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Problems
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Algebra

A1. Let aij, i = 1, 2, 3; j = 1, 2, 3 be real numbers such that aij is positive for i = j and
negative for i 6= j.

Prove that there exist positive real numbers c1, c2, c3 such that the numbers

a11c1 + a12c2 + a13c3, a21c1 + a22c2 + a23c3, a31c1 + a32c2 + a33c3

are all negative, all positive, or all zero.

A2. Find all nondecreasing functions f : R −→ R such that

(i) f(0) = 0, f(1) = 1;

(ii) f(a) + f(b) = f(a)f(b) + f(a+ b− ab) for all real numbers a, b such that a < 1 < b.

A3. Consider pairs of sequences of positive real numbers

a1 ≥ a2 ≥ a3 ≥ · · · , b1 ≥ b2 ≥ b3 ≥ · · ·

and the sums

An = a1 + · · ·+ an, Bn = b1 + · · ·+ bn; n = 1, 2, . . . .

For any pair define ci = min{ai, bi} and Cn = c1 + · · ·+ cn, n = 1, 2, . . . .

(1) Does there exist a pair (ai)i≥1, (bi)i≥1 such that the sequences (An)n≥1 and (Bn)n≥1 are
unbounded while the sequence (Cn)n≥1 is bounded?

(2) Does the answer to question (1) change by assuming additionally that bi = 1/i, i =
1, 2, . . . ?

Justify your answer.
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A4. Let n be a positive integer and let x1 ≤ x2 ≤ · · · ≤ xn be real numbers.

(1) Prove that
(

n∑

i,j=1

|xi − xj|
)2

≤ 2(n2 − 1)

3

n∑

i,j=1

(xi − xj)
2.

(2) Show that the equality holds if and only if x1, . . . , xn is an arithmetic sequence.

A5. Let R+ be the set of all positive real numbers. Find all functions f : R+ −→ R+ that
satisfy the following conditions:

(i) f(xyz) + f(x) + f(y) + f(z) = f(
√
xy)f(

√
yz)f(

√
zx) for all x, y, z ∈ R+;

(ii) f(x) < f(y) for all 1 ≤ x < y.

A6. Let n be a positive integer and let (x1, . . . , xn), (y1, . . . , yn) be two sequences of positive
real numbers. Suppose (z2, . . . , z2n) is a sequence of positive real numbers such that

z2
i+j ≥ xiyj for all 1 ≤ i, j ≤ n.

Let M = max{z2, . . . , z2n}. Prove that
(
M + z2 + · · ·+ z2n

2n

)2

≥
(
x1 + · · ·+ xn

n

)(
y1 + · · ·+ yn

n

)

.
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Combinatorics

C1. Let A be a 101-element subset of the set S = {1, 2, . . . , 1000000}. Prove that there
exist numbers t1, t2, . . . , t100 in S such that the sets

Aj = {x+ tj | x ∈ A}, j = 1, 2, . . . , 100

are pairwise disjoint.

C2. Let D1, . . . , Dn be closed discs in the plane. (A closed disc is the region limited by a
circle, taken jointly with this circle.) Suppose that every point in the plane is contained in
at most 2003 discs Di. Prove that there exists a disc Dk which intersects at most 7 ·2003−1
other discs Di.

C3. Let n ≥ 5 be a given integer. Determine the greatest integer k for which there exists a
polygon with n vertices (convex or not, with non-selfintersecting boundary) having k internal
right angles.

C4. Let x1, . . . , xn and y1, . . . , yn be real numbers. Let A = (aij)1≤i,j≤n be the matrix
with entries

aij =

{

1, if xi + yj ≥ 0;

0, if xi + yj < 0.

Suppose that B is an n × n matrix with entries 0, 1 such that the sum of the elements in
each row and each column of B is equal to the corresponding sum for the matrix A. Prove
that A = B.

C5. Every point with integer coordinates in the plane is the centre of a disc with radius
1/1000.

(1) Prove that there exists an equilateral triangle whose vertices lie in different discs.

(2) Prove that every equilateral triangle with vertices in different discs has side-length
greater than 96.
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C6. Let f(k) be the number of integers n that satisfy the following conditions:

(i) 0 ≤ n < 10k, so n has exactly k digits (in decimal notation), with leading zeroes
allowed;

(ii) the digits of n can be permuted in such a way that they yield an integer divisible by
11.

Prove that f(2m) = 10f(2m− 1) for every positive integer m.
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Geometry

G1. Let ABCD be a cyclic quadrilateral. Let P , Q, R be the feet of the perpendiculars
from D to the lines BC, CA, AB, respectively. Show that PQ = QR if and only if the
bisectors of ∠ABC and ∠ADC are concurrent with AC.

G2. Three distinct points A, B, C are fixed on a line in this order. Let Γ be a circle passing
through A and C whose centre does not lie on the line AC. Denote by P the intersection
of the tangents to Γ at A and C. Suppose Γ meets the segment PB at Q. Prove that the
intersection of the bisector of ∠AQC and the line AC does not depend on the choice of Γ.

G3. Let ABC be a triangle and let P be a point in its interior. Denote by D, E, F the
feet of the perpendiculars from P to the lines BC, CA, AB, respectively. Suppose that

AP 2 + PD2 = BP 2 + PE2 = CP 2 + PF 2.

Denote by IA, IB, IC the excentres of the triangle ABC. Prove that P is the circumcentre
of the triangle IAIBIC .

G4. Let Γ1, Γ2, Γ3, Γ4 be distinct circles such that Γ1, Γ3 are externally tangent at P , and
Γ2, Γ4 are externally tangent at the same point P . Suppose that Γ1 and Γ2; Γ2 and Γ3; Γ3

and Γ4; Γ4 and Γ1 meet at A, B, C, D, respectively, and that all these points are different
from P .

Prove that
AB ·BC

AD ·DC
=

PB2

PD2
.

G5. Let ABC be an isosceles triangle with AC = BC, whose incentre is I. Let P be
a point on the circumcircle of the triangle AIB lying inside the triangle ABC. The lines
through P parallel to CA and CB meet AB at D and E, respectively. The line through P
parallel to AB meets CA and CB at F and G, respectively. Prove that the lines DF and
EG intersect on the circumcircle of the triangle ABC.
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G6. Each pair of opposite sides of a convex hexagon has the following property:

the distance between their midpoints is equal to
√
3/2 times the sum of their

lengths.

Prove that all the angles of the hexagon are equal.

G7. Let ABC be a triangle with semiperimeter s and inradius r. The semicircles with
diameters BC, CA, AB are drawn on the outside of the triangle ABC. The circle tangent
to all three semicircles has radius t. Prove that

s

2
< t ≤ s

2
+

(

1−
√
3

2

)

r.
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Number Theory

N1. Let m be a fixed integer greater than 1. The sequence x0, x1, x2, . . . is defined as
follows:

xi =

{

2i, if 0 ≤ i ≤ m− 1;
∑m

j=1 xi−j, if i ≥ m.

Find the greatest k for which the sequence contains k consecutive terms divisible by m.

N2. Each positive integer a undergoes the following procedure in order to obtain the num-
ber d = d(a):

(i) move the last digit of a to the first position to obtain the number b;

(ii) square b to obtain the number c;

(iii) move the first digit of c to the end to obtain the number d.

(All the numbers in the problem are considered to be represented in base 10.) For example,
for a = 2003, we get b = 3200, c = 10240000, and d = 02400001 = 2400001 = d(2003).

Find all numbers a for which d(a) = a2.

N3. Determine all pairs of positive integers (a, b) such that

a2

2ab2 − b3 + 1

is a positive integer.
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N4. Let b be an integer greater than 5. For each positive integer n, consider the number

xn = 11 · · · 1
︸ ︷︷ ︸

n−1

22 · · · 2
︸ ︷︷ ︸

n

5,

written in base b.

Prove that the following condition holds if and only if b = 10:

there exists a positive integer M such that for any integer n greater than M , the
number xn is a perfect square.

N5. An integer n is said to be good if |n| is not the square of an integer. Determine all
integers m with the following property:

m can be represented, in infinitely many ways, as a sum of three distinct good
integers whose product is the square of an odd integer.

N6. Let p be a prime number. Prove that there exists a prime number q such that for
every integer n, the number np − p is not divisible by q.

N7. The sequence a0, a1, a2, . . . is defined as follows:

a0 = 2, ak+1 = 2a2
k − 1 for k ≥ 0.

Prove that if an odd prime p divides an, then 2
n+3 divides p2 − 1.

N8. Let p be a prime number and let A be a set of positive integers that satisfies the
following conditions:

(i) the set of prime divisors of the elements in A consists of p− 1 elements;

(ii) for any nonempty subset of A, the product of its elements is not a perfect p-th power.

What is the largest possible number of elements in A?
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Algebra

A1. Let aij, i = 1, 2, 3; j = 1, 2, 3 be real numbers such that aij is positive for i = j and
negative for i 6= j.

Prove that there exist positive real numbers c1, c2, c3 such that the numbers

a11c1 + a12c2 + a13c3, a21c1 + a22c2 + a23c3, a31c1 + a32c2 + a33c3

are all negative, all positive, or all zero.

Solution. Set O(0, 0, 0), P (a11, a21, a31), Q(a12, a22, a32), R(a13, a23, a33) in the three di-
mensional Euclidean space. It is enough to find a point in the interior of the triangle PQR
whose coordinates are all positive, all negative, or all zero.

Let O′, P ′, Q′, R′ be the projections of O, P , Q, R onto the xy-plane. Recall that points
P ′, Q′ and R′ lie on the fourth, second and third quadrant respectively.

Case 1: O′ is in the exterior or on the boundary of the triangle P ′Q′R′.

O′

y

x

Q′

R′

P ′

S ′

Denote by S ′ the intersection of the segments P ′Q′ and O′R′, and let S be the point
on the segment PQ whose projection is S ′. Recall that the z-coordinate of the point S is
negative, since the z-coordinate of the points P ′ and Q′ are both negative. Thus any point
in the interior of the segment SR sufficiently close to S has coordinates all of which are
negative, and we are done.

Case 2: O′ is in the interior of the triangle P ′Q′R′.

O′

y

x

R′

P ′

Q′
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Let T be the point on the plane PQR whose projection is O′. If T = O, we are done
again. Suppose T has negative (resp. positive) z-coordinate. Let U be a point in the interior
of the triangle PQR, sufficiently close to T , whose x-coordinates and y-coordinates are both
negative (resp. positive). Then the coordinates of U are all negative (resp. positive), and
we are done.
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A2. Find all nondecreasing functions f : R −→ R such that

(i) f(0) = 0, f(1) = 1;

(ii) f(a) + f(b) = f(a)f(b) + f(a+ b− ab) for all real numbers a, b such that a < 1 < b.

Solution. Let g(x) = f(x + 1) − 1. Then g is nondecreasing, g(0) = 0, g(−1) = −1, and
g
(
−(a − 1)(b − 1)

)
= −g(a − 1)g(b − 1) for a < 1 < b. Thus g(−xy) = −g(x)g(y) for

x < 0 < y, or g(yz) = −g(y)g(−z) for y, z > 0. Vice versa, if g satisfies those conditions,
then f satisfies the given conditions.

Case 1: If g(1) = 0, then g(z) = 0 for all z > 0. Now let g : R −→ R be any nondecreasing
function such that g(−1) = −1 and g(x) = 0 for all x ≥ 0. Then g satisfies the required
conditions.

Case 2: If g(1) > 0, putting y = 1 yields

g(−z) = −g(z)

g(1)
(∗)

for all z > 0. Hence g(yz) = g(y)g(z)/g(1) for all y, z > 0. Let h(x) = g(x)/g(1). Then h is
nondecreasing, h(0) = 0, h(1) = 1, and h(xy) = h(x)h(y). It follows that h(xq) = h(x)q for
any x > 0 and any rational number q. Since h is nondecreasing, there exists a nonnegative
number k such that h(x) = xk for all x > 0. Putting g(1) = c, we have g(x) = cxk for all
x > 0. Furthermore (∗) implies g(−x) = −xk for all x > 0. Now let k ≥ 0, c > 0 and

g(x) =







cxk, if x > 0;

0, if x = 0;

−(−x)k, if x < 0.

Then g is nondecreasing, g(0) = 0, g(−1) = −1, and g(−xy) = −g(x)g(y) for x < 0 < y.
Hence g satisfies the required conditions.

We obtain all solutions for f by the re-substitution f(x) = g(x − 1) + 1. In Case 1, we
have any nondecreasing function f satisfying

f(x) =

{

1, if x ≥ 1;

0, if x = 0.

In Case 2, we obtain

f(x) =







c(x− 1)k + 1, if x > 1;

1, if x = 1;

−(1− x)k + 1, if x < 1,

where c > 0 and k ≥ 0.
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A3. Consider pairs of sequences of positive real numbers

a1 ≥ a2 ≥ a3 ≥ · · · , b1 ≥ b2 ≥ b3 ≥ · · ·

and the sums

An = a1 + · · ·+ an, Bn = b1 + · · ·+ bn; n = 1, 2, . . . .

For any pair define ci = min{ai, bi} and Cn = c1 + · · ·+ cn, n = 1, 2, . . . .

(1) Does there exist a pair (ai)i≥1, (bi)i≥1 such that the sequences (An)n≥1 and (Bn)n≥1 are
unbounded while the sequence (Cn)n≥1 is bounded?

(2) Does the answer to question (1) change by assuming additionally that bi = 1/i, i =
1, 2, . . . ?

Justify your answer.

Solution. (1) Yes.

Let (ci) be an arbitrary sequence of positive numbers such that ci ≥ ci+1 and
∑∞

i=1 ci <∞.
Let (km) be a sequence of integers satisfying 1 = k1 < k2 < k3 < · · · and (km+1−km)ckm

≥ 1.

Now we define the sequences (ai) and (bi) as follows. For n odd and kn ≤ i < kn+1, define
ai = ckn

and bi = ci. Then we have Akn+1−1 ≥ Akn−1 + 1. For n even and kn ≤ i < kn+1,
define ai = ci and bi = ckn

. Then we have Bkn+1−1 ≥ Bkn−1 + 1. Thus (An) and (Bn) are
unbounded and ci = min{ai, bi}.
(2) Yes.

Suppose that there is such a pair.

Case 1: bi = ci for only finitely many i’s.

There exists a sufficiently large I such that ci = ai for any i ≥ I. Therefore

∑

i≥I

ci =
∑

i≥I

ai =∞,

a contradiction.

Case 2: bi = ci for infinitely many i’s.

Let (km) be a sequence of integers satisfying km+1 ≥ 2km and bkm
= ckm

. Then

ki+1∑

k=ki+1

ck ≥ (ki+1 − ki)
1

ki+1

≥ 1

2
.

Thus
∑∞

i=1 ci =∞, a contradiction.
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A4. Let n be a positive integer and let x1 ≤ x2 ≤ · · · ≤ xn be real numbers.

(1) Prove that
(

n∑

i,j=1

|xi − xj|
)2

≤ 2(n2 − 1)

3

n∑

i,j=1

(xi − xj)
2.

(2) Show that the equality holds if and only if x1, . . . , xn is an arithmetic sequence.

Solution. (1) Since both sides of the inequality are invariant under any translation of all
xi’s, we may assume without loss of generality that

∑n
i=1 xi = 0.

We have
n∑

i,j=1

|xi − xj| = 2
∑

i<j

(xj − xi) = 2
n∑

i=1

(2i− n− 1)xi.

By the Cauchy-Schwarz inequality, we have

(
n∑

i,j=1

|xi − xj|
)2

≤ 4
n∑

i=1

(2i− n− 1)2
n∑

i=1

x2
i = 4 · n(n+ 1)(n− 1)

3

n∑

i=1

x2
i .

On the other hand, we have

n∑

i,j=1

(xi − xj)
2 = n

n∑

i=1

x2
i −

n∑

i=1

xi

n∑

j=1

xj + n

n∑

j=1

x2
j = 2n

n∑

i=1

x2
i .

Therefore (
n∑

i,j=1

|xi − xj|
)2

≤ 2(n2 − 1)

3

n∑

i,j=1

(xi − xj)
2.

(2) If the equality holds, then xi = k(2i − n − 1) for some k, which means that x1, . . . , xn

is an arithmetic sequence.

On the other hand, suppose that x1, . . . , x2n is an arithmetic sequence with common
difference d. Then we have

xi =
d

2
(2i− n− 1) +

x1 + xn

2
.

Translate xi’s by −(x1 + xn)/2 to obtain xi = d(2i− n− 1)/2 and
∑n

i=1 xi = 0, from which
the equality follows.
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A5. Let R+ be the set of all positive real numbers. Find all functions f : R+ −→ R+ that
satisfy the following conditions:

(i) f(xyz) + f(x) + f(y) + f(z) = f(
√
xy)f(

√
yz)f(

√
zx) for all x, y, z ∈ R+;

(ii) f(x) < f(y) for all 1 ≤ x < y.

Solution 1. We claim that f(x) = xλ + x−λ, where λ is an arbitrary positive real number.

Lemma. There exists a unique function g : [1,∞) −→ [1,∞) such that

f(x) = g(x) +
1

g(x)
.

Proof. Put x = y = z = 1 in the given functional equation

f(xyz) + f(x) + f(y) + f(z) = f(
√
xy)f(

√
yz)f(

√
zx)

to obtain 4f(1) = f(1)3. Since f(1) > 0, we have f(1) = 2.

Define the function A : [1,∞) −→ [2,∞) by A(x) = x + 1/x. Since f is strictly
increasing on [1,∞) and A is bijective, the function g is uniquely determined.

Since A is strictly increasing, we see that g is also strictly increasing. Since f(1) = 2, we
have g(1) = 1.

We put (x, y, z) = (t, t, 1/t), (t2, 1, 1) to obtain f(t) = f(1/t) and f(t2) = f(t)2 − 2. Put
(x, y, z) = (s/t, t/s, st), (s2, 1/s2, t2) to obtain

f(st) + f

(
t

s

)

= f(s)f(t) and f(st)f

(
t

s

)

= f(s2) + f(t2) = f(s)2 + f(t)2 − 4.

Let 1 ≤ x ≤ y. We will show that g(xy) = g(x)g(y). We have

f(xy) + f

(
y

x

)

=

(

g(x) +
1

g(x)

)(

g(y) +
1

g(y)

)

=

(

g(x)g(y) +
1

g(x)g(y)

)

+

(
g(x)

g(y)
+

g(y)

g(x)

)

,

and

f(xy)f

(
y

x

)

=

(

g(x) +
1

g(x)

)2

+

(

g(y) +
1

g(y)

)2

− 4

=

(

g(x)g(y) +
1

g(x)g(y)

)(
g(x)

g(y)
+

g(y)

g(x)

)

.

Thus
{

f(xy), f

(
y

x

)}

=

{

g(x)g(y) +
1

g(x)g(y)
,
g(x)

g(y)
+

g(y)

g(x)

}

=

{

A
(
g(x)g(y)

)
, A

(
g(y)

g(x)

)}

.
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Since f(xy) = A
(
g(xy)

)
and A is bijective, it follows that either g(xy) = g(x)g(y) or

g(xy) = g(y)/g(x). Since xy ≥ y and g is increasing, we have g(xy) = g(x)g(y).

Fix a real number ε > 1 and suppose that g(ε) = ελ. Since g(ε) > 1, we have λ > 0.
Using the multiplicity of g, we may easily see that g(εq) = εqλ for all rationals q ∈ [0,∞).
Since g is strictly increasing, g(εt) = εtλ for all t ∈ [0,∞), that is, g(x) = xλ for all x ≥ 1.

For all x ≥ 1, we have f(x) = xλ + x−λ. Recalling that f(t) = f(1/t), we have f(x) =
xλ + x−λ for 0 < x < 1 as well.

Now we must check that for any λ > 0, the function f(x) = xλ + x−λ satisfies the two
given conditions. The condition (i) is satisfied because

f(
√
xy)f(

√
yz)f(

√
zx) =

(
(xy)λ/2 + (xy)−λ/2

)(
(yz)λ/2 + (yz)−λ/2

)(
(zx)λ/2 + (zx)−λ/2

)

= (xyz)λ + xλ + yλ + zλ + x−λ + y−λ + z−λ + (xyz)−λ

= f(xyz) + f(x) + f(y) + f(z).

The condition (ii) is also satisfied because 1 ≤ x < y implies

f(y)− f(x) = (yλ − xλ)

(

1− 1

(xy)λ

)

> 0.

Solution 2. We can a find positive real number λ such that f(e) = exp(λ)+exp(−λ) since
the function B : [0,∞) −→ [2,∞) defined by B(x) = exp(x) + exp(−x) is bijective.

Since f(t)2 = f(t2) + 2 and f(x) > 0, we have

f

(

exp

(
1

2n

))

= exp

(
λ

2n

)

+ exp

(

− λ

2n

)

for all nonnegative integers n.

Since f(st) = f(s)f(t)− f(t/s), we have

f

(

exp

(
m+ 1

2n

))

= f

(

exp

(
1

2n

))

f

(

exp

(
m

2n

))

− f

(

exp

(
m− 1

2n

))

(∗)

for all nonnegative integers m and n.

From (∗) and f(1) = 2, we obtain by induction that

f

(

exp

(
m

2n

))

= exp

(
mλ

2n

)

+ exp

(

−mλ

2n

)

for all nonnegative integers m and n.

Since f is increasing on [1,∞), we have f(x) = xλ + x−λ for x ≥ 1.

We can prove that f(x) = xλ + x−λ for 0 < x < 1 and that this function satisfies the
given conditions in the same manner as in the first solution.
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A6. Let n be a positive integer and let (x1, . . . , xn), (y1, . . . , yn) be two sequences of positive
real numbers. Suppose (z2, . . . , z2n) is a sequence of positive real numbers such that

z2
i+j ≥ xiyj for all 1 ≤ i, j ≤ n.

Let M = max{z2, . . . , z2n}. Prove that
(
M + z2 + · · ·+ z2n

2n

)2

≥
(
x1 + · · ·+ xn

n

)(
y1 + · · ·+ yn

n

)

.

Solution. Let X = max{x1, . . . , xn} and Y = max{y1, . . . , yn}. By replacing xi by x′i =
xi/X, yi by y′i = yi/Y , and zi by z′i = zi/

√
XY , we may assume that X = Y = 1. Now we

will prove that
M + z2 + · · ·+ z2n ≥ x1 + · · ·+ xn + y1 + · · ·+ yn, (∗)

so
M + z2 + · · ·+ z2n

2n
≥ 1

2

(
x1 + · · ·+ xn

n
+

y1 + · · ·+ yn

n

)

which implies the desired result by the AM-GM inequality.

To prove (∗), we will show that for any r ≥ 0, the number of terms greater that r on
the left hand side is at least the number of such terms on the right hand side. Then the
kth largest term on the left hand side is greater than or equal to the kth largest term on
the right hand side for each k, proving (∗). If r ≥ 1, then there are no terms greater than
r on the right hand side. So suppose r < 1. Let A = {1 ≤ i ≤ n | xi > r}, a = |A|,
B = {1 ≤ i ≤ n | yi > r}, b = |B|. Since max{x1, . . . , xn} = max{y1, . . . , yn} = 1, both a
and b are at least 1. Now xi > r and yj > r implies zi+j ≥ √xiyj > r, so

C = {2 ≤ i ≤ 2n | zi > r} ⊃ A+B = {α+ β | α ∈ A, β ∈ B}.

However, we know that |A + B| ≥ |A| + |B| − 1, because if A = {i1, . . . , ia}, i1 < · · · < ia
and B = {j1, . . . , jb}, j1 < · · · < jb, then the a+ b− 1 numbers i1 + j1, i1 + j2, . . . , i1 + jb,
i2+ jb, . . . , ia+ jb are all distinct and belong to A+B. Hence |C| ≥ a+ b− 1. In particular,
|C| ≥ 1 so zk > r for some k. Then M > r, so the left hand side of (∗) has at least a + b
terms greater than r. Since a + b is the number of terms greater than r on the right hand
side, we have proved (∗).
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Combinatorics

C1. Let A be a 101-element subset of the set S = {1, 2, . . . , 1000000}. Prove that there
exist numbers t1, t2, . . . , t100 in S such that the sets

Aj = {x+ tj | x ∈ A}, j = 1, 2, . . . , 100

are pairwise disjoint.

Solution 1. Consider the set D = {x− y | x, y ∈ A}. There are at most 101× 100 + 1 =
10101 elements in D. Two sets A+ ti and A+ tj have nonempty intersection if and only if
ti − tj is in D. So we need to choose the 100 elements in such a way that we do not use a
difference from D.

Now select these elements by induction. Choose one element arbitrarily. Assume that
k elements, k ≤ 99, are already chosen. An element x that is already chosen prevents us
from selecting any element from the set x +D. Thus after k elements are chosen, at most
10101k ≤ 999999 elements are forbidden. Hence we can select one more element.

Comment. The size |S| = 106 is unnecessarily large. The following statement is true:

If A is a k-element subset of S = {1, . . . , n} and m is a positive integer such
that n > (m − 1)

((
k
2

)
+ 1

)
, then there exist t1, . . . , tm ∈ S such that the sets

Aj = {x+ tj | x ∈ A}, j = 1, . . . ,m are pairwise disjoint.

Solution 2. We give a solution to the generalised version.

Consider the set B =
{
|x− y|

∣
∣ x, y ∈ A

}
. Clearly, |B| ≤

(
k
2

)
+ 1.

It suffices to prove that there exist t1, . . . , tm ∈ S such that |ti− tj| /∈ B for every distinct
i and j. We will select t1, . . . , tm inductively.

Choose 1 as t1, and consider the set C1 = S\(B+t1). Then we have |C1| ≥ n−
((

k
2

)
+1

)
>

(m− 2)
((

k
2

)
+ 1

)
.

For 1 ≤ i < m, suppose that t1, . . . , ti and Ci are already defined and that |Ci| >
(m − i − 1)

((
k
2

)
+ 1

)
≥ 0. Choose the least element in Ci as ti+1 and consider the set

Ci+1 = Ci \ (B + ti+1). Then

|Ci+1| ≥ |Ci| −
((

k

2

)

+ 1

)

> (m− i− 2)

((
k

2

)

+ 1

)

≥ 0.

Clearly, t1, . . . , tm satisfy the desired condition.
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C2. Let D1, . . . , Dn be closed discs in the plane. (A closed disc is the region limited by a
circle, taken jointly with this circle.) Suppose that every point in the plane is contained in
at most 2003 discs Di. Prove that there exists a disc Dk which intersects at most 7 ·2003−1
other discs Di.

Solution. Pick a disc S with the smallest radius, say s. Subdivide the plane into seven
regions as in Figure 1, that is, subdivide the complement of S into six congruent regions T1,
. . . , T6.

T5

T4

T3T2

T1

T6

P3
P2

P1

P6 P5

P4

Figure 1

Since s is the smallest radius, any disc different from S whose centre lies inside S contains
the centre O of the disc S. Therefore the number of such discs is less than or equal to 2002.

We will show that if a disc Dk has its centre inside Ti and intersects S, then Dk contains
Pi, where Pi is the point such that OPi =

√
3 s and OPi bisects the angle formed by the two

half-lines that bound Ti.

Subdivide Ti into Ui and Vi as in Figure 2.
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O

Ui

A

B

C

Pi

Vi

2s

s

Figure 2
The region Ui is contained in the disc with radius s and centre Pi. Thus, if the centre of

Dk is inside Ui, then Dk contains Pi.

Suppose that the centre of Dk is inside Vi. Let Q be the centre of Dk and let R be
the intersection of OQ and the boundary of S. Since Dk intersects S, the radius of Dk is
greater than QR. Since ∠QPiR ≥ ∠CPiB = 60◦ and ∠PiRO ≥ ∠PiBO = 120◦, we have
∠QPiR ≥ ∠PiRQ. Hence QR ≥ QPi and so Dk contains Pi.

O

Ui

A

B

C

Pi

Figure 3

R

Q

For i = 1, . . . , 6, the number of discs Dk having their centres inside Ti and intersecting S
is less than or equal to 2003. Consequently, the number of discs Dk that intersect S is less
than or equal to 2002 + 6 · 2003 = 7 · 2003− 1.
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C3. Let n ≥ 5 be a given integer. Determine the greatest integer k for which there exists a
polygon with n vertices (convex or not, with non-selfintersecting boundary) having k internal
right angles.

Solution. We will show that the greatest integer k satisfying the given condition is equal
to 3 for n = 5, and ⌊2n/3⌋+ 1 for n ≥ 6.

Assume that there exists an n-gon having k internal right angles. Since all other n − k
angles are less than 360◦, we have

(n− k) · 360◦ + k · 90◦ > (n− 2) · 180◦,

or k < (2n+ 4)/3. Since k and n are integers, we have k ≤ ⌊2n/3⌋+ 1.

If n = 5, then ⌊2n/3⌋ + 1 = 4. However, if a pentagon has 4 internal right angles, then
the other angle is equal to 180◦, which is not appropriate. Figure 1 gives the pentagon with
3 internal right angles, thus the greatest integer k is equal to 3.

Figure 1

We will construct an n-gon having ⌊2n/3⌋+1 internal right angles for each n ≥ 6. Figure
2 gives the examples for n = 6, 7, 8.

n = 6 n = 7 n = 8

Figure 2

For n ≥ 9, we will construct examples inductively. Since all internal non-right angles in
this construction are greater than 180◦, we can cut off ‘a triangle without a vertex’ around
a non-right angle in order to obtain three more vertices and two more internal right angles
as in Figure 3.

Figure 3
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Comment. Here we give two other ways to construct examples.

One way is to add ‘a rectangle with a hat’ near an internal non-right angle as in Figure
4.

Figure 4

The other way is ‘the escaping construction.’ First we draw right angles in spiral.

P

Then we ‘escape’ from the point P .

The followings are examples for n = 9, 10, 11. The angles around the black points are
not right.

n = 9 n = 10 n = 11

The ‘escaping lines’ are not straight in these figures. However, in fact, we can make them
straight when we draw sufficiently large figures.
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C4. Let x1, . . . , xn and y1, . . . , yn be real numbers. Let A = (aij)1≤i,j≤n be the matrix
with entries

aij =

{

1, if xi + yj ≥ 0;

0, if xi + yj < 0.

Suppose that B is an n × n matrix with entries 0, 1 such that the sum of the elements in
each row and each column of B is equal to the corresponding sum for the matrix A. Prove
that A = B.

Solution 1. Let B = (bij)1≤i,j≤n. Define S =
∑

1≤i,j≤n(xi + yj)(aij − bij).

On one hand, we have

S =
n∑

i=1

xi

(
n∑

j=1

aij −
n∑

j=1

bij

)

+
n∑

j=1

yj

(
n∑

i=1

aij −
n∑

i=1

bij

)

= 0.

On the other hand, if xi+ yj ≥ 0, then aij = 1, which implies aij − bij ≥ 0; if xi+ yj < 0,
then aij = 0, which implies aij − bij ≤ 0. Therefore (xi + yj)(aij − bij) ≥ 0 for every i and j.

Thus we have (xi + yj)(aij − bij) = 0 for every i and j. In particular, if aij = 0, then
xi + yj < 0 and so aij − bij = 0. This means that aij ≥ bij for every i and j.

Since the sum of the elements in each row of B is equal to the corresponding sum for A,
we have aij = bij for every i and j.

Solution 2. Let B = (bij)1≤i,j≤n. Suppose that A 6= B, that is, there exists (i0, j0) such
that ai0j0 6= bi0j0 . We may assume without loss of generality that ai0j0 = 0 and bi0j0 = 1.

Since the sum of the elements in the i0-th row of B is equal to that in A, there exists j1
such that ai0j1 = 1 and bi0j1 = 0. Similarly there exists i1 such that ai1j1 = 0 and bi1j1 = 1.
Let us define ik and jk inductively in this way so that aikjk

= 0, bikjk
= 1, aikjk+1

= 1,
bikjk+1

= 0.

Because the size of the matrix is finite, there exist s and t such that s 6= t and (is, js) =
(it, jt).

Since aikjk
= 0 implies xik +yjk

< 0 by definition, we have
∑t−1

k=s(xik +yjk
) < 0. Similarly,

since aikjk+1
= 1 implies xik + yjk+1

≥ 0, we have
∑t−1

k=s(xik + yjk+1
) ≥ 0. However, since

js = jt, we have

t−1∑

k=s

(xik + yjk+1
) =

t−1∑

k=s

xik +
t∑

k=s+1

yjk
=

t−1∑

k=s

xik +
t−1∑

k=s

yjk
=

t−1∑

k=s

(xik + yjk
).

This is a contradiction.
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C5. Every point with integer coordinates in the plane is the centre of a disc with radius
1/1000.

(1) Prove that there exists an equilateral triangle whose vertices lie in different discs.

(2) Prove that every equilateral triangle with vertices in different discs has side-length
greater than 96.

Solution 1. (1) Define f : Z −→ [0, 1) by f(x) = x
√
3 − ⌊x

√
3⌋. By the pigeonhole

principle, there exist distinct integers x1 and x2 such that
∣
∣f(x1) − f(x2)

∣
∣ < 0.001. Put

a = |x1−x2|. Then the distance either between
(
a, a
√
3
)
and

(
a, ⌊a

√
3⌋

)
or between

(
a, a
√
3
)

and
(
a, ⌊a

√
3⌋ + 1

)
is less than 0.001. Therefore the points (0, 0), (2a, 0),

(
a, a
√
3
)
lie in

different discs and form an equilateral triangle.

(2) Suppose that P ′Q′R′ is a triangle such that P ′Q′ = Q′R′ = R′P ′ = l ≤ 96 and P ′, Q′,
R′ lie in discs with centres P , Q, R, respectively. Then

l − 0.002 ≤ PQ,QR,RP ≤ l + 0.002.

Since PQR is not an equilateral triangle, we may assume that PQ 6= QR. Therefore

|PQ2 −QR2| = (PQ+QR)|PQ−QR|
≤

(
(l + 0.002) + (l + 0.002)

)(
(l + 0.002)− (l − 0.002)

)

≤ 2 · 96.002 · 0.004
< 1.

However, PQ2 −QR2 ∈ Z. This is a contradiction.

Solution 2. We give another solution to (2).

Lemma. Suppose that ABC and A′B′C ′ are equilateral triangles and that A, B, C and
A′, B′, C ′ lie anticlockwise. If AA′, BB′ ≤ r, then CC ′ ≤ 2r.

Proof. Let α, β, γ; α′, β′, γ′ be the complex numbers corresponding to A, B, C; A′, B′,
C ′. Then

γ = ωβ + (1− ω)α and γ′ = ωβ′ + (1− ω)α′,

where ω =
(
1 +

√
3 i

)
/2. Therefore

CC ′ = |γ − γ′| =
∣
∣ω(β − β′) + (1− ω)(α− α′)

∣
∣

≤ |ω||β − β′|+ |1− ω||α− α′| = BB′ + AA′

≤ 2r.



28

Suppose that P , Q, R lie on discs with radius r and centres P ′, Q′, R′, respectively, and
that PQR is an equilateral triangle. Let R′′ be the point such that P ′Q′R′′ is an equilateral
triangle and P ′, Q′, R′ lie anticlockwise. It follows from the lemma that RR′′ ≤ 2r, and so
R′R′′ ≤ RR′ +RR′′ ≤ r + 2r = 3r by the triangle inequality.

Put
−−→
P ′Q′ =

(
m
n

)

and
−−→
P ′R′ =

(
s
t

)

, where m, n, s, t are integers. We may suppose that

m,n ≥ 0. Then we have

√
(
m− n

√
3

2
− s

)2

+

(
n+m

√
3

2
− t

)2

≤ 3r.

Setting a = 2t− n and b = m− 2s, we obtain

√
(
a−m

√
3
)2
+

(
b− n

√
3
)2 ≤ 6r.

Since
∣
∣a − m

√
3
∣
∣ ≥ 1

/∣
∣a + m

√
3
∣
∣,

∣
∣b − n

√
3
∣
∣ ≥ 1

/∣
∣b + n

√
3
∣
∣ and |a| ≤ m

√
3 + 6r,

|b| ≤ n
√
3 + 6r, we have

√

1
(
2m
√
3 + 6r

)2 +
1

(
2n
√
3 + 6r

)2 ≤ 6r.

Since 1/x2 + 1/y2 ≥ 8/(x+ y)2 for all positive real numbers x and y, it follows that

2
√
2

2
√
3(m+ n) + 12r

≤ 6r.

As P ′Q′ =
√
m2 + n2 ≥ (m+ n)/

√
2, we have

2
√
2

2
√
6P ′Q′ + 12r

≤ 6r.

Therefore

P ′Q′ ≥ 1

6
√
3 r
−
√
6 r.

