers m.
Note that now the special case $b=1$ of (1) takes a particularly simple form, namely

$$
\begin{equation*}
f(x)+a=f(x+a) \quad \text { for all }(x, a) \in \mathbb{Q} \times \mathbb{Z} \tag{2}
\end{equation*}
$$

Defining $f\left(\frac{1}{2}\right)=\omega$ we proceed in three steps.
Step A. We show that $\omega \in\{0,1\}$.
If $\omega \leqslant 0$, we may plug $\left(\frac{1}{2},-\omega, 1-2 \omega\right)$ into (1), obtaining $0=f(0)=f\left(\frac{1}{2}\right)=\omega$. In the contrary case $\omega \geqslant 1$ we argue similarly using the triple $\left(\frac{1}{2}, \omega-1,2 \omega-1\right)$.

Step B. We show that $f(x)=\omega$ for all rational numbers x with $0<x<1$.
Assume that this fails and pick some rational number $\frac{a}{b} \in(0,1)$ with minimal b such that $f\left(\frac{a}{b}\right) \neq \omega$. Obviously, $\operatorname{gcd}(a, b)=1$ and $b \geqslant 2$. If b is even, then a has to be odd and we can substitute $\left(\frac{1}{2}, \frac{a-1}{2}, \frac{b}{2}\right)$ into (1), which yields

$$
\begin{equation*}
f\left(\frac{\omega+(a-1) / 2}{b / 2}\right)=f\left(\frac{a}{b}\right) \neq \omega \tag{3}
\end{equation*}
$$

Recall that $0 \leqslant(a-1) / 2<b / 2$. Thus, in both cases $\omega=0$ and $\omega=1$, the left-hand part of (3) equals ω either by the minimality of b, or by $f(\omega)=\omega$. A contradiction.

Thus b has to be odd, so $b=2 k+1$ for some $k \geqslant 1$. Applying (1) to $\left(\frac{1}{2}, k, b\right)$ we get

$$
\begin{equation*}
f\left(\frac{\omega+k}{b}\right)=f\left(\frac{1}{2}\right)=\omega . \tag{4}
\end{equation*}
$$

Since a and b are coprime, there exist integers $r \in\{1,2, \ldots, b\}$ and m such that $r a-m b=k+\omega$. Note that we actually have $1 \leqslant r<b$, since the right hand side is not a multiple of b. If m is negative, then we have $r a-m b>b \geqslant k+\omega$, which is absurd. Similarly, $m \geqslant r$ leads to $r a-m b<b r-b r=0$, which is likewise impossible; so we must have $0 \leqslant m \leqslant r-1$.

We finally substitute $\left(\frac{k+\omega}{b}, m, r\right)$ into (1) and use (4) to learn

$$
f\left(\frac{\omega+m}{r}\right)=f\left(\frac{a}{b}\right) \neq \omega .
$$

But as above one may see that the left hand side has to equal ω due to the minimality of b. This contradiction concludes our step B.

Step C. Now notice that if $\omega=0$, then $f(x)=\lfloor x\rfloor$ holds for all rational x with $0 \leqslant x<1$ and hence by (2) this even holds for all rational numbers x. Similarly, if $\omega=1$, then $f(x)=\lceil x\rceil$ holds for all $x \in \mathbb{Q}$. Thereby the problem is solved.

Comment 1. An alternative treatment of Steps B and C from the second case, due to the proposer, proceeds as follows. Let square brackets indicate the floor function in case $\omega=0$ and the ceiling function if $\omega=1$. We are to prove that $f(x)=[x]$ holds for all $x \in \mathbb{Q}$, and because of Step A and (2) we already know this in case $2 x \in \mathbb{Z}$. Applying (1) to $(2 x, 0,2)$ we get

$$
f(x)=f\left(\frac{f(2 x)}{2}\right),
$$

and by the previous observation this yields

$$
\begin{equation*}
f(x)=\left[\frac{f(2 x)}{2}\right] \quad \text { for all } x \in \mathbb{Q} . \tag{5}
\end{equation*}
$$