Finally we obtain

PQ ≥ P ′Q′ − 2r ≥ 1

6
√
3 r
−
√
6 r − 2r.

For r = 1/1000, we have PQ ≥ 96.22 · · · > 96.
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C6. Let f(k) be the number of integers n that satisfy the following conditions:

(i) 0 ≤ n < 10k, so n has exactly k digits (in decimal notation), with leading zeroes
allowed;

(ii) the digits of n can be permuted in such a way that they yield an integer divisible by
11.

Prove that f(2m) = 10f(2m− 1) for every positive integer m.

Solution 1. We use the notation [ak−1ak−2 · · · a0] to indicate the positive integer with digits
ak−1, ak−2, . . . , a0.

The following fact is well-known:

[ak−1ak−2 · · · a0] ≡ i (mod 11) ⇐⇒
k−1∑

l=0

(−1)lal ≡ i (mod 11).

Fix m ∈ N and define the sets Ai and Bi as follows:

• Ai is the set of all integers n with the following properties:

(1) 0 ≤ n < 102m, i.e., n has 2m digits;

(2) the right 2m−1 digits of n can be permuted so that the resulting integer is congruent
to i modulo 11.

• Bi is the set of all integers n with the following properties:

(1) 0 ≤ n < 102m−1, i.e., n has 2m− 1 digits;

(2) the digits of n can be permuted so that the resulting integer is congruent to i
modulo 11.

It is clear that f(2m) = |A0| and f(2m−1) = |B0|. Since 99 · · · 9︸ ︷︷ ︸

2m

≡ 0 (mod 11), we have

n ∈ Ai ⇐⇒ 99 · · · 9
︸ ︷︷ ︸

2m

−n ∈ A−i.

Hence
|Ai| = |A−i|. (1)

Since 99 · · · 9
︸ ︷︷ ︸

2m−1

≡ 9 (mod 11), we have

n ∈ Bi ⇐⇒ 99 · · · 9
︸ ︷︷ ︸

2m−1

−n ∈ B9−i.

Thus
|Bi| = |B9−i|. (2)

For any 2m-digit integer n = [ja2m−2 · · · a0], we have

n ∈ Ai ⇐⇒ [a2m−2 · · · a0] ∈ Bi−j.
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Hence
|Ai| = |Bi|+ |Bi−1|+ · · ·+ |Bi−9|.

Since Bi = Bi+11, this can be written as

|Ai| =
10∑

k=0

|Bk| − |Bi+1|, (3)

hence
|Ai| = |Aj| ⇐⇒ |Bi+1| = |Bj+1|. (4)

From (1), (2), and (4), we obtain |Ai| = |A0| and |Bi| = |B0|. Substituting this into (3)
yields |A0| = 10|B0|, and so f(2m) = 10f(2m− 1).

Comment. This solution works for all even bases b, and the result is f(2m) = bf(2m−1).

Solution 2. We will use the notation in Solution 1. For a 2m-tuple (a0, . . . , a2m−1) of
integers, we consider the following property:

(a0, . . . , a2m−1) can be permuted so that
2m−1∑

l=0

(−1)lal ≡ 0 (mod 11). (∗)

It is easy to verify that

(a0, . . . , a2m−1) satisfies (∗) ⇐⇒ (a0 + k, . . . , a2m−1 + k) satisfies (∗) (1)

for all integers k, and that

(a0, . . . , a2m−1) satisfies (∗) ⇐⇒ (ka0, . . . , ka2m−1) satisfies (∗) (2)

for all integers k 6≡ 0 (mod 11).

For an integer k, denote by 〈k〉 the nonnegative integer less than 11 congruent to k
modulo 11.

For a fixed j ∈ {0, 1, . . . , 9}, let k be the unique integer such that k ∈ {1, 2, . . . , 10} and
(j + 1)k ≡ 1 (mod 11).

Suppose that [a2m−1 · · · a1j] ∈ A0, that is, (a2m−1, . . . , a1, j) satisfies (∗). From (1) and
(2), it follows that

(
(a2m−1 + 1)k − 1, . . . , (a1 + 1)k − 1, 0

)
also satisfies (∗). Putting bi =〈

(ai + 1)k
〉
− 1, we have [b2m−1 · · · b1] ∈ B0.

For any j ∈ {0, 1, . . . , 9}, we can reconstruct [a2m−1 . . . a1j] from [b2m−1 · · · b1]. Hence we
have |A0| = 10|B0|, and so f(2m) = 10f(2m− 1).
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Geometry

G1. Let ABCD be a cyclic quadrilateral. Let P , Q, R be the feet of the perpendiculars
from D to the lines BC, CA, AB, respectively. Show that PQ = QR if and only if the
bisectors of ∠ABC and ∠ADC are concurrent with AC.

Solution 1.

P

D

A

B

R

C

Q

It is well-known that P , Q, R are collinear (Simson’s theorem). Moreover, since ∠DPC
and ∠DQC are right angles, the points D, P , Q, C are concyclic and so ∠DCA = ∠DPQ =
∠DPR. Similarly, since D, Q, R, A are concyclic, we have ∠DAC = ∠DRP . Therefore
△DCA ∼ △DPR.

Likewise, △DAB ∼ △DQP and △DBC ∼ △DRQ. Then

DA

DC
=

DR

DP
=

DB · QR
BC

DB · PQ
BA

=
QR

PQ
· BA

BC
.

Thus PQ = QR if and only if DA/DC = BA/BC.

Now the bisectors of the angles ABC and ADC divide AC in the ratios of BA/BC and
DA/DC, respectively. This completes the proof.

Solution 2. Suppose that the bisectors of ∠ABC and ∠ADC meet AC at L and M ,
respectively. Since AL/CL = AB/CB and AM/CM = AD/CD, the bisectors in question
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meet on AC if and only if AB/CB = AD/CD, that is, AB ·CD = CB ·AD. We will prove
that AB · CD = CB · AD is equivalent to PQ = QR.

Because DP ⊥ BC, DQ ⊥ AC, DR ⊥ AB, the circles with diameters DC and DA
contain the pairs of points P , Q and Q, R, respectively. It follows that ∠PDQ is equal
to γ or 180◦ − γ, where γ = ∠ACB. Likewise, ∠QDR is equal to α or 180◦ − α, where
α = ∠CAB. Then, by the law of sines, we have PQ = CD sin γ and QR = AD sinα. Hence
the condition PQ = QR is equivalent to CD/AD = sinα/sin γ.

On the other hand, sinα/sin γ = CB/AB by the law of sines again. Thus PQ = QR if
and only if CD/AD = CB/AB, which is the same as AB · CD = CB · AD.

Comment. Solution 2 shows that this problem can be solved without the knowledge of
Simson’s theorem.
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G2. Three distinct points A, B, C are fixed on a line in this order. Let Γ be a circle passing
through A and C whose centre does not lie on the line AC. Denote by P the intersection
of the tangents to Γ at A and C. Suppose Γ meets the segment PB at Q. Prove that the
intersection of the bisector of ∠AQC and the line AC does not depend on the choice of Γ.

Solution 1.

C

P

A

Q

S

B
R

Γ

Suppose that the bisector of ∠AQC intersects the line AC and the circle Γ at R and S,
respectively, where S is not equal to Q.

Since △APC is an isosceles triangle, we have AB : BC = sin∠APB : sin∠CPB.
Likewise, since △ASC is an isosceles triangle, we have AR : RC = sin∠ASQ : sin∠CSQ.

Applying the sine version of Ceva’s theorem to the triangle PAC and Q, we obtain

sin∠APB : sin∠CPB = sin∠PAQ sin∠QCA : sin∠PCQ sin∠QAC.

The tangent theorem shows that ∠PAQ = ∠ASQ = ∠QCA and ∠PCQ = ∠CSQ =
∠QAC.

Hence AB : BC = AR2 : RC2, and so R does not depend on Γ.
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Solution 2.

A

Q

B
R

y

x
O

(0,−p)

M
(
0,−p−

√

1 + p2
)

C(1, 0)

P (0, 1/p)

Γ

Let R be the intersection of the bisector of the angle AQC and the line AC.

We may assume that A(−1, 0), B(b, 0), C(1, 0), and Γ: x2 + (y + p)2 = 1 + p2. Then
P (0, 1/p).

Let M be the midpoint of the largest arc AC. Then M
(
0,−p −

√

1 + p2
)
. The points

Q, R, M are collinear, since ∠AQR = ∠CQR.

Because PB : y = −x/pb+ 1/p, computation shows that

Q

(
(1 + p2)b− pb

√

(1 + p2)(1− b2)

1 + p2b2
,
−p(1− b2) +

√

(1 + p2)(1− b2)

1 + p2b2

)

,

so we have
QP

BQ
=

√

1 + p2

p
√
1− b2

.

Since
MO

PM
=

p+
√

1 + p2

1
p
+ p+

√

1 + p2
=

p
√

1 + p2
,

we obtain
OR

RB
=

MO

PM
· QP

BQ
=

p
√

1 + p2
·
√

1 + p2

p
√
1− b2

=
1√
1− b2

.

Therefore R does not depend on p or Γ.
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G3. Let ABC be a triangle and let P be a point in its interior. Denote by D, E, F the
feet of the perpendiculars from P to the lines BC, CA, AB, respectively. Suppose that

AP 2 + PD2 = BP 2 + PE2 = CP 2 + PF 2.

Denote by IA, IB, IC the excentres of the triangle ABC. Prove that P is the circumcentre
of the triangle IAIBIC .

Solution. Since the given condition implies

0 = (BP 2 + PE2)− (CP 2 + PF 2) = (BP 2 − PF 2)− (CP 2 − PE2) = BF 2 − CE2,

we may put x = BF = CE. Similarly we may put y = CD = AF and z = AE = BD.

If one of three points D, E, F does not lie on the sides of the triangle ABC, then this
contradicts the triangle inequality. Indeed, if, for example, B, C, D lie in this order, we have
AB + BC = (x + y) + (z − y) = x + z = AC, a contradiction. Thus all three points lie on
the sides of the triangle ABC.

Putting a = BC, b = CA, c = AB and s = (a+ b+ c)/2, we have x = s− a, y = s− b,
z = s − c. Since BD = s − c and CD = s − b, we see that D is the point at which the
excircle of the triangle ABC opposite to A meets BC. Similarly E and F are the points at
which the excircle opposite to B and C meet CA and AB, respectively. Since both PD and
IAD are perpendicular to BC, the three points P , D, IA are collinear. Analogously P , E,
IB are collinear and P , F , IC are collinear.

The three points IA, C, IB are collinear and the triangle PIAIB is isosceles because
∠PIAC = ∠PIBC = ∠C/2. Likewise we have PIA = PIC and so PIA = PIB = PIC . Thus
P is the circumcentre of the triangle IAIBIC .

Comment 1. The conclusion is true even if the point P lies outside the triangle ABC.

Comment 2. In fact, the common value of AP 2 +PD2, BP 2 +PE2, CP 2 +PF 2 is equal
to 8R2− s2, where R is the circumradius of the triangle ABC and s = (BC +CA+AB)/2.
We can prove this as follows:

Observe that the circumradius of the triangle IAIBIC is equal to 2R since its orthic
triangle is ABC. It follows that PD = PIA −DIA = 2R− rA, where rA is the radius of the
excircle of the triangle ABC opposite to A. Putting rB and rC in a similar manner, we have
PE = 2R− rB and PF = 2R− rC . Now we have

AP 2 + PD2 = AE2 + PE2 + PD2 = (s− c)2 + (2R− rB)
2 + (2R− rA)

2.

Since

(2R− rA)
2 = 4R2 − 4RrA + r2

A

= 4R2 − 4 · abc

4 area(△ABC)
· area(△ABC)

s− a
+

(
area(△ABC)

s− a

)2

= 4R2 +
s(s− b)(s− c)− abc

s− a

= 4R2 + bc− s2

and we can obtain (2R− rB)
2 = 4R2 + ca− s2 in a similar way, it follows that

AP 2 + PD2 = (s− c)2 + (4R2 + ca− s2) + (4R2 + bc− s2) = 8R2 − s2.
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G4. Let Γ1, Γ2, Γ3, Γ4 be distinct circles such that Γ1, Γ3 are externally tangent at P , and
Γ2, Γ4 are externally tangent at the same point P . Suppose that Γ1 and Γ2; Γ2 and Γ3; Γ3

and Γ4; Γ4 and Γ1 meet at A, B, C, D, respectively, and that all these points are different
from P .

Prove that
AB ·BC

AD ·DC
=

PB2

PD2
.

Solution 1.

Figure 1

Γ1

Γ4

Γ3

Γ2P

B

A

D

C

θ8

θ7

θ5θ6

θ3θ4

θ2

θ1

Let Q be the intersection of the line AB and the common tangent of Γ1 and Γ3. Then

∠APB = ∠APQ+ ∠BPQ = ∠PDA+ ∠PCB.

Define θ1, . . . , θ8 as in Figure 1. Then

θ2 + θ3 + ∠APB = θ2 + θ3 + θ5 + θ8 = 180◦. (1)

Similarly, ∠BPC = ∠PAB + ∠PDC and

θ4 + θ5 + θ2 + θ7 = 180◦. (2)

Multiply the side-lengths of the triangles PAB, PBC, PCD, PAD by PC ·PD, PD ·PA,
PA · PB, PB · PC, respectively, to get the new quadrilateral A′B′C ′D′ as in Figure 2.



37

Figure 2

PD · PA · PB

PB · PC · PD

CD · PA · PB

D′

C ′ B′

A′

PC · PD · PA

AB · PC · PD

DA · PB · PC

PA · PB · PC

BC · PD · PA

θ8

θ7

θ6

θ5

θ1
θ3

θ2

θ4

P ′

(1) and (2) show that A′D′ ‖ B′C ′ and A′B′ ‖ C ′D′. Thus the quadrilateral A′B′C ′D′

is a parallelogram. It follows that A′B′ = C ′D′ and A′D′ = C ′B′, that is, AB · PC · PD =
CD · PA · PB and AD · PB · PC = BC · PA · PD, from which we see that

AB ·BC

AD ·DC
=

PB2

PD2
.

Solution 2. Let O1, O2, O3, O4 be the centres of Γ1, Γ2, Γ3, Γ4, respectively, and let A′,
B′, C ′, D′ be the midpoints of PA, PB, PC, PD, respectively. Since Γ1, Γ3 are externally
tangent at P , it follows that O1, O3, P are collinear. Similarly we see that O2, O4, P are
collinear.

O1

O2 O3

O4

A′

B′

C ′

D′

φ1

θ1

φ2
θ2

φ3

θ3

φ4

θ4

P

Put θ1 = ∠O4O1O2, θ2 = ∠O1O2O3, θ3 = ∠O2O3O4, θ4 = ∠O3O4O1 and φ1 = ∠PO1O4,
φ2 = ∠PO2O3, φ3 = ∠PO3O2, φ4 = ∠PO4O1. By the law of sines, we have

O1O2 : O1O3 = sinφ3 : sin θ2, O3O4 : O2O4 = sinφ2 : sin θ3,

O3O4 : O1O3 = sinφ1 : sin θ4, O1O2 : O2O4 = sinφ4 : sin θ1.

Since the segment PA is the common chord of Γ1 and Γ2, the segment PA
′ is the altitude

from P to O1O2. Similarly PB
′, PC ′, PD′ are the altitudes from P to O2O3, O3O4, O4O1,

respectively. Then O1, A
′, P , D′ are concyclic. So again by the law of sines, we have

D′A′ : PD′ = sin θ1 : sinφ1.
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Likewise we have

A′B′ : PB′ = sin θ2 : sinφ2, B′C ′ : PB′ = sin θ3 : sinφ3, C ′D′ : PD′ = sin θ4 : sinφ4.

Since A′B′ = AB/2, B′C ′ = BC/2, C ′D′ = CD/2, D′A′ = DA/2, PB′ = PB/2, PD′ =
PD/2, we have

AB ·BC

AD ·DC
· PD2

PB2
=

A′B′ ·B′C ′
A′D′ ·D′C ′

· PD′2

PB′2
=
sin θ2 sin θ3 sinφ4 sinφ1

sinφ2 sinφ3 sin θ4 sin θ1

=
O1O3

O1O2

· O2O4

O3O4

· O1O2

O2O4

· O3O4

O1O3

= 1

and the conclusion follows.

Comment. It is not necessary to assume that Γ1, Γ3 and Γ2, Γ4 are externally tangent.
We may change the first sentence in the problem to the following:

Let Γ1, Γ2, Γ3, Γ4 be distinct circles such that Γ1, Γ3 are tangent at P , and Γ2, Γ4

are tangent at the same point P .

The following two solutions are valid for the changed version.

Solution 3.

Γ1

Γ2

Γ3

Γ4

O1

O2

O3

O4

A

BC

D

P

Let Oi and ri be the centre and the signed radius of Γi, i = 1, 2, 3, 4. We may assume
that r1 > 0. If O1, O3 are in the same side of the common tangent, then we have r3 > 0;
otherwise we have r3 < 0.

Put θ = ∠O1PO2. We have ∠OiPOi+1 = θ or 180◦ − θ, which shows that

sin∠OiPOi+1 = sin θ. (1)
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Since PB ⊥ O2O3 and △PO2O3 ≡ △BO2O3, we have

1

2
· 1
2
·O2O3 · PB = area(△PO2O3) =

1

2
· PO2 · PO3 · sin θ =

1

2
|r2||r3| sin θ.

It follows that

PB =
2|r2||r3| sin θ

O2O3

. (2)

Because the triangle O2AB is isosceles, we have

AB = 2|r2| sin
∠AO2B

2
. (3)

Since ∠O1O2P = ∠O1O2A and ∠O3O2P = ∠O3O2B, we have

sin(∠AO2B/2) = sin∠O1O2O3.

Therefore, keeping in mind that

1

2
·O1O2 ·O2O3 · sin∠O1O2O3 = area(△O1O2O3) =

1

2
·O1O3 · PO2 · sin θ

=
1

2
|r1 − r3||r2| sin θ,

we have

AB = 2|r2|
|r1 − r3||r2| sin θ
O1O2 ·O2O3

by (3).

Likewise, by (1), (2), (4), we can obtain the lengths of PD, BC, CD, DA and compute
as follows:

AB ·BC

CD ·DA
=
2|r1 − r3|r2

2 sin θ

O1O2 ·O2O3

· 2|r2 − r4|r2
3 sin θ

O2O3 ·O3O4

· O3O4 ·O4O1

2|r1 − r3|r2
4 sin θ

· O4O1 ·O1O2

2|r2 − r4|r2
1 sin θ

=

(
2|r2||r3| sin θ

O2O3

)2(
O4O1

2|r4||r1| sin θ

)2

=
PB2

PD2
.

Solution 4. Let l1 be the common tangent of the circles Γ1 and Γ3 and let l2 be that of Γ2

and Γ4. Set the coordinate system as in the following figure.
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C

Γ4

x

y

D

Γ3

Γ2

B

A

Γ1

θ

θ

We may assume that

Γ1 : x
2 + y2 + 2ax sin θ − 2ay cos θ = 0, Γ2 : x

2 + y2 + 2bx sin θ + 2by cos θ = 0,

Γ3 : x
2 + y2 − 2cx sin θ + 2cy cos θ = 0, Γ4 : x

2 + y2 − 2dx sin θ − 2dy cos θ = 0.

Simple computation shows that

A

(

−4ab(a+ b) sin θ cos2 θ

a2 + b2 + 2ab cos 2θ
,−4ab(a− b) sin2 θ cos θ

a2 + b2 + 2ab cos 2θ

)

,

B

(
4bc(b− c) sin θ cos2 θ

b2 + c2 − 2bc cos 2θ
,−4bc(b+ c) sin2 θ cos θ

b2 + c2 − 2bc cos 2θ

)

,

C

(
4cd(c+ d) sin θ cos2 θ

c2 + d2 + 2cd cos 2θ
,
4cd(c− d) sin2 θ cos θ

c2 + d2 + 2cd cos 2θ

)

,

D

(

−4da(d− a) sin θ cos2 θ

d2 + a2 − 2da cos 2θ
,
4da(d+ a) sin2 θ cos θ

d2 + a2 − 2da cos 2θ

)

.
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Slightly long computation shows that

AB =
4b2|a+ c| sin θ cos θ

√

(a2 + b2 + 2ab cos 2θ)(b2 + c2 − 2bc cos 2θ)
,

BC =
4c2|b+ d| sin θ cos θ

√

(b2 + c2 − 2bc cos 2θ)(c2 + d2 + 2cd cos 2θ)
,

CD =
4d2|c+ a| sin θ cos θ

√

(c2 + d2 + 2cd cos 2θ)(d2 + a2 − 2da cos 2θ)
,

DA =
4a2|d+ b| sin θ cos θ

√

(d2 + a2 − 2da cos 2θ)(a2 + b2 + 2ab cos 2θ)
,

which implies
AB ·BC

AD ·DC
=

b2c2(d2 + a2 − 2da cos 2θ)

d2a2(b2 + c2 − 2bc cos 2θ)
.

On the other hand, we have

MB =
4|b||c| sin θ cos θ√
b2 + c2 − 2bc cos 2θ

and MD =
4|d||a| sin θ cos θ√
d2 + a2 − 2da cos 2θ

,

which implies
MB2

MD2
=

b2c2(d2 + a2 − 2da cos 2θ)

d2a2(b2 + c2 − 2bc cos 2θ)
.

Hence we obtain
AB ·BC

AD ·DC
=

MB2

MD2
.
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G5. Let ABC be an isosceles triangle with AC = BC, whose incentre is I. Let P be
a point on the circumcircle of the triangle AIB lying inside the triangle ABC. The lines
through P parallel to CA and CB meet AB at D and E, respectively. The line through P
parallel to AB meets CA and CB at F and G, respectively. Prove that the lines DF and
EG intersect on the circumcircle of the triangle ABC.

Solution 1.

C

G

B

Q

D

I

A

F

E

P

The corresponding sides of the triangles PDE and CFG are parallel. Therefore, if DF
and EG are not parallel, then they are homothetic, and so DF , EG, CP are concurrent at
the centre of the homothety. This observation leads to the following claim:

Claim. Suppose that CP meets again the circumcircle of the triangle ABC at Q. Then
Q is the intersection of DF and EG.

Proof. Since ∠AQP = ∠ABC = ∠BAC = ∠PFC, it follows that the quadrilateral
AQPF is cyclic, and so ∠FQP = ∠PAF . Since ∠IBA = ∠CBA/2 = ∠CAB/2 = ∠IAC,
the circumcircle of the triangle AIB is tangent to CA at A, which implies that ∠PAF =
∠DBP . Since ∠QBD = ∠QCA = ∠QPD, it follows that the quadrilateral DQBP is
cyclic, and so ∠DBP = ∠DQP . Thus ∠FQP = ∠PAF = ∠DBP = ∠DQP , which
implies that F , D, Q are collinear. Analogously we obtain that G, E, Q are collinear.

Hence the lines DF , EG, CP meet the circumcircle of the triangle ABC at the same
point.
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Solution 2.

C(0, c)

G

B(1, 0)D

I(0, α)

A(−1, 0)

F

E

P

y

x

O1(0, β)

Set the coordinate system so that A(−1, 0), B(1, 0), C(0, c). Suppose that I(0, α).
Since

area(△ABC) =
1

2
(AB +BC + CA)α,

we obtain
α =

c

1 +
√
1 + c2

.

Suppose that O1(0, β) is the centre of the circumcircle Γ1 of the triangle AIB. Since

(β − α)2 = O1I
2 = O1A

2 = 1 + β2,

we have β = −1/c and so Γ1 : x
2 + (y + 1/c)2 = 1 + (1/c)2.

Let P (p, q). Since D(p − q/c, 0), E(p + q/c, 0), F (q/c − 1, q), G(−q/c + 1, q), it follows
that the equations of the lines DF and EG are

y =
q

2q
c
− p− 1

(

x−
(

p− q

c

))

and y =
q

−2q
c
− p+ 1

(

x−
(

p+
q

c

))

,

respectively. Therefore the intersection Q of these lines is
(
(q − c)p/(2q − c), q2/(2q − c)

)
.

Let O2(0, γ) be the circumcentre of the triangle ABC. Then γ = (c2 − 1)/2c since
1 + γ2 = O2A

2 = O2C
2 = (γ − c)2.

Note that p2 + (q + 1/c)2 = 1 + (1/c)2 since P (p, q) is on the circle Γ1. It follows that

O2Q
2 =

(
q − c

2q − c

)2

p2 +

(
q2

2q − c
− c2 − 1

2c

)2

=

(
c2 + 1

2c

)2

= O2C
2,

which shows that Q is on the circumcircle of the triangle ABC.

Comment. The point P can be any point on the circumcircle of the triangle AIB other
than A and B; that is, P need not lie inside the triangle ABC.
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G6. Each pair of opposite sides of a convex hexagon has the following property:

the distance between their midpoints is equal to
√
3/2 times the sum of their

lengths.

Prove that all the angles of the hexagon are equal.

Solution 1. We first prove the following lemma:

Lemma. Consider a triangle PQR with ∠QPR ≥ 60◦. Let L be the midpoint of QR.
Then PL ≤

√
3QR/2, with equality if and only if the triangle PQR is equilateral.

Proof.

Q

P

S

RL

Let S be the point such that the triangle QRS is equilateral, where the points P and
S lie in the same half-plane bounded by the line QR. Then the point P lies inside the
circumcircle of the triangle QRS, which lies inside the circle with centre L and radius√
3QR/2. This completes the proof of the lemma.

B M
A

F
P

END

C
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The main diagonals of a convex hexagon form a triangle though the triangle can be
degenerated. Thus we may choose two of these three diagonals that form an angle greater
than or equal to 60◦. Without loss of generality, we may assume that the diagonals AD and
BE of the given hexagon ABCDEF satisfy ∠APB ≥ 60◦, where P is the intersection of
these diagonals. Then, using the lemma, we obtain

MN =

√
3

2
(AB +DE) ≥ PM + PN ≥MN,

where M and N are the midpoints of AB and DE, respectively. Thus it follows from the
lemma that the triangles ABP and DEP are equilateral.

Therefore the diagonal CF forms an angle greater than or equal to 60◦ with one of the
diagonals AD and BE. Without loss of generality, we may assume that ∠AQF ≥ 60◦, where
Q is the intersection of AD and CF . Arguing in the same way as above, we infer that the
triangles AQF and CQD are equilateral. This implies that ∠BRC = 60◦, where R is the
intersection of BE and CF . Using the same argument as above for the third time, we obtain
that the triangles BCR and EFR are equilateral. This completes the solution.

Solution 2. Let ABCDEF be the given hexagon and let a =
−→
AB, b =

−−→
BC, . . . , f =

−→
FA.

B

C

D E

F

A
M

N

f

e

d

c

b

a

Let M and N be the midpoints of the sides AB and DE, respectively. We have

−−→
MN =

1

2
a+ b+ c+

1

2
d and

−−→
MN = −1

2
a− f − e− 1

2
d.

Thus we obtain −−→
MN =

1

2
(b+ c− e− f). (1)

From the given property, we have

−−→
MN =

√
3

2

(
|a|+ |d|

)
≥
√
3

2
|a− d|. (2)

Set x = a− d, y = c− f , z = e− b. From (1) and (2), we obtain

|y − z| ≥
√
3 |x|. (3)

Similarly we see that

|z − x| ≥
√
3 |y|, (4)

|x− y| ≥
√
3 |z|. (5)
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Note that

(3) ⇐⇒ |y|2 − 2y · z + |z|2 ≥ 3|x|2,
(4) ⇐⇒ |z|2 − 2z · x+ |x|2 ≥ 3|y|2,
(5) ⇐⇒ |x|2 − 2x · y + |y|2 ≥ 3|z|2.

By adding up the last three inequalities, we obtain

−|x|2 − |y|2 − |z|2 − 2y · z − 2z · x− 2x · y ≥ 0,

or −|x+ y + z|2 ≥ 0. Thus x+ y + z = 0 and the equalities hold in all inequalities above.
Hence we conclude that

x+ y + z = 0,

|y − z| =
√
3 |x|, a ‖ d ‖ x,

|z − x| =
√
3 |y|, c ‖ f ‖ y,

|x− y| =
√
3 |z|, e ‖ b ‖ z.

Suppose that PQR is the triangle such that
−→
PQ = x,

−→
QR = y,

−→
RP = z. We may

assume ∠QPR ≥ 60◦, without loss of generality. Let L be the midpoint of QR, then
PL = |z − x|/2 =

√
3 |y|/2 =

√
3QR/2. It follows from the lemma in Solution 1 that the

triangle PQR is equilateral. Thus we have ∠ABC = ∠BCD = · · · = ∠FAB = 120◦.

Comment. We have obtained the complete characterisation of the hexagons satisfying the
given property. They are all obtained from an equilateral triangle by cutting its ‘corners’ at
the same height.
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G7. Let ABC be a triangle with semiperimeter s and inradius r. The semicircles with
diameters BC, CA, AB are drawn on the outside of the triangle ABC. The circle tangent
to all three semicircles has radius t. Prove that

s

2
< t ≤ s

2
+

(

1−
√
3

2

)

r.

Solution 1.

A

B C

d′

D

E′

F ′

F
E

f

f ′

e

d

D′

F ′′
E′′

D′′
O

e′

Let O be the centre of the circle and let D, E, F be the midpoints of BC, CA, AB,
respectively. Denote by D′, E ′, F ′ the points at which the circle is tangent to the semicircles.
Let d′, e′, f ′ be the radii of the semicircles. Then all of DD′, EE ′, FF ′ pass through O, and
s = d′ + e′ + f ′.

Put

d =
s

2
− d′ =

−d′ + e′ + f ′

2
, e =

s

2
− e′ =

d′ − e′ + f ′

2
, f =

s

2
− f ′ =

d′ + e′ − f ′

2
.

Note that d + e + f = s/2. Construct smaller semicircles inside the triangle ABC with
radii d, e, f and centres D, E, F . Then the smaller semicircles touch each other, since
d + e = f ′ = DE, e + f = d′ = EF , f + d = e′ = FD. In fact, the points of tangency are
the points where the incircle of the triangle DEF touches its sides.

Suppose that the smaller semicircles cut DD′, EE ′, FF ′ at D′′, E ′′, F ′′, respectively.
Since these semicircles do not overlap, the point O is outside the semicircles. Therefore
D′O > D′D′′, and so t > s/2. Put g = t− s/2.

Clearly, OD′′ = OE ′′ = OF ′′ = g. Therefore the circle with centre O and radius g
touches all of the three mutually tangent semicircles.

Claim. We have
1

d2
+

1

e2
+

1

f 2
+

1

g2
=
1

2

(
1

d
+
1

e
+
1

f
+
1

g

)2

.
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Proof. Consider a triangle PQR and let p = QR, q = RP , r = PQ. Then

cos∠QPR =
−p2 + q2 + r2

2qr

and

sin∠QPR =

√

(p+ q + r)(−p+ q + r)(p− q + r)(p+ q − r)

2qr
.

Since

cos∠EDF = cos(∠ODE + ∠ODF ) = cos∠ODE cos∠ODF − sin∠ODE sin∠ODF,

we have

d2 + de+ df − ef

(d+ e)(d+ f)
=
(d2 + de+ dg − eg)(d2 + df + dg − fg)

(d+ g)2(d+ e)(d+ f)

− 4dg
√

(d+ e+ g)(d+ f + g)ef

(d+ g)2(d+ e)(d+ f)
,

which simplifies to

(d+ g)

(
1

d
+
1

e
+
1

f
+
1

g

)

− 2

(
d

g
+ 1 +

g

d

)

= −2
√

(d+ e+ g)(d+ f + g)

ef
.

Squaring and simplifying, we obtain

(
1

d
+
1

e
+
1

f
+
1

g

)2

= 4

(
1

de
+

1

df
+

1

dg
+

1

ef
+

1

eg
+

1

fg

)

= 2

((
1

d
+
1

e
+
1

f
+
1

g

)2

−
(
1

d2
+

1

e2
+

1

f 2
+

1

g2

))

,

from which the conclusion follows.

Solving for the smaller value of g, i.e., the larger value of 1/g, we obtain

1

g
=
1

d
+
1

e
+
1

f
+

√

2

(
1

d
+
1

e
+
1

f

)2

− 2

(
1

d2
+

1

e2
+

1

f 2

)

=
1

d
+
1

e
+
1

f
+ 2

√

d+ e+ f

def
.

Comparing the formulas area(△DEF ) = area(△ABC)/4 = rs/4 and area(△DEF ) =
√

(d+ e+ f)def , we have

r

2
=
2

s

√

(d+ e+ f)def =

√

def

d+ e+ f
.

All we have to prove is that

r

2g
≥ 1

2−
√
3
= 2 +

√
3.
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Since

r

2g
=

√

def

d+ e+ f

(

1

d
+
1

e
+
1

f
+ 2

√

d+ e+ f

def

)

=
x+ y + z√
xy + yz + zx

+ 2,

where x = 1/d, y = 1/e, z = 1/f , it suffices to prove that

(x+ y + z)2

xy + yz + zx
≥ 3.

This inequality is true because

(x+ y + z)2 − 3(xy + yz + zx) =
1

2

(
(x− y)2 + (y − z)2 + (z − x)2

)
≥ 0.

Solution 2. We prove that t > s/2 in the same way as in Solution 1. Put g = t− s/2.

e
f

d

D

ΓdΓe

Γf

FE
(−e, 0) (f, 0)

gr/2

Γr/2

Γg

Now set the coordinate system so that E(−e, 0), F (f, 0), and the y-coordinate of D is
positive. Let Γd, Γe, Γf , Γg be the circles with radii d, e, f , g and centres D, E, F , O,
respectively. Let Γr/2 be the incircle of the triangle DEF . Note that the radius of Γr/2 is
r/2.

Now consider the inversion with respect to the circle with radius 1 and centre (0, 0).
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2β−2α

1/r

Γ′d

Γ′g

Γ′fΓ′e

Γ′r/2

Let Γ′d, Γ
′
e, Γ

′
f , Γ

′
g, Γ

′
r/2 be the images of Γd, Γe, Γf , Γg, Γr/2, respectively. Set α = 1/4e,

β = 1/4f and R = α + β. The equations of the lines Γ′e, Γ
′
f and Γ

′
r/2 are x = −2α, x = 2β

and y = 1/r, respectively. Both of the radii of the circles Γ′d and Γ
′
g are R, and their centres

are (−α+ β, 1/r) and (−α+ β, 1/r + 2R), respectively.

Let D be the distance between (0, 0) and the centre of Γ′g. Then we have

2g =
1

D −R
− 1

D +R
=

2R

D2 −R2
,

which shows g = R/(D2 −R2).

What we have to show is g ≤
(
1 −

√
3/2

)
r, that is

(
4 + 2

√
3
)
g ≤ r. This is verified by

the following computation:

r −
(
4 + 2

√
3
)
g = r −

(
4 + 2

√
3
) R

D2 −R2
=

r

D2 −R2

(

(D2 −R2)−
(
4 + 2

√
3
)1

r
R

)

=
r

D2 −R2

((
1

r
+ 2R

)2

+ (α− β)2 −R2 −
(
4 + 2

√
3
)1

r
R

)

=
r

D2 −R2

(

3

(

R− 1√
3 r

)2

+ (α− β)2

)

≥ 0.
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Number Theory

N1. Let m be a fixed integer greater than 1. The sequence x0, x1, x2, . . . is defined as
follows:

xi =

{

2i, if 0 ≤ i ≤ m− 1;
∑m

j=1 xi−j, if i ≥ m.

Find the greatest k for which the sequence contains k consecutive terms divisible by m.

Solution. Let ri be the remainder of xi mod m. Then there are at most mm types of m-
consecutive blocks in the sequence (ri). So, by the pigeonhole principle, some type reappears.
Since the definition formula works forward and backward, the sequence (ri) is purely periodic.

Now the definition formula backward xi = xi+m −
∑m−1

j=1 xi+j applied to the block
(r0, . . . , rm−1) produces the m-consecutive block 0, . . . , 0

︸ ︷︷ ︸

m−1

, 1. Together with the pure peri-

odicity, we see that max k ≥ m− 1.

On the other hand, if there are m-consecutive zeroes in (ri), then the definition formula
and the pure periodicity force ri = 0 for any i ≥ 0, a contradiction. Thus max k = m− 1.
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N2. Each positive integer a undergoes the following procedure in order to obtain the num-
ber d = d(a):

(i) move the last digit of a to the first position to obtain the number b;

(ii) square b to obtain the number c;

(iii) move the first digit of c to the end to obtain the number d.

(All the numbers in the problem are considered to be represented in base 10.) For example,
for a = 2003, we get b = 3200, c = 10240000, and d = 02400001 = 2400001 = d(2003).

Find all numbers a for which d(a) = a2.

Solution. Let a be a positive integer for which the procedure yields d = d(a) = a2. Further
assume that a has n+ 1 digits, n ≥ 0.

Let s be the last digit of a and f the first digit of c. Since (∗ · · · ∗ s)2 = a2 = d = ∗ · · · ∗ f
and (s ∗ · · · ∗)2 = b2 = c = f ∗ · · · ∗, where the stars represent digits that are unimportant at
the moment, f is both the last digit of the square of a number that ends in s and the first
digit of the square of a number that starts in s.

The square a2 = d must have either 2n+1 or 2n+2 digits. If s = 0, then n 6= 0, b has n
digits, its square c has at most 2n digits, and so does d, a contradiction. Thus the last digit
of a is not 0.

Consider now, for example, the case s = 4. Then f must be 6, but this is impossible,
since the squares of numbers that start in 4 can only start in 1 or 2, which is easily seen
from

160 · · · 0 = (40 · · · 0)2 ≤ (4 ∗ · · · ∗)2 < (50 · · · 0)2 = 250 · · · 0.
Thus s cannot be 4.

The following table gives all possibilities:

s 1 2 3 4 5 6 7 8 9

f = last digit of (· · · s)2 1 4 9 6 5 6 9 4 1
f = first digit of (s · · · )2 1, 2, 3 4, 5, 6, 7, 8 9, 1 1, 2 2, 3 3, 4 4, 5, 6 6, 7, 8 8, 9

Thus s = 1, s = 2, or s = 3 and in each case f = s2. When s is 1 or 2, the square c = b2 of
the (n + 1)-digit number b which starts in s has 2n + 1 digits. Moreover, when s = 3, the
square c = b2 either has 2n + 1 digits and starts in 9 or has 2n + 2 digits and starts in 1.
However the latter is impossible since f = s2 = 9. Thus c must have 2n+ 1 digits.

Let a = 10x+ s, where x is an n-digit number (in case x = 0 we set n = 0). Then

b = 10ns+ x,

c = 102ns2 + 2 · 10nsx+ x2,

d = 10(c− 10m−1f) + f = 102n+1s2 + 20 · 10nsx+ 10x2 − 10mf + f,

where m is the number of digits of c. However, we already know that m must be 2n+1 and
f = s2, so

d = 20 · 10nsx+ 10x2 + s2
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and the equality a2 = d yields

x = 2s · 10
n − 1

9
,

i.e.,
a = 6 · · · 6

︸ ︷︷ ︸

n

3 or a = 4 · · · 4
︸ ︷︷ ︸

n

2 or a = 2 · · · 2
︸ ︷︷ ︸

n

1,

for n ≥ 0. The first two possibilities must be rejected for n ≥ 1, since a2 = d would have
2n+ 2 digits, which means that c would have to have at least 2n+ 2 digits, but we already
know that c must have 2n+ 1 digits. Thus the only remaining possibilities are

a = 3 or a = 2 or a = 2 · · · 2
︸ ︷︷ ︸

n

1,

for n ≥ 0. It is easily seen that they all satisfy the requirements of the problem.
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N3. Determine all pairs of positive integers (a, b) such that

a2

2ab2 − b3 + 1

is a positive integer.

Solution. Let (a, b) be a pair of positive integers satisfying the condition. Because k =
a2/(2ab2− b3+1) > 0, we have 2ab2− b3+1 > 0, a > b/2− 1/2b2, and hence a ≥ b/2. Using
this, we infer from k ≥ 1, or a2 ≥ b2(2a− b) + 1, that a2 > b2(2a− b) ≥ 0. Hence

a > b or 2a = b. (∗)

Now consider the two solutions a1, a2 to the equation

a2 − 2kb2a+ k(b3 − 1) = 0 (♯)

for fixed positive integers k and b, and assume that one of them is an integer. Then the
other is also an integer because a1 + a2 = 2kb2. We may assume that a1 ≥ a2, and we have
a1 ≥ kb2 > 0. Furthermore, since a1a2 = k(b3 − 1), we get

0 ≤ a2 =
k(b3 − 1)

a1

≤ k(b3 − 1)

kb2
< b.

Together with (∗), we conclude that a2 = 0 or a2 = b/2 (in the latter case b must be even).

If a2 = 0, then b3 − 1 = 0, and hence a1 = 2k, b = 1.

If a2 = b/2, then k = b2/4 and a1 = b4/2− b/2.

Therefore the only possibilities are

(a, b) = (2l, 1) or (l, 2l) or (8l4 − l, 2l)

for some positive integer l. All of these pairs satisfy the given condition.

Comment 1. An alternative way to see (∗) is as follows: Fix a ≥ 1 and consider the
function fa(b) = 2ab2−b3+1. Then fa is increasing on [0, 4a/3] and decreasing on [4a/3,∞).
We have

fa(a) = a3 + 1 > a2,

fa(2a− 1) = 4a2 − 4a+ 2 > a2,

fa(2a+ 1) = −4a2 − 4a < 0.

Hence if b ≥ a and a2/fa(b) is a positive integer, then b = 2a.

Indeed, if a ≤ b ≤ 4a/3, then fa(b) ≥ fa(a) > a2, and so a2/fa(b) is not an integer, a
contradiction, and if b > 4a/3, then

(i) if b ≥ 2a+ 1, then fa(b) ≤ fa(2a+ 1) < 0, a contradiction;

(ii) if b ≤ 2a − 1, then fa(b) ≥ fa(2a − 1) > a2, and so a2/fa(b) is not an integer, a
contradiction.
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Comment 2. There are several alternative solutions to this problem. Here we sketch three
of them.

1. The discriminant D of the equation (♯) is the square of some integer d ≥ 0: D =
(2b2k − b)2 + 4k − b2 = d2. If e = 2b2k − b = d, we have 4k = b2 and a = 2b2k − b/2, b/2.
Otherwise, the clear estimation |d2− e2| ≥ 2e− 1 for d 6= e implies |4k− b2| ≥ 4b2k− 2b− 1.
If 4k − b2 > 0, this implies b = 1. The other case yields no solutions.

2. Assume that b 6= 1 and let s = gcd(2a, b3−1), 2a = su, b3−1 = st′, and 2ab2−b3+1 = st.
Then t + t′ = ub2 and gcd(u, t) = 1. Together with st | a2, we have t | s. Let s = rt. Then
the problem reduces to the following lemma:

Lemma. Let b, r, t, t′, u be positive integers satisfying b3 − 1 = rtt′ and t + t′ = ub2.
Then r = 1. Furthermore, either one of t or t′ or u is 1.

The lemma is proved as follows. We have b3 − 1 = rt(ub2 − t) = rt′(ub2 − t′). Since
rt2 ≡ rt′2 ≡ 1 (mod b2), if rt2 6= 1 and rt′2 6= 1, then t, t′ > b/

√
r. It is easy to see that

r
b√
r

(

ub2 − b√
r

)

≥ b3 − 1,

unless r = u = 1.

3. With the same notation as in the previous solution, since rt2 | (b3 − 1)2, it suffices to
prove the following lemma:

Lemma. Let b ≥ 2. If a positive integer x ≡ 1 (mod b2) divides (b3 − 1)2, then x = 1 or
x = (b3 − 1)2 or (b, x) = (4, 49) or (4, 81).

To prove this lemma, let p, q be positive integers with p > q > 0 satisfying (b3 − 1)2 =
(pb2 + 1)(qb2 + 1). Then

b4 = 2b+ p+ q + pqb2. (1)

A natural observation leads us to multiply (1) by qb2 − 1. We get

(
q(pq − b2) + 1

)
b4 = p− (q + 2b)(qb2 − 1).

Together with the simple estimation

−3 <
p− (q + 2b)(qb2 − 1)

b4
< 1,

the conclusion of the lemma follows.

Comment 3. The problem was originally proposed in the following form:

Let a, b be relatively prime positive integers. Suppose that a2/(2ab2 − b3 + 1)
is a positive integer greater than 1. Prove that b = 1.
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N4. Let b be an integer greater than 5. For each positive integer n, consider the number

xn = 11 · · · 1
︸ ︷︷ ︸

n−1

22 · · · 2
︸ ︷︷ ︸

n

5,

written in base b.

Prove that the following condition holds if and only if b = 10:

there exists a positive integer M such that for any integer n greater than M , the
number xn is a perfect square.

Solution. For b = 6, 7, 8, 9, the number 5 is congruent to no square numbers modulo b, and

hence xn is not a square. For b = 10, we have xn =
(
(10n + 5)/3

)2
for all n. By algebraic

calculation, it is easy to see that xn = (b2n + bn+1 + 3b− 5)/(b− 1).

Consider now the case b ≥ 11 and put yn = (b − 1)xn. Assume that the condition in
the problem is satisfied. Then it follows that ynyn+1 is a perfect square for n > M . Since
b2n + bn+1 + 3b− 5 < (bn + b/2)2, we infer

ynyn+1 <

(

bn +
b

2

)2(

bn+1 +
b

2

)2

=

(

b2n+1 +
bn+1(b+ 1)

2
+

b2

4

)2

. (1)

On the other hand, we can prove by computation that

ynyn+1 >

(

b2n+1 +
bn+1(b+ 1)

2
− b3

)2

. (2)

From (1) and (2), we conclude that for all integers n > M , there is an integer an such
that

ynyn+1 =

(

b2n+1 +
bn+1(b+ 1)

2
+ an

)2

and − b3 < an <
b2

4
. (3)

It follows that bn |
(
a2

n − (3b − 5)2
)
, and thus an = ±(3b − 5) for all sufficiently large n.

Substituting in (3), we obtain an = 3b− 5 and

8(3b− 5)b+ b2(b+ 1)2 = 4b3 + 4(3b− 5)(b2 + 1). (4)

The left hand side of the equation (4) is divisible by b. The other side is a polynomial in
b with integral coefficients and its constant term is −20. Hence b must divide 20. Since
b ≥ 11, we conclude that b = 20, but then xn ≡ 5 (mod 8) and hence xn is not a square.

Comment. Here is a shorter solution using a limit argument:

Assume that xn is a square for all n > M , where M is a positive integer.

For n > M , take yn =
√
xn ∈ N. Clearly,

lim
n→∞

b2n

b−1

xn

= 1.

Hence

lim
n→∞

bn
√

b−1

yn

= 1.
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On the other hand,

(byn + yn+1)(byn − yn+1) = b2xn − xn+1 = bn+2 + 3b2 − 2b− 5. (∗)

These equations imply

lim
n→∞

(byn − yn+1) =
b
√
b− 1

2
.

As byn − yn+1 is an integer, there exists N > M such that byn − yn+1 = b
√
b− 1/2 for

any n > N . This means that b− 1 is a perfect square.

If b is odd, then
√
b− 1/2 is an integer and so b divides b

√
b− 1/2. Hence using (∗), we

obtain b | 5. This is a contradiction.
If b is even, then b/2 divides 5. Hence b = 10.

In the case b = 10, we have xn =
(
(10n + 5)/3

)2
for n ≥ 1.
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N5. An integer n is said to be good if |n| is not the square of an integer. Determine all
integers m with the following property:

m can be represented, in infinitely many ways, as a sum of three distinct good
integers whose product is the square of an odd integer.

Solution. Assume that m is expressed as m = u+v+w and uvw is an odd perfect square.
Then u, v, w are odd and because uvw ≡ 1 (mod 4), exactly two or none of them are
congruent to 3 modulo 4. In both cases, we have m = u+ v + w ≡ 3 (mod 4).

Conversely, we prove that 4k + 3 has the required property. To prove this, we look for
representations of the form

4k + 3 = xy + yz + zx.

In any such representations, the product of the three summands is a perfect square. Setting
x = 1 + 2l and y = 1− 2l, we have z = 2l2 + 2k + 1 from above. Then

xy = 1− 4l2 = f(l),

yz = −4l3 + 2l2 − (4k + 2)l + 2k + 1 = g(l),

zx = 4l3 + 2l2 + (4k + 2)l + 2k + 1 = h(l).

The numbers f(l), g(l), h(l) are odd for each integer l and their product is a perfect square,
as noted above. They are distinct, except for finitely many l. It remains to note that |g(l)|
and |h(l)| are not perfect squares for infinitely many l (note that |f(l)| is not a perfect square,
unless l = 0).

Choose distinct prime numbers p, q such that p, q > 4k + 3 and pick l such that

1 + 2l ≡ 0 (mod p), 1 + 2l 6≡ 0 (mod p2),

1− 2l ≡ 0 (mod q), 1− 2l 6≡ 0 (mod q2).

We can choose such l by the Chinese remainder theorem. Then 2l2 + 2k + 1 is not divisible
by p, because p > 4k + 3. Hence |h(l)| is not a perfect square. Similarly, |g(l)| is not a
perfect square.
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N6. Let p be a prime number. Prove that there exists a prime number q such that for
every integer n, the number np − p is not divisible by q.

Solution. Since (pp− 1)/(p− 1) = 1+ p+ p2 + · · ·+ pp−1 ≡ p+1 (mod p2), we can get at
least one prime divisor of (pp − 1)/(p − 1) which is not congruent to 1 modulo p2. Denote
such a prime divisor by q. This q is what we wanted. The proof is as follows. Assume that
there exists an integer n such that np ≡ p (mod q). Then we have np2 ≡ pp ≡ 1 (mod q)
by the definition of q. On the other hand, from Fermat’s little theorem, nq−1 ≡ 1 (mod q),
because q is a prime. Since p2 ∤ q− 1, we have (p2, q− 1) | p, which leads to np ≡ 1 (mod q).
Hence we have p ≡ 1 (mod q). However, this implies 1 + p+ · · ·+ pp−1 ≡ p (mod q). From
the definition of q, this leads to p ≡ 0 (mod q), a contradiction.

Comment 1. First, students will come up, perhaps, with the idea that q has to be of the
form pk + 1. Then,

∃n np ≡ p (mod q) ⇐⇒ pk ≡ 1 (mod q),

i.e.,
∀n np 6≡ p (mod q) ⇐⇒ pk 6≡ 1 (mod q).

So, we have to find such q. These observations will take you quite naturally to the idea
of taking a prime divisor of pp − 1. Therefore the idea of the solution is not so tricky or
technical.

Comment 2. The prime q satisfies the required condition if and only if q remains a prime
in k = Q( p

√
p). By applying Chebotarev’s density theorem to the Galois closure of k, we

see that the set of such q has the density 1/p. In particular, there are infinitely many q
satisfying the required condition. This gives an alternative solution to the problem.
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N7. The sequence a0, a1, a2, . . . is defined as follows:

a0 = 2, ak+1 = 2a2
k − 1 for k ≥ 0.

Prove that if an odd prime p divides an, then 2
n+3 divides p2 − 1.

Solution. By induction, we show that

an =

(
2 +

√
3
)2n

+
(
2−

√
3
)2n

2
.

Case 1: x2 ≡ 3 (mod p) has an integer solution

Let m be an integer such that m2 ≡ 3 (mod p). Then (2+m)2
n

+(2−m)2
n ≡ 0 (mod p).

Therefore (2+m)(2−m) ≡ 1 (mod p) shows that (2+m)2
n+1 ≡ −1 (mod p) and that 2+m

has the order 2n+2 modulo p. This implies 2n+2 | (p− 1) and so 2n+3 | (p2 − 1).

Case 2: otherwise

Similarly, we see that there exist integers a, b satisfying
(
2+

√
3
)2n+1

= −1+ pa+ pb
√
3.

Furthermore, since
((
1 +

√
3
)
an−1

)2
= (an + 1)(2 +

√
3), there exist integers a′, b′ satisfying

((
1 +

√
3
)
an−1

)2n+2

= −1 + pa′ + pb′
√
3.

Let us consider the set S = {i+j
√
3 | 0 ≤ i, j ≤ p−1, (i, j) 6= (0, 0)}. Let I =

{
a+b

√
3
∣
∣

a ≡ b ≡ 0 (mod p)
}
. We claim that for each i + j

√
3 ∈ S, there exists an i′ + j′

√
3 ∈ S

satisfying
(
i+ j

√
3
)(

i′+ j′
√
3
)
− 1 ∈ I. In fact, since i2− 3j2 6≡ 0 (mod p) (otherwise 3 is a

square mod p), we can take an integer k satisfying k(i2 − 3j2)− 1 ∈ I. Then i′ + j′
√
3 with

i′ + j′
√
3 − k

(
i − j

√
3
)
∈ I will do. Now the claim together with the previous observation

implies that the minimal r with
((
1 +

√
3
)
an−1

)r − 1 ∈ I is equal to 2n+3. The claim also

implies that a map f : S −→ S satisfying
(
i+ j

√
3
)(
1 +

√
3
)
an−1 − f

(
i+ j

√
3
)
∈ I for any

i+ j
√
3 ∈ S exists and is bijective. Thus

∏

x∈S x =
∏

x∈S f(x), so

(
∏

x∈S

x

)
(((

1 +
√
3
)
an−1

)p2−1 − 1
)

∈ I.

Again, by the claim, we have
((
1 +

√
3
)
an−1

)p2−1 − 1 ∈ I. Hence 2n+3 | (p2 − 1).

Comment 1. Not only Case 2 but also Case 1 can be treated by using
(
1 +

√
3
)
an−1. In

fact, we need not divide into cases: in any case, the element
(
1 +

√
3
)
an−1 =

(
1 +

√
3
)
/
√
2

of the multiplicative group F×p2 of the finite field Fp2 having p2 elements has the order 2n+3,

which suffices (in Case 1, the number
(
1+

√
3
)
an−1 even belongs to the subgroup F×p of F×p2 ,

so 2n+3 | (p− 1)).

Comment 2. The numbers ak are the numerators of the approximation to
√
3 obtained

by using the Newton method with f(x) = x2 − 3, x0 = 2. More precisely,

xk+1 =
xk +

3
xk

2
, xk =

ak

dk

,
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where

dk =

(
2 +

√
3
)2k

−
(
2−

√
3
)2k

2
√
3

.

Comment 3. Define fn(x) inductively by

f0(x) = x, fk+1(x) = fk(x)
2 − 2 for k ≥ 0.

Then the condition p | an can be read that the mod p reduction of the minimal polynomial
fn of the algebraic integer α = ζ2n+2 + ζ−1

2n+2 over Q has the root 2a0 in Fp, where ζ2n+2 is a
primitive 2n+2-th root of 1. Thus the conclusion (p2 − 1) | 2n+3 of the problem is a part of
the decomposition theorem in the class field theory applied to the abelian extension Q(α),
which asserts that a prime p is completely decomposed in Q(α) (equivalently, fn has a root
mod p) if and only if the class of p in (Z/2n+2Z)× belongs to its subgroup {1,−1}. Thus
the problem illustrates a result in the class field theory.
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N8. Let p be a prime number and let A be a set of positive integers that satisfies the
following conditions:

(i) the set of prime divisors of the elements in A consists of p− 1 elements;

(ii) for any nonempty subset of A, the product of its elements is not a perfect p-th power.

What is the largest possible number of elements in A?

Solution. The answer is (p − 1)2. For simplicity, let r = p − 1. Suppose that the prime
numbers p1, . . . , pr are distinct. Define

Bi =
{
pi, p

p+1
i , p2p+1

i , . . . , p
(r−1)p+1
i

}
,

and let B =
⋃r

i=1 Bi. Then B has r2 elements and clearly satisfies (i) and (ii).

Now suppose that |A| ≥ r2 + 1 and that A satisfies (i) and (ii). We will show that a
(nonempty) product of elements in A is a perfect p-th power. This will complete the proof.

Let p1, . . . , pr be distinct prime numbers for which each t ∈ A can be written as t =
pa1

1 · · · par
r . Take t1, . . . , tr2+1 ∈ A, and for each i, let vi = (ai1, ai2, . . . , air) denote the vector

of exponents of prime divisors of ti. We would like to show that a (nonempty) sum of vi is
the zero vector modulo p.

We shall show that the following system of congruence equations has a nonzero solution:

F1 =
r2+1∑

i=1

ai1x
r
i ≡ 0 (mod p),

F2 =
r2+1∑

i=1

ai2x
r
i ≡ 0 (mod p),

...

Fr =
r2+1∑

i=1

airx
r
i ≡ 0 (mod p).

If (x1, . . . , xr2+1) is a nonzero solution to the above system, then, since x
r
i ≡ 0 or 1 (mod p),

a sum of vectors vi is the zero vector modulo p.

In order to find a nonzero solution to the above system, it is enough to show that the
following congruence equation has a nonzero solution:

F = F r
1 + F r

2 + · · ·+ F r
r ≡ 0 (mod p). (∗)

In fact, because each F r
i is 0 or 1 modulo p, the nonzero solution to this equation (∗) has to

satisfy F r
i ≡ 0 for 1 ≤ i ≤ r.

We will show that the number of the solutions to the equation (∗) is divisible by p. Then
since (0, 0, . . . , 0) is a trivial solution, there exists a nonzero solution to (∗) and we are done.

We claim that ∑

F r(x1, . . . , xr2+1) ≡ 0 (mod p),
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where the sum is over the set of all vectors (x1, . . . , xr2+1) in the vector space Fr2+1
p over the

finite field Fp. By Fermat’s little theorem, this claim evidently implies that the number of
solutions to the equation (∗) is divisible by p.

We prove the claim. In each monomial in F r, there are at most r2 variables, and there-
fore at least one of the variables is absent. Suppose that the monomial is of the form
bxα1

i1
xα2

i2
· · ·xαk

ik
, where 1 ≤ k ≤ r2. Then

∑
bxα1

i1
xα2

i2
· · ·xαk

ik
, where the sum is over the same

set as above, is equal to pr2+1−k
∑

xi1
,...,xik

bxα1

i1
xα2

i2
· · ·xαk

ik
, which is divisible by p. This proves

the claim.

Comment. In general, if we replace p− 1 in (i) with any positive integer d, the answer is
(p− 1)d. In fact, if k > (p− 1)d, then the constant term of the element (1− g1) · · · (1− gk)
of the group algebra Qp(ζp)

[
(Z/pZ)d

]
can be evaluated p-adically so we see that it is not

equal to 1. Here g1, . . . , gk ∈ (Z/pZ)d, Qp is the p-adic number field, and ζp is a primitive
p-th root of 1. This also gives an alternative solution to the problem.
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Algebra

A1. Find all monic integer polynomials p(x) of degree two for which there
exists an integer polynomial q(x) such that p(x)q(x) is a polynomial having all
coefficients ±1.

First solution. We show that the only polynomials p(x) with the required
property are x2 ± x± 1, x2 ± 1 and x2 ± 2x+ 1.

Let f(x) be any polynomial of degree n having all coefficients ±1. Suppose
that z is a root of f(x) with |z| > 1. Then

|z|n = | ± zn−1 ± zn−2 ± · · · ± 1| ≤ |z|n−1 + |z|n−2 + · · · + 1 =
|z|n − 1

|z| − 1
.

This leads to |z|n(|z| − 2) ≤ −1; hence |z| < 2. Thus, all the roots of f(x) = 0
have absolute value less than 2.

Clearly, a polynomial p(x) with the required properties must be of the form
p(x) = x2 + ax± 1 for some integer a. Let x1 and x2 be its roots (not necessarily
distinct). As x1x2 = ±1, we may assume that |x1| ≥ 1 and |x2| ≤ 1. Since x1, x2

are also roots of p(x)q(x), a polynomial with coefficients ±1, we have |x1| < 2,
and so |a| = |x1 + x2| ≤ |x1|+ |x2| < 2 + 1. Thus, a ∈ {±2,±1, 0}.

If a = ±1, then q(x) = 1 leads to a solution.

If a = 0, then q(x) = x+ 1 leads to a solution.

If a = ±2, both polynomials x2 ± 2x − 1 have one root of absolute value
greater than 2, so they cannot satisfy the requirement. Finally, the polynomials
p(x) = x2± 2x+ 1 do have the required property with q(x) = x∓ 1, respectively.

Comment. By a “root” we may mean a “complex root,” and then nothing
requires clarification. But complex numbers need not be mentioned at all, because
p(x) = x2 + ax± 1 has real roots if |a| ≥ 2; and the cases of |a| ≤ 1 must be
handled separately anyway.

The proposer remarks that even if p(x)q(x) is allowed to have zero coefficients,
the conclusion |z| < 2 about its roots holds true. However, extra solutions appear:
x2 and x2 ± x.
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Second solution. Suppose that the polynomials p(x) = a0 + a1x+ x2 and
q(x) = b0 + b1x+ · · ·+ bnx

n are such that p(x)q(x) = c0 + c1x+ · · · + cn+2x
n+2

with all ck = ±1. Then |a0| = |b0| = |bn| = 1 and

a0b1 = c1 − a1b0, a0bk = ck − a1bk−1 − bk−2 for k = 2, . . . , n,

whence

|b1| ≥ |a1| − 1, |bk| ≥ |a1bk−1| − |bk−2| − 1 for k = 2, . . . , n.

Assume |a1| ≥ 3. Then clearly q(x) cannot be a constant, so n ≥ 1, and we get

|b1| ≥ 2, |bk| ≥ 3|bk−1| − |bk−2| − 1 for k = 2, . . . , n.

Recasting the last inequality into

|bk| − |bk−1| ≥ 2|bk−1| − |bk−2| − 1 ≥ 2
(

|bk−1| − |bk−2|
)

− 1

we see that the sequence dk = |bk| − |bk−1| (k = 1, . . . , n) obeys the recursive
estimate dk ≥ 2dk−1 − 1 for k ≥ 2. As d1 = |b1| − 1 ≥ 1, this implies by obvious
induction dk ≥ 1 for k = 1, . . . , n. Equivalently, |bk| ≥ |bk−1|+ 1 for k = 2, . . . , n,
and hence |bn| ≥ |b0|+ n, in contradiction to |b0| = |bn| = 1, n ≥ 1.

It follows that p(x) must be of the form a0 + a1x+ x2 with |a0| = 1, |a1| ≤ 2.
If |a1| ≤ 1 or |a1| = 2 and a0 = 1, then the corresponding q(x) exists; see the eight
examples in the first solution.

We are left with the case |a1| = 2, a0 = −1. Assume q(x) exists. There is no
loss of generality in assuming that b0 = 1 and a1 = 2 (if b0 = −1, replace q(x) by
−q(x); and if a1 = −2, replace q(x) by q(−x)). With b0 = 1, a0 = −1, a1 = 2
the initial recursion formulas become

b1 = 2− c1, bk = 2bk−1 + bk−2 − ck for k = 2, . . . , n.

Therefore b1 ≥ 1, b2 ≥ 2b1 + 1− c2 ≥ 2, and induction shows that bk ≥ 2 for
k = 2, . . . , n, again in contradiction with |bn| = 1. So there are no “good” tri-
nomials p(x) except the eight mentioned above.
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A2. Let R
+ denote the set of positive real numbers. Determine all functions

f : R
+ → R

+ such that

f(x)f(y) = 2f
(

x+ yf(x)
)

for all positive real numbers x and y.

Solution. The answer is the constant function f(x) = 2 which clearly satisfies
the equation.

First, we show that a function f satisfying the equation is nondecreasing.
Indeed, suppose that f(x) < f(z) for some positive real numbers x > z. Set
y = (x− z)(f(z) − f(x)) > 0, so that x+ yf(x) = z + yf(z). The equation now
implies

f(x)f(y) = 2f(x+ yf(x)) = 2f(z + yf(z)) = f(z)f(y),

therefore f(x) = f(z), a contradiction. Thus, f is nondecreasing.

Assume now that f is not strictly increasing, that is, f(x) = f(z) holds for
some positive real numbers x > z. If y belongs to the interval (0, (x − z)/f(x)]
then z < z + yf(z) ≤ x. Since f is nondecreasing, we obtain

f(z) ≤ f(z + yf(z)) ≤ f(x) = f(z),

leading to f(z+yf(z)) = f(x). Thus, f(z)f(y) = 2f(z+yf(z)) = 2f(x) = 2f(z).
Hence, f(y) = 2 for all y in the above interval.

But if f(y0) = 2 for some y0 then

2 · 2 = f(y0)f(y0) = 2f(y0 + y0f(y0)) = 2f(3y0); therefore f(3y0) = 2.

By obvious induction, we get that f(3ky0) = 2 for all positive integers k, and so
f(x) = 2 for all x ∈ R

+.

Assume now that f is a strictly increasing function. We then conclude that the
inequality f(x)f(y) = 2f(x+ yf(x)) > 2f(x) holds for all positive real numbers
x, y. Thus, f(y) > 2 for all y > 0. The equation implies

2f(x+ 1 · f(x)) = f(x)f(1) = f(1)f(x) = 2f(1 + xf(1)) for x > 0,

and since f is injective, we get x+1 ·f(x) = 1+x ·f(1) leading to the conclusion
that f(x) = x(f(1) − 1) + 1 for all x ∈ R

+. Taking a small x (close to zero),
we get f(x) < 2, which is a contradiction. (Alternatively, one can verify directly
that f(x) = cx+ 1 is not a solution of the given functional equation.)
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A3. Four real numbers p, q, r, s satisfy

p+ q + r + s = 9 and p2 + q2 + r2 + s2 = 21.

Prove that ab− cd ≥ 2 holds for some permutation (a, b, c, d) of (p, q, r, s).

First solution. Up to a permutation, we may assume that p ≥ q ≥ r ≥ s. We
first consider the case where p+ q ≥ 5. Then

p2 + q2 + 2pq ≥ 25 = 4 + (p2 + q2 + r2 + s2) ≥ 4 + p2 + q2 + 2rs,

which is equivalent to pq − rs ≥ 2.

Assume now that p+ q < 5; then

4 < r + s ≤ p+ q < 5. (1)

Observe that

(pq + rs) + (pr + qs) + (ps+ qr) =
(p+ q + r + s)2 − (p2 + q2 + r2 + s2)

2
= 30.

Moreover,

pq + rs ≥ pr + qs ≥ ps+ qr,

because (p− s)(q − r) ≥ 0 and (p− q)(r − s) ≥ 0.

We conclude that pq + rs ≥ 10. From (1), we get 0 ≤ (p+ q)− (r + s) < 1,
therefore

(p+ q)2 − 2(p+ q)(r + s) + (r + s)2 < 1.

Adding this to (p+ q)2 + 2(p+ q)(r + s) + (r + s)2 = 92 gives

(p+ q)2 + (r + s)2 < 41.

Therefore

41 = 21 + 2 · 10 ≤ (p2 + q2 + r2 + s2) + 2(pq + rs)

= (p+ q)2 + (r + s)2 < 41,

which is a contradiction.
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Second solution. We first note that pq + pr + ps+ qr + qs+ rs = 30, as in the
first solution. Thus, if (a, b, c, d) is any permutation of (p, q, r, s), then

bc+ cd+ db = 30− a(b+ c+ d) = 30− a(9− a) = 30− 9a+ a2,

while
bc+ cd+ db ≤ b2 + c2 + d2 = 21− a2.

Hence 30− 9a+ a2 ≤ 21− a2, leading to a ∈ [3/2, 3]. Thus the numbers p, q, r
and s are in the interval [3/2, 3].

Assume now that p ≥ q ≥ r ≥ s. Note that q ≥ 2 because otherwise
p = 9− (q + r + s) ≥ 9− 3q > 9− 6 = 3, which is impossible.

Write x = r − s, y = q − r and z = p− q. On the one hand,

(p− q)2 + (p− r)2 + (p− s)2 + (q − r)2 + (q − s)2 + (r − s)2

= 3(p2 + q2 + r2 + s2)− 2(pq + pr + ps+ qr + qs+ rs) = 3.

On the other hand, this expression equals

z2 + (z + y)2+(z + y + x)2 + y2 + (y + x)2 + x2

= 3x2 + 4y2 + 3z2 + 4xy + 4yz + 2zx.

Hence,
3x2 + 4y2 + 3z2 + 4xy + 4yz + 2zx = 3. (2)

Furthermore,

pq − rs = q(p− s) + (q − r)s = q(x+ y + z) + ys.

If x+ y + z ≥ 1 then, in view of q ≥ 2, we immediately get pq − rs ≥ 2.

If x+ y + z < 1 then (2) implies

3x2 + 4y2 + 3z2 + 4xy + 4yz + 2zx > 3(x+ y + z)2.

It follows that y2 > 2xy + 2yz + 4zx ≥ 2y(x+ z), so that y > 2(x+ z) and hence
3y > 2(x+ y + z). The value of the left-hand side of (2) obviously does not ex-
ceed 4(x+ y + z)2, so that 2(x+ y + z) ≥

√
3. Eventually, 3y >

√
3 and recalling

that s ≥ 3/2, we obtain

pq − rs = q(x+ y + z) + ys ≥ 2 ·
√

3

2
+

√
3

3
· 3

2
=

3
√

3

2
> 2.
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A4. Find all functions f : R → R satisfying the equation

f(x+ y) + f(x)f(y) = f(xy) + 2xy + 1

for all real numbers x and y.

Solution. The solutions are f(x) = 2x − 1, f(x) = −x− 1 and f(x) = x2 − 1.
It is easy to check that these functions indeed satisfy the given equation.

We begin by setting y = 1 which gives

f(x+ 1) = af(x) + 2x+ 1, (1)

where a = 1 − f(1). Then we change y to y + 1 in the equation and use (1) to
expand f(x+ y + 1) and f(y + 1). The result is

a (f(x+ y) + f(x)f(y)) + (2y + 1)(1 + f(x)) = f(x(y + 1)) + 2xy + 1,

or, using the initial equation again,

a (f(xy) + 2xy + 1) + (2y + 1)(1 + f(x)) = f(x(y + 1)) + 2xy + 1.

Let us now set x = 2t and y = −1/2 to obtain

a (f(−t)− 2t+ 1) = f(t)− 2t+ 1.

Replacing t by −t yields one more relation involving f(t) and f(−t):
a (f(t) + 2t+ 1) = f(−t) + 2t+ 1. (2)

We now eliminate f(−t) from the last two equations, leading to

(1− a2)f(t) = 2(1− a)2t+ a2 − 1.

Note that a 6= −1 (or else 8t = 0 for all t, which is false). If additionally a 6= 1
then 1− a2 6= 0, therefore

f(t) = 2

(

1− a
1 + a

)

t− 1.

Setting t = 1 and recalling that f(1) = 1− a, we get a = 0 or a = 3, which gives
the first two solutions.

The case a = 1 remains, where (2) yields

f(t) = f(−t) for all t ∈ R. (3)

Now set y = x and y = −x in the original equation. In view of (3), we obtain,
respectively,

f(2x) + f(x)2 = f(x2) + 2x2 + 1, f(0) + f(x)2 = f(x2)− 2x2 + 1.

Subtracting gives f(2x) = 4x2 + f(0). Set x = 0 in (1). Since f(1) = 1− a = 0,
this yields f(0) = −1. Hence f(2x) = 4x2 − 1, i. e. f(x) = x2 − 1 for all x ∈ R.
This completes the solution.
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A5. Let x, y and z be positive real numbers such that xyz ≥ 1. Prove the
inequality

x5 − x2

x5 + y2 + z2
+

y5 − y2

y5 + z2 + x2
+

z5 − z2

z5 + x2 + y2
≥ 0.

First solution. Standard recasting shows that the given inequality is equivalent
to

x2 + y2 + z2

x5 + y2 + z2
+
x2 + y2 + z2

y5 + z2 + x2
+
z2 + x2 + y2

z5 + x2 + y2
≤ 3.

In view of the Cauchy-Schwarz inequality and the condition xyz ≥ 1, we have

(x5 + y2 + z2)(yz + y2 + z2) ≥
(

x5/2(yz)1/2 + y2 + z2
)2
≥ (x2 + y2 + z2)2,

or
x2 + y2 + z2

x5 + y2 + z2
≤ yz + y2 + z2

x2 + y2 + z2
.

Taking the cyclic sum and using the fact that x2 + y2 + z2 ≥ yz + zx+ xy gives

x2 + y2 + z2

x5 + y2 + z2
+
x2 + y2 + z2

y5 + z2 + x2
+
x2 + y2 + z2

z5 + x2 + y2
≤ 2 +

yz + zx+ xy

x2 + y2 + z2
≤ 3,

which is exactly what we wished to show.

Comment. The way the Cauchy-Schwarz inequality is used is the crucial point in
the solution; it is not at all obvious! The condition xyz ≥ 1 (which might as well
have been xyz = 1) allows to transform the expression to a homogeneous form.
The smart use of Cauchy-Schwarz inequality has the effect that the common nu-

merators of the three fractions become common denominators in the transformed
expression.