An easy induction now shows

$$
\begin{equation*}
f(x)=\left[\frac{f\left(2^{n} x\right)}{2^{n}}\right] \quad \text { for all }(x, n) \in \mathbb{Q} \times \mathbb{Z}_{>0} \tag{6}
\end{equation*}
$$

Now suppose first that x is not an integer but can be written in the form $\frac{p}{q}$ with $p \in \mathbb{Z}$ and $q \in \mathbb{Z}_{>0}$ both being odd. Let d denote the multiplicative order of 2 modulo q and let m be any large integer. Plugging $n=d m$ into (6) and using (2) we get

$$
f(x)=\left[\frac{f\left(2^{d m} x\right)}{2^{d m}}\right]=\left[\frac{f(x)+\left(2^{d m}-1\right) x}{2^{d m}}\right]=\left[x+\frac{f(x)-x}{2^{d m}}\right] .
$$

Since x is not an integer, the square bracket function is continuous at x; hence as m tends to infinity the above fomula gives $f(x)=[x]$. To complete the argument we just need to observe that if some $y \in \mathbb{Q}$ satisfies $f(y)=[y]$, then (5) yields $f\left(\frac{y}{2}\right)=f\left(\frac{[y]}{2}\right)=\left[\frac{[y]}{2}\right]=\left[\frac{y}{2}\right]$.

Solution 2. Here we just give another argument for the second case of the above solution. Again we use equation (2). It follows that the set S of all zeros of f contains for each $x \in \mathbb{Q}$ exactly one term from the infinite sequence $\ldots, x-2, x-1, x, x+1, x+2, \ldots$.

Next we claim that

$$
\begin{equation*}
\text { if }(p, q) \in \mathbb{Z} \times \mathbb{Z}_{>0} \text { and } \frac{p}{q} \in S \text {, then } \frac{p}{q+1} \in S \text { holds as well. } \tag{7}
\end{equation*}
$$

To see this we just plug $\left(\frac{p}{q}, p, q+1\right)$ into (1), thus getting $f\left(\frac{p}{q+1}\right)=f\left(\frac{p}{q}\right)=0$.
From this we get that

$$
\begin{equation*}
\text { if } x, y \in \mathbb{Q}, x>y>0 \text {, and } x \in S \text {, then } y \in S \text {. } \tag{8}
\end{equation*}
$$

Indeed, if we write $x=\frac{p}{q}$ and $y=\frac{r}{s}$ with $p, q, r, s \in \mathbb{Z}_{>0}$, then $p s>q r$ and (7) tells us

$$
0=f\left(\frac{p}{q}\right)=f\left(\frac{p r}{q r}\right)=f\left(\frac{p r}{q r+1}\right)=\ldots=f\left(\frac{p r}{p s}\right)=f\left(\frac{r}{s}\right) .
$$

Essentially the same argument also establishes that

$$
\begin{equation*}
\text { if } x, y \in \mathbb{Q}, x<y<0, \text { and } x \in S \text {, then } y \in S \text {. } \tag{9}
\end{equation*}
$$

From (8) and (9) we get $0 \in S \subseteq(-1,+1)$ and hence the real number $\alpha=\sup (S)$ exists and satisfies $0 \leqslant \alpha \leqslant 1$.

Let us assume that we actually had $0<\alpha<1$. Note that $f(x)=0$ if $x \in(0, \alpha) \cap \mathbb{Q}$ by (8), and $f(x)=1$ if $x \in(\alpha, 1) \cap \mathbb{Q}$ by (9) and (2). Let K denote the unique positive integer satisfying $K \alpha<1 \leqslant(K+1) \alpha$. The first of these two inequalities entails $\alpha<\frac{1+\alpha}{K+1}$, and thus there is a rational number $x \in\left(\alpha, \frac{1+\alpha}{K+1}\right)$. Setting $y=(K+1) x-1$ and substituting $(y, 1, K+1)$ into (1) we learn

$$
f\left(\frac{f(y)+1}{K+1}\right)=f\left(\frac{y+1}{K+1}\right)=f(x) .
$$

Since $\alpha<x<1$ and $0<y<\alpha$, this simplifies to

$$
f\left(\frac{1}{K+1}\right)=1
$$

But, as $0<\frac{1}{K+1} \leqslant \alpha$, this is only possible if $\alpha=\frac{1}{K+1}$ and $f(\alpha)=1$. From this, however, we get the contradiction

$$
0=f\left(\frac{1}{(K+1)^{2}}\right)=f\left(\frac{\alpha+0}{K+1}\right)=f\left(\frac{f(\alpha)+0}{K+1}\right)=f(\alpha)=1 .
$$

Thus our assumption $0<\alpha<1$ has turned out to be wrong and it follows that $\alpha \in\{0,1\}$. If $\alpha=0$, then we have $S \subseteq(-1,0]$, whence $S=(-1,0] \cap \mathbb{Q}$, which in turn yields $f(x)=\lceil x\rceil$ for all $x \in \mathbb{Q}$ due to (2). Similarly, $\alpha=1$ entails $S=[0,1) \cap \mathbb{Q}$ and $f(x)=\lfloor x\rfloor$ for all $x \in \mathbb{Q}$. Thereby the solution is complete.

Comment 2. It seems that all solutions to this problems involve some case distinction separating the constant solutions from the unbounded ones, though the "descriptions" of the cases may be different depending on the work that has been done at the beginning of the solution. For instance, these two cases can also be " f is periodic on the integers" and " f is not periodic on the integers". The case leading to the unbounded solutions appears to be the harder one.

In most approaches, the cases leading to the two functions $x \longmapsto\lfloor x\rfloor$ and $x \longmapsto\lceil x\rceil$ can easily be treated parallelly, but sometimes it may be useful to know that there is some symmetry in the problem interchanging these two functions. Namely, if a function $f: \mathbb{Q} \longrightarrow \mathbb{Z}$ satisfies (1), then so does the function $g: \mathbb{Q} \longrightarrow \mathbb{Z}$ defined by $g(x)=-f(-x)$ for all $x \in \mathbb{Q}$. For that reason, we could have restricted our attention to the case $\omega=0$ in the first solution and, once $\alpha \in\{0,1\}$ had been obtained, to the case $\alpha=0$ in the second solution.

N7. Let ν be an irrational positive number, and let m be a positive integer. A pair (a, b) of positive integers is called good if

$$
\begin{equation*}
a\lceil b \nu\rceil-b\lfloor a \nu\rfloor=m . \tag{*}
\end{equation*}
$$

A good pair (a, b) is called excellent if neither of the pairs $(a-b, b)$ and $(a, b-a)$ is good. (As usual, by $\lfloor x\rfloor$ and $\lceil x\rceil$ we denote the integer numbers such that $x-1<\lfloor x\rfloor \leqslant x$ and $x \leqslant\lceil x\rceil<x+1$.)

Prove that the number of excellent pairs is equal to the sum of the positive divisors of m.

Solution. For positive integers a and b, let us denote

$$
f(a, b)=a\lceil b \nu\rceil-b\lfloor a \nu\rfloor .
$$

We will deal with various values of m; thus it is convenient to say that a pair (a, b) is m-good or m-excellent if the corresponding conditions are satisfied.

To start, let us investigate how the values $f(a+b, b)$ and $f(a, b+a)$ are related to $f(a, b)$. If $\{a \nu\}+\{b \nu\}<1$, then we have $\lfloor(a+b) \nu\rfloor=\lfloor a \nu\rfloor+\lfloor b \nu\rfloor$ and $\lceil(a+b) \nu\rceil=\lceil a \nu\rceil+\lceil b \nu\rceil-1$, so

$$
f(a+b, b)=(a+b)\lceil b \nu\rceil-b(\lfloor a \nu\rfloor+\lfloor b \nu\rfloor)=f(a, b)+b(\lceil b \nu\rceil-\lfloor b \nu\rfloor)=f(a, b)+b
$$

and

$$
f(a, b+a)=a(\lceil b \nu\rceil+\lceil a \nu\rceil-1)-(b+a)\lfloor a \nu\rfloor=f(a, b)+a(\lceil a \nu\rceil-1-\lfloor a \nu\rfloor)=f(a, b) .
$$

Similarly, if $\{a \nu\}+\{b \nu\} \geqslant 1$ then one obtains

$$
f(a+b, b)=f(a, b) \quad \text { and } \quad f(a, b+a)=f(a, b)+a .
$$

So, in both cases one of the numbers $f(a+b, a)$ and $f(a, b+a)$ is equal to $f(a, b)$ while the other is greater than $f(a, b)$ by one of a and b. Thus, exactly one of the pairs $(a+b, b)$ and $(a, b+a)$ is excellent (for an appropriate value of m).