Second solution. We shall prove something more, namely that

x5

x5 + y2 + z2
+

y5

y5 + z2 + x2
+

z5

z5 + x2 + y2
≥ 1, (1)

and

1 ≥ x2

x5 + y2 + z2
+

y2

y5 + z2 + x2
+

z2

z5 + x2 + y2
. (2)

We first prove (1). We have yz(y2 + z2) = y3z + yz3 ≤ y4 + z4; the latter
inequality holds because y4 − y3z − yz3 + z4 = (y3 − z3)(y − z) ≥ 0. Therefore
x(y4 + z4) ≥ xyz(y2 + z2) ≥ y2 + z2, or

x5

x5 + y2 + z2
≥ x5

x5 + xy4 + xz4
=

x4

x4 + y4 + z4
.
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Taking the cyclic sum, we get the desired inequality.

The proof of (2) is based on exactly the same ideas as in the first solution.
From the Cauchy-Schwarz inequality and the fact that xyz ≥ 1, we have

(x5 + y2 + z2)(yz + y2 + z2) ≥ (x2 + y2 + z2)2,

implying
x2

x5 + y2 + z2
≤ x2(yz + y2 + z2)

(x2 + y2 + z2)2
.

Taking the cyclic sum, we have

x2

x5 + y2 + z2
+

y2

y5 + z2 + x2
+

z2

z5 + x2 + y2

≤ 2(x2y2 + y2z2 + z2x2) + x2yz + y2zx+ z2xy

(x2 + y2 + z2)2

=
(x2 + y2 + z2)2 − (x4 + y4 + z4) + (x2yz + y2zx+ z2xy)

(x2 + y2 + z2)2
.

Thus we need to show that x4 + y4 + z4 ≥ x2yz + y2zx+ z2xy; and this last
inequality holds because

x4 + y4 + z4 =
x4 + y4

2
+
y4 + z4

2
+
z4 + x4

2
≥ x2y2 + y2z2 + z2x2

=
x2y2 + y2z2

2
+
y2z2 + z2x2

2
+
z2x2 + x2y2

2

≥ y2zx+ z2xy + x2yz.
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Combinatorics

C1. A house has an even number of lamps distributed among its rooms in such
a way that there are at least three lamps in every room. Each lamp shares a
switch with exactly one other lamp, not necessarily from the same room. Each
change in the switch shared by two lamps changes their states simultaneously.
Prove that for every initial state of the lamps there exists a sequence of changes
in some of the switches at the end of which each room contains lamps which are
on as well as lamps which are off.

Solution. Two lamps sharing a switch will be called twins. A room will be called
normal if some of its lamps are on and some are off. We devise an algorithm that
increases the number of normal rooms in the house. After several runs of the
algorithm we arrive at the state with all rooms normal.

Choose any room R0 which is not normal, assuming without loss of generality
that all lamps in R0 are off. If there is a pair of twins in R0, we switch them on
and stop. Saying stop means that we have achieved what we wanted: there are
more normal rooms than before the algorithm started.

So suppose there are no twins in R0. Choose any lamp a0 ∈ R0 and let b0 ∈ R1

be its twin. Change their states. After this move room R0 becomes normal. If
R1 also becomes (or remains) normal, then stop. Otherwise all lamps in R1 are
in equal state; as before we can assume that there are no twins in R1. Choose
any lamp a1 ∈ R1 other than b0 and let b1 ∈ R2 be its twin. Change the states
of these two twin lamps. If R2 becomes (or stays) normal, stop.

Proceed in this fashion until a repetition occurs in the sequenceR0, R1, R2, . . . .
Thus assume that the rooms R0, R1, . . . , Rm are all distinct, each Ri connected
to Ri+1 through a twin pair ai ∈ Ri, bi ∈ Ri+1 (i = 0, . . . ,m−1), and there is
a lamp am ∈ Rm (am 6= bm−1) which has its twin bm in some room Rk visited
earlier (0 ≤ k ≤ m−1). If the algorithm did not stop after we entered room Rm,
we change the states of the lamps am and bm; room Rm becomes normal.

If k ≥ 1, then there are two lamps in Rk touched previously, bk−1 and ak.
They are the twins of ak−1 and bk, so neither of them can be bm (twin to am).
Recall that the moment we entered room Rk the first time, by pressing the bk−1

switch, this room became “abnormal” only until we touched lamp ak. Thus bk−1

and ak are in different states now. Whatever the new state of lamp bm, room Rk

remains normal. Stop.
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Finally, if k = 0, then bm ∈ R0 and bm 6= a0 because the twin of a0 is b0. Each
room has at least three lamps, so there is a lamp c ∈ R0, c 6= a0, c 6= bm. In the
first move lamp a0 was put on while c stayed off. Whatever the new state of bm,
room R0 stays normal. Stop.

So, indeed, after a single run of this algorithm, the number of normal rooms
increases at least by 1. This completes the proof.

Comment. The problem was submitted in the following formulation:

A school has an even number of students, each of whom attends ex-
actly one of its (finitely many) classes. Each class has at least three
students, and each student has exactly one “best friend” in the same
school such that, whenever B is A’s “best friend”, then A is B’s “best
friend”. Furthermore, each student prefers either apple juice over or-
ange juice or orange juice over apple juice, but students change their
preferences from time to time. “Best friends”, however, will change
their preferences (which may or may not be the same) always together,
at the same moment.

Whatever preference each student may initially have, prove that there
is always a sequence of changes of preferences which will lead to a
situation in which no class will have students all of whom have the
same preference.
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C2. Let k be a fixed positive integer. A company has a special method to sell
sombreros. Each customer can convince two persons to buy a sombrero after
he/she buys one; convincing someone already convinced does not count. Each
of these new customers can convince two others and so on. If each one of the
two customers convinced by someone makes at least k persons buy sombreros
(directly or indirectly), then that someone wins a free instructional video. Prove
that if n persons bought sombreros, then at most n/(k + 2) of them got videos.

First solution. Consider the problem in reverse: If w persons won free videos,
what is the least number n of persons who bought sombreros? One can easily
compute this minimum for small values of w: for w = 1 it is 2k + 3, and for
w = 2 it is 3k + 5. These can be rewritten as n ≥ 1 · (k + 2) + (k + 1) and
n ≥ 2(k + 2) + (k + 1), leading to the conjecture that

n ≥ w(k + 2) + (k + 1). (1)

Let us say that a person P influenced a person Q if P made Q buy a sombrero
directly or indirectly, or if Q = P . A component is the set of persons influenced
by someone who was influenced by no one else but himself. No person from a
component influenced another one from a different component. So it suffices to
prove (1) for each component. Indeed, if (1) holds for r components of size ni

with wi winners, i = 1, . . . , r, then

n =
∑

ni ≥
∑

(wi(k + 2) + (k + 1)) =
(

∑

wi

)

(k + 2) + r(k + 1),

implying (1) for n =
∑

ni, w =
∑

wi.

Thus one may assume that the whole group is a single component, i. e. all
customers were influenced by one person A (directly or indirectly).

Moreover, it suffices to prove (1) for a groupG with w winners and of minimum

size n. Notice that then A is a video winner. If not, imagine him removed from
the group. A video winner from the original group is also a winner in the new
one. So we have decreased n without changing w, a contradiction.

Under these assumptions, we proceed to prove (1) by induction on w ≥ 1. For
w = 1, the group of customers contains a single video winner A, the two persons
B and C he/she convinced directly to buy sombreros, and two nonintersecting
groups of k persons, the ones persuaded by B and C (directly or indirectly). This
makes at least 2k + 3 persons, as needed.

Assume the claim holds for groups with less than w winners, and consider a
group with n winners where everyone was influenced by some person A. Recall
that A is a winner. Let B and C be the persons convinced directly by A to buy
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sombreros. Let nB be the number of people influenced by B, and wB the number
of video winners among them. Define nC and wC analogously.

We have nB ≥ wB(k+2)+(k+1), by the induction hypothesis if wB > 0 and
because A is a winner if wB = 0. Analogously nC ≥ wC(k+ 2) + (k+ 1). Adding
the two inequalities gives us n ≥ w(k + 2) + (k + 1), since n = nB + nC + 1 and
w = wB + wC + 1. This concludes the proof.

Second solution. As in the first solution, we say that a person P influenced

a person Q if P made Q buy a sombrero directly or indirectly, or if Q = P .
Likewise, we keep the definition of a component. For brevity, let us write winners
instead of video winners.

The components form a partition of the set of people who bought sombreros.
It is enough to prove that in each component the fraction of winners is at most
1/(k + 2).

We will minimise the number of people buying sombreros while keeping the
number of winners fixed.

First, we can assume that no winners were convinced (directly) by a nonwin-
ner. Indeed, if a nonwinner P convinced a winner Q, remove all people influenced
by P but not by Q and let whoever convinced P (if anyone did) now convince
Q. Observe that no winner was removed, hence the new configuration has fewer
people, but the same winners.

Thus, indeed, there is no loss of generality in assuming that:

The set of all buyers makes up a single component. (2)

Every winner could have been convinced only by another winner. (3)

Now remove all the winners and consider the new components. We claim that

Each new component has at least k + 1 persons. (4)

Indeed, let C be a new component. In view of (2), there is a member C of C who
had been convinced by some removed winner W . Then C must have influenced
at least k + 1 people (including himself), but all the people influenced by C are
in C. Therefore |C| ≥ k + 1.

Now return the winners one by one in such a way that when a winner returns,
the people he convinced (directly) are already present. This is possible because
of (3). In that way the number of components decreases by one with each winner,
thus the number of components with all winners removed is equal to w+1, where
w is the number of winners. It follows from (4) that the number of nonwinners
satisfies the estimate

n− w ≥ (w + 1)(k + 1).

This implies the desired bound.
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C3. In an m × n rectangular board of mn unit squares, adjacent squares are
ones with a common edge, and a path is a sequence of squares in which any
two consecutive squares are adjacent. Each square of the board can be coloured
black or white. Let N denote the number of colourings of the board such that
there exists at least one black path from the left edge of the board to its right
edge, and let M denote the number of colourings in which there exist at least
two non-intersecting black paths from the left edge to the right edge. Prove that
N2 ≥M · 2mn.

Solution. We generalise the claim to the following. Suppose that a two-
sided m× n board is considered, where some of the squares are transparent and
some others are not. Each square must be coloured black or white. However,
a transparent square needs to be coloured only on one side; then it looks the
same from above and from below. In contrast, a non-transparent square must be
coloured on both sides (in the same colour or not).

Let A (respectively B) be the set of colourings of the board with at least one
black path from the left edge to the right edge if one looks from above (respectively
from below).

Let C be the set of colourings of the board in which there exist two black paths
from the left edge to the right edge of the board, one on top and one underneath,
not intersecting at any transparent square.

Let D be the set of all colourings of the board.

We claim that
|A| · |B| ≥ |C| · |D|. (1)

Note that this implies the original claim in the case where all squares are trans-
parent: one then has |A| = |B| = N , |C| = M , |D| = 2mn.

We prove (1) by induction on the number k of transparent squares. If k = 0
then |A| = |B| = N · 2mn, |C| = N2 and |D| = (2mn)2, so equality holds in (1).
Suppose the claim is true for some k and consider a board with k+1 transparent
squares. Let A, B, C and D be the sets of colourings of this board as defined
above. Choose one transparent square ϑ. Now, convert ϑ into a non-transparent
square, and let A′, B′, C ′ and D′ be the respective sets of colourings of the new
board. By the induction hypothesis, we have:

|A′| · |B′| ≥ |C ′| · |D′|. (2)

Upon the change made, the number of all colourings doubles. So |D ′| = 2|D|.
To any given colouring in A, there correspond two colourings in A′, obtained

by colouring ϑ black and white from below. This is a bijective correspondence,
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so |A′| = 2|A|. Likewise, |B ′| = 2|B|. In view of (2), it suffices to prove that

|C ′| ≥ 2|C|. (3)

Make ϑ transparent again and take any colouring in C. It contains two black
paths (one seen from above and one from below) that do not intersect at trans-
parent squares. Being transparent, ϑ can therefore lie on at most one of them,
say on the path above. So when we make ϑ non-transparent, let us keep its colour
on the side above but colour the side below in the two possible ways. The two
colourings obtained will be in C ′. It is easy to see that when doing so, different
colourings in C give rise to different pairs of colourings in C ′. Hence (3) follows,
implying (2). As already mentioned, this completes the solution.

Comment. A more direct approach to the problem may go as follows. Consider
two m×n boards instead of one. Let A denote the set of all colourings of the two
boards such that there are at least two non-intersecting black paths from the left
edge of the first board to its right edge. Clearly, |A| = M · 2mn: we can colour
the first board in M ways and the second board in an arbitrary fashion.

Let B denote the set of all colourings of the two boards such that there is at
least one black path from the left edge of the first board to its right edge, and
at least one black path from the left edge of the second board to its right edge.
Clearly, |B| = N 2.

It suffices to find an injective function f : A →֒ B.

Such an injection can indeed be constructed. However, working it out in all
details seems to be a delicate task.
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C4. Let n ≥ 3 be a given positive integer. We wish to label each side and each
diagonal of a regular n-gon P1, . . . , Pn with a positive integer less than or equal
to r so that:

(i) every integer between 1 and r occurs as a label;

(ii) in each triangle PiPjPk two of the labels are equal and greater than the
third.

Given these conditions:

(a) Determine the largest positive integer r for which this can be done.

(b) For that value of r, how many such labellings are there?

Solution. A labelling which satisfies condition (ii) will be called good. A labelling
which satisfies both given conditions (i) and (ii) will be called very good. Let us
try to understand the structure of good labellings.

Sides and diagonals of the polygon will be called just edges. Let AB be
an edge with the maximum label m. Let X be any vertex different from A
and B. Condition (ii), applied to triangle ABX, implies that one of the segments
AX, BX has label m, and the other one has a label smaller than m. Thus we can
split all vertices into two disjoint groups 1 and 2; group 1 contains vertices X such
that AX has label m (including vertex B) and group 2 contains vertices X such
that BX has label m (including vertex A). We claim that the edges labelled m
are exactly those which join a vertex of group 1 with a vertex of group 2.

First consider any vertex X 6= B in group 1 and any vertex Y 6= A in group 2.
In triangle AXY , we already know that the label of AX (which is m) is larger
than the label of AY (which is not m). Therefore the label of XY also has to be
equal to m, as we wanted to show.

Now consider any two vertices X, Y in group 1. In triangle AXY , the edges
AX and AY have the same label m. So the third edge must have a label smaller
than m, as desired. Similarly, any edge joining two vertices in group 2 has a label
smaller than m.

We conclude that a good labelling of an n-gon consists of:

• a collection of edges with the maximum label m; they are the ones that go
from a vertex of group 1 to a vertex of group 2,

• a good labelling of the polygon determined by the vertices of group 1, and

• a good labelling of the polygon determined by the vertices of group 2.
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(a) The greatest possible value of r is n−1. We prove this by induction
starting with the degenerate cases n = 1 and n = 2, where the claim is immediate.
Assusme it true for values less than n, where n ≥ 3, and consider any good
labelling of an n-gon P .

Its edges are split into two groups 1 and 2; suppose they have k and n−k
vertices, respectively. The k-gon P1 formed by the vertices in group 1 inherits a
good labelling. By the induction hypothesis, this good labelling uses at most k−1
different labels. Similarly, the (n−k)-gon P2 formed by the vertices in group 2
inherits a good labelling which uses at most n−k−1 different labels. The remain-
ing segments, which join a vertex of group 1 with a vertex of group 2, all have
the same (maximum) label. Therefore, the total number of different labels in
our good labelling is at most (k−1) + (n−k−1) + 1 = n−1. This number can be
easily achieved, as long as we use different labels in P1 and P2.

(b) Let f(n) be the number of very good labellings of an n-gon P with labels
1, . . . , n−1. We will show by induction that

f(n) = n!(n− 1)!/2n−1.

This holds for n = 1 and n = 2. Fix n ≥ 3 and assume that f(k) = k!(k − 1)!/2k−1

for k < n.

Divide the n vertices into two non-empty groups 1 and 2 in any way. If group 1
is of size k, there are

(

n
k

)

ways of doing that. We must label every edge joining
a vertex of group 1 and a vertex of group 2 with the label n−1. Now we need
to choose which k−1 of the remaining labels 1, 2, . . . , n−2 will be used to label
the k-gon P1; there are

(n−2
k−1

)

possible choices. The remaining n−k−1 labels will
be used to label the (n−k)-gon P2. Finally, there are f(k) very good labellings
of P1 and f(n−k) very good labellings of P2.

Now we sum the resulting expression over all possible values of k, noticing
that we have counted each very good labelling twice, since choosing a set to be
group 1 is equivalent to choosing its complement. We have:

f(n) =
1

2

n−1
∑

k=1

(

n

k

)(

n− 2

k − 1

)

f(k)f(n− k)

=
n!(n− 1)!

2(n − 1)

n−1
∑

k=1

f(k)

k!(k − 1)!
· f(n− k)
(n − k)!(n − k − 1)!

=
n!(n− 1)!

2(n − 1)

n−1
∑

k=1

1

2k−1
· 1

2n−k−1
=
n!(n− 1)!

2n−1
,

which is what we wanted to show.
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C5. There are n markers, each with one side white and the other side black,
aligned in a row so that their white sides are up. In each step, if possible, we
choose a marker with the white side up (but not one of the outermost markers),
remove it and reverse the closest marker to the left and the closest marker to the
right of it. Prove that one can achieve the state with only two markers remaining
if and only if n− 1 is not divisible by 3.

First solution. Given a particular chain of markers, we call white (resp. black)
markers the ones with the white (resp. black) side up. Note that the parity of
the number of black markers remains unchanged during the game. Hence, if only
two markers remain, these markers must have the same colour.

Next, we define an invariant. To a white marker with t black markers to its
left we assign the number (−1)t. Only white markers have numbers assigned to
them. Let S be the residue class modulo 3 of the sum of all numbers assigned to
the white markers.

It is easy to check that S is an invariant under the allowed operations. Sup-
pose, for instance, that a white marker W is removed, with t black markers to
the left of it, and that the closest neighbours of W are black. Then S increases by
−(−1)t + (−1)t−1 + (−1)t−1 = 3(−1)t−1. The other three cases are analogous.

If the game ends with two black markers, the number S is zero; if it ends with
two white markers, then S is 2. Since we start with n white markers and in this
case S ≡ n (mod 3), a necessary condition for the game to end is n ≡ 0, 2 (mod 3).

If we start with n ≥ 5 white markers, taking the leftmost allowed white
markers in three consecutive moves, we obtain a row of n − 3 white markers
without black markers. Since the goal can be reached for n = 2, 3, we conclude
that the game can end with two markers for every positive integer n satisfying
n ≡ 0, 2 (mod 3).

Second solution. Denote by L the leftmost and by R the rightmost marker,
respectively. To start with, note again that the parity of the number of black-
side-up markers remains unchanged. Hence, if only two markers remain, these
markers must have the same colour up.

We will show by induction on n that the game can be succesfully finished if
and only if n ≡ 0, 2 (mod 3) and that the upper sides of L and R will be black
in the first case and white in the second case.

The statement is clear for n = 2 and 3. Assume that we finished the game
for some n, and denote by k the position of the marker X (counting from the
left) that was last removed. Having finished the game, we have also finished
the subgames with the k markers from L to X and with the n − k + 1 markers
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from X to R (inclusive). Thereby, by the induction hypothesis, before X was
removed, the upper side of L had been black if k ≡ 0 (mod 3), and white if
k ≡ 2 (mod 3), while the upper side of R had been black if n−k+1 ≡ 0 (mod 3),
and white if n − k + 1 ≡ 2 (mod 3). Markers R and L were reversed upon the
removal of X. Therefore, in the final position, R and L are white if and only if
k ≡ n− k + 1 ≡ 0 (mod 3), which yields n ≡ 2 (mod 3), and black if and only if
k ≡ n− k + 1 ≡ 2 (mod 3), which yields n ≡ 0 (mod 3).

On the other hand, a game with n markers can be reduced to a game with
n − 3 markers by removing the second, fourth and third marker in this order.
This finishes the induction.
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C6. In a mathematical competition in which 6 problems were posed to the
participants, every two of these problems were solved by more than 2/5 of the
contestants. Moreover, no contestant solved all the 6 problems. Show that there
are at least 2 contestants who solved exactly 5 problems each.

First solution. Assume there were n contestants. Let us count the number N
of ordered pairs (C,P ), where P is a pair of problems solved by contestant C.
On the one hand, for every one of the 15 pairs of problems, there are at least
(2n+ 1)/5 contestants who solved both problems in the pair. Therefore

N ≥ 15 · 2n+ 1

5
= 6n+ 3. (1)

On the other hand, assume k contestants solved 5 problems. Each of them solved
10 pairs of problems, whereas each of the n− k remaining contestants solved at
most 6 pairs of problems. Thus

N ≤ 10k + 6(n− k) = 6n+ 4k. (2)

From these two estimates we immediately get k ≥ 1. If (2n + 1)/5 were
not an integer, there would be, for every pair of problems, at least (2n + 1)/5
contestants who solved both problems in the pair (rather than (2n+1)/5). Then
(1) would improve to N ≥ 6n + 6 and this would yield k ≥ 2. Alternatively,
had some student solved less than 4 problems, he would have solved at most 3
pairs of problems (rather than 6), and our second estimate would improve to
N ≤ 6n+ 4k − 3, which together with N ≥ 6n+ 3 also gives k ≥ 2.

So we are left with the case where 5 divides 2n + 1 and every contestant has
solved 4 or 5 problems. Let us assume k = 1 and let us call the contestant who
solved 5 problems the ‘winner’. We must then have N = 6n + 4 (the winner
solved 10 pairs of problems, and the rest of the contestants solved exactly 6 pairs
of problems each). Let us call a pair of problems ‘special’ if more than (2n+1)/5
contestants solved both problems of the pair. If there were more than one special
pair of problems, our first estimate would be improved to

N ≥ 13 · 2n + 1

5
+ 2

(

2n+ 1

5
+ 1

)

= 6n+ 5,

which is impossible. Similarly, if a special pair of problems exists, no more than
(2n+ 1)/5 + 1 contestants could have solved both problems in the pair, because
otherwise

N ≥ 14 · 2n+ 1

5
+

(

2n + 1

5
+ 2

)

= 6n+ 5.
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Let us now count the number M of pairs (C,P ) where the ‘tough’ problem
(the one not solved by the winner) is one of the problems in P . For each of the
5 pairs of problems containing the tough problem, there are either (2n+ 1)/5 or
(2n + 1)/5 + 1 contestants who solved both problems of the pair. We then get
M = 2n+ 1 or M = 2n+ 2; the latter is possible only if there is a special pair of
problems and this special pair contains the tough problem. On the other hand,
assume m contestants solved the tough problem. Each of them solved 3 other
problems and therefore solved 3 pairs of problems containing the tough one. We
can then write M = 3m. Hence 2n+ 1 ≡ 0 or 2 (mod 3).

Finally, let us chose one of the problems other than the tough one, say p, and
count the number L of pairs (C,P ) for which p ∈ P . We can certainly chose
p such that the special pair of problems, if it exists, does not contain p. Then
we have L = 2n + 1 (each of the 5 pairs of problems containing p have exactly
(2n+1)/5 contestants who solved both problems of the pair). On the other hand,
if l is the number of contestants, other than the winner, who solved problem p, we
have L = 3l+4 (the winner solved problem p and other 4 problems, so she solved
4 pairs of problems containg p, and each of the l students who solved p, solved
other 3 problems, hence each of them solved 3 pairs of problems containing p).
Therefore 2n + 1 ≡ 1 (mod 3), which is a contradiction.

Second solution. This is basically the same proof as above, written in symbols
rather than words. Suppose there were n contestants. Let pij be the number of
contestants who solved both problem i and problem j (1 ≤ i < j ≤ 6) and let nr

be the number of contestants who solved exactly r problems (0 ≤ r ≤ 6). Clearly,
∑

nr = n.

By hypothesis, pij ≥ (2n + 1)/5 for all i < j, and so

S =
∑

i<j

pij ≥ 15 · 2n+ 1

5
= 6n+ 3.

A contestant who solved exactly r problems contributes a ‘1’ to
(r
2

)

summands
in this sum (where as usual

(r
2

)

= 0 for r < 2). Therefore

S =
6

∑

r=0

(

r

2

)

nr.

Combining this with the previous estimate we obtain

3 ≤ S − 6n =

6
∑

r=0

((

r

2

)

− 6

)

nr, (3)
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which rewrites as

4n5 + 9n6 ≥ 3 + 6n0 + 6n1 + 5n2 + 3n3.

If no contestant solved all problems, then n6 = 0, and we see from the above
that n5 must be positive. To show that n5 ≥ 2, assume the contrary, i. e., n5 = 1.
Then all of n0, n1, n2, n3 must be zero, so that n4 = n− 1. The right equality
of (3) reduces to S = 6n+ 4.

Each one of the 15 summands in S =
∑

pij is at least (2n+ 1)/5 = λ. Because
S = 6n+ 4, they cannot be all equal (6n+ 4 is not divisible by 15); therefore 14
of them are equal to λ and one is λ+ 1.

Let (i0, j0) be this specific pair with pi0j0 = λ+ 1. The contestant who solved
5 problems will be again called the winner. Assume, without loss of generality,
that it was problem 6 at which the winner failed, and that problem 1 is not in
the pair (i0, j0); that is, 2 ≤ i0 < j0 ≤ 6. Consider the sums

S′ = p16 + p26 + p36 + p46 + p56 and S′′ = p12 + p13 + p14 + p15 + p16.

Suppose that problem 6 has been solved by x contestants (each of them con-
tributes a ‘3’ to S ′) and problem 1 has been solved by y contestants other than
the winner (each of them contributes a ‘3’ to S ′′, and the winner contributes
a ‘4’). Thus S ′ = 3x and S ′′ = 3y + 4.

The pair (i0, j0) does not appear in the sum S ′′, which is therefore equal to
5λ = 2n + 1. The sum S ′ is either 5λ or 5λ+ 1. Hence 3x ∈ {2n + 1, 2n+ 2}
and 3y + 4 = 2n+ 1, which is impossible, as examination of remainders (mod 3)
shows. Contradiction ends the proof.

Comment. The problem submitted by the proposer consisted of two parts which
were found to be two independent problems by the PSC.

Part (a) asked for a proof that if every problem has been solved by more than
2/5 of the contestants then there exists a set of 3 problems solved by more than
1/5 of the contestants and a set of 4 problems solved by more than 1/15 of the
contestants.

The arguments needed for a proof of (a) seem rather standard, giving advan-
tage to students who practised those techniques at training courses. This is much
less the case with part (b), which was therefore chosen to be Problem C6 on the
shortlist.

The proposer remarks that there exist examples showing the bound 2 can be
attained for the number of contestants solving 5 problems, and that the problem
would become harder if it asked to find one such example.
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C7. Let n > 1 be a given integer, and let a1, . . . , an be a sequence of integers
such that n divides the sum a1 + · · ·+ an. Show that there exist permutations σ
and τ of 1, 2, . . . , n such that σ(i) + τ(i) ≡ ai (mod n) for all i = 1, . . . , n.

Solution. Suppose that there exist suitable permutations σ and τ for a
certain integer sequence a1, . . . , an of sum zero modulo n. Let b1, . . . , bn be an-
other integer sequence with sum divisible by n, and let b1, . . . , bn differ mod-
ulo n from a1, . . . , an only in two places, i1 and i2. Based on the fact that
σ(i) + τ(i) ≡ bi (mod n) for each i 6= i1, i2, one can transform σ and τ into suit-
able permutations for b1, . . . , bn. All congruences below are assumed modulo n.

First we construct a three-column rectangular array

σ(i1) −bi1 τ(i1)

σ(i2) −bi2 τ(i2)

σ(i3) −bi3 τ(i3)

...
...

...

σ(ip−1) −bip−1 τ(ip−1)

σ(ip) −bip τ(ip)

σ(ip+1) −bip+1 τ(ip+1)

...
...

...

σ(iq−1) −biq−1 τ(iq−1)

σ(iq) −biq τ(iq)

whose rows are some of the ordered triples Ti =
(

σ(i),−bi, τ(i)
)

, i = 1, . . . , n. In
the first two rows, write the triples Ti1 and Ti2 , respectively. Since σ and τ are
permutations of 1, . . . , n, there is a unique index i3 such that σ(i1) + τ(i3) ≡ bi2 .
Write the triple Ti3 in row 3. There is a unique i4 such that σ(i2) + τ(i4) ≡ bi3 ;
write the triple Ti4 in row 4, and so on. Stop the first moment a number from
column 1 occurs in this column twice, as ip in row p and iq in row q, where p < q.

We claim that p = 1 or p = 2. Assume on the contrary that p > 2 and consider
the subarray containing rows p through q. Each of these rows has sum 0 modulo n,
because σ(i) + τ(i) ≡ bi for i 6= i1, i2, as already mentioned. On the other hand,
by construction the sum in each downward right diagonal of the original array is
also 0 modulo n. It follows that the six boxed entries add up to 0 modulo n, i. e.

−bip + τ(ip) + τ(ip+1) + σ(iq−1) + σ(iq)− biq ≡ 0.
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Now, ip = iq gives biq ≡ σ(iq) + τ(ip), so that the displayed formula becomes
−bip + τ(ip+1) + σ(iq−1) ≡ 0. And since σ(ip−1)− bip + τ(ip+1) ≡ 0 by the re-
mark about diagonals, we obtain σ(ip−1) = σ(iq−1). This implies ip−1 = iq−1, in
contradiction with the definition of p and q. Thus p = 1 or p = 2 indeed.

Now delete the repeating qth row of the array. Then shift cyclically column 1
and column 3 by moving each of their entries one position down and one position
up, respectively. The sum in each row of the new array is 0 modulo n, except
possibly in the first and the last row (“most” of the new rows used to be diagonals
of the initial array). For p = 1, the last row sum is also 0 modulo n, in view
of ip = iq = i1 and σ(iq−2)− biq−1 + τ(iq) ≡ 0 (see the array on the left below).
A single change is needed to accomodate the case p = 2: in column 3, interchange
the top entry τ(i2) and the bottom entry τ(i1) (see the array on the right). The
last row sum becomes 0 modulo n since ip = iq = i2.

σ(iq−1) −bi1 τ(i2) σ(iq−1) −bi1 τ(i1)

σ(i1) −bi2 τ(i3) σ(i1) −bi2 τ(i3)

σ(i2) −bi3 τ(i4) σ(i2) −bi3 τ(i4)

...
...

...
...

...
...

σ(iq−3) −biq−2 τ(iq−1) σ(iq−3) −biq−2 τ(iq−1)

σ(iq−2) −biq−1 τ(i1) σ(iq−2) −biq−1 τ(i2)

(p = 1) (p = 2)

For both p = 1 and p = 2, column 1 and column 3 are permutations the num-
bers of σ(i1), . . . , σ(iq−1) and τ(i1), . . . , τ(iq−1), respectively. So, adding the
triples Ti not involved in the construction above, we obtain permutations σ ′

and τ ′ of 1, . . . , n in column 1 and column 3 such that σ ′(i) + τ ′(i) ≡ bi for
all i 6= i1. Finally, the relation σ′(i1) + τ ′(i1) ≡ bi1 follows from the fact that
Σ
(

σ′(i) + τ ′(i)
)

≡ 0 ≡ Σbi.

We proved that the statement remains true if we change elements of the
original sequence a1, . . . , an two at a time. However, one can obtain from any
given a1, . . . , an any other zero-sum sequence by changing two elements at a time.
(The condition that the sequence has sum zero modulo n is used here again.) And
because the claim is true for any constant sequence, the conclusion follows.
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C8. Let M be a convex n-gon, n ≥ 4. Some n−3 of its diagonals are coloured
green and some other n−3 diagonals are coloured red, so that no two diago-
nals of the same colour meet inside M . Find the maximum possible number of
intersection points of green and red diagonals inside M .

Solution. We start with some preliminary observations. It is well-known that
n−3 is the maximum number of nonintersecting diagonals in a convex n-gon and
that any such n−3 diagonals partition the n-gon into n−2 triangles. It is also
known (and not hard to show by induction) that at least two nonadjacent vertices
are then left free; that is, there are at least two diagonals cutting off triangles
from the n-gon.

Passing to the conditions of the problem, for any diagonal d, denote by f(d)
the number of green/red inresections lying on d. Take any pair of green diagonals
d, d′ and suppose there are k vertices, including the endpoints of d and d′, of the
part of M between d and d′. The remaining n−k vertices span a convex polygon
A. . .BC. . .D; here A and B are the vertices of M , adjacent to the endpoints of d,
outside the “part of M” just mentioned, and C and D are the vertices adjacent to
the endpoints of d′, also outside that part. (A, B can coincide, as well as C, D.)

Let m be the number of red segments in the polygon A. . .BC. . .D. Since this
(n−k)-gon has at most n−k−3 nonintersecting diagonals, we get

m ≤ (n−k−3) + 2;

the last ‘2’ comes from the segments AD and BC, which also can be red.

Each one of these m red segments intersects both d and d′. Each one of the
remaining n−3−m red segments can meet at most one of d, d′. Hence follows the
estimate

f(d) + f(d′) ≤ 2m+ (n−3−m) = n− 3 +m ≤ n− 3 + (n−k−1) = 2n− k − 4.

Now we pair the green diagonals in the following way: we choose any two
green diagonals that cut off two triangles from M ; they constitute the first pair
d1, d2. Then we choose two green diagonals that cut off two triangles from the
residual (n−2)-gon, to make up the second pair d3, d4, and so on; d2r−1, d2r are
the two diagonals in the r-th pairing. If n−3 is odd, the last green diagonal
remains unpaired.

The polygon obtained after the r-th pairing has n−2r vertices. Two sides
of that polygon are the two diagonals from that pairing; its remaining sides are
either sides of M or some of the green diagonals d1, . . . , d2r. There are at most
2r vertices of M outside the part of M between d2r−1 and d2r. Thus, denoting
by kr the number of vertices of that part, we have kr ≥ n− 2r.



Combinatorics 25

In view of the previous estimates, the number of intersection points on those
two diagonals satisfies the inequality

f(d2r−1) + f(d2r) ≤ 2n− kr − 4 ≤ n+ 2r − 4.

If n−3 is even, then d1, d2, . . . , dn−3 are all the green diagonals; and if n−3 is
odd, the last unpaired green diagonal can meet at most n−3 (i.e., all) red ones.
Thus, writing n− 3 = 2ℓ+ ε, ε ∈ {0, 1}, we conclude that the total number of
intersection points does not exceed the sum

ℓ
∑

r=1

(n+ 2r − 4) + ε · (n− 3) = ℓ(2ℓ+ ε− 1) + ℓ(ℓ+ 1) + ε(2ℓ+ ε)

= 3ℓ2 + ε(3ℓ+ 1) =

⌈

3

4

(

n− 3
)2
⌉

,

where ⌈t⌉ is the least integer not less than t. (For n = 4 the void sum
∑0

r=1

evaluates to 0.)

The following example shows that this value can be attained, for both n even
and n odd. Let PQ and RS be two sides of M chosen so that the diagonals QR
and SP do not meet and, moreover, so that: if U is the part of the boundary of
M between Q and R, and V is the part of the boundary of M between S and P
(S,P /∈ U , Q,R /∈ V ), then the numbers of vertices of M on U and on V differ
by at most 1.

Colour in green: the diagonal PR, all diagonals connecting P to vertices on U
and all diagonals connecting R to vertices on V .

Colour in red: the diagonal QS, all diagonals connecting Q to vertices on V
and all diagonals connecting S to vertices on U .

Then equality holds in the estimate above. In conclusion,
⌈

3
4

(

n− 3
)2⌉

is the
greatest number of intersection points available.

Comment. It seems that the easiest way to verify that these examples indeed
yield equality in the estimates obtained is to draw a diagram and visualise the
process of detaching the corner triangles in appropriate pairings; all inequalities
that appear in the arguments above turn into equalities. This is also the way (by
inspecting the detaching procedure) in which it is expected that the solver can
construct these examples.
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Geometry

G1. In a triangle ABC satisfying AB +BC = 3AC the incircle has centre I and
touches the sides AB and BC at D and E, respectively. Let K and L be the
symmetric points of D and E with respect to I. Prove that the quadrilateral
ACKL is cyclic.

Solution. Let P be the other point of intersection of BI with the circumcircle
of triangle ABC, let M be the midpoint of AC and N the projection of P to IK.
Since AB +BC = 3AC, we get BD = BE = AC, so BD = 2CM . Furthermore,
∠ABP = ∠ACP , therefore the triangles DBI and MCP are similar in ratio 2.

I
NL

K

P

M

E

D

B

A C

It is a known fact that PA = PI = PC. Moreover, ∠NPI = ∠DBI, so that
the triangles PNI and CMP are congruent. Hence ID = 2PM = 2IN ; i. e. N
is the midpoint of IK. This shows that PN is the perpendicular bisector of IK,
which gives PC = PK = PI. Analogously, PA = PL = PI. So P is the centre
of the circle through A, K, I, L and C.