Now let us say that the pairs $(a+b, b)$ and $(a, b+a)$ are the children of the pair (a, b), while this pair is their parent. Next, if a pair (c, d) can be obtained from (a, b) by several passings from a parent to a child, we will say that (c, d) is a descendant of (a, b), while (a, b) is an ancestor of (c, d) (a pair is neither an ancestor nor a descendant of itself). Thus each pair (a, b) has two children, it has a unique parent if $a \neq b$, and no parents otherwise. Therefore, each pair of distinct positive integers has a unique ancestor of the form (a, a); our aim is now to find how many m-excellent descendants each such pair has.

Notice now that if a pair (a, b) is m-excellent then $\min \{a, b\} \leqslant m$. Indeed, if $a=b$ then $f(a, a)=a=m$, so the statement is valid. Otherwise, the pair (a, b) is a child of some pair $\left(a^{\prime}, b^{\prime}\right)$. If $b=b^{\prime}$ and $a=a^{\prime}+b^{\prime}$, then we should have $m=f(a, b)=f\left(a^{\prime}, b^{\prime}\right)+b^{\prime}$, so $b=b^{\prime}=m-f\left(a^{\prime}, b^{\prime}\right)<m$. Similarly, if $a=a^{\prime}$ and $b=b^{\prime}+a^{\prime}$ then $a<m$.

Let us consider the set S_{m} of all pairs (a, b) such that $f(a, b) \leqslant m$ and $\min \{a, b\} \leqslant m$. Then all the ancestors of the elements in S_{m} are again in S_{m}, and each element in S_{m} either is of the form (a, a) with $a \leqslant m$, or has a unique ancestor of this form. From the arguments above we see that all m-excellent pairs lie in S_{m}.

We claim now that the set S_{m} is finite. Indeed, assume, for instance, that it contains infinitely many pairs (c, d) with $d>2 m$. Such a pair is necessarily a child of $(c, d-c)$, and thus a descendant of some pair $\left(c, d^{\prime}\right)$ with $m<d^{\prime} \leqslant 2 m$. Therefore, one of the pairs $(a, b) \in S_{m}$ with $m<b \leqslant 2 m$
has infinitely many descendants in S_{m}, and all these descendants have the form $(a, b+k a)$ with k a positive integer. Since $f(a, b+k a)$ does not decrease as k grows, it becomes constant for $k \geqslant k_{0}$, where k_{0} is some positive integer. This means that $\{a \nu\}+\{(b+k a) \nu\}<1$ for all $k \geqslant k_{0}$. But this yields $1>\{(b+k a) \nu\}=\left\{\left(b+k_{0} a\right) \nu\right\}+\left(k-k_{0}\right)\{a \nu\}$ for all $k>k_{0}$, which is absurd.

Similarly, one can prove that S_{m} contains finitely many pairs (c, d) with $c>2 m$, thus finitely many elements at all.

We are now prepared for proving the following crucial lemma.
Lemma. Consider any pair (a, b) with $f(a, b) \neq m$. Then the number $g(a, b)$ of its m-excellent descendants is equal to the number $h(a, b)$ of ways to represent the number $t=m-f(a, b)$ as $t=k a+\ell b$ with k and ℓ being some nonnegative integers.
Proof. We proceed by induction on the number N of descendants of (a, b) in S_{m}. If $N=0$ then clearly $g(a, b)=0$. Assume that $h(a, b)>0$; without loss of generality, we have $a \leqslant b$. Then, clearly, $m-f(a, b) \geqslant a$, so $f(a, b+a) \leqslant f(a, b)+a \leqslant m$ and $a \leqslant m$, hence $(a, b+a) \in S_{m}$ which is impossible. Thus in the base case we have $g(a, b)=h(a, b)=0$, as desired.