Comment. Variations are possible here. One might for instance define N to
be the midpoint of IK and apply Ptolemy’s theorem to the quadrilateral BAPC
and deduce that the triangles NPI and DBI are similar in ratio 2 to conclude
that PN ⊥ IK.
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G2. Six points are chosen on the sides of an equilateral triangle ABC: A1, A2

on BC, B1, B2 on CA, and C1, C2 on AB, so that they are the vertices of a
convex hexagon A1A2B1B2C1C2 with equal side lengths. Prove that the lines
A1B2, B1C2 and C1A2 are concurrent.

First solution. Let P be the point inside triangle ABC such that the trian-
gle A1A2P is equilateral. Note that A1P ‖ C1C2 and A1P = C1C2, therefore
A1PC1C2 is a rhombus. Similarly, A2PB2B1 is also a rhombus. Hence, the trian-
gle C1B2P is equilateral. Let α = ∠B2B1A2, β = ∠B1A2A1 and γ = ∠C1C2A1.
Then α and β are external angles of the triangle CB1A2 with ∠C = 60◦, and
hence α+ β = 240◦. Note also that ∠B2PA2 = α and ∠C1PA1 = γ. So,

α+ γ = 360◦ − (∠C1PB2 + ∠A1PA2) = 240◦.

Hence, β = γ. Similarly, ∠C1B2B1 = β. Therefore the triangles A1A2B1,
B1B2C1 and C1C2A1 are congruent, which implies that the triangle A1B1C1

is equilateral. This shows that B1C2, A1B2 and C1A2 are the perpendicular
bisectors of A1C1, C1B1 and B1A1; hence the result.

Pγ

C
A1

B
A2

β

A

α

C1

B1

C2

B2

Second solution. Let α = ∠AC2B2, β = ∠AB1C1 and K be the intersec-
tion of B1C1 with B2C2. The triangles B1B2C1 and B2C1C2 are isosceles, so
∠B1C1B2 = β and ∠C2B2C1 = α.

Denoting further ∠B1C2B2 = ϕ and ∠C1B1C2 = ψ we get (from the trian-
gle AB1C2) α+ β + ϕ+ ψ = 120◦; and (from the triangles KB1C2, KC1B2)
α+ β = ϕ+ ψ. Then α+ β = 60◦, ∠C1KB2 = 120◦, and so the quadrilateral
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AB2KC1 is cyclic. Hence ∠KAC1 = α and ∠B2AK = β. From KC2 = KA =
KB1 and ∠B1KC2 = 120◦ we get ϕ = ψ = 30◦.

In the same way, one shows that ∠B2A1B1 = ∠C2B1A1 = 30◦. It follows that
A1B1B2C2 is a cyclic quadrilateral and since its opposite sides A1C2 and B1B2

have equal lengths, it is an isosceles trapezoid. This implies that A1B1 and C2B2

are parallel lines, hence ∠A1B1C2 = ∠B2C2B1 = 30◦.

Thus, B1C2 bisects the angle C1B1A1. Similarly, by cyclicity, C1A2 and A1B2

are the bisectors of the angles A1C1B1 andB1A1C1, therefore they are concurrent.

A2 A1

B

C1

α

A

Kβ

B2

C

α

ϕ

B1 ψ

C2

β

Third solution. Consider the six vectors of equal lengths, with zero sum:

u =
−−−→
B2C1, u

′ =
−−−→
C1C2, v =

−−−→
C2A1, v

′ =
−−−→
A1A2, w =

−−−→
A2B1, w

′ =
−−−→
B1B2.

Since u
′,v′,w′ clearly add up to zero vector, the same is true of u,v,w. So

u + v = −w.

The sum of two vectors of equal lengths is a vector of the same length only
if they make an angle of 120◦. This follows e. g. from the parallelogram inter-
pretation of vector addition or from the law of cosines. Therefore the three lines
B2C1, C2A1, A2B1 define an equilateral triangle.

Consequently the “corner” triangles AC1B2, BA1C2, CB1A2 are similar, and
in fact congruent, as B2C1 = C2A1 = A2B1. Thus the whole configuration is
invariant under rotation through 120◦ about O, the centre of the triangle ABC.

In view of the equalities ∠B2C1C2 = ∠C2A1A2 and ∠A1A2B1 = ∠B1B2C1

the line B1C2 is a symmetry axis of the hexagon A1A2B1B2C1C2, so it must pass
through the rotation centre O. In conclusion, the three lines in question concur
at O.
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G3. Let ABCD be a parallelogram. A variable line ℓ passing through the
point A intersects the rays BC and DC at points X and Y , respectively. Let
K and L be the centres of the excircles of triangles ABX and ADY , touching
the sides BX and DY , respectively. Prove that the size of angle KCL does not
depend on the choice of the line ℓ.

First solution. Let ∠BAX = 2α, ∠DAY = 2β. The points K and L lie on the
internal bisectors of the angles A in triangles ABX, ADY and on the external
bisectors of their angles B and D. Taking B ′ and D′ to be any points on the rays
AB and AD beyond B and D, we have

∠KAB = ∠KAX = α, ∠LAD = ∠LAY = β,

∠KBB′ =
1

2
∠BAD = α+ β = ∠LDD′, so ∠AKB = β, ∠ALD = α.

Let the bisector of angle BAD meet the circumcircle of triangle AKL at a second

point M . The vectors
−−→
BK,

−−→
AM ,

−→
DL are parallel and equally oriented.

X

A B

K

L

β

P

α
α

Q

B′

α+β

β β

α

C

Y

α+β

α

β

α
D

D′

M

Since K and L lie on distinct sides of AM , we see that AKML is a cyclic
convex quadrilateral, and hence

∠MKL = ∠MAL = ∠MAD − ∠LAD = α; likewise, ∠MLK = β.

Hence the triangles AKB, KLM , LAD are similar, so AK · LM = KB ·KL and
KM · LA = KL · LD. Applying Ptolemy’s theorem to the cyclic quadrilateral
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AKLM , we obtain

AM ·KL = AK · LM +KM · LA = (KB + LD) ·KL,

implying AM = BK +DL.

The convex quadrilateral BKLD is a trapezoid. Denoting the midpoints of
its sides BD and KL respectively by P and Q, we have

2 · PQ = BK +DL = AM ;

notice that the vector
−−→
PQ is also parallel to the three vectors mentioned earlier,

in particular to
−−→
AM , and equally oriented.

Now, P is also the midpoint of AC. It follows from the last few conclusions
that Q is the midpoint of side CM in the triangle ACM . So the segments KL
and CM have a common midpoint, which means that KCLM is a parallelogram.
Thus, finally,

∠KCL = ∠KML = 180◦ − (α+ β) = 180◦ − 1

2
∠BAD,

which is a constant value, depending on the parallelogram ABCD alone.

Second solution. Let the line AK meet DC at E, and let the line AL meet BC
at F . Denote again ∠BAX = 2α, ∠DAY = 2β. Then ∠BFA = β. Moreover,
∠KBF = (1/2)∠BAD = α+ β = ∠KAF . Since the points A and B lie on the
same side of the line KF , we infer that ABKF is a cyclic quadrilateral.

Speaking less rigourously, the points A, K, B, F are concyclic. The points E
and C lie on the lines AK and BF , and the segment EC is parallel to AB.
Therefore the points E, K, C, F lie on a circle, too; this follows easily from an
inspection of angles—one just has to consider three cases, according as two, one
or none of the points E, C lie(s) on the same side of line KF as the segment AB
does.

Analogously, the points F , L, C, E lie on a circle. Clearly C, K, L are three
distinct points. It follows that all five points C, E, F, K, L lie on a circle Ω.

From the cyclic quadrilateral ABKF we have ∠BFK = ∠BAK = α, which
combined with ∠BFA = β implies ∠KFA = α+ β. Since the points A, F, L
are in line, ∠KFL is either α+ β or 180◦ − (α+ β); and since K, C, F, L are
concyclic, also ∠KCL is either α+ β or 180◦ − (α+ β).

All that remains is to eliminate one of these two possibilities. To this effect,
we will show that the points A and C lie on the same side of the line KL.
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Assume without loss of generality that Y , the point where ℓ cuts the ray DC,
lies beyond C on that ray. Then so does E.

If also F lies on the ray BC beyond C then Ω does not penetrate the interior
of ABCD. Hence the line KL does not separate A from C. And if F lies on the
segment BC then L lies in the half-plane with edge BC, not containing A. Since
K also lies in that half-plane, and since L lies on the opposite side of the line DC
than A, this again implies that the line KL does not separate A from C.

Notice that the circle Ω intersects each one of the rays AK, AL at two
points (K, E, resp. L, F ), possibly coinciding. Thus A lies outside this cir-
cle. Knowing that C and A lie on the same side of the line KL, we infer that
∠KCL > ∠KAL = α+ β. This leaves the other possibility as the unique one:
∠KCL = 180◦ − (α+ β).

Y

B

K
β

β

X

Ω

β

A

α
α

D E

F

α

C

L

Comment. Alternatively, continuity argument could be applied. If ∠KCL
takes on only two values, it must be a constant.

In our attempt to stay within the realm of classical geometry, we were forced
to investigate the disposition of the points and lines in question. Notice that the
first solution is case-independent.

Other solutions are available by calculation, be it with complex numbers or
linear transformations in the coordinate plane; but no one of such approaches
seems to be straightforward.
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G4. Let ABCD be a fixed convex quadrilateral with BC = DA and BC not
parallel to DA. Let two variable points E and F lie on the sides BC and DA,
respectively, and satisfy BE = DF . The lines AC and BD meet at P , the
lines BD and EF meet at Q, the lines EF and AC meet at R. Prove that the
circumcircles of triangles PQR, as E and F vary, have a common point other
than P .

First solution. Let the perpendicular bisectors of the segments AC and BD
meet at O. We show that the circumcircles of triangles PQR pass through O,
which is fixed.

It follows from the equalities OA = OC, OB = OD and DA = BC that
the triangles ODA and OBC are congruent. So the rotation about the point O
through the angle BOD takes the point B to D and the point C to A. Since
BE = DF , the same rotation takes the point E to F . This implies that OE = OF
and

∠EOF = ∠BOD = ∠COA (= the angle of rotation) .

These equalities imply that the isosceles triangles EOF , BOD and COA are
similar.

F

D

X

C

P

R

A B

O E

Q

Suppose first that the three lines AB, CD and EF are not all parallel. Assume
without loss of generality that the lines EF and CD meet at X. From the
Menelaus theorem, applied to the triangles ACD and BCD, we obtain

AR

RC
=
AF

FD
· DX
XC

=
CE

EB
· DX
XC

=
DQ

QB
.
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In the case AB ‖ EF ‖ CD, the quadrilateral ABCD is an isosceles trapezoid,
and E, F are the midpoints of its lateral sides. The equality AR/RC = DQ/QB
is then obvious.

It follows from the this equality and the similitude of triangles BOD and COA
that the triangles BOQ and COR are similar. Thus ∠BQO = ∠CRO, which
means that the points P , Q, R and O are concyclic.

Second solution. This is just a variation of the preceding proof. As in the first
solution, we show that the triangles EOF , BOD and COA are similar. Denote
by K, L, M the feet of the perpendiculars from the point O onto the lines EF ,
BD, AC, respectively. In view of the similarity just mentioned,

OK

OE
=
OL

OB
=
OM

OC
= λ and ∠EOK = ∠BOL = ∠COM = ϕ .

Therefore the rotation about the point O through the angle ϕ, composed with
the homothety with centre O and ratio λ, takes the points B, E, C to the points
L, K, M , respectively. This implies that the points L, K, M are collinear. Hence
by the theorem about the Simson line we conclude that the circumcircle of PQR
passes through O.

Comment. The proposer observes that (as can be seen from the above solutions)
the point under discussion can also be identified as the second common point of
the circumcircles of triangles BCP and DAP .
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G5. Let ABC be an acute-angled triangle with AB 6= AC, let H be its ortho-
centre and M the midpoint of BC. Points D on AB and E on AC are such
that AE = AD and D, H, E are collinear. Prove that HM is orthogonal to the
common chord of the circumcircles of triangles ABC and ADE.

Solution. Let O and O1 be the circumcentres of the triangles ABC and ADE,
respectively. Since the radical axis of two circles is perpendicular to their line of
centres, we have to prove that OO1 is parallel to HM .

Consider the diameter AP of the circumcircle of ABC and let B1 and C1 be
the feet of the altitudes from B and C in the triangle ABC. Since AB ⊥ BP
and AC ⊥ CP , it follows that HC ‖ BP and HB ‖ CP . Thus BPCH is a par-
allelogram; as a consequence, HM cuts the circle at P .

C

O

A

B

Q

O1

P

HC1

D

E

B1

M

The triangle ADE is isosceles, so its circumcentre O1 lies on the bisector of
the angle BAC. We shall prove that the intersection Q of AO1 with HP is the
symmetric of A with respect to O1. The rays AH and AO are isogonal conjugates,
so the line AQ bisects ∠HAP . Then the bisector theorem in the triangle AHP
yields

QH

QP
=
AH

AP
.

Because ADE is an isosceles triangle, an easy angle computation shows that HD
bisects ∠C1HB. Hence the bisector theorem again gives

DC1

DB
=
HC1

HB
.
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Applying once more the fact that AH and AP are isogonal lines, we see that the
right triangles C1HA and CPA are similar, so

AH

AP
=
C1H

CP
=
C1H

BH
;

the last equality holds because BPCH is a parallelogram, so that PC = BH.

Summarizing, we conclude that

DC1

DB
=
QH

QP
,

that is, QD ‖ HC1. In the same way we obtain QE ‖ HB1. As a consequence,
AQ is a diameter of the circumcircle of triangle ADE, implying that O1 is the
midpoint of AQ. Thus OO1 ‖ PQ; that is, OO1 is parallel to HM .
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G6. The median AM of a triangle ABC intersects its incircle ω at K and L.
The lines through K and L parallel to BC intersect ω again at X and Y . The
lines AX and AY intersect BC at P and Q. Prove that BP = CQ.

First solution. Without loss of generality, one can assume the notation in
the figure. Let ω1 be the image of ω under the homothety with centre A and
ratio AM/AK. This homothety takes K to M and hence X to P , because
KX ‖ BC. So ω1 is a circle through M and P inscribed in ∠BAC. Denote its
points of tangency with AB and AC by U1 and V1, respectively. Analogously,
let ω2 be the image of ω under the homothety with center A and ratio AM/AL.
Then ω2 is a circle through M and Q also inscribed in ∠BAC. Let it touch AB
and AC at U2 and V2, respectively. Then U1U2 = V1V2, as U1U2 and V1V2 are
the common external tangents of ω1 and ω2.

K

X

Y

Q

N

U1U2

P

ω1

ω ω2

L

V2

A D B

E

C

M

V1

By the power-of-a-point theorem in ω1 and ω2, one has BP = BU 2
1 /BM and

CQ = CV 2
2 /CM . Since BM = CM , it suffices to show that BU1 = CV2.

Consider the second common point N of ω1 and ω2 (M and N may coincide,
in which case the “line MN” is the common tangent). Let the line MN meet AB
and AC at D and E, respectively. Clearly D is the midpoint of U1U2 because
DU2

1 = DM ·DN = DU 2
2 by the power-of-a-point theorem again. Likewise, E is

the midpoint of V1V2. Note that B and C are on different sides of DE, which
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reduces the problem to proving that BD = CE.

Since DE is perpendicular to the line of centres of ω1 and ω2, we have
∠ADM = ∠AEM . Then the law of sines for triangles BDM and CEM gives

BD =
BM sin ∠BMD

sin ∠BDM
=
BM sin ∠BMD

sin ∠ADM
, CE =

CM sin ∠CME

sin ∠AEM
.

Because BM = CM and ∠BMD = ∠CME, the conclusion follows.

Second solution. Let ω touch BC, CA and AB at D, E and F , respectively,
and let I be the incentre of triangle ABC. The key step of this solution is the
observation that the lines AM , EF and DI are concurrent.

B D

A

F

P C

U

Y

X

T
E

Q M

K

L Z

V

I

Indeed, suppose that EF and DI meet at T . Let the parallel through T
to BC meet AB and AC at U and V , respectively. One has IT ⊥ UV , and since
IE ⊥ AC, it follows that the points I, T , V and E are concyclic. Moreover, V
and E lie on the same side of the line IT , so that ∠IV T = ∠IET . By symmetry,
∠IUT = ∠IFT . But ∠IET = ∠IFT , hence UV I is an isosceles triangle with
altitude IT to its base UV . So T is the midpoint of UV , implying that AT
meets BC at its midpoint M .

Now observe that EF is the polar of A with respect to ω, therefore

AK

AL
=
TK

TL
.
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Furthermore, let LY meet AP at Z. Then

KX

LZ
=
AK

AL
.

The line IT is the common perpendicular bisector of KX and LY . As we have
shown, T lies on AM , i. e. on KL. Hence

KX

LY
=
TK

TL
.

The last three relations show that L is the midpoint of Y Z, so M is the midpoint
of PQ.
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G7. In an acute triangle ABC, let D, E, F , P , Q, R be the feet of perpendiculars
from A, B, C, A, B, C to BC, CA, AB, EF , FD, DE, respectively. Prove that
p(ABC)p(PQR) ≥ p(DEF )2, where p(T ) denotes the perimeter of the triangle T .

First solution. The points D, E and F are interior to the sides of triangle ABC
which is acute-angled. It is widely known that the triangles ABC and AEF are
similar. Equivalently, the lines BC and EF are antiparallel with respect to
the sides of ∠A. Similar conclusions hold true for the pairs of lines CA,FD
and AB,DE. This is a general property related to the feet of the altitudes in
every triangle. In particular, it follows that P , Q and R are interior to the
respective sides of triangle DEF .

P

A

L

E

R

K

Q

F

B D C

Let K and L be the feet of the perpendiculars from E and F to AB and AC,
respectively. By the remark above, KL and EF are antiparallel with respect to
the sides of the same ∠A. Therefore ∠AKL = ∠AEF = ∠ABC, meaning that
KL ‖ BC.

Now, EK and BQ are respective altitudes in the similar triangles AEF
and DBF , so they divide the opposite sides in the same ratio:

AK

KF
=
DQ

QF
.

This implies KQ ‖ AD. By symmetry, LR ‖ AD. Since KL is parallel to BC, it
is perpendicular to AD. It follows that QR ≥ KL.

From the similar triangles AKL, AEF , ABC we obtain

KL

EF
=
AK

AE
= cos ∠A =

AE

AB
=
EF

BC
.
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Hence QR ≥ EF 2/BC. Likewise, PQ ≥ DE2/AB and RP ≥ FD2/CA.

Therefore it suffices to show that

(AB +BC + CA)

(

DE2

AB
+
EF 2

BC
+
FD2

CA

)

≥ (DE + EF + FA)2,

which is a direct consequence of the Cauchy-Schwarz inequality.

Second solution. Let α = ∠A, β = ∠B, γ = ∠C. There is no loss of gener-
ality in assuming that triangle ABC has circumradius 1. The triangles AEF
and ABC are similar in ratio cosα, so EF = BC cosα = sin 2α. By symmetry,
FD = sin 2β, DE = sin 2γ. Next, since ∠BDF = ∠CDE = α, it follows that
DQ = BD cosα = AB cos β cosα = 2cosα cos β sin γ.

Similarly, DR = 2cosα sinβ cos γ. Now the law of cosines for triangle DQR
gives after short manipulation

QR = sin 2α
√

1− sin 2β sin 2γ.

Likewise, RP = sin 2β
√

1− sin 2γ sin 2α, PQ = sin 2γ
√

1− sin 2α sin 2β.

Therefore the given inequality is equivalent to

2
∑

sinα
∑

sin 2α
√

1− sin 2β sin 2γ ≥
(

∑

sin 2α
)2
,

where Σ means a cyclic sum over α, β, γ, the angles of an acute triangle. In view
of this, all trigonometric functions below are positive. To eliminate the square
roots, observe that

1− sin 2β sin 2γ = sin2(β − γ) + cos2 α ≥ cos2 α.

Hence it suffices to establish 2
∑

sinα
∑

sin 2α cosα ≥ (
∑

sin 2α)2. This is yet
another immediate consequence of the Cauchy-Schwarz inequality:

∑

2 sinα
∑

sin 2α cosα ≥
(

∑√
2 sinα

√
sin 2α cosα

)2
=

(

∑

sin 2α
)2
.

Third solution. A stronger conclusion is true, namely:

p(ABC)

p(DEF )
≥ 2 ≥ p(DEF )

p(PQR)
.

The left inequality is a known fact, so we consider only the right one.
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It is immediate that the points A, B and C are the excentres of triangle DEF .
Therefore P , Q and R are the tangency points of the excircles of this trian-
gle with its sides. For the sake of clarity, let us adopt the notation a = EF ,
b = FD, c = DE, α = ∠D, β = ∠E, γ = ∠F now for the sides and angles of trian-
gle DEF . Also, let s = (a+b+c)/2. Then ER = FQ = s− a, FP = DR = s− b,
DQ = EP = s− c.

Now we regard the line DE as an axis by choosing the direction from D to E
as the positive direction. The signed length of a line segment UV on this axis
will be denoted by UV . Let X and Y be the orthogonal projections onto DE
of P and Q, respectively. On one hand, DE = DY + Y X +XE. On the other
hand,

DY = DQ cosα, XE = EP cosβ.

Observe that these inequalities hold true in all cases, regardless of whether or not
α and β are acute. Finally, it is clear that Y X ≤ PQ. In conclusion,

DE = (s − c)(cosα+ cos β) + Y X ≤ (s− c)(cosα+ cos β) + PQ.

By symmetry,

EF ≤ (s− a)(cos β + cos γ) +QR, FD ≤ (s− b)(cos γ + cosα) +RP.

Adding up yields p(DEF ) ≤
∑

(s− c)(cosα+ cos β) + p(PQR), where again Σ
denotes a cyclic sum over α, β, γ. This sum is equal to a cosα+ b cos β + c cos γ,
since (s − b) + (s− c) = a, (s− c) + (s− a) = b, (s− a) + (s − b) = c.

Now it suffices to show that a cosα+ b cos β + c cos γ ≤ (1/2)p(DEF ). Sup-
pose that a ≤ b ≤ c; then cosα ≥ cos β ≥ cos γ, so one can apply Chebyshev’s
inequality to the triples (a, b, c) and (cosα, cos β, cos γ). This gives

a cosα+ b cos β + c cos γ ≤ 1

3
(a+ b+ c)(cosα+ cos β + cos γ).

But cosα+ cos β + cos γ ≤ 3/2 for every triangle, and the result follows.

Comment. This last solution shows that the proposed inequality splits into two
independent ones, which can be expressed in words:

In every triangle, the perimeter of its orthic triangle is not greater
than half the perimeter of the triangle itself, and the perimeter of its
Nagel triangle is not smaller than half the perimeter of the triangle
itself.

Whereas the first of these inequalities is indeed a very well-known fact, this seems
not to be the case with the second one.
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Number Theory

N1. Determine all positive integers relatively prime to all terms of the infinite
sequence an = 2n + 3n + 6n − 1 (n = 1, 2, 3, . . . ).

Solution. We claim that 1 is the only such number. This amounts to showing
that every prime p is a divisor of a certain an. This is true for p = 2 and p = 3
as a2 = 48.

Fix a prime p > 3. All congruences that follow are considered modulo p. By
Fermat’s little theorem, one has 2p−1 ≡ 1, 3p−1 ≡ 1, 6p−1 ≡ 1. Then the evident
congruence 3 + 2 + 1 ≡ 6 can be written as

3 · 2p−1 + 2 · 3p−1 + 6p−1 ≡ 6, or 6 · 2p−2 + 6 · 3p−2 + 6 · 6p−2 ≡ 6.

Simplifying by 6 shows that ap−2 = 2p−2 + 3p−2 + 6p−2 − 1 is divisible by p, and
the proof is complete.
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N2. Let a1, a2, . . . be a sequence of integers with infinitely many positive and
infinitely many negative terms. Suppose that for every positive integer M the
numbers a1, a2, . . . , aM leave different remainders upon division by M . Prove
that every integer occurs exactly once in the sequence a1, a2, . . . .

Solution. The hypothesis of the problem can be reformulated by saying that
for every positive integer M the numbers a1, a2, . . . , aM form a complete system
of residue classes modulo M . Note that if i < j then ai 6= aj, otherwise the set
{a1, . . . , aj} would contain at most j−1 distinct residues modulo j. Furthermore,
if i < j ≤ n, then |ai−aj| ≤ n−1, for ifm = |ai−aj| ≥ n, then the set {a1, . . . , am}
would contain two numbers congruent modulo m, which is impossible.

Given any n ≥ 1, let i(n), j(n) be the indices such that ai(n), aj(n) are re-
spectively the smallest and the largest number among a1, . . . , an. The above
arguments show that |ai(n)−aj(n)| = n−1, therefore the set {a1, . . . , an} consists
of all integers between ai(n) and aj(n).

Now let x be an arbitrary integer. Since ak < 0 for infinitely many k and
the terms of the sequence are distinct, we conclude that there exists i such that
ai < x. By a similar argument, there exists j such that x < aj . Hence, if
n > max{i, j}, we conclude that every number between ai and aj (x in particular)
is in {a1, . . . , an}.

Comment. Proving that for every M the set {a1, . . . , aM} is a block of consec-
utive integers can be also achieved by induction.
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N3. Let a, b, c, d, e and f be positive integers. Suppose that the sum
S = a+ b+ c+ d+ e+ f divides both abc+ def and ab+ bc+ ca− de− ef − fd.
Prove that S is composite.

Solution. By hypothesis, all coefficients of the quadratic polynomial

f(x) = (x+ a)(x+ b)(x+ c)− (x− d)(x− e)(x− f)

= Sx2 + (ab+ bc+ ca− de− ef − fd)x+ (abc+ def)

are multiples of S. Evaluating f at d we get that f(d) = (a+ d)(b+ d)(c+d) is a
multiple of S. This readily implies that S is composite because each of a+d, b+d
and c+ d is less than S.
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N4. Find all positive integers n > 1 for which there exists a unique integer a
with 0 < a ≤ n! such that an + 1 is divisible by n! .

Solution. The answer is “n is prime.”

If n = 2, the only solution is a = 1. If n > 2 is even, then an is a square,
therefore an + 1 is congruent to 1 or 2 modulo 4, while n! is divisible by 4. So
there is no appropriate a in this case.

From now on, n is odd. Assume that n = p is a prime and that p! | ap + 1 for
some a, 0 < a ≤ p!. By Fermat’s little theorem, ap + 1 ≡ a + 1 (mod p). So, if
p does not divide a+ 1, then ap−1 + · · ·+ a+ 1 = (ap + 1)/(a + 1) ≡ 1 (mod p),
which is a contradiction. Thus, p | a+ 1.

We shall show that (ap + 1)/(a+ 1) has no prime divisors q < p. This will be
enough to deduce the uniqueness of a. Indeed, the relation

(p− 1)! | (a+ 1)

(

ap + 1

a+ 1

)

forces (p− 1)! | a+ 1. Combined with p | a+ 1, this leads to p! | a+ 1, and hence
showing a = p!− 1.

Suppose on the contrary that q | (ap + 1)/(a+ 1), where q < p is prime. Note
that q is odd. We get ap ≡ −1 (mod q), therefore a2p ≡ 1 (mod q). Clearly,
q is coprime to a, so aq−1 ≡ 1 (mod q). Writing d = gcd(q − 1, 2p), we obtain
ad ≡ 1 (mod q). Since q < p, we have d = 2. Hence, a ≡ ±1 (mod q). The case
a ≡ 1 (mod q) gives (ap + 1)/(a+ 1) ≡ 1 (mod q), which is impossible. The case
a ≡ −1 (mod q) gives

ap + 1

a+ 1
≡ ap−1 − ap−2 + · · ·+ 1

≡ (−1)p−1 − (−1)p−2 + · · · + 1 ≡ p (mod q),

leading to q | p which is not possible as q < p. So, we see that primes fulfill the
conditions under discussion.

It remains to deal with the case when n is odd and composite. Let p < n be
the least prime divisor of n. Let pα be the highest power of p which divides n!.
Since 2p < p2 ≤ n, we have n! = 1 . . . p . . . (2p) . . . , so α ≥ 2. Write m = n!/pα,
and take any integer a satisfying

a ≡ −1
(

mod pα−1m
)

. (1)

Write a = −1 + pα−1k. Then

ap = (−1 + pα−1k)p = −1 + pαk + pα
p

∑

j=2

(−1)p−j

(

p

j

)

pj(α−1)kj = −1 + pαM,
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where M is an integer because j(α − 1) ≥ α for all j ≥ 2 and α ≥ 2. Thus pα

divides ap + 1, and hence also an + 1, because p | n and n is odd. Furthermore, m
too is a divisor of a+ 1, and hence of an + 1. Since m is coprime to p, (an +1)/n!
is an integer for all a satisfying congruence (1). Since it is clear that there are
p > 2 integers in the interval [1, n!] satisfying (1), we conclude that composite
values of n do not satisfy the condition given in the problem.

Comment. The fact that no prime divisor of (ap + 1)/(a+ 1) is smaller than p
is not a mere curiosity. More is true and can be deduced easily from the above
proof, namely that if q is a prime factor of the above number, then either q = p
(and this happens if and only if p | a+ 1) or q ≡ 1 (mod p).
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N5. Denote by d(n) the number of divisors of the positive integer n. A positive
integer n is called highly divisible if d(n) > d(m) for all positive integers m < n.
Two highly divisible integers m and n with m < n are called consecutive if there
exists no highly divisible integer s satisfying m < s < n.

(a) Show that there are only finitely many pairs of consecutive highly divisible
integers of the form (a, b) with a | b.

(b) Show that for every prime number p there exist infinitely many positive
highly divisible integers r such that pr is also highly divisible.

Solution. This problem requires an analysis of the structure of the highly divis-
ible integers. Recall that if n has prime factorization

n =
∏

pαp(n)||n

pαp(n),

where p stands for a prime, then d(n) =
∏

pαp ||n(αp(n) + 1).

Let us start by noting that since d(n) takes arbitrarily large values (think of
d(m!), for example, for arbitrary large m’s), there exist infinitely many highly
divisible integers. Furthermore, it is easy to see that if n is highly divisible and

n = 2α2(n)3α3(n) . . . pαp(n),

then α2(n) ≥ · · · ≥ αp(n). Thus, if q < p are primes and p | n, then q | n.

We show that for every prime p all but finitely many highly divisible integers
are multiples of p. This is obviously so for p = 2. Assume that this were not
so, that p is the rth prime (r > 1), and that n is one of the infinitely many
highly divisible integers whose largest prime factor is less than p. For such an n,
(α2(n) + 1)r−1 ≥ d(n), therefore α2(n) takes arbitrarily large values. Let n be
such that 2α2(n)−1 > p2 and look at m = np/2⌊α2(n)/2⌋. Clearly, m < n, while

d(m) = 2d(n)
α2(n)− ⌊α2(n)/2⌋ + 1

α2(n) + 1
> d(n)

contradicting the fact that n is highly divisible.

We now show a stronger property, namely that for any prime p and constant
κ, there are only finitely many highly divisible positive integers n such that
αp(n) ≤ κ. Indeed, assume that this were not so. Let κ be a constant such that
αp(n) ≤ κ for infinitely many highly divisible n. Let q be a large prime satisfying
q > p2κ+1. All but finitely many such positive integers n are multiples of q. Look
at the number m = pαp(n)αq(n)+αp(n)+αq(n)n/qαq(n). An immediate calculation
shows that d(m) = d(n), therefore m > n. Thus,

p2αp(n)αq(n)+αq(n) ≥ pαp(n)αq(n)+αq(n)+αp(n) > qαq(n),
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giving p2αp(n)+1 > q > p2κ+1, and we get a contradiction with the fact that
αp(n) ≤ κ.

We are now ready to prove both (a) and (b). For (a), let n be highly divisible
and such that α3(n) ≥ 8. All but finitely many highly divisible integers n have
this property. Now 8n/9 is an integer and 8n/9 < n, therefore d(8n/9) < d(n).
This implies

(α2(n) + 4)(α3(n)− 1) < (α2(n) + 1)(α3(n) + 1),

which is equivalent to

3α3(n)− 5 < 2α2(n). (1)

Assume now that n | m are consecutive and highly divisible. Since already
d(2n) > d(n), we get that there must be a highly divisible integer in (n, 2n].
Thus m = 2n, leading to d(3n/2) ≤ d(n) (or else there must be a highly divisible
number between n and 3n/2). This gives

α2(n)(α3(n) + 2) ≤ (α2(n) + 1)(α3(n) + 1),

which is equivalent to

α2(n) ≤ α3(n) + 1,

which together with α3(n) ≥ 8 contradicts inequality (1). This proves (a).

For part (b), let k be any positive integer and look at the smallest highly
divisible positive integer n such that αp(n) ≥ k. All but finitely many highly
divisible integers n satisfy this last inequality. We claim that n/p is also highly
divisible. If this were not so, then there would exist a highly divisible positive
integer m < n/p with d(m) ≥ d(n/p). Note that, by assumption, αp(m) < αp(n).
Then,

d(mp) = d(m)
αp(m) + 2

αp(m) + 1
≥ d(n/p)

αp(n) + 1

αp(n)
= d(n),

where for the above inequality we used the fact that the function (x + 1)/x is
decreasing. However, mp < n, so the above inequality contradicts the fact that
n is highly divisible. This contradiction shows that n/p is highly divisible, and
since k can be taken to be arbitrarily large, we get infinitely many examples of
highly divisible integers n such that n/p is also highly divisible.

Comment. The notion of a highly divisible integer first appeared in a paper
of Ramanujan in 1915. Eric Weinstein’s World of Mathematics has one web
page mentioning some properties of these numbers (called highly composite) and
giving some bibliographical references, while Ross Honsberger’s Mathematical
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Gems (Third Edition) has a chapter dedicated to them. In spite of all these
references, the properties of these numbers mentioned in the above sources have
little relevance for the problem at hand and we believe that if given to the exam,
the students who have seen these numbers before will not have any significant
advantage over the ones who encounter them for the first time.
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N6. Let a and b be positive integers such that an + n divides bn + n for every
positive integer n. Show that a = b.

Solution. Assume that b 6= a. Taking n = 1 shows that a+ 1 divides b+ 1, so
that b ≥ a. Let p > b be a prime and let n be a positive integer such that

n ≡ 1 (mod p− 1) and n ≡ −a (mod p).

Such an n exists by the Chinese remainder theorem. (Without the Chinese re-
mainder theorem, one could notice that n = (a+1)(p− 1)+1 has this property.)

By Fermat’s little theorem, an = a(ap−1 · · · ap−1) ≡ a (mod p), and therefore
an + n ≡ 0 (mod p). So p divides the number an + n, hence also bn + n. However,
by Fermat’s little theorem again, we have analogously bn + n ≡ b− a (mod p).
We are therefore led to the conclusion p | b− a, which is a contradiction.

Comment. The first thing coming to mind is to show that a and b share the
same prime divisors. This is easily established by using Fermat’s little theorem
or Wilson’s theorem. However, we know of no solution which uses this fact in
any meaningful way.

For the conclusion to remain true, it is not sufficient that an +n | bn +n holds
for infinitely many n. Indeed, take a = 1 and any b > 1. The given divisibility
relation holds for all positive integers n of the form p− 1, where p > b is a prime,
but a 6= b.
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N7. Let P (x) = anx
n + an−1x

n−1 + · · · + a0, where a0, . . . , an are integers,
an > 0, n ≥ 2. Prove that there exists a positive integer m such that P (m!) is a
composite number.

Solution. We may assume that a0 = ±1, otherwise the conclusion is immediate.
Observe that if p > k ≥ 1 and p is a prime then

(p− k)! ≡ (−1)k ((k − 1)!)−1 (mod p), (1)

where t−1 denotes the multiplicative inverse (mod p) of t. Indeed, this is proved
by writing

(p− 1)! = (p− k)![p− (k − 1)][p− (k − 2)] · · · (p− 1),

reducing modulo p and using Wilson’s theorem. With (1) in mind, we see that
it might be worth looking at the rational numbers

P

(

(−1)k

(k − 1)!

)

=
(−1)kn

((k − 1)!)n
Q((−1)k(k − 1)!),

where Q(x) = an + an−1x+ · · ·+ a0x
n.

If k − 1 > a2
n, then an | (k − 1)! and (k − 1)!/an = 1 · 2 · · · (a2

n/an) · · · (k − 1)
is divisible by all primes ≤ k − 1. Hence, for such k we have Q((k − 1)!) = anbk,
where bk = 1+ an−1(k− 1)!/an + · · · has no prime factors ≤ k− 1. Clearly, Q(x)
is not a constant polynomial, because its leading term is a0 = ±1. Therefore
|Q((k − 1)!)| becomes arbitrarily large when k is large, and so does |bk|. In
particular, |bk| > 1 if k is large enough.

Take such an even k and choose any prime factor p of bk. The above argument,
combined with (1), shows that p > k and that P ((p− k)!) ≡ 0 (mod p).

In order to complete the proof, we only need to ensure that k can be chosen so
that |P ((p−k)!)| > p. We do not know p, but we know that p ≥ k. Our best bet
is to take k such that the first possible prime following k is “far away” from it;
i. e., p−k is large. For this, we may choose k = m!, where m = q−1 > 2 and q is a
prime. Thenm! is composite, m!+1 is also composite (because m!+1 > m+1 = q
and m! + 1 is a multiple of q by Wilson’s theorem), and m! + ℓ is also composite
for all ℓ = 2, . . . ,m. So, p = m! +m+ t for some t ≥ 1, therefore p− k = m+ t.
For large m,

P ((p− k)!) = P ((m+ t)!) >
(m+ t)!

2
,

because an > 0. So it suffices to observe that

(m+ t)!

2
> m! +m+ t,

which is obviously true for m large enough and t ≥ 1.
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Algebra

A1. A sequence of real numbers a0, a1, a2, . . . is defined by the formula

ai+1 = ⌊ai⌋ · 〈ai〉 for i ≥ 0;

here a0 is an arbitrary real number, ⌊ai⌋ denotes the greatest integer not exceeding ai, and
〈ai〉 = ai − ⌊ai⌋. Prove that ai = ai+2 for i sufficiently large.

(Estonia)

Solution. First note that if a0 ≥ 0, then all ai ≥ 0. For ai ≥ 1 we have (in view of 〈ai〉 < 1
and ⌊ai⌋ > 0)

⌊ai+1⌋ ≤ ai+1 = ⌊ai⌋ · 〈ai〉 < ⌊ai⌋;
the sequence ⌊ai⌋ is strictly decreasing as long as its terms are in [1,∞). Eventually there
appears a number from the interval [0, 1) and all subsequent terms are 0.

Now pass to the more interesting situation where a0 < 0; then all ai ≤ 0. Suppose the
sequence never hits 0. Then we have ⌊ai⌋ ≤ −1 for all i, and so

1 + ⌊ai+1⌋ > ai+1 = ⌊ai⌋ · 〈ai〉 > ⌊ai⌋;

this means that the sequence ⌊ai⌋ is nondecreasing. And since all its terms are integers from
(−∞,−1], this sequence must be constant from some term on:

⌊ai⌋ = c for i ≥ i0 ; c a negative integer.

The defining formula becomes

ai+1 = c · 〈ai〉 = c(ai − c) = cai − c2.

Consider the sequence

bi = ai −
c2

c− 1
. (1)

It satisfies the recursion rule

bi+1 = ai+1 −
c2

c− 1
= cai − c2 − c2

c− 1
= cbi,

implying
bi = ci−i0bi0 for i ≥ i0. (2)

Since all the numbers ai (for i ≥ i0) lie in [c, c+1), the sequence (bi) is bounded. The equation
(2) can be satisfied only if either bi0 = 0 or |c| = 1, i.e., c = −1.
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In the first case, bi = 0 for all i ≥ i0, so that

ai =
c2

c− 1
for i ≥ i0.

In the second case, c = −1, equations (1) and (2) say that

ai = −
1

2
+ (−1)i−i0bi0 =

{

ai0 for i = i0, i0 + 2, i0 + 4, . . . ,

1− ai0 for i = i0 + 1, i0 + 3, i0 + 5, . . . .

Summarising, we see that (from some point on) the sequence (ai) either is constant or takes
alternately two values from the interval (−1, 0). The result follows.
Comment. There is nothing mysterious in introducing the sequence (bi). The sequence (ai) arises by
iterating the function x 7→ cx− c2 whose unique fixed point is c2/(c − 1).
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A2. The sequence of real numbers a0, a1, a2, . . . is defined recursively by

a0 = −1,
n∑

k=0

an−k
k + 1

= 0 for n ≥ 1.

Show that an > 0 for n ≥ 1.
(Poland)

Solution. The proof goes by induction. For n = 1 the formula yields a1 = 1/2. Take n ≥ 1,
assume a1, . . . , an > 0 and write the recurrence formula for n and n + 1, respectively as

n∑

k=0

ak
n− k + 1

= 0 and
n+1∑

k=0

ak
n− k + 2

= 0.

Subtraction yields

0 = (n+ 2)

n+1∑

k=0

ak
n− k + 2

− (n + 1)

n∑

k=0

ak
n− k + 1

= (n+ 2)an+1 +
n∑

k=0

(
n+ 2

n− k + 2
− n+ 1

n− k + 1

)

ak.

The coefficient of a0 vanishes, so

an+1 =
1

n+ 2

n∑

k=1

(
n + 1

n− k + 1
− n + 2

n− k + 2

)

ak =
1

n + 2

n∑

k=1

k

(n− k + 1)(n− k + 2)
ak.

The coefficients of a1, , . . . , an are all positive. Therefore, a1, . . . , an > 0 implies an+1 > 0.

Comment. Students familiar with the technique of generating functions will immediately recognise
∑
anx

n as the power series expansion of x/ ln(1− x) (with value −1 at 0). But this can be a trap;
attempts along these lines lead to unpleasant differential equations and integrals hard to handle. Using
only tools from real analysis (e.g. computing the coefficients from the derivatives) seems very difficult.

On the other hand, the coefficients can be approached applying complex contour integrals and some
other techniques from complex analysis and an attractive formula can be obtained for the coefficients:

an =

∫ ∞

1

dx

xn
(
π2 + log2(x− 1)

) (n ≥ 1)

which is evidently positive.
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A3. The sequence c0, c1, . . . , cn, . . . is defined by c0 = 1, c1 = 0 and cn+2 = cn+1 + cn for n ≥ 0.
Consider the set S of ordered pairs (x, y) for which there is a finite set J of positive integers
such that x =

∑

j∈J cj, y =
∑

j∈J cj−1. Prove that there exist real numbers α, β and m,M with
the following property: An ordered pair of nonnegative integers (x, y) satisfies the inequality

m < αx+ βy < M

if and only if (x, y) ∈ S.
N. B. A sum over the elements of the empty set is assumed to be 0.

(Russia)

Solution. Let ϕ = (1 +
√
5)/2 and ψ = (1−

√
5)/2 be the roots of the quadratic equation

t2 − t− 1 = 0. So ϕψ = −1, ϕ+ ψ = 1 and 1 + ψ = ψ2. An easy induction shows that the
general term cn of the given sequence satisfies

cn =
ϕn−1 − ψn−1

ϕ− ψ
for n ≥ 0.

Suppose that the numbers α and β have the stated property, for appropriately chosenm andM .
Since (cn, cn−1) ∈ S for each n, the expression

αcn + βcn−1 =
α√
5

(
ϕn−1 − ψn−1

)
+

β√
5

(
ϕn−2 − ψn−2

)
=

1√
5

[
(αϕ+ β)ϕn−2 − (αψ + β)ψn−2

]

is bounded as n grows to infinity. Because ϕ > 1 and −1 < ψ < 0, this implies αϕ+ β = 0.
To satisfy αϕ+ β = 0, one can set for instance α = ψ, β = 1. We now find the required m

and M for this choice of α and β.
Note first that the above displayed equation gives cnψ+ cn−1 = ψn−1, n ≥ 1. In the sequel,

we denote the pairs in S by (aJ , bJ), where J is a finite subset of the set N of positive integers
and aJ =

∑

j∈J cj , bJ =
∑

j∈J cj−1 . Since ψaJ + bJ =
∑

j∈J(cjψ + cj−1), we obtain

ψaJ + bJ =
∑

j∈J

ψj−1 for each (aJ , bJ) ∈ S. (1)

On the other hand, in view of −1 < ψ < 0,

−1 = ψ

1− ψ2
=

∞∑

j=0

ψ2j+1 <
∑

j∈J

ψj−1 <
∞∑

j=0

ψ2j =
1

1− ψ2
= 1− ψ = ϕ.

Therefore, according to (1),

−1 < ψaJ + bJ < ϕ for each (aJ , bJ ) ∈ S.

Thus m = −1 and M = ϕ is an appropriate choice.
Conversely, we prove that if an ordered pair of nonnegative integers (x, y) satisfies the

inequality −1 < ψx+ y < ϕ then (x, y) ∈ S.
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Lemma. Let x, y be nonnegative integers such that −1 < ψx+ y < ϕ. Then there exists a
subset J of N such that

ψx+ y =
∑

j∈J

ψj−1 (2)

Proof. For x = y = 0 it suffices to choose the empty subset of N as J , so let at least one of x, y
be nonzero. There exist representations of ψx+ y of the form

ψx+ y = ψi1 + · · ·+ ψik

where i1 ≤ · · · ≤ ik is a sequence of nonnegative integers, not necessarily distinct. For instance,
we can take x summands ψ1 = ψ and y summands ψ0 = 1. Consider all such representations
of minimum length k and focus on the ones for which i1 has the minimum possible value j1.
Among them, consider the representations where i2 has the minimum possible value j2. Upon
choosing j3, . . . , jk analogously, we obtain a sequence j1 ≤ · · · ≤ jk which clearly satisfies
ψx+ y =

∑k

r=1 ψ
jr . To prove the lemma, it suffices to show that j1, . . . , jk are pairwise distinct.

Suppose on the contrary that jr = jr+1 for some r = 1, . . . , k − 1. Let us consider the
case jr ≥ 2 first. Observing that 2ψ2 = 1 + ψ3, we replace jr and jr+1 by jr − 2 and jr + 1,
respectively. Since

ψjr + ψjr+1 = 2ψjr = ψjr−2(1 + ψ3) = ψjr−2 + ψjr+1,

the new sequence also represents ψx+ y as needed, and the value of ir in it contradicts the
minimum choice of jr.

Let jr = jr+1 = 0. Then the sum ψx+ y =
∑k

r=1 ψ
jr contains at least two summands equal

to ψ0 = 1. On the other hand js 6= 1 for all s, because the equality 1 + ψ = ψ2 implies that a
representation of minimum length cannot contain consecutive ir’s. It follows that

ψx+ y =
k∑

r=1

ψjr > 2 + ψ3 + ψ5 + ψ7 + · · · = 2− ψ2 = ϕ,

contradicting the condition of the lemma.
Let jr = jr+1 = 1; then

∑k

r=1 ψ
jr contains at least two summands equal to ψ1 = ψ. Like in

the case jr = jr+1 = 0, we also infer that js 6= 0 and js 6= 2 for all s. Therefore

ψx+ y =

k∑

r=1

ψjr < 2ψ + ψ4 + ψ6 + ψ8 + · · · = 2ψ − ψ3 = −1,

which is a contradiction again. The conclusion follows. �

Now let the ordered pair (x, y) satisfy −1 < ψx+ y < ϕ; hence the lemma applies to (x, y).
Let J ⊂ N be such that (2) holds. Comparing (1) and (2), we conclude that ψx+ y = ψaJ + bJ .
Now, x, y, aJ and bJ are integers, and ψ is irrational. So the last equality implies x = aJ and
y = bJ . This shows that the numbers α = ψ, β = 1, m = −1, M = ϕ meet the requirements.

Comment. We present another way to prove the lemma, constructing the set J inductively. For
x = y = 0, choose J = ∅. We induct on n = 3x+ 2y. Suppose that an appropriate set J exists when
3x+ 2y < n. Now assume 3x+ 2y = n > 0. The current set J should be

either 1 ≤ j1 < j2 < · · · < jk or j1 = 0, 1 ≤ j2 < · · · < jk.

These sets fulfil the condition if

ψx+ y

ψ
= ψi1−1 + · · · + ψik−1 or

ψx+ y − 1

ψ
= ψi2−1 + · · ·+ ψik−1,
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respectively; therefore it suffices to find an appropriate set for ψx+y
ψ

or ψx+y−1
ψ

, respectively.

Consider ψx+y
ψ

. Knowing that

ψx+ y

ψ
= x+ (ψ − 1)y = ψy + (x− y),

let x′ = y, y′ = x− y and test the induction hypothesis on these numbers. We require ψx+y
ψ

∈ (−1, ϕ)
which is equivalent to

ψx+ y ∈ (ϕ · ψ, (−1) · ψ) = (−1,−ψ). (3)

Relation (3) implies y′ = x − y ≥ −ψx − y > ψ > −1; therefore x′, y′ ≥ 0. Moreover, we have
3x′ + 2y′ = 2x + y ≤ 2

3n; therefore, if (3) holds then the induction applies: the numbers x′, y′ are
represented in the form as needed, hence x, y also.

Now consider ψx+y−1
ψ

. Since

ψx+ y − 1

ψ
= x+ (ψ − 1)(y − 1) = ψ(y − 1) + (x− y + 1),

we set x′ = y − 1 and y′ = x− y + 1. Again we require that ψx+y−1
ψ

∈ (−1, ϕ), i.e.

ψx+ y ∈ (ϕ · ψ + 1, (−1) · ψ + 1) = (0, ϕ). (4)

If (4) holds then y − 1 ≥ ψx+ y − 1 > −1 and x− y+1 ≥ −ψx− y+1 > −ϕ+1 > −1, therefore
x′, y′ ≥ 0. Moreover, 3x′ + 2y′ = 2x+ y − 1 < 2

3n and the induction works.
Finally, (−1,−ψ) ∪ (0, ϕ) = (−1, ϕ) so at least one of (3) and (4) holds and the induction step is

justified.
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A4. Prove the inequality

∑

i<j

aiaj
ai + aj

≤ n

2(a1 + a2 + · · ·+ an)

∑

i<j

aiaj

for positive real numbers a1, a2, . . . , an.
(Serbia)

Solution 1. Let S =
∑

i ai. Denote by L and R the expressions on the left and right hand
side of the proposed inequality. We transform L and R using the identity

∑

i<j

(ai + aj) = (n− 1)
∑

i

ai. (1)

And thus:

L =
∑

i<j

aiaj
ai + aj

=
∑

i<j

1

4

(

ai + aj −
(ai − aj)

2

ai + aj

)

=
n− 1

4
· S − 1

4

∑

i<j

(ai − aj)
2

ai + aj
. (2)

To represent R we express the sum
∑

i<j

aiaj in two ways; in the second transformation

identity (1) will be applied to the squares of the numbers ai:

∑

i<j

aiaj =
1

2

(

S2 −
∑

i

a2
i

)

;

∑

i<j

aiaj =
1

2

∑

i<j

(

a2
i + a2

j − (ai − aj)
2
)

=
n− 1

2
·
∑

i

a2
i −

1

2

∑

i<j

(ai − aj)
2.

Multiplying the first of these equalities by n− 1 and adding the second one we obtain

n
∑

i<j

aiaj =
n− 1

2
· S2 − 1

2

∑

i<j

(ai − aj)
2.

Hence

R =
n

2S

∑

i<j

aiaj =
n− 1

4
· S − 1

4

∑

i<j

(ai − aj)
2

S
. (3)

Now compare (2) and (3). Since S ≥ ai + aj for any i < j, the claim L ≥ R results.
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Solution 2. Let S = a1 + a2 + · · ·+ an. For any i 6= j,

4
aiaj
ai + aj

= ai + aj −
(ai − aj)

2

ai + aj
≤ ai + aj −

(ai − aj)
2

a1 + a2 + · · ·+ an
=

∑

k 6=i

aiak +
∑

k 6=j

ajak + 2aiaj

S
.

The statement is obtained by summing up these inequalities for all pairs i, j:

∑

i<j

aiaj
ai + aj

=
1

2

∑

i

∑

j 6=i

aiaj
ai + aj

≤ 1

8S

∑

i

∑

j 6=i

(

∑

k 6=i

aiak +
∑

k 6=j

ajak + 2aiaj

)

=
1

8S

(

∑

k

∑

i6=k

∑

j 6=i

aiak +
∑

k

∑

j 6=k

∑

i6=j

ajak +
∑

i

∑

j 6=i

2aiaj

)

=
1

8S

(

∑

k

∑

i6=k

(n− 1)aiak +
∑

k

∑

j 6=k

(n− 1)ajak +
∑

i

∑

j 6=i

2aiaj

)

=
n

4S

∑

i

∑

j 6=i

aiaj =
n

2S

∑

i<j

aiaj .

Comment. Here is an outline of another possible approach. Examine the function R− L subject to
constraints

∑

i ai = S,
∑

i<j aiaj = U for fixed constants S,U > 0 (which can jointly occur as values
of these symmetric forms). Suppose that among the numbers ai there are some three, say ak, al, am
such that ak < al ≤ am. Then it is possible to decrease the value of R− L by perturbing this triple so
that in the new triple a′k, a

′
l, a

′
m one has a′k = a′l ≤ a′m, without touching the remaining ais and without

changing the values of S and U ; this requires some skill in algebraic manipulations. It follows that
the constrained minimum can be only attained for n− 1 of the ais equal and a single one possibly
greater. In this case, R− L ≥ 0 holds almost trivially.
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A5. Let a, b, c be the sides of a triangle. Prove that

√
b+ c− a√

b+
√
c−

√
a
+

√
c+ a− b√

c+
√
a−

√
b
+

√
a + b− c√

a +
√
b−

√
c
≤ 3.

(Korea)

Solution 1. Note first that the denominators are all positive, e.g.
√
a +

√
b >

√
a+ b >

√
c.

Let x =
√
b+

√
c−

√
a, y =

√
c+

√
a−

√
b and z =

√
a+

√
b−

√
c. Then

b+ c− a =

(
z + x

2

)2

+

(
x+ y

2

)2

−
(
y + z

2

)2

=
x2 + xy + xz − yz

2
= x2 − 1

2
(x− y)(x− z)

and √
b+ c− a√

b+
√
c−

√
a
=

√

1− (x− y)(x− z)

2x2
≤ 1− (x− y)(x− z)

4x2
,

applying
√
1 + 2u ≤ 1 + u in the last step. Similarly we obtain

√
c+ a− b√

c+
√
a−

√
b
≤ 1− (z − x)(z − y)

4z2
and

√
a+ b− c√

a+
√
b−

√
c
≤ 1− (y − z)(y − x)

4y2
.

Substituting these quantities into the statement, it is sufficient to prove that

(x− y)(x− z)

x2
+
(y − z)(y − x)

y2
+
(z − x)(z − y)

z2
≥ 0. (1)

By symmetry we can assume x ≤ y ≤ z. Then

(x− y)(x− z)

x2
=
(y − x)(z − x)

x2
≥ (y − x)(z − y)

y2
= −(y − z)(y − x)

y2
,

(z − x)(z − y)

z2
≥ 0

and (1) follows.

Comment 1. Inequality (1) is a special case of the well-known inequality

xt(x− y)(x− z) + yt(y − z)(y − x) + zt(z − x)(z − y) ≥ 0

which holds for all positive numbers x, y, z and real t; in our case t = −2. Case t > 0 is called Schur’s
inequality. More generally, if x ≤ y ≤ z are real numbers and p, q, r are nonnegative numbers such
that q ≤ p or q ≤ r then

p(x− y)(x− z) + q(y − z)(y − x) + r(z − x)(z − y) ≥ 0.
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Comment 2. One might also start using Cauchy–Schwarz’ inequality (or the root mean square
vs. arithmetic mean inequality) to the effect that

(
∑

√
b+ c− a√

b+
√
c−

√
a

)2

≤ 3 ·
∑ b+ c− a

(√
b+

√
c−

√
a
)2 , (2)

in cyclic sum notation. There are several ways to prove that the right-hand side of (2) never exceeds 9
(and this is just what we need). One of them is to introduce new variables x, y, z, as in Solution 1,
which upon some manipulation brings the problem again to inequality (1).

Alternatively, the claim that right-hand side of (2) is not greater than 9 can be expressed in terms
of the symmetric forms σ1 =

∑
x, σ2 =

∑
xy, σ3 = xyz equivalently as

4σ1σ2σ3 ≤ σ3
2 + 9σ2

3 , (3)

which is a known inequality. A yet different method to deal with the right-hand expression in (2) is
to consider

√
a,
√
b,
√
c as sides of a triangle. Through standard trigonometric formulas the problem

comes down to showing that
p2 ≤ 4R2 + 4Rr + 3r2, (4)

p, R and r standing for the semiperimeter, the circumradius and the inradius of that triangle. Again,
(4) is another known inequality. Note that the inequalities (1), (3), (4) are equivalent statements
about the same mathematical situation.

Solution 2. Due to the symmetry of variables, it can be assumed that a ≥ b ≥ c. We claim
that √

a+ b− c√
a+

√
b−

√
c
≤ 1 and

√
b+ c− a√

b+
√
c−

√
a
+

√
c+ a− b√

c+
√
a−

√
b
≤ 2.

The first inequality follows from

√
a + b− c−

√
a =

(a + b− c)− a√
a + b− c+

√
a
≤ b− c√

b+
√
c
=
√
b−

√
c.

For proving the second inequality, let p =
√
a+

√
b and q =

√
a−

√
b. Then a− b = pq and

the inequality becomes √
c− pq√
c− q

+

√
c+ pq√
c+ q

≤ 2.

From a ≥ b ≥ c we have p ≥ 2
√
c. Applying the Cauchy-Schwarz inequality,

(√
c− pq√
c− q

+

√
c+ pq√
c + q

)2

≤
(
c− pq√
c− q

+
c + pq√
c + q

)(
1√
c− q

+
1√
c+ q

)

=
2(c
√
c− pq2)

c− q2
· 2
√
c

c− q2
= 4 · c

2 −
√
cpq2

(c− q2)2
≤ 4 · c

2 − 2cq2

(c− q2)2
≤ 4.
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A6. Determine the smallest number M such that the inequality

∣
∣ab(a2 − b2) + bc(b2 − c2) + ca(c2 − a2)

∣
∣ ≤M

(
a2 + b2 + c2

)2

holds for all real numbers a, b, c.
(Ireland)

Solution. We first consider the cubic polynomial

P (t) = tb(t2 − b2) + bc(b2 − c2) + ct(c2 − t2).

It is easy to check that P (b) = P (c) = P (−b− c) = 0, and therefore

P (t) = (b− c)(t− b)(t− c)(t+ b+ c),

since the cubic coefficient is b− c. The left-hand side of the proposed inequality can therefore
be written in the form

|ab(a2 − b2) + bc(b2 − c2) + ca(c2 − a2)| = |P (a)| = |(b− c)(a− b)(a− c)(a+ b+ c)|.

The problem comes down to finding the smallest number M that satisfies the inequality

|(b− c)(a− b)(a− c)(a+ b+ c)| ≤M · (a2 + b2 + c2)2. (1)

Note that this expression is symmetric, and we can therefore assume a ≤ b ≤ c without loss of
generality. With this assumption,

|(a− b)(b− c)| = (b− a)(c− b) ≤
(
(b− a) + (c− b)

2

)2

=
(c− a)2

4
, (2)

with equality if and only if b− a = c− b, i.e. 2b = a+ c. Also

(
(c− b) + (b− a)

2

)2

≤ (c− b)2 + (b− a)2

2
,

or equivalently,

3(c− a)2 ≤ 2 · [(b− a)2 + (c− b)2 + (c− a)2], (3)

again with equality only for 2b = a+ c. From (2) and (3) we get

|(b− c)(a− b)(a− c)(a+ b+ c)|
≤ 1

4
· |(c− a)3(a+ b+ c)|

=
1

4
·
√

(c− a)6(a+ b+ c)2

≤ 1

4
·
√

(
2 · [(b− a)2 + (c− b)2 + (c− a)2]

3

)3

· (a + b+ c)2

=

√
2

2
·



 4

√
(
(b− a)2 + (c− b)2 + (c− a)2

3

)3

· (a + b+ c)2





2

.
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By the weighted AM-GM inequality this estimate continues as follows:

|(b− c)(a− b)(a− c)(a+ b+ c)|

≤
√
2

2
·
(
(b− a)2 + (c− b)2 + (c− a)2 + (a+ b+ c)2

4

)2

=
9
√
2

32
· (a2 + b2 + c2)2.

We see that the inequality (1) is satisfied for M = 9
32

√
2, with equality if and only if 2b = a+ c

and
(b− a)2 + (c− b)2 + (c− a)2

3
= (a+ b+ c)2.

Plugging b = (a + c)/2 into the last equation, we bring it to the equivalent form

2(c− a)2 = 9(a+ c)2.

The conditions for equality can now be restated as

2b = a+ c and (c− a)2 = 18b2.

Setting b = 1 yields a = 1 − 3
2

√
2 and c = 1 + 3

2

√
2. We see that M = 9

32

√
2 is indeed the

smallest constant satisfying the inequality, with equality for any triple (a, b, c) proportional to
(
1− 3

2

√
2, 1, 1 + 3

2

√
2
)
, up to permutation.

Comment. With the notation x = b − a, y = c − b, z = a − c, s = a+ b+ c and r2 = a2 + b2 + c2,
the inequality (1) becomes just |sxyz| ≤ Mr4 (with suitable constraints on s and r). The original
asymmetric inequality turns into a standard symmetric one; from this point on the solution can be
completed in many ways. One can e.g. use the fact that, for fixed values of

∑
x and

∑
x2, the product

xyz is a maximum/minimum only if some of x, y, z are equal, thus reducing one degree of freedom,
etc.

As observed by the proposer, a specific attraction of the problem is that the maximum is attained
at a point (a, b, c) with all coordinates distinct.



Combinatorics

C1. We have n ≥ 2 lamps L1, . . . , Ln in a row, each of them being either on or off . Every
second we simultaneously modify the state of each lamp as follows:
— if the lamp Li and its neighbours (only one neighbour for i = 1 or i = n, two neighbours for
other i) are in the same state, then Li is switched off;
— otherwise, Li is switched on.
Initially all the lamps are off except the leftmost one which is on.

(a) Prove that there are infinitely many integers n for which all the lamps will eventually
be off.

(b) Prove that there are infinitely many integers n for which the lamps will never be all off.
(France)

Solution. (a) Experiments with small n lead to the guess that every n of the form 2k should
be good. This is indeed the case, and more precisely: let Ak be the 2

k×2k matrix whose rows
represent the evolution of the system, with entries 0, 1 (for off and on respectively). The top
row shows the initial state [1, 0, 0, . . . , 0]; the bottom row shows the state after 2k − 1 steps.
The claim is that:

The bottom row of Ak is [1, 1, 1, . . . , 1].

This will of course suffice because one more move then produces [0, 0, 0, . . . , 0], as required.
The proof is by induction on k. The base k = 1 is obvious. Assume the claim to be true for a

k ≥ 1 and write the matrix Ak+1 in the block form

(
Ak Ok

Bk Ck

)

with four 2k×2k matrices. After
m steps, the last 1 in a row is at position m + 1. Therefore Ok is the zero matrix. According
to the induction hypothesis, the bottom row of [Ak Ok] is [1, . . . , 1, 0, . . . , 0], with 2

k ones and
2k zeros. The next row is thus

[0, . . . , 0
︸ ︷︷ ︸

2k−1

, 1, 1, 0, . . . , 0
︸ ︷︷ ︸

2k−1

]

It is symmetric about its midpoint, and this symmetry is preserved in all subsequent rows
because the procedure described in the problem statement is left/right symmetric. Thus Bk is
the mirror image of Ck. In particular, the rightmost column of Bk is identical with the leftmost
column of Ck.

Imagine the matrix Ck in isolation from the rest of Ak+1. Suppose it is subject to evolution
as defined in the problem: the first (leftmost) term in a row depends only on the two first terms
in the preceding row, according as they are equal or not. Now embed Ck again in Ak. The
‘leftmost’ terms in the rows of Ck now have neighbours on their left side—but these neighbours
are their exact copies. Consequently the actual evolution within Ck is the same, whether or not
Ck is considered as a piece of Ak+1 or in isolation. And since the top row of Ck is [1, 0, . . . , 0],
it follows that Ck is identical with Ak.
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The bottom row of Ak is [1, 1, . . . , 1]; the same is the bottom row of Ck, hence also of Bk,
which mirrors Ck. So the bottom row of Ak+1 consists of ones only and the induction is
complete.

(b) There are many ways to produce an infinite sequence of those n for which the state
[0, 0, . . . , 0] will never be achieved. As an example, consider n = 2k + 1 (for k ≥ 1). The
evolution of the system can be represented by a matrix A of width 2k + 1 with infinitely many
rows. The top 2k rows form the matrix Ak discussed above, with one column of zeros attached
at its right.

In the next row we then have the vector [0, 0, . . . , 0, 1, 1]. But this is just the second row of A
reversed. Subsequent rows will be mirror copies of the foregoing ones, starting from the second
one. So the configuration [1, 1, 0, . . . , 0, 0], i.e. the second row of A, will reappear. Further rows
will periodically repeat this pattern and there will be no row of zeros.
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C2. A diagonal of a regular 2006-gon is called odd if its endpoints divide the boundary into
two parts, each composed of an odd number of sides. Sides are also regarded as odd diagonals.

Suppose the 2006-gon has been dissected into triangles by 2003 nonintersecting diagonals.
Find the maximum possible number of isosceles triangles with two odd sides.

(Serbia)

Solution 1. Call an isosceles triangle odd if it has two odd sides. Suppose we are given a
dissection as in the problem statement. A triangle in the dissection which is odd and isosceles
will be called iso-odd for brevity.

Lemma. Let AB be one of dissecting diagonals and let L be the shorter part of the boundary of
the 2006-gon with endpoints A, B. Suppose that L consists of n segments. Then the number
of iso-odd triangles with vertices on L does not exceed n/2.

Proof. This is obvious for n = 2. Take n with 2 < n ≤ 1003 and assume the claim to be true
for every L of length less than n. Let now L (endpoints A, B) consist of n segments. Let PQ
be the longest diagonal which is a side of an iso-odd triangle PQS with all vertices on L (if
there is no such triangle, there is nothing to prove). Every triangle whose vertices lie on L is
obtuse or right-angled; thus S is the summit of PQS. We may assume that the five points
A,P, S,Q,B lie on L in this order and partition L into four pieces LAP , LPS, LSQ, LQB (the
outer ones possibly reducing to a point).

By the definition of PQ, an iso-odd triangle cannot have vertices on both LAP and LQB.
Therefore every iso-odd triangle within L has all its vertices on just one of the four pieces.
Applying to each of these pieces the induction hypothesis and adding the four inequalities we
get that the number of iso-odd triangles within L other than PQS does not exceed n/2. And
since each of LPS, LSQ consists of an odd number of sides, the inequalities for these two pieces
are actually strict, leaving a 1/2 + 1/2 in excess. Hence the triangle PSQ is also covered by
the estimate n/2. This concludes the induction step and proves the lemma. �

The remaining part of the solution in fact repeats the argument from the above proof.
Consider the longest dissecting diagonal XY . Let LXY be the shorter of the two parts of the
boundary with endpoints X, Y and let XY Z be the triangle in the dissection with vertex Z
not on LXY . Notice that XY Z is acute or right-angled, otherwise one of the segments XZ, Y Z
would be longer than XY . Denoting by LXZ , LY Z the two pieces defined by Z and applying
the lemma to each of LXY , LXZ , LY Z we infer that there are no more than 2006/2 iso-odd
triangles in all, unless XY Z is one of them. But in that case XZ and Y Z are odd diagonals
and the corresponding inequalities are strict. This shows that also in this case the total number
of iso-odd triangles in the dissection, including XY Z, is not greater than 1003.

This bound can be achieved. For this to happen, it just suffices to select a vertex of the
2006-gon and draw a broken line joining every second vertex, starting from the selected one.
Since 2006 is even, the line closes. This already gives us the required 1003 iso-odd triangles.
Then we can complete the triangulation in an arbitrary fashion.
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Solution 2. Let the terms odd triangle and iso-odd triangle have the same meaning as in the
first solution.

Let ABC be an iso-odd triangle, with AB and BC odd sides. This means that there are
an odd number of sides of the 2006-gon between A and B and also between B and C. We say
that these sides belong to the iso-odd triangle ABC.

At least one side in each of these groups does not belong to any other iso-odd triangle.
This is so because any odd triangle whose vertices are among the points between A and B has
two sides of equal length and therefore has an even number of sides belonging to it in total.
Eliminating all sides belonging to any other iso-odd triangle in this area must therefore leave
one side that belongs to no other iso-odd triangle. Let us assign these two sides (one in each
group) to the triangle ABC.

To each iso-odd triangle we have thus assigned a pair of sides, with no two triangles sharing
an assigned side. It follows that at most 1003 iso-odd triangles can appear in the dissection.

This value can be attained, as shows the example from the first solution.
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C3. Let S be a finite set of points in the plane such that no three of them are on a line. For
each convex polygon P whose vertices are in S, let a(P ) be the number of vertices of P , and
let b(P ) be the number of points of S which are outside P . Prove that for every real number x

∑

P

xa(P )(1− x)b(P ) = 1,

where the sum is taken over all convex polygons with vertices in S.
NB. A line segment, a point and the empty set are considered as convex polygons of 2, 1

and 0 vertices, respectively.
(Colombia)

Solution 1. For each convex polygon P whose vertices are in S, let c(P ) be the number of
points of S which are inside P , so that a(P ) + b(P ) + c(P ) = n, the total number of points
in S. Denoting 1− x by y,

∑

P

xa(P )yb(P ) =
∑

P

xa(P )yb(P )(x+ y)c(P ) =
∑

P

c(P )
∑

i=0

(
c(P )

i

)

xa(P )+iyb(P )+c(P )−i .

View this expression as a homogeneous polynomial of degree n in two independent variables
x, y. In the expanded form, it is the sum of terms xryn−r (0 ≤ r ≤ n) multiplied by some
nonnegative integer coefficients.

For a fixed r, the coefficient of xryn−r represents the number of ways of choosing a convex
polygon P and then choosing some of the points of S inside P so that the number of vertices
of P and the number of chosen points inside P jointly add up to r.

This corresponds to just choosing an r-element subset of S. The correspondence is bijective
because every set T of points from S splits in exactly one way into the union of two disjoint
subsets, of which the first is the set of vertices of a convex polygon — namely, the convex hull
of T — and the second consists of some points inside that polygon.

So the coefficient of xryn−r equals
(
n

r

)
. The desired result follows:

∑

P

xa(P )yb(P ) =

n∑

r=0

(
n

r

)

xryn−r = (x+ y)n = 1.
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Solution 2. Apply induction on the number n of points. The case n = 0 is trivial. Let n > 0
and assume the statement for less than n points. Take a set S of n points.

Let C be the set of vertices of the convex hull of S, let m = |C|.
Let X ⊂ C be an arbitrary nonempty set. For any convex polygon P with vertices in the

set S \ X, we have b(P ) points of S outside P . Excluding the points of X — all outside P
— the set S \ X contains exactly b(P ) − |X| of them. Writing 1 − x = y, by the induction
hypothesis

∑

P⊂S\X

xa(P )yb(P )−|X| = 1

(where P ⊂ S \X means that the vertices of P belong to the set S \X). Therefore
∑

P⊂S\X

xa(P )yb(P ) = y|X|.

All convex polygons appear at least once, except the convex hull C itself. The convex hull
adds xm. We can use the inclusion-exclusion principle to compute the sum of the other terms:

∑

P 6=C

xa(P )yb(P ) =
m∑

k=1

(−1)k−1
∑

|X|=k

∑

P⊂S\X

xa(P )yb(P ) =
m∑

k=1

(−1)k−1
∑

|X|=k

yk

=
m∑

k=1

(−1)k−1

(
m

k

)

yk = −
(
(1− y)m − 1

)
= 1− xm

and then ∑

P

xa(P )yb(P ) =
∑

P=C

+
∑

P 6=C

= xm + (1− xm) = 1.
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C4. A cake has the form of an n× n square composed of n2 unit squares. Strawberries lie
on some of the unit squares so that each row or column contains exactly one strawberry; call
this arrangement A.

Let B be another such arrangement. Suppose that every grid rectangle with one vertex
at the top left corner of the cake contains no fewer strawberries of arrangement B than of
arrangement A. Prove that arrangement B can be obtained from A by performing a number
of switches, defined as follows:

A switch consists in selecting a grid rectangle with only two strawberries, situated at its
top right corner and bottom left corner, and moving these two strawberries to the other two
corners of that rectangle.

(Taiwan)

Solution. We use capital letters to denote unit squares; O is the top left corner square. For
any two squares X and Y let [XY ] be the smallest grid rectangle containing these two squares.
Strawberries lie on some squares in arrangement A. Put a plum on each square of the target
configuration B. For a square X denote by a(X) and b(X) respectively the number of straw-
berries and the number of plums in [OX]. By hypothesis a(X) ≤ b(X) for each X, with strict
inequality for some X (otherwise the two arrangements coincide and there is nothing to prove).