Now let $N>0$. Assume that $f(a+b, b)=f(a, b)+b$ and $f(a, b+a)=f(a, b)$ (the other case is similar). If $f(a, b)+b \neq m$, then by the induction hypothesis we have

$$
g(a, b)=g(a+b, b)+g(a, b+a)=h(a+b, b)+h(a, b+a) .
$$

Notice that both pairs $(a+b, b)$ and $(a, b+a)$ are descendants of (a, b) and thus each of them has strictly less descendants in S_{m} than (a, b) does.

Next, each one of the $h(a+b, b)$ representations of $m-f(a+b, b)=m-b-f(a, b)$ as the sum $k^{\prime}(a+b)+\ell^{\prime} b$ provides the representation $m-f(a, b)=k a+\ell b$ with $k=k^{\prime}<k^{\prime}+\ell^{\prime}+1=\ell$. Similarly, each one of the $h(a, b+a)$ representations of $m-f(a, b+a)=m-f(a, b)$ as the sum $k^{\prime} a+\ell^{\prime}(b+a)$ provides the representation $m-f(a, b)=k a+\ell b$ with $k=k^{\prime}+\ell^{\prime} \geqslant \ell^{\prime}=\ell$. This correspondence is obviously bijective, so

$$
h(a, b)=h(a+b, b)+h(a, b+a)=g(a, b),
$$

as required.
Finally, if $f(a, b)+b=m$ then $(a+b, b)$ is m-excellent, so $g(a, b)=1+g(a, b+a)=1+h(a, b+a)$ by the induction hypothesis. On the other hand, the number $m-f(a, b)=b$ has a representation $0 \cdot a+1 \cdot b$ and sometimes one more representation as $k a+0 \cdot b$; this last representation exists simultaneously with the representation $m-f(a, b+a)=k a+0 \cdot(b+a)$, so $h(a, b)=1+h(a, b+a)$ as well. Thus in this case the step is also proved.

Now it is easy to finish the solution. There exists a unique m-excellent pair of the form (a, a), and each other m-excellent pair (a, b) has a unique ancestor of the form (x, x) with $x<m$. By the lemma, for every $x<m$ the number of its m-excellent descendants is $h(x, x)$, which is the number of ways to represent $m-f(x, x)=m-x$ as $k x+\ell x$ (with nonnegative integer k and ℓ). This number is 0 if $x \nmid m$, and m / x otherwise. So the total number of excellent pairs is

$$
1+\sum_{x \mid m, x<m} \frac{m}{x}=1+\sum_{d \mid m, d>1} d=\sum_{d \mid m} d
$$

as required.

Comment. Let us present a sketch of an outline of a different solution. The plan is to check that the number of excellent pairs does not depend on the (irrational) number ν, and to find this number for some appropriate value of ν. For that, we first introduce some geometrical language. We deal only with the excellent pairs (a, b) with $a \neq b$.
Part I. Given an irrational positive ν, for every positive integer n we introduce two integral points $F_{\nu}(n)=$ $(n,\lfloor n \nu\rfloor)$ and $C_{\nu}(n)=(n,\lceil n \nu\rceil)$ on the coordinate plane $O x y$. Then $(*)$ reads as $\left[O F_{\nu}(a) C_{\nu}(b)\right]=m / 2$; here [.] stands for the signed area. Next, we rewrite in these terms the condition on a pair (a, b) to be excellent. Let $\ell_{\nu}, \ell_{\nu}^{+}$, and ℓ_{ν}^{-}be the lines determined by the equations $y=\nu x, y=\nu x+1$, and $y=\nu x-1$, respectively.
$a)$. Firstly, we deal with all excellent pairs (a, b) with $a<b$. Given some value of a, all the points C such that $\left[O F_{\nu}(a) C\right]=m / 2$ lie on some line $f_{\nu}(a)$; if there exist any good pairs (a, b) at all, this line has to contain at least one integral point, which happens exactly when $\operatorname{gcd}(a,\lfloor a \nu\rfloor) \mid m$.