The idea is to show that by a legitimate switch one can obtain an arrangement A′ such that

a(X) ≤ a′(X) ≤ b(X) for each X;
∑

X

a(X) <
∑

X

a′(X) (1)

(with a′(X) defined analogously to a(X); the sums range over all unit squares X). This will be
enough because the same reasoning then applies to A′, giving rise to a new arrangement A′′,
and so on (induction). Since

∑
a(X) <

∑
a′(X) <

∑
a′′(X) < . . . and all these sums do not

exceed
∑
b(X), we eventually obtain a sum with all summands equal to the respective b(X)s;

all strawberries will meet with plums.
Consider the uppermost row in which the plum and the strawberry lie on different squares

P and S (respectively); clearly P must be situated left to S. In the column passing through P ,
let T be the top square and B the bottom square. The strawberry in that column lies below
the plum (because there is no plum in that column above P , and the positions of strawberries
and plums coincide everywhere above the row of P ). Hence there is at least one strawberry in
the region [BS] below [PS]. Let V be the position of the uppermost strawberry in that region.

R

WV

O T

P U S

X

B
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Denote byW the square at the intersection of the row through V with the column through S
and let R be the square vertex-adjacent to W up-left. We claim that

a(X) < b(X) for all X ∈ [PR]. (2)

This is so because if X ∈ [PR] then the portion of [OX] left to column [TB] contains at least
as many plums as strawberries (the hypothesis of the problem); in the portion above the row
through P and S we have perfect balance; and in the remaining portion, i.e. rectangle [PX]
we have a plum on square P and no strawberry at all.

Now we are able to perform the required switch. Let U be the square at the intersection
of the row through P with the column through V (some of P, U,R can coincide). We move
strawberries from squares S and V to squares U and W . Then

a′(X) = a(X) + 1 for X ∈ [UR]; a′(X) = a(X) for other X.

And since the rectangle [UR] is contained in [PR], we still have a′(X) ≤ b(X) for all S, in view
of (2); conditions (1) are satisfied and the proof is complete.



27

C5. An (n, k)-tournament is a contest with n players held in k rounds such that:

(i) Each player plays in each round, and every two players meet at most once.

(ii) If player A meets player B in round i, player C meets player D in round i, and player A
meets player C in round j, then player B meets player D in round j.

Determine all pairs (n, k) for which there exists an (n, k)-tournament.
(Argentina)

Solution. For each k, denote by tk the unique integer such that 2
tk−1 < k + 1 ≤ 2tk . We show

that an (n, k)-tournament exists if and only if 2tk divides n.
First we prove that if n = 2t for some t then there is an (n, k)-tournament for all k ≤ 2t − 1.

Let S be the set of 0−1 sequences with length t. We label the 2t players with the elements of S
in an arbitrary fashion (which is possible as there are exactly 2t sequences in S). Players are
identified with their labels in the construction below. If α, β ∈ S, let α + β ∈ S be the result
of the modulo 2 term-by-term addition of α and β (with rules 0 + 0 = 0, 0 + 1 = 1 + 0 = 1,
1 + 1 = 0; there is no carryover). For each i = 1, . . . , 2t − 1 let ω(i) ∈ S be the sequence of
base 2 digits of i, completed with leading zeros if necessary to achieve length t.

Now define a tournament with n = 2t players in k ≤ 2t − 1 rounds as follows: For all
i = 1, . . . , k, let player α meet player α + ω(i) in round i. The tournament is well-defined as
α + ω(i) ∈ S and α+ ω(i) = β + ω(i) implies α = β; also [α + ω(i)] + ω(i) = α for each α ∈ S
(meaning that player α + ω(i) meets player α in round i, as needed). Each player plays in each
round. Next, every two players meet at most once (exactly once if k = 2t − 1), since ω(i) 6= ω(j)
if i 6= j. Thus condition (i) holds true, and condition (ii) is also easy to check.

Let player α meet player β in round i, player γ meet player δ in round i, and player α meet
player γ in round j. Then β = α+ ω(i), δ = γ + ω(i) and γ = α + ω(j). By definition, β will
play in round j with

β + ω(j) = [α + ω(i)] + ω(j) = [α + ω(j)] + ω(i) = γ + ω(i) = δ,

as required by (ii).
So there exists an (n, k)-tournament for pairs (n, k) such that n = 2t and k ≤ 2t − 1. The

same conclusion is straightforward for n of the form n = 2ts and k ≤ 2t − 1. Indeed, consider
s different (2t, k)-tournaments T1, . . . , Ts, no two of them having players in common. Their
union can be regarded as a (2ts, k)-tournament T where each round is the union of the respective
rounds in T1, . . . , Ts.

In summary, the condition that 2tk divides n is sufficient for an (n, k)-tournament to exist.
We prove that it is also necessary.

Consider an arbitrary (n, k)-tournament. Represent each player by a point and after each
round, join by an edge every two players who played in this round. Thus to a round i = 1, . . . , k
there corresponds a graph Gi. We say that player Q is an i-neighbour of player P if there is a
path of edges in Gi from P to Q; in other words, if there are players P = X1, X2, . . . , Xm = Q
such that player Xj meets player Xj+1 in one of the first i rounds, j = 1, 2 . . . , m−1. The set
of i-neighbours of a player will be called its i-component. Clearly two i-components are either
disjoint or coincide.

Hence after each round i the set of players is partitioned into pairwise disjoint i-components.
So, to achieve our goal, it suffices to show that all k-components have size divisible by 2tk .

To this end, let us see how the i-component Γ of a player A changes after round i+1.
Suppose that A meets player B with i-component ∆ in round i+1 (components Γ and ∆ are
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not necessarily distinct). We claim that then in round i+1 each player from Γ meets a player
from ∆, and vice versa.

Indeed, let C be any player in Γ, and let C meet D in round i+1. Since C is an i-neighbour
of A, there is a sequence of players A = X1, X2, . . . , Xm = C such that Xj meets Xj+1 in one
of the first i rounds, j = 1, 2 . . . , m−1. Let Xj meet Yj in round i+1, for j = 1, 2 . . . , m; in
particular Y1 = B and Ym = D. Players Yj exists in view of condition (i). Suppose that Xj

and Xj+1 met in round r, where r ≤ i. Then condition (ii) implies that and Yj and Yj+1 met
in round r, too. Hence B = Y1, Y2, . . . , Ym = D is a path in Gi from B to D. This is to say, D
is in the i-component ∆ of B, as claimed. By symmetry, each player from ∆ meets a player
from Γ in round i+1. It follows in particular that Γ and ∆ have the same cardinality.

It is straightforward now that the (i+1)-component of A is Γ ∪ ∆, the union of two sets
with the same size. Since Γ and ∆ are either disjoint or coincide, we have either |Γ ∪∆| = 2|Γ|
or |Γ ∪∆| = |Γ|; as usual, |· · ·| denotes the cardinality of a finite set.

Let Γ1, . . . ,Γk be the consecutive components of a given player A. We obtained that either
|Γi+1| = 2|Γi| or |Γi+1| = |Γi| for i = 1, . . . , k−1. Because |Γ1| = 2, each |Γi| is a power of 2,
i = 1, . . . , k−1. In particular |Γk| = 2u for some u.

On the other hand, player A has played with k different opponents by (i). All of them
belong to Γk, therefore |Γk| ≥ k+1.

Thus 2u ≥ k+1, and since tk is the least integer satisfying 2tk ≥ k+1, we conclude that
u ≥ tk. So the size of each k-component is divisible by 2

tk , which completes the argument.
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C6. A holey triangle is an upward equilateral triangle of side length n with n upward unit
triangular holes cut out. A diamond is a 60◦−120◦ unit rhombus. Prove that a holey triangle T
can be tiled with diamonds if and only if the following condition holds: Every upward equilateral
triangle of side length k in T contains at most k holes, for 1 ≤ k ≤ n.

(Colombia)

Solution. Let T be a holey triangle. The unit triangles in it will be called cells. We say simply
“triangle” instead of “upward equilateral triangle” and “size” instead of “side length.”

The necessity will be proven first. Assume that a holey triangle T can be tiled with diamonds
and consider such a tiling. Let T ′ be a triangle of size k in T containing h holes. Focus on the
diamonds which cover (one or two) cells in T ′. Let them form a figure R. The boundary of T ′

consists of upward cells, so R is a triangle of size k with h upward holes cut out and possibly
some downward cells sticking out. Hence there are exactly (k2 + k)/2− h upward cells in R, and
at least (k2 − k)/2 downward cells (not counting those sticking out). On the other hand each
diamond covers one upward and one downward cell, which implies (k2 + k)/2− h ≥ (k2 − k)/2.
It follows that h ≤ k, as needed.

We pass on to the sufficiency. For brevity, let us say that a set of holes in a given triangle T
is spread out if every triangle of size k in T contains at most k holes. For any set S of spread
out holes, a triangle of size k will be called full of S if it contains exactly k holes of S. The
proof is based on the following observation.

Lemma. Let S be a set of spread out holes in T . Suppose that two triangles T ′ and T ′′ are full
of S, and that they touch or intersect. Let T ′+T ′′ denote the smallest triangle in T containing
them. Then T ′ + T ′′ is also full of S.

Proof. Let triangles T ′, T ′′, T ′ ∩ T ′′ and T ′ + T ′′ have sizes a, b, c and d, and let them contain
a, b, x and y holes of S, respectively. (Note that T ′∩T ′′ could be a point, in which case c = 0.)
Since S is spread out, we have x ≤ c and y ≤ d. The geometric configuration of triangles
clearly satisfies a+ b = c+ d. Furthermore, a+ b ≤ x+ y, since a+ b counts twice the holes in
T ′ ∩ T ′′. These conclusions imply x = c and y = d, as we wished to show. �

Now let Tn be a holey triangle of size n, and let the set H of its holes be spread out. We
show by induction on n that Tn can be tiled with diamonds. The base n = 1 is trivial. Suppose
that n ≥ 2 and that the claim holds for holey triangles of size less than n.

Denote by B the bottom row of Tn and by T ′ the triangle formed by its top n− 1 rows.
There is at least one hole in B as T ′ contains at most n− 1 holes. If this hole is only one,
there is a unique way to tile B with diamonds. Also, T ′ contains exactly n− 1 holes, making
it a holey triangle of size n− 1, and these holes are spread out. Hence it remains to apply the
induction hypothesis.

So suppose that there arem ≥ 2 holes in B and label them a1, . . . , am from left to right. Let
ℓ be the line separating B from T ′. For each i = 1, . . . , m− 1, pick an upward cell bi between ai
and ai+1, with base on ℓ. Place a diamond to cover bi and its lower neighbour, a downward
cell in B. The remaining part of B can be tiled uniquely with diamonds. Remove from Tn
row B and the cells b1, . . . , bm−1 to obtain a holey triangle Tn−1 of size n− 1. The conclusion
will follow by induction if the choice of b1, . . . , bm−1 guarantees that the following condition
is satisfied: If the holes a1, . . . , am−1 are replaced by b1, . . . , bm−1 then the new set of holes is
spread out again.

We show that such a choice is possible. The cells b1, . . . , bm−1 can be defined one at a time
in this order, making sure that the above condition holds at each step. Thus it suffices to prove
that there is an appropriate choice for b1, and we set a1 = u, a2 = v for clarity.
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Let ∆ be the triangle of maximum size which is full of H , contains the top vertex of the
hole u, and has base on line ℓ. Call ∆ the associate of u. Observe that ∆ does not touch v.
Indeed, if ∆ has size r then it contains r holes of Tn. Extending its slanted sides downwards
produces a triangle ∆′ of size r + 1 containing at least one more hole, namely u. Since there
are at most r + 1 holes in ∆′, it cannot contain v. Consequently, ∆ does not contain the top
vertex of v.

Let w be the upward cell with base on ℓ which is to the right of ∆ and shares a common
vertex with it. The observation above shows that w is to the left of v. Note that w is not a
hole, or else ∆ could be extended to a larger triangle full of H .

We prove that if the hole u is replaced by w then the new set of holes is spread out again.
To verify this, we only need to check that if a triangle Γ in Tn contains w but not u then Γ is
not full of H . Suppose to the contrary that Γ is full of H . Consider the minimum triangle Γ+∆
containing Γ and the associate ∆ of u. Clearly Γ + ∆ is larger than ∆, because Γ contains w
but ∆ does not. Next, Γ + ∆ is full of H \ {u} by the lemma, since Γ and ∆ have a common
point and neither of them contains u.

u v

∆

Γ

Γ+∆

w

If Γ is above line ℓ then so is Γ + ∆, which contradicts the maximum choice of ∆. If Γ
contains cells from row B, observe that Γ + ∆ contains u. Let s be the size of Γ + ∆. Being
full of H \ {u}, Γ + ∆ contains s holes other than u. But it also contains u, contradicting the
assumption that H is spread out.

The claim follows, showing that b1 = w is an appropriate choice for a1 = u and a2 = v. As
explained above, this is enough to complete the induction.
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C7. Consider a convex polyhedron without parallel edges and without an edge parallel to
any face other than the two faces adjacent to it.

Call a pair of points of the polyhedron antipodal if there exist two parallel planes passing
through these points and such that the polyhedron is contained between these planes.

Let A be the number of antipodal pairs of vertices, and let B be the number of antipodal
pairs of midpoints of edges. Determine the difference A−B in terms of the numbers of vertices,
edges and faces.

(Japan)

Solution 1. Denote the polyhedron by Γ; let its vertices, edges and faces be V1, V2, . . . , Vn,
E1, E2, . . . , Em and F1, F2, . . . , Fℓ, respectively. Denote by Qi the midpoint of edge Ei.

Let S be the unit sphere, the set of all unit vectors in three-dimensional space. Map the
boundary elements of Γ to some objects on S as follows.

For a face Fi, let S
+(Fi) and S

−(Fi) be the unit normal vectors of face Fi, pointing outwards
from Γ and inwards to Γ, respectively. These points are diametrically opposite.

For an edge Ej, with neighbouring faces Fi1 and Fi2 , take all support planes of Γ (planes
which have a common point with Γ but do not intersect it) containing edge Ej , and let S

+(Ej)
be the set of their outward normal vectors. The set S+(Ej) is an arc of a great circle on S.
Arc S+(Ej) is perpendicular to edge Ej and it connects points S

+(Fi1) and S
+(Fi2).

Define also the set of inward normal vectors S−(Ei) which is the reflection of S
+(Ei) across

the origin.
For a vertex Vk, which is the common endpoint of edges Ej1, . . . , Ejh and shared by faces

Fi1 , . . . , Fih, take all support planes of Γ through point Vk and let S
+(Vk) be the set of their out-

ward normal vectors. This is a region on S, a spherical polygon with vertices S+(Fi1), . . . , S
+(Fih)

bounded by arcs S+(Ej1), . . . , S
+(Ejh). Let S

−(Vk) be the reflection of S
+(Vk), the set of inward

normal vectors.
Note that region S+(Vk) is convex in the sense that it is the intersection of several half

spheres.

SΓ

Vk

Fi

Ej

S+(Vk)

S+(Fi) S+(Ej)

Now translate the conditions on Γ to the language of these objects.
(a) Polyhedron Γ has no parallel edges — the great circles of arcs S+(Ei) and S

−(Ej) are
different for all i 6= j.

(b) If an edge Ei does not belong to a face Fj then they are not parallel — the great circle
which contains arcs S+(Ei) and S

−(Ei) does not pass through points S
+(Fj) and S

−(Fj).
(c) Polyhedron Γ has no parallel faces — points S+(Fi) and S

−(Fj) are pairwise distinct.
The regions S+(Vk), arcs S

+(Ej) and points S
+(Fi) provide a decomposition of the surface

of the sphere. Regions S−(Vk), arcs S
−(Ej) and points S−(Fi) provide the reflection of this

decomposition. These decompositions are closely related to the problem.
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Lemma 1. For any 1 ≤ i, j ≤ n, regions S−(Vi) and S
+(Vj) overlap if and only if vertices Vi

and Vj are antipodal.

Lemma 2. For any 1 ≤ i, j ≤ m, arcs S−(Ei) and S
+(Ej) intersect if and only if the midpoints

Qi and Qj of edges Ei and Ej are antipodal.

Proof of lemma 1. First note that by properties (a,b,c) above, the two regions cannot share
only a single point or an arc. They are either disjoint or they overlap.

Assume that the two regions have a common interior point u. Let P1 and P2 be two parallel
support planes of Γ through points Vi and Vj , respectively, with normal vector u. By the
definition of regions S−(Vi) and S

+(Vj), u is the inward normal vector of P1 and the outward
normal vector of P2. Therefore polyhedron Γ lies between the two planes; vertices Vi and Vj
are antipodal.

To prove the opposite direction, assume that Vi and Vj are antipodal. Then there exist two
parallel support planes P1 and P2 through Vi and Vj , respectively, such that Γ is between them.
Let u be the inward normal vector of P1; then u is the outward normal vector of P2, therefore
u ∈ S−(Vi) ∩ S+(Vj). The two regions have a common point, so they overlap. �

Proof of lemma 2. Again, by properties (a,b) above, the endpoints of arc S−(Ei) cannot belong
to S+(Ej) and vice versa. The two arcs are either disjoint or intersecting.

Assume that arcs S−(Ei) and S+(Ej) intersect at point u. Let P1 and P2 be the two
support planes through edges Ei and Ej , respectively, with normal vector u. By the definition
of arcs S−(Ei) and S

+(Ej), vector u points inwards from P1 and outwards from P2. Therefore
Γ is between the planes. Since planes P1 and P2 pass through Qi and Qj, these points are
antipodal.

For the opposite direction, assume that points Qi and Qj are antipodal. Let P1 and P2

be two support planes through these points, respectively. An edge cannot intersect a support
plane, therefore Ei and Ej lie in the planes P1 and P2, respectively. Let u be the inward normal
vector of P1, which is also the outward normal vector of P2. Then u ∈ S−(Ei) ∩ S+(Ej). So
the two arcs are not disjoint; they therefore intersect. �

Now create a new decomposition of sphere S. Draw all arcs S+(Ei) and S
−(Ej) on sphere S

and put a knot at each point where two arcs meet. We have ℓ knots at points S+(Fi) and
another ℓ knots at points S−(Fi), corresponding to the faces of Γ; by property (c) they are
different. We also have some pairs 1 ≤ i, j ≤ m where arcs S−(Ei) and S

+(Ej) intersect. By
Lemma 2, each antipodal pair (Qi, Qj) gives rise to two such intersections; hence, the number
of all intersections is 2B and we have 2ℓ+ 2B knots in all.

Each intersection knot splits two arcs, increasing the number of arcs by 2. Since we started
with 2m arcs, corresponding the edges of Γ, the number of the resulting curve segments is
2m+ 4B.

The network of these curve segments divides the sphere into some “new” regions. Each new
region is the intersection of some overlapping sets S−(Vi) and S

+(Vj). Due to the convexity,
the intersection of two overlapping regions is convex and thus contiguous. By Lemma 1, each
pair of overlapping regions corresponds to an antipodal vertex pair and each antipodal vertex
pair gives rise to two different overlaps, which are symmetric with respect to the origin. So the
number of new regions is 2A.

The result now follows from Euler’s polyhedron theorem. We have n+ l = m+ 2 and

(2ℓ+ 2B) + 2A = (2m+ 4B) + 2,

therefore
A− B = m− ℓ + 1 = n− 1.

Therefore A−B is by one less than the number of vertices of Γ.
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Solution 2. Use the same notations for the polyhedron and its vertices, edges and faces as
in Solution 1. We regard points as vectors starting from the origin. Polyhedron Γ is regarded
as a closed convex set, including its interior. In some cases the edges and faces of Γ are also
regarded as sets of points. The symbol ∂ denotes the boundary of the certain set; e.g. ∂Γ is
the surface of Γ.

Let ∆ = Γ − Γ = {U − V : U, V ∈ Γ} be the set of vectors between arbitrary points of
Γ. Then ∆, being the sum of two bounded convex sets, is also a bounded convex set and, by
construction, it is also centrally symmetric with respect to the origin. We will prove that ∆ is
also a polyhedron and express the numbers of its faces, edges and vertices in terms n, m, ℓ, A
and B.

Lemma 1. For points U, V ∈ Γ, point W = U − V is a boundary point of ∆ if and only if U
and V are antipodal. Moreover, for each boundary point W ∈ ∂∆ there exists exactly one pair
of points U, V ∈ Γ such that W = U − V .

Proof. Assume first that U and V are antipodal points of Γ. Let parallel support planes
P1 and P2 pass through them such that Γ is in between. Consider plane P = P1 − U =
P2 − V . This plane separates the interiors of Γ − U and Γ − V . After reflecting one of the
sets, e.g. Γ − V , the sets Γ− U and −Γ + V lie in the same half space bounded by P . Then
(Γ− U) + (−Γ + V ) = ∆−W lies in that half space, so 0 ∈ P is a boundary point of the set
∆−W . Translating by W we obtain that W is a boundary point of ∆.

To prove the opposite direction, let W = U − V be a boundary point of ∆, and let Ψ =
(Γ−U)∩ (Γ− V ). We claim that Ψ = {0}. Clearly Ψ is a bounded convex set and 0 ∈ Ψ. For
any two pointsX, Y ∈ Ψ, we have U+X, V +Y ∈ Γ andW+(X−Y ) = (U+X)−(V +Y ) ∈ ∆.
SinceW is a boundary point of ∆, the vector X−Y cannot have the same direction asW . This
implies that the interior of Ψ is empty. Now suppose that Ψ contains a line segment S. Then
S+U and S+V are subsets of some faces or edges of Γ and these faces/edges are parallel to S.
In all cases, we find two faces, two edges, or a face and an edge which are parallel, contradicting
the conditions of the problem. Therefore, Ψ = {0} indeed.

Since Ψ = (Γ−U)∩(Γ−V ) consists of a single point, the interiors of bodies Γ−U and Γ−V
are disjoint and there exists a plane P which separates them. Let u be the normal vector of P
pointing into that half space bounded by P which contains Γ− U . Consider the planes P + U
and P + V ; they are support planes of Γ, passing through U and V , respectively. From plane
P + U , the vector u points into that half space which contains Γ. From plane P + V , vector
u points into the opposite half space containing Γ. Therefore, we found two proper support
through points U and V such that Γ is in between.

For the uniqueness part, assume that there exist points U1, V1 ∈ Γ such that U1−V1 = U−V .
The points U1 − U and V1 − V lie in the sets Γ − U and Γ − V separated by P . Since
U1−U = V1−V , this can happen only if both are in P ; but the only such point is 0. Therefore,
U1 − V1 = U − V implies U1 = U and V1 = V . The lemma is complete. �

Lemma 2. Let U and V be two antipodal points and assume that plane P , passing through
0, separates the interiors of Γ− U and Γ− V . Let Ψ1 = (Γ− U) ∩ P and Ψ2 = (Γ− V ) ∩ P .
Then ∆ ∩ (P + U − V ) = Ψ1 −Ψ2 + U − V .

Proof. The sets Γ−U and −Γ+ V lie in the same closed half space bounded by P . Therefore,
for any points X ∈ (Γ− U) and Y ∈ (−Γ + V ), we have X + Y ∈ P if and only if X, Y ∈ P .
Then

(∆− (U −V ))∩P =
(
(Γ−U)+ (−Γ+V )

)
∩P =

(
(Γ−U)∩P

)
+

(
(−Γ+V )∩P

)
= Ψ1−Ψ2.

Now a translation by (U − V ) completes the lemma. �



34

Now classify the boundary points W = U − V of ∆, according to the types of points U and
V . In all cases we choose a plane P through 0 which separates the interiors of Γ−U and Γ−V .
We will use the notation Ψ1 = (Γ− U) ∩ P and Ψ2 = (Γ− V ) ∩ P as well.

Case 1: Both U and V are vertices of Γ. Bodies Γ − U and Γ− V have a common vertex
which is 0. Choose plane P in such a way that Ψ1 = Ψ2 = {0}. Then Lemma 2 yields
∆ ∩ (P +W ) = {W}. Therefore P +W is a support plane of ∆ such that they have only one
common point so no line segment exists on ∂∆ which would contain W in its interior.

Since this case occurs for antipodal vertex pairs and each pair is counted twice, the number
of such boundary points on ∆ is 2A.

Case 2: Point U is an interior point of an edge Ei and V is a vertex of Γ. Choose plane
P such that Ψ1 = Ei − U and Ψ2 = {0}. By Lemma 2, ∆ ∩ (P +W ) = Ei − V . Hence there
exists a line segment in ∂∆ which contains W in its interior, but there is no planar region in
∂∆ with the same property.

We obtain a similar result if V belongs to an edge of Γ and U is a vertex.
Case 3: Points U and V are interior points of edges Ei and Ej , respectively. Let P be the

plane of Ei − U and Ej − V . Then Ψ1 = Ei − U , Ψ2 = Ej − V and ∆ ∩ (P +W ) = Ei − Ej .
Therefore point W belongs to a parallelogram face on ∂∆.

The centre of the parallelogram is Qi−Qj , the vector between the midpoints. Therefore an
edge pair (Ei, Ej) occurs if and only if Qi and Qj are antipodal which happens 2B times.

Case 4: Point U lies in the interior of a face Fi and V is a vertex of Γ. The only choice for
P is the plane of Fi − U . Then we have Ψ1 = Fi − U , Ψ2 = {0} and ∆ ∩ (P +W ) = Fi − V .
This is a planar face of ∂∆ which is congruent to Fi.

For each face Fi, the only possible vertex V is the farthest one from the plane of Fi.
If U is a vertex and V belongs to face Fi then we obtain the same way that W belongs to

a face −Fi + U which is also congruent to Fi. Therefore, each face of Γ has two copies on ∂∆,
a translated and a reflected copy.

Case 5: Point U belongs to a face Fi of Γ and point V belongs to an edge or a face G. In
this case objects Fi and G must be parallel which is not allowed.

P P P P

Γ− UΓ− UΓ− UΓ− U

Γ− VΓ− VΓ− V Γ− V

case 1 case 2 case 3 case 4

0000

Now all points in ∂∆ belong to some planar polygons (cases 3 and 4), finitely many line
segments (case 2) and points (case 1). Therefore ∆ is indeed a polyhedron. Now compute the
numbers of its vertices, edges and faces.

The vertices are obtained in case 1, their number is 2A.
Faces are obtained in cases 3 and 4. Case 3 generates 2B parallelogram faces. Case 4

generates 2ℓ faces.
We compute the number of edges of ∆ from the degrees (number of sides) of faces of Γ. Let

di be the the degree of face Fi. The sum of degrees is twice as much as the number of edges, so
d1+d2+. . .+dl = 2m. The sum of degrees of faces of ∆ is 2B ·4+2(d1+d2+· · ·+dl) = 8B+4m,
so the number of edges on ∆ is 4B + 2m.

Applying Euler’s polyhedron theorem on Γ and ∆, we have n+l = m+2 and 2A+(2B+2ℓ) =
(4B + 2m) + 2. Then the conclusion follows:

A− B = m− ℓ + 1 = n− 1.
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G1. Let ABC be a triangle with incentre I. A point P in the interior of the triangle satisfies

∠PBA+ ∠PCA = ∠PBC + ∠PCB.

Show that AP ≥ AI and that equality holds if and only if P coincides with I.
(Korea)

Solution. Let ∠A = α, ∠B = β, ∠C = γ. Since ∠PBA+∠PCA+∠PBC +∠PCB = β + γ,
the condition from the problem statement is equivalent to ∠PBC + ∠PCB = (β + γ)/2, i. e.
∠BPC = 90◦ + α/2.

On the other hand ∠BIC = 180◦ − (β + γ)/2 = 90◦ + α/2. Hence ∠BPC = ∠BIC, and
since P and I are on the same side of BC, the points B, C, I and P are concyclic. In other
words, P lies on the circumcircle ω of triangle BCI.

A

I

P

B

C

M

ω

Ω

Let Ω be the circumcircle of triangle ABC. It is a well-known fact that the centre of ω
is the midpoint M of the arc BC of Ω. This is also the point where the angle bisector AI
intersects Ω.

From triangle APM we have

AP + PM ≥ AM = AI + IM = AI + PM.

Therefore AP ≥ AI. Equality holds if and only if P lies on the line segment AI, which occurs
if and only if P = I.
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G2. Let ABCD be a trapezoid with parallel sides AB > CD. Points K and L lie on the
line segments AB and CD, respectively, so that AK/KB = DL/LC. Suppose that there are
points P and Q on the line segment KL satisfying

∠APB = ∠BCD and ∠CQD = ∠ABC.

Prove that the points P , Q, B and C are concyclic.
(Ukraine)

Solution 1. Because AB ‖ CD, the relation AK/KB = DL/LC readily implies that the lines
AD, BC and KL have a common point S.

X

A K B

Q

P

D L C

S

Y

Consider the second intersection points X and Y of the line SK with the circles (ABP )
and (CDQ), respectively. Since APBX is a cyclic quadrilateral and AB ‖ CD, one has

∠AXB = 180◦ − ∠APB = 180◦ −∠BCD = ∠ABC.

This shows that BC is tangent to the circle (ABP ) at B. Likewise, BC is tangent to the
circle (CDQ) at C. Therefore SP · SX = SB2 and SQ · SY = SC2.

Let h be the homothety with centre S and ratio SC/SB. Since h(B) = C, the above
conclusion about tangency implies that h takes circle (ABP ) to circle (CDQ). Also, h takes AB
to CD, and it easily follows that h(P ) = Y , h(X) = Q, yielding SP/SY = SB/SC = SX/SQ.

Equalities SP · SX = SB2 and SQ/SX = SC/SB imply SP · SQ = SB · SC, which is
equivalent to P , Q, B and C being concyclic.
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Solution 2. The case where P = Q is trivial. Thus assume that P and Q are two distinct
points. As in the first solution, notice that the lines AD, BC and KL concur at a point S.

A

C

S

B

D L

K

Q

P

E F

Let the lines AP and DQ meet at E, and let BP and CQ meet at F . Then ∠EPF = ∠BCD
and ∠FQE = ∠ABC by the condition of the problem. Since the angles BCD and ABC add
up to 180◦, it follows that PEQF is a cyclic quadrilateral.

Applying Menelaus’ theorem, first to triangle ASP and line DQ and then to triangle BSP
and line CQ, we have

AD

DS
· SQ
QP

· PE
EA

= 1 and
BC

CS
· SQ
QP

· PF
FB

= 1.

The first factors in these equations are equal, as AB‖CD. Thus the last factors are also equal,
which implies that EF is parallel to AB and CD. Using this and the cyclicity of PEQF , we
obtain

∠BCD = ∠BCF + ∠FCD = ∠BCQ+ ∠EFQ = ∠BCQ+ ∠EPQ.

On the other hand,

∠BCD = ∠APB = ∠EPF = ∠EPQ+ ∠QPF,

and consequently ∠BCQ = ∠QPF . The latter angle either coincides with ∠QPB or is sup-
plementary to ∠QPB, depending on whether Q lies between K and P or not. In either case it
follows that P , Q, B and C are concyclic.
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G3. Let ABCDE be a convex pentagon such that

∠BAC = ∠CAD = ∠DAE and ∠ABC = ∠ACD = ∠ADE.

The diagonals BD and CE meet at P . Prove that the line AP bisects the side CD.
(USA)

Solution. Let the diagonals AC and BD meet at Q, the diagonals AD and CE meet at R,
and let the ray AP meet the side CD at M . We want to prove that CM =MD holds.

A

B Q

P

M

C

D

E

R

The idea is to show that Q and R divide AC and AD in the same ratio, or more precisely

AQ

QC
=
AR

RD
(1)

(which is equivalent to QR‖CD). The given angle equalities imply that the triangles ABC,
ACD and ADE are similar. We therefore have

AB

AC
=
AC

AD
=
AD

AE
.

Since ∠BAD = ∠BAC + ∠CAD = ∠CAD + ∠DAE = ∠CAE, it follows from AB/AC =
AD/AE that the triangles ABD and ACE are also similar. Their angle bisectors in A are AQ
and AR, respectively, so that

AB

AC
=
AQ

AR
.

Because AB/AC = AC/AD, we obtain AQ/AR = AC/AD, which is equivalent to (1). Now
Ceva’s theorem for the triangle ACD yields

AQ

QC
· CM
MD

· DR
RA

= 1.

In view of (1), this reduces to CM =MD, which completes the proof.

Comment. Relation (1) immediately follows from the fact that quadrilaterals ABCD and ACDE
are similar.
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G4. A point D is chosen on the side AC of a triangle ABC with ∠C < ∠A < 90◦ in such
a way that BD = BA. The incircle of ABC is tangent to AB and AC at points K and L,
respectively. Let J be the incentre of triangle BCD. Prove that the line KL intersects the line
segment AJ at its midpoint.

(Russia)

Solution. Denote by P be the common point of AJ and KL. Let the parallel to KL through
J meet AC at M . Then P is the midpoint of AJ if and only if AM = 2 · AL, which we are
about to show.

P
J

K

B

C DTM L A

Denoting ∠BAC = 2α, the equalities BA = BD and AK = AL imply ∠ADB = 2α and
∠ALK = 90◦−α. Since DJ bisects ∠BDC, we obtain ∠CDJ = 1

2
· (180◦−∠ADB) = 90◦−α.

Also ∠DMJ = ∠ALK = 90◦ − α since JM‖KL. It follows that JD = JM .
Let the incircle of triangle BCD touch its side CD at T . Then JT ⊥ CD, meaning that JT

is the altitude to the base DM of the isosceles triangle DMJ . It now follows that DT =MT ,
and we have

DM = 2 ·DT = BD + CD − BC.

Therefore

AM = AD + (BD + CD − BC)

= AD + AB +DC −BC

= AC + AB − BC

= 2 · AL,

which completes the proof.
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G5. In triangle ABC, let J be the centre of the excircle tangent to side BC at A1 and to
the extensions of sides AC and AB at B1 and C1, respectively. Suppose that the lines A1B1

and AB are perpendicular and intersect at D. Let E be the foot of the perpendicular from C1

to line DJ . Determine the angles ∠BEA1 and ∠AEB1.
(Greece)

Solution 1. Let K be the intersection point of lines JC and A1B1. Obviously JC ⊥ A1B1 and
since A1B1 ⊥ AB, the lines JK and C1D are parallel and equal. From the right triangle B1CJ
we obtain JC2

1 = JB2
1 = JC · JK = JC · C1D from which we infer that DC1/C1J = C1J/JC

and the right triangles DC1J and C1JC are similar. Hence ∠C1DJ = ∠JC1C, which implies
that the lines DJ and C1C are perpendicular, i.e. the points C1, E, C are collinear.

C

A BD C1

J

E

K

B1

A1

Since ∠CA1J = ∠CB1J = ∠CEJ = 90◦, points A1, B1 and E lie on the circle of diameter
CJ . Then ∠DBA1 = ∠A1CJ = ∠DEA1, which implies that quadrilateral BEA1D is cyclic;
therefore ∠A1EB = 90◦.

Quadrilateral ADEB1 is also cyclic because ∠EB1A = ∠EJC = ∠EDC1, therefore we
obtain ∠AEB1 = ∠ADB = 90◦.

C
J

E

A C1B

A1

D

B1

ω1

ω2

ω3
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Solution 2. Consider the circles ω1, ω2 and ω3 of diameters C1D, A1B and AB1, respectively.
Line segments JC1, JB1 and JA1 are tangents to those circles and, due to the right angle at D,
ω2 and ω3 pass through point D. Since ∠C1ED is a right angle, point E lies on circle ω1,
therefore

JC2
1 = JD · JE.

Since JA1 = JB1 = JC1 are all radii of the excircle, we also have

JA2
1 = JD · JE and JB2

1 = JD · JE.
These equalities show that E lies on circles ω2 and ω3 as well, so ∠BEA1 = ∠AEB1 = 90◦.

Solution 3. First note that A1B1 is perpendicular to the external angle bisector CJ of ∠BCA
and parallel to the internal angle bisector of that angle. Therefore, A1B1 is perpendicular to
AB if and only if triangle ABC is isosceles, AC = BC. In that case the external bisector CJ
is parallel to AB.

Triangles ABC and B1A1J are similar, as their corresponding sides are perpendicular. In
particular, we have ∠DA1J = ∠C1BA1; moreover, from cyclic deltoid JA1BC1,

∠C1A1J = ∠C1BJ =
1

2
∠C1BA1 =

1

2
∠DA1J.

Therefore, A1C1 bisects angle ∠DA1J .

A B C1

A1

B1

J

O = E

D

C

ω

In triangle B1A1J , line JC1 is the external bisector at vertex J . The point C1 is the
intersection of two external angle bisectors (at A1 and J) so C1 is the centre of the excircle ω,
tangent to side A1J , and to the extension of B1A1 at point D.