Let $P_{\nu}(a)$ be the point of intersection of ℓ_{ν}^{+}and $f_{\nu}(a)$, and let $p_{\nu}(a)$ be its abscissa; notice that $p_{\nu}(a)$ is irrational if it is nonzero. Now, if (a, b) is good, then the point $C_{\nu}(b)$ lies on $f_{\nu}(a)$, which means that the point of $f_{\nu}(a)$ with abscissa b lies between ℓ_{ν} and ℓ_{ν}^{+}and is integral. If in addition the pair $(a, b-a)$ is not good, then the point of $f_{\nu}(a)$ with abscissa $b-a$ lies above ℓ_{ν}^{+}(see Fig. 1). Thus, the pair (a, b) with $b>a$ is excellent exactly when $p_{\nu}(a)$ lies between $b-a$ and b, and the point of $f_{\nu}(a)$ with abscissa b is integral (which means that this point is $C_{\nu}(b)$).

Notice now that, if $p_{\nu}(a)>a$, then the number of excellent pairs of the form (a, b) (with $b>a$) is $\operatorname{gcd}(a,\lfloor a \nu\rfloor)$.

Figure 1

Figure 2
$b)$. Analogously, considering the pairs (a, b) with $a>b$, we fix the value of b, introduce the line $c_{\nu}(b)$ containing all the points F with $\left[O F C_{\nu}(b)\right]=m / 2$, assume that this line contains an integral point (which means $\operatorname{gcd}(b,\lceil b \nu\rceil) \mid m$), and denote the common point of $c_{\nu}(b)$ and ℓ_{ν}^{-}by $Q_{\nu}(b)$, its abscissa being $q_{\nu}(b)$. Similarly to the previous case, we obtain that the pair (a, b) is excellent exactly when $q_{\nu}(a)$ lies between $a-b$ and a, and the point of $c_{\nu}(b)$ with abscissa a is integral (see Fig. 2). Again, if $q_{\nu}(b)>b$, then the number of excellent pairs of the form (a, b) (with $a>b)$ is $\operatorname{gcd}(b,\lceil b \nu\rceil)$.
Part II, sketchy. Having obtained such a description, one may check how the number of excellent pairs changes as ν grows. (Having done that, one may find this number for one appropriate value of ν; for instance, it is relatively easy to make this calculation for $\nu \in\left(1,1+\frac{1}{m}\right)$.)

Consider, for the initial value of ν, some excellent pair (a, t) with $a>t$. As ν grows, this pair eventually stops being excellent; this happens when the point $Q_{\nu}(t)$ passes through $F_{\nu}(a)$. At the same moment, the pair ($a+t, t$) becomes excellent instead.

This process halts when the point $Q_{\nu}(t)$ eventually disappears, i.e. when ν passes through the ratio of the coordinates of the point $T=C_{\nu}(t)$. Hence, the point T afterwards is regarded as $F_{\nu}(t)$. Thus, all the old excellent pairs of the form (a, t) with $a>t$ disappear; on the other hand, the same number of excellent pairs with the first element being t just appear.

Similarly, if some pair (t, b) with $t<b$ is initially ν-excellent, then at some moment it stops being excellent when $P_{\nu}(t)$ passes through $C_{\nu}(b)$; at the same moment, the pair $(t, b-t)$ becomes excellent. This process eventually stops when $b-t<t$. At this moment, again the second element of the pair becomes fixed, and the first one starts to increase.

These ideas can be made precise enough to show that the number of excellent pairs remains unchanged, as required.

We should warn the reader that the rigorous elaboration of Part II is technically quite involved, mostly by the reason that the set of moments when the collection of excellent pairs changes is infinite. Especially much care should be applied to the limit points of this set, which are exactly the points when the line ℓ_{ν} passes through some point of the form $C_{\nu}(b)$.

The same ideas may be explained in an algebraic language instead of a geometrical one; the same technicalities remain in this way as well.