Now consider the similarity transform ϕ which moves B1 to A, A1 to B and J to C. This
similarity can be decomposed into a rotation by 90◦ around a certain point O and a homothety
from the same centre. This similarity moves point C1 (the centre of excircle ω) to J and moves
D (the point of tangency) to C1.

Since the rotation angle is 90◦, we have ∠XOϕ(X) = 90◦ for an arbitrary point X 6= O.
For X = D and X = C1 we obtain ∠DOC1 = ∠C1OJ = 90◦. Therefore O lies on line segment
DJ and C1O is perpendicular to DJ . This means that O = E.

For X = A1 and X = B1 we obtain ∠A1OB = ∠B1OA = 90◦, i.e.

∠BEA1 = ∠AEB1 = 90◦.

Comment. Choosing X = J , it also follows that ∠JEC = 90◦ which proves that lines DJ and CC1

intersect at point E. However, this is true more generally, without the assumption that A1B1 and
AB are perpendicular, because points C and D are conjugates with respect to the excircle. The last
observation could replace the first paragraph of Solution 1.
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G6. Circles ω1 and ω2 with centres O1 and O2 are externally tangent at point D and
internally tangent to a circle ω at points E and F , respectively. Line t is the common tangent
of ω1 and ω2 at D. Let AB be the diameter of ω perpendicular to t, so that A, E and O1 are
on the same side of t. Prove that lines AO1, BO2, EF and t are concurrent.

(Brasil)

Solution 1. Point E is the centre of a homothety h which takes circle ω1 to circle ω. The
radii O1D and OB of these circles are parallel as both are perpendicular to line t. Also, O1D
and OB are on the same side of line EO, hence h takes O1D to OB. Consequently, points E,
D and B are collinear. Likewise, points F , D and A are collinear as well.

Let lines AE and BF intersect at C. Since AF and BE are altitudes in triangle ABC, their
common point D is the orthocentre of this triangle. So CD is perpendicular to AB, implying
that C lies on line t. Note that triangle ABC is acute-angled. We mention the well-known fact
that triangles FEC and ABC are similar in ratio cos γ, where γ = ∠ACB. In addition, points
C, E, D and F lie on the circle with diameter CD.

A

U L

V K B

E

F

t

N
O1

O2

P

ω2

D

O

C

ω1

γ

Ω

ω

Let P be the common point of lines EF and t. We are going to prove that P lies on
line AO1. Denote by N the second common point of circle ω1 and AC; this is the point of ω1

diametrically opposite to D. By Menelaus’ theorem for triangle DCN , points A, O1 and P are
collinear if and only if

CA

AN
· NO1

O1D
· DP
PC

= 1.

Because NO1 = O1D, this reduces to CA/AN = CP/PD. Let line t meet AB at K. Then
CA/AN = CK/KD, so it suffices to show that

CP

PD
=
CK

KD
. (1)

To verify (1), consider the circumcircle Ω of triangle ABC. Draw its diameter CU through C,
and let CU meet AB at V . Extend CK to meet Ω at L. Since AB is parallel to UL, we have
∠ACU = ∠BCL. On the other hand ∠EFC = ∠BAC, ∠FEC = ∠ABC and EF/AB = cos γ,
as stated above. So reflection in the bisector of ∠ACB followed by a homothety with centre C
and ratio 1/ cos γ takes triangle FEC to triangle ABC. Consequently, this transformation
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takes CD to CU , which implies CP/PD = CV/V U . Next, we have KL = KD, because D
is the orthocentre of triangle ABC. Hence CK/KD = CK/KL. Finally, CV/V U = CK/KL
because AB is parallel to UL. Relation (1) follows, proving that P lies on line AO1. By
symmetry, P also lies on line AO2 which completes the solution.

Solution 2. We proceed as in the first solution to define a triangle ABC with orthocentre D,
in which AF and BE are altitudes.

Denote by M the midpoint of CD. The quadrilateral CEDF is inscribed in a circle with
centre M , hence MC =ME =MD =MF .

A O B

F

O2

t

E

C

M

Q

O1

D

ω2

ω1

Consider triangles ABC and O1O2M . Lines O1O2 and AB are parallel, both of them being
perpendicular to line t. Next,MO1 is the line of centres of circles (CEF ) and ω1 whose common
chord is DE. Hence MO1 bisects ∠DME which is the external angle at M in the isosceles
triangle CEM . It follows that ∠DMO1 = ∠DCA, so that MO1 is parallel to AC. Likewise,
MO2 is parallel to BC.

Thus the respective sides of triangles ABC and O1O2M are parallel; in addition, these
triangles are not congruent. Hence there is a homothety taking ABC toO1O2M . The lines AO1,
BO2 and CM = t are concurrent at the centre Q of this homothety.

Finally, apply Pappus’ theorem to the triples of collinear points A, O, B and O2, D, O1.
The theorem implies that the points AD ∩ OO2 = F , AO1 ∩BO2 = Q and OO1 ∩BD = E are
collinear. In other words, line EF passes through the common point Q of AO1, BO2 and t.

Comment. Relation (1) from Solution 1 expresses the well-known fact that points P and K are
harmonic conjugates with respect to points C andD. It is also easy to justify it by direct computation.
Denoting ∠CAB = α, ∠ABC = β, it is straightforward to obtain CP/PD = CK/KD = tanα tan β.
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G7. In a triangle ABC, let Ma,Mb,Mc be respectively the midpoints of the sides BC, CA,
AB and Ta, Tb, Tc be the midpoints of the arcs BC, CA, AB of the circumcircle of ABC, not
containing the opposite vertices. For i ∈ {a, b, c}, let ωi be the circle with MiTi as diameter.
Let pi be the common external tangent to ωj, ωk ({i, j, k} = {a, b, c}) such that ωi lies on the
opposite side of pi than ωj , ωk do. Prove that the lines pa, pb, pc form a triangle similar to ABC
and find the ratio of similitude.

(Slovakia)

Solution. Let TaTb intersect circle ωb at Tb and U , and let TaTc intersect circle ωc at Tc and V .
Further, let UX be the tangent to ωb at U , with X on AC, and let V Y be the tangent to ωc
at V , with Y on AB. The homothety with centre Tb and ratio TbTa/TbU maps the circle ωb
onto the circumcircle of ABC and the line UX onto the line tangent to the circumcircle at Ta,
which is parallel to BC; thus UX‖BC . The same is true of V Y , so that UX‖BC‖V Y .

Let TaTb cut AC at P and let TaTc cut AB at Q. The point X lies on the hypotenuse PMb

of the right triangle PUMb and is equidistant from U and Mb. So X is the midpoint of MbP .
Similarly Y is the midpoint of McQ.

Denote the incentre of triangle ABC as usual by I. It is a known fact that TaI = TaB
and TcI = TcB. Therefore the points B and I are symmetric across TaTc, and consequently
∠QIB = ∠QBI = ∠IBC. This implies that BC is parallel to the line IQ, and likewise, to IP .
In other words, PQ is the line parallel to BC passing through I.

A

Tb

CB

Y

Ma

X

Ta

Q

V

Tc

ωc

Mc Mb

P
I

U

ωa

ωb

ClearlyMbMc‖BC. So PMbMcQ is a trapezoid and the segment XY connects the midpoints
of its nonparallel sides; hence XY ‖BC. This combined with the previously established relations
UX‖BC‖V Y shows that all the four points U,X, Y, V lie on a line which is the common tangent
to circles ωb, ωc. Since it leaves these two circles on one side and the circle ωa on the other,
this line is just the line pa from the problem statement.

Line pa runs midway between I and MbMc. Analogous conclusions hold for the lines pb
and pc. So these three lines form a triangle homothetic from centre I to triangle MaMbMc in
ratio 1/2, hence similar to ABC in ratio 1/4.
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G8. Let ABCD be a convex quadrilateral. A circle passing through the points A and D
and a circle passing through the points B and C are externally tangent at a point P inside the
quadrilateral. Suppose that

∠PAB + ∠PDC ≤ 90◦ and ∠PBA+ ∠PCD ≤ 90◦.

Prove that AB + CD ≥ BC + AD.
(Poland)

Solution. We start with a preliminary observation. Let T be a point inside the quadrilateral
ABCD. Then:

Circles (BCT ) and (DAT ) are tangent at T
if and only if ∠ADT + ∠BCT = ∠ATB. (1)

Indeed, if the two circles touch each other then their common tangent at T intersects the
segment AB at a point Z, and so ∠ADT = ∠ATZ, ∠BCT = ∠BTZ, by the tangent-chord
theorem. Thus ∠ADT + ∠BCT = ∠ATZ + ∠BTZ = ∠ATB.

And conversely, if ∠ADT + ∠BCT = ∠ATB then one can draw from T a ray TZ with Z
on AB so that ∠ADT = ∠ATZ, ∠BCT = ∠BTZ. The first of these equalities implies that
TZ is tangent to the circle (DAT ); by the second equality, TZ is tangent to the circle (BCT ),
so the two circles are tangent at T .

Z

B

C

T

A

D

So the equivalence (1) is settled. It will be used later on. Now pass to the actual solution.
Its key idea is to introduce the circumcircles of triangles ABP and CDP and to consider their
second intersection Q (assume for the moment that they indeed meet at two distinct points P
and Q).

Since the point A lies outside the circle (BCP ), we have ∠BCP + ∠BAP < 180◦. Therefore
the point C lies outside the circle (ABP ). Analogously, D also lies outside that circle. It follows
that P and Q lie on the same arc CD of the circle (BCP ).

D

A

B

P

C

Q
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By symmetry, P and Q lie on the same arc AB of the circle (ABP ). Thus the point Q lies
either inside the angle BPC or inside the angle APD. Without loss of generality assume that
Q lies inside the angle BPC. Then

∠AQD = ∠PQA+ ∠PQD = ∠PBA+ ∠PCD ≤ 90◦, (2)

by the condition of the problem.
In the cyclic quadrilaterals APQB and DPQC, the angles at vertices A and D are acute.

So their angles at Q are obtuse. This implies that Q lies not only inside the angle BPC but in
fact inside the triangle BPC, hence also inside the quadrilateral ABCD.

Now an argument similar to that used in deriving (2) shows that

∠BQC = ∠PAB + ∠PDC ≤ 90◦. (3)

Moreover, since ∠PCQ = ∠PDQ, we get

∠ADQ+ ∠BCQ = ∠ADP + ∠PDQ+ ∠BCP − ∠PCQ = ∠ADP + ∠BCP.

The last sum is equal to ∠APB, according to the observation (1) applied to T = P . And
because ∠APB = ∠AQB, we obtain

∠ADQ+ ∠BCQ = ∠AQB.

Applying now (1) to T = Q we conclude that the circles (BCQ) and (DAQ) are externally
tangent at Q. (We have assumed P 6= Q; but if P = Q then the last conclusion holds trivially.)

Finally consider the halfdiscs with diameters BC and DA constructed inwardly to the
quadrilateral ABCD. They have centres at M and N , the midpoints of BC and DA re-
spectively. In view of (2) and (3), these two halfdiscs lie entirely inside the circles (BQC)
and (AQD); and since these circles are tangent, the two halfdiscs cannot overlap. Hence
MN ≥ 1

2
BC + 1

2
DA.

On the other hand, since
−−→
MN = 1

2
(
−→
BA +

−−→
CD ), we haveMN ≤ 1

2
(AB + CD). Thus indeed

AB + CD ≥ BC +DA, as claimed.
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G9. Points A1, B1, C1 are chosen on the sides BC, CA, AB of a triangle ABC, respectively.
The circumcircles of triangles AB1C1, BC1A1, CA1B1 intersect the circumcircle of triangle
ABC again at points A2, B2, C2, respectively (A2 6= A, B2 6= B, C2 6= C). Points A3, B3, C3 are
symmetric to A1, B1, C1 with respect to the midpoints of the sides BC, CA, AB respectively.
Prove that the triangles A2B2C2 and A3B3C3 are similar.

(Russia)

Solution. We will work with oriented angles between lines. For two straight lines ℓ,m in the
plane, ∠(ℓ,m) denotes the angle of counterclockwise rotation which transforms line ℓ into a
line parallel to m (the choice of the rotation centre is irrelevant). This is a signed quantity;
values differing by a multiple of π are identified, so that

∠(ℓ,m) = −∠(m, ℓ), ∠(ℓ,m) + ∠(m,n) = ∠(ℓ, n).

If ℓ is the line through points K,L and m is the line through M,N , one writes ∠(KL,MN)
for ∠(ℓ,m); the characters K,L are freely interchangeable; and so are M,N .

The counterpart of the classical theorem about cyclic quadrilaterals is the following:
If K,L,M,N are four noncollinear points in the plane then

K,L,M,N are concyclic if and only if ∠(KM,LM) = ∠(KN,LN). (1)

Passing to the solution proper, we first show that the three circles (AB1C1), (BC1A1),
(CA1B1) have a common point. So, let (AB1C1) and (BC1A1) intersect at the points C1

and P . Then by (1)

∠(PA1, CA1) = ∠(PA1, BA1) = ∠(PC1, BC1)

= ∠(PC1, AC1) = ∠(PB1, AB1) = ∠(PB1, CB1).

Denote this angle by ϕ.
The equality between the outer terms shows, again by (1), that the points A1, B1, P, C are

concyclic. Thus P is the common point of the three mentioned circles.
From now on the basic property (1) will be used without explicit reference. We have

ϕ = ∠(PA1, BC) = ∠(PB1, CA) = ∠(PC1, AB). (2)

A2

P

B2

C2

CB

B4

C4

A

2ϕO

ϕ

A4

A2

B1

A1

P

B2

C2

C

A

C1

B

ϕ

ϕ

ϕ
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Let lines A2P , B2P , C2P meet the circle (ABC) again at A4, B4, C4, respectively. As

∠(A4A2, AA2) = ∠(PA2, AA2) = ∠(PC1, AC1) = ∠(PC1, AB) = ϕ,

we see that line A2A is the image of line A2A4 under rotation about A2 by the angle ϕ. Hence
the point A is the image of A4 under rotation by 2ϕ about O, the centre of (ABC). The same
rotation sends B4 to B and C4 to C. Triangle ABC is the image of A4B4C4 in this map. Thus

∠(A4B4, AB) = ∠(B4C4, BC) = ∠(C4A4, CA) = 2ϕ. (3)

Since the rotation by 2ϕ about O takes B4 to B, we have ∠(AB4, AB) = ϕ. Hence by (2)

∠(AB4, PC1) = ∠(AB4, AB) + ∠(AB,PC1) = ϕ+ (−ϕ) = 0,

which means that AB4‖PC1.

C

A

B

A4

B4

C4

2ϕ

C3

A3

ϕ

A5C1 ϕ

B5
C5

A1

ϕ

B1

O

B3

P

P

B4

A4

ϕ

B5

ϕ

A5

C5

C4

Let C5 be the intersection of lines PC1 and A4B4; define A5, B5 analogously. So AB4‖C1C5

and, by (3) and (2),

∠(A4B4, PC1) = ∠(A4B4, AB) + ∠(AB,PC1) = 2ϕ+ (−ϕ) = ϕ; (4)

i.e., ∠(B4C5, C5C1) = ϕ. This combined with ∠(C5C1, C1A) = ∠(PC1, AB) = ϕ (see (2)) proves
that the quadrilateral AB4C5C1 is an isosceles trapezoid with AC1 = B4C5.

Interchanging the roles of A and B we infer that also BC1 = A4C5. And since AC1+BC1 =
AB = A4B4, it follows that the point C5 lies on the line segment A4B4 and partitions it into
segments A4C5, B4C5 of lengths BC1 (= AC3) and AC1 (= BC3). In other words, the rotation
which maps triangle A4B4C4 onto ABC carries C5 onto C3. Likewise, it sends A5 to A3 and
B5 to B3. So the triangles A3B3C3 and A5B5C5 are congruent. It now suffices to show that the
latter is similar to A2B2C2.

Lines B4C5 and PC5 coincide respectively with A4B4 and PC1. Thus by (4)

∠(B4C5, PC5) = ϕ.

Analogously (by cyclic shift) ϕ = ∠(C4A5, PA5), which rewrites as

ϕ = ∠(B4A5, PA5).
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These relations imply that the points P,B4, C5, A5 are concyclic. Analogously, P,C4, A5, B5

and P,A4, B5, C5 are concyclic quadruples. Therefore

∠(A5B5, C5B5) = ∠(A5B5, PB5) + ∠(PB5, C5B5) = ∠(A5C4, PC4) + ∠(PA4, C5A4). (5)

On the other hand, since the points A2, B2, C2, A4, B4, C4 all lie on the circle (ABC), we have

∠(A2B2, C2B2) = ∠(A2B2, B4B2) + ∠(B4B2, C2B2) = ∠(A2A4, B4A4) + ∠(B4C4, C2C4). (6)

But the lines A2A4, B4A4, B4C4, C2C4 coincide respectively with PA4, C5A4, A5C4, PC4.
So the sums on the right-hand sides of (5) and (6) are equal, leading to equality between
their left-hand sides: ∠(A5B5, C5B5) = ∠(A2B2, C2B2). Hence (by cyclic shift, once more) also
∠(B5C5, A5C5) = ∠(B2C2, A2C2) and ∠(C5A5, B5A5) = ∠(C2A2, B2A2). This means that the
triangles A5B5C5 and A2B2C2 have their corresponding angles equal, and consequently they
are similar.

Comment 1. This is the way in which the proof has been presented by the proposer. Trying to work
it out in the language of classical geometry, so as to avoid oriented angles, one is led to difficulties due
to the fact that the reasoning becomes heavily case-dependent. Disposition of relevant points can vary
in many respects. Angles which are equal in one case become supplementary in another. Although it
seems not hard to translate all formulas from the shapes they have in one situation to the one they
have in another, the real trouble is to identify all cases possible and rigorously verify that the key
conclusions retain validity in each case.

The use of oriented angles is a very efficient method to omit this trouble. It seems to be the most
appropriate environment in which the solution can be elaborated.

Comment 2. Actually, the fact that the circles (AB1C1), (BC1A1) and (CA1B1) have a common
point does not require a proof; it is known as Miquel’s theorem.
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G10. To each side a of a convex polygon we assign the maximum area of a triangle contained
in the polygon and having a as one of its sides. Show that the sum of the areas assigned to all
sides of the polygon is not less than twice the area of the polygon.

(Serbia)

Solution 1.

Lemma. Every convex (2n)-gon, of area S, has a side and a vertex that jointly span a triangle
of area not less than S/n.

Proof. By main diagonals of the (2n)-gon we shall mean those which partition the (2n)-gon
into two polygons with equally many sides. For any side b of the (2n)-gon denote by ∆b the
triangle ABP where A,B are the endpoints of b and P is the intersection point of the main
diagonals AA′, BB′. We claim that the union of triangles ∆b, taken over all sides, covers the
whole polygon.

To show this, choose any side AB and consider the main diagonal AA′ as a directed segment.
Let X be any point in the polygon, not on any main diagonal. For definiteness, let X lie on the
left side of the ray AA′. Consider the sequence of main diagonals AA′, BB′, CC ′, . . . , where
A,B,C, . . . are consecutive vertices, situated right to AA′.

The n-th item in this sequence is the diagonal A′A (i.e. AA′ reversed), having X on its
right side. So there are two successive vertices K,L in the sequence A,B,C, . . . before A′ such
that X still lies to the left of KK ′ but to the right of LL′. And this means that X is in the
triangle ∆ℓ′ , ℓ

′ = K ′L′. Analogous reasoning applies to points X on the right of AA′ (points
lying on main diagonals can be safely ignored). Thus indeed the triangles ∆b jointly cover the
whole polygon.

The sum of their areas is no less than S. So we can find two opposite sides, say b = AB
and b′ = A′B′ (with AA′, BB′ main diagonals) such that [∆b] + [∆b′ ] ≥ S/n, where [· · · ] stands
for the area of a region. Let AA′, BB′ intersect at P ; assume without loss of generality that
PB ≥ PB′. Then

[ABA′] = [ABP ] + [PBA′] ≥ [ABP ] + [PA′B′] = [∆b] + [∆b′ ] ≥ S/n,

proving the lemma. �

Now, let P be any convex polygon, of area S, with m sides a1, . . . , am. Let Si be the area
of the greatest triangle in P with side ai. Suppose, contrary to the assertion, that

m∑

i=1

Si
S
< 2.

Then there exist rational numbers q1, . . . , qm such that
∑
qi = 2 and qi > Si/S for each i.

Let n be a common denominator of them fractions q1, . . . , qm. Write qi = ki/n; so
∑
ki = 2n.

Partition each side ai of P into ki equal segments, creating a convex (2n)-gon of area S (with
some angles of size 180◦), to which we apply the lemma. Accordingly, this refined polygon has
a side b and a vertex H spanning a triangle T of area [T ] ≥ S/n. If b is a piece of a side ai
of P, then the triangle W with base ai and summit H has area

[W ] = ki · [T ] ≥ ki · S/n = qi · S > Si,

in contradiction with the definition of Si. This ends the proof.
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Solution 2. As in the first solution, we allow again angles of size 180◦ at some vertices of the
convex polygons considered.

To each convex n-gon P = A1A2 . . . An we assign a centrally symmetric convex (2n)-gon Q
with side vectors ±−−−−→AiAi+1, 1 ≤ i ≤ n. The construction is as follows. Attach the 2n vectors

±−−−−→AiAi+1 at a common origin and label them
−→
b1,
−→
b2, . . . ,

−→
b2n in counterclockwise direction; the

choice of the first vector
−→
b1 is irrelevant. The order of labelling is well-defined if P has neither

parallel sides nor angles equal to 180◦. Otherwise several collinear vectors with the same

direction are labelled consecutively
−→
bj ,
−−→
bj+1, . . . ,

−−→
bj+r. One can assume that in such cases the

respective opposite vectors occur in the order−−→bj ,−
−−→
bj+1, . . . ,−

−−→
bj+r, ensuring that

−−→
bj+n = −

−→
bj

for j = 1, . . . , 2n. Indices are taken cyclically here and in similar situations below.

Choose points B1, B2, . . . , B2n satisfying
−−−−→
BjBj+1 =

−→
bj for j = 1, . . . , 2n. The polygonal line

Q = B1B2 . . . B2n is closed, since
∑2n

j=1

−→
bj =

−→
0 . Moreover, Q is a convex (2n)-gon due to the

arrangement of the vectors
−→
bj , possibly with 180

◦-angles. The side vectors of Q are ±−−−−→AiAi+1,

1 ≤ i ≤ n. So in particular Q is centrally symmetric, because it contains as side vectors
−−−−→
AiAi+1

and −−−−−→AiAi+1 for each i = 1, . . . , n. Note that BjBj+1 and Bj+nBj+n+1 are opposite sides of Q,
1 ≤ j ≤ n. We call Q the associate of P.

Let Si be the maximum area of a triangle with side AiAi+1 in P, 1 ≤ i ≤ n. We prove that

[B1B2 . . . B2n] = 2
n∑

i=1

Si (1)

and

[B1B2 . . . B2n] ≥ 4 [A1A2 . . . An] . (2)

It is clear that (1) and (2) imply the conclusion of the original problem.

Lemma. For a side AiAi+1 of P, let hi be the maximum distance from a point of P to line AiAi+1,

i = 1, . . . , n. Denote by BjBj+1 the side of Q such that
−−−−→
AiAi+1 =

−−−−→
BjBj+1. Then the distance

between BjBj+1 and its opposite side in Q is equal to 2hi.

Proof. Choose a vertex Ak of P at distance hi from line AiAi+1. Let u be the unit vector
perpendicular to AiAi+1 and pointing inside P. Denoting by x ·y the dot product of vectors x

and y, we have

h = u · −−−→AiAk = u · (−−−−→AiAi+1 + · · ·+
−−−−−→
Ak−1Ak) = u · (−−−−→AiAi−1 + · · ·+

−−−−−→
Ak+1Ak).

In Q, the distance Hi between the opposite sides BjBj+1 and Bj+nBj+n+1 is given by

Hi = u · (−−−−→BjBj+1 + · · ·+
−−−−−−−−→
Bj+n−1Bj+n) = u · (−→bj +

−−→
bj+1 + · · ·+

−−−−→
bj+n−1).

The choice of vertex Ak implies that the n consecutive vectors
−→
bj ,
−−→
bj+1, . . . ,

−−−−→
bj+n−1 are precisely−−−−→

AiAi+1, . . . ,
−−−−−→
Ak−1Ak and

−−−−→
AiAi−1, . . . ,

−−−−−→
Ak+1Ak, taken in some order. This implies Hi = 2hi. �

For a proof of (1), apply the lemma to each side of P. If O the centre of Q then, using the
notation of the lemma,

[BjBj+1O] = [Bj+nBj+n+1O] = [AiAi+1Ak] = Si .

Summation over all sides of P yields (1).
Set d(P) = [Q]− 4[P] for a convex polygon P with associate Q. Inequality (2) means that

d(P) ≥ 0 for each convex polygon P. The last inequality will be proved by induction on the
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number ℓ of side directions of P, i. e. the number of pairwise nonparallel lines each containing
a side of P.

We choose to start the induction with ℓ = 1 as a base case, meaning that certain degen-
erate polygons are allowed. More exactly, we regard as degenerate convex polygons all closed
polygonal lines of the form X1X2 . . .XkY1Y2 . . . YmX1, where X1, X2, . . . , Xk are points in this
order on a line segment X1Y1, and so are Ym, Ym−1, . . . , Y1. The initial construction applies to
degenerate polygons; their associates are also degenerate, and the value of d is zero. For the
inductive step, consider a convex polygon P which determines ℓ side directions, assuming that
d(P) ≥ 0 for polygons with smaller values of ℓ.

Suppose first that P has a pair of parallel sides, i. e. sides on distinct parallel lines. Let
AiAi+1 and AjAj+1 be such a pair, and let AiAi+1 ≤ AjAj+1. Remove from P the parallelo-

gram R determined by vectors
−−−−→
AiAi+1 and

−−−−→
AiAj+1. Two polygons are obtained in this way.

Translating one of them by vector
−−−−→
AiAi+1 yields a new convex polygon P ′, of area [P]− [R]

and with value of ℓ not exceeding the one of P. The construction just described will be called
operation A.

R

Aj+1 Aj

Ai Ai+1

P

P ′

Q Q′

The associate of P ′ is obtained from Q upon decreasing the lengths of two opposite sides
by an amount of 2AiAi+1. By the lemma, the distance between these opposite sides is twice
the distance between AiAi+1 and AjAj+1. Thus operation A decreases [Q] by the area of a
parallelogram with base and respective altitude twice the ones of R, i. e. by 4[R]. Hence A

leaves the difference d(P) = [Q]− 4[P] unchanged.
Now, if P ′ also has a pair of parallel sides, apply operation A to it. Keep doing so with

the subsequent polygons obtained for as long as possible. Now, A decreases the number p of
pairs of parallel sides in P. Hence its repeated applications gradually reduce p to 0, and further
applications of A will be impossible after several steps. For clarity, let us denote by P again
the polygon obtained at that stage.

The inductive step is complete if P is degenerate. Otherwise ℓ > 1 and p = 0, i. e. there
are no parallel sides in P. Observe that then ℓ ≥ 3. Indeed, ℓ = 2 means that the vertices of P
all lie on the boundary of a parallelogram, implying p > 0.

Furthermore, since P has no parallel sides, consecutive collinear vectors in the sequence
(−→
bk

)

(if any) correspond to consecutive 180◦-angles in P. Removing the vertices of such angles, we
obtain a convex polygon with the same value of d(P).

In summary, if operation A is impossible for a nondegenerate polygon P, then ℓ ≥ 3. In
addition, one may assume that P has no angles of size 180◦.

The last two conditions then also hold for the associate Q of P, and we perform the fol-
lowing construction. Since ℓ ≥ 3, there is a side BjBj+1 of Q such that the sum of the angles
at Bj and Bj+1 is greater than 180

◦. (Such a side exists in each convex k-gon for k > 4.) Natu-
rally, Bj+nBj+n+1 is a side with the same property. Extend the pairs of sides Bj−1Bj, Bj+1Bj+2
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and Bj+n−1Bj+n, Bj+n+1Bj+n+2 to meet at U and V , respectively. Let Q′ be the centrally sym-
metric convex 2(n+1)-gon obtained from Q by inserting U and V into the sequence B1, . . . , B2n

as new vertices between Bj , Bj+1 and Bj+n, Bj+n+1, respectively. Informally, we adjoin to Q
the congruent triangles BjBj+1U and Bj+nBj+n+1V . Note that Bj , Bj+1, Bj+n and Bj+n+1 are
kept as vertices of Q′, although BjBj+1 and Bj+nBj+n+1 are no longer its sides.

Let AiAi+1 be the side of P such that
−−−−→
AiAi+1 =

−−−−→
BjBj+1 =

−→
bj . Consider the point W such

that triangle AiAi+1W is congruent to triangle BjBj+1U and exterior to P. Insert W into the
sequence A1, A2, . . . , An as a new vertex between Ai and Ai+1 to obtain an (n+1)-gon P ′. We
claim that P ′ is convex and its associate is Q′.

W

Ai+2Ai+1

Ai

Ai−1

P Q

Bj+1

Bj Bj+n+1

V

Bj+n

U

Vectors
−−→
AiW and

−−→
bj−1 are collinear and have the same direction, as well as vectors

−−−−→
WAi+1

and
−−→
bj+1. Since

−−→
bj−1,

−→
bj ,
−−→
bj+1 are consecutive terms in the sequence

(−→
bk

)

, the angle inequalities

∠(
−−→
bj−1,

−→
bj) ≤ ∠(

−−−−→
Ai−1Ai,

−→
bj) and ∠(

−→
bj ,
−−→
bj+1) ≤ ∠(

−→
bj ,
−−−−−−→
Ai+1Ai+2) hold true. They show that P ′ is

a convex polygon. To construct its associate, vectors ±−−−−→AiAi+1 = ±
−→
bj must be deleted from the

defining sequence
(−→
bk

)

of Q, and the vectors ±−−→AiW , ±−−−−→WAi+1 must be inserted appropriately

into it. The latter can be done as follows:

. . . ,
−−→
bj−1,

−−→
AiW,

−−−−→
WAi+1,

−−→
bj+1, . . . , −

−−→
bj−1, −

−−→
AiW, −−−−−→WAi+1, −

−−→
bj+1, . . . .

This updated sequence produces Q′ as the associate of P ′.
It follows from the construction that [P ′] = [P] + [AiAi+1W ] and [Q′] = [Q] + 2[AiAi+1W ].

Therefore d(P ′) = d(P)− 2[AiAi+1W ] < d(P).
To finish the induction, it remains to notice that the value of ℓ for P ′ is less than the one

for P. This is because side AiAi+1 was removed. The newly added sides AiW and WAi+1 do
not introduce new side directions. Each one of them is either parallel to a side of P or lies on
the line determined by such a side. The proof is complete.



Number Theory

N1. Determine all pairs (x, y) of integers satisfying the equation

1 + 2x + 22x+1 = y2.

(USA)

Solution. If (x, y) is a solution then obviously x ≥ 0 and (x,−y) is a solution too. For x = 0
we get the two solutions (0, 2) and (0,−2).

Now let (x, y) be a solution with x > 0; without loss of generality confine attention to y > 0.
The equation rewritten as

2x(1 + 2x+1) = (y − 1)(y + 1)

shows that the factors y − 1 and y + 1 are even, exactly one of them divisible by 4. Hence
x ≥ 3 and one of these factors is divisible by 2x−1 but not by 2x. So

y = 2x−1m+ ǫ, m odd, ǫ = ±1. (1)

Plugging this into the original equation we obtain

2x
(
1 + 2x+1

)
=

(
2x−1m+ ǫ

)2 − 1 = 22x−2m2 + 2xmǫ,

or, equivalently
1 + 2x+1 = 2x−2m2 +mǫ.

Therefore
1− ǫm = 2x−2(m2 − 8). (2)

For ǫ = 1 this yields m2 − 8 ≤ 0, i.e., m = 1, which fails to satisfy (2).
For ǫ = −1 equation (2) gives us

1 +m = 2x−2(m2 − 8) ≥ 2(m2 − 8),

implying 2m2 −m− 17 ≤ 0. Hence m ≤ 3; on the other hand m cannot be 1 by (2). Because
m is odd, we obtain m = 3, leading to x = 4. From (1) we get y = 23. These values indeed
satisfy the given equation. Recall that then y = −23 is also good. Thus we have the complete
list of solutions (x, y): (0, 2), (0,−2), (4, 23), (4,−23).
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N2. For x ∈ (0, 1) let y ∈ (0, 1) be the number whose nth digit after the decimal point is the
(2n)th digit after the decimal point of x. Show that if x is rational then so is y.

(Canada)

Solution. Since x is rational, its digits repeat periodically starting at some point. We wish to
show that this is also true for the digits of y, implying that y is rational.

Let d be the length of the period of x and let d = 2u · v, where v is odd. There is a positive
integer w such that

2w ≡ 1 (mod v).

(For instance, one can choose w to be ϕ(v), the value of Euler’s function at v.) Therefore

2n+w = 2n · 2w ≡ 2n (mod v)

for each n. Also, for n ≥ u we have

2n+w ≡ 2n ≡ 0 (mod 2u).

It follows that, for all n ≥ u, the relation

2n+w ≡ 2n (mod d)

holds. Thus, for n sufficiently large, the 2n+wth digit of x is in the same spot in the cycle of x
as its 2nth digit, and so these digits are equal. Hence the (n+ w)th digit of y is equal to its
nth digit. This means that the digits of y repeat periodically with period w from some point
on, as required.
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N3. The sequence f(1), f(2), f(3), . . . is defined by

f(n) =
1

n

(⌊n

1

⌋

+
⌊n

2

⌋

+ · · ·+
⌊n

n

⌋)

,

where ⌊x⌋ denotes the integer part of x.
(a) Prove that f(n+ 1) > f(n) infinitely often.

(b) Prove that f(n+ 1) < f(n) infinitely often.
(South Africa)

Solution. Let g(n) = nf(n) for n ≥ 1 and g(0) = 0. We note that, for k = 1, . . . , n,

⌊n

k

⌋

−
⌊
n− 1

k

⌋

= 0

if k is not a divisor of n and
⌊n

k

⌋

−
⌊
n− 1

k

⌋

= 1

if k divides n. It therefore follows that if d(n) is the number of positive divisors of n ≥ 1 then

g(n) =
⌊n

1

⌋

+
⌊n

2

⌋

+ · · ·+
⌊

n

n− 1

⌋

+
⌊n

n

⌋

=

⌊
n− 1

1

⌋

+

⌊
n− 1

2

⌋

+ · · ·+
⌊
n− 1

n− 1

⌋

+

⌊
n− 1

n

⌋

+ d(n)

= g(n− 1) + d(n).

Hence

g(n) = g(n−1) + d(n) = g(n−2) + d(n−1) + d(n) = · · · = d(1) + d(2) + · · ·+ d(n),

meaning that

f(n) =
d(1) + d(2) + · · ·+ d(n)

n
.

In other words, f(n) is equal to the arithmetic mean of d(1), d(2), . . . , d(n). In order to prove
the claims, it is therefore sufficient to show that d(n + 1) > f(n) and d(n + 1) < f(n) both
hold infinitely often.

We note that d(1) = 1. For n > 1, d(n) ≥ 2 holds, with equality if and only if n is prime.
Since f(6) = 7/3 > 2, it follows that f(n) > 2 holds for all n ≥ 6.

Since there are infinitely many primes, d(n + 1) = 2 holds for infinitely many values of n,
and for each such n ≥ 6 we have d(n+ 1) = 2 < f(n). This proves claim (b).

To prove (a), notice that the sequence d(1), d(2), d(3), . . . is unbounded (e. g. d(2k) = k+1
for all k). Hence d(n+1) > max{d(1), d(2), . . . , d(n)} for infinitely many n. For all such n, we
have d(n+ 1) > f(n). This completes the solution.
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N4. Let P be a polynomial of degree n > 1 with integer coefficients and let k be any positive
integer. Consider the polynomial Q(x) = P (P (. . . P (P (x)) . . .)), with k pairs of parentheses.
Prove that Q has no more than n integer fixed points, i.e. integers satisfying the equation
Q(x) = x.

(Romania)

Solution. The claim is obvious if every integer fixed point of Q is a fixed point of P itself.
For the sequel assume that this is not the case. Take any integer x0 such that Q(x0) = x0,
P (x0) 6= x0 and define inductively xi+1 = P (xi) for i = 0, 1, 2, . . . ; then xk = x0.

It is evident that

P (u)− P (v) is divisible by u− v for distinct integers u, v. (1)

(Indeed, if P (x) =
∑
aix

i then each ai(u
i − vi) is divisible by u− v.) Therefore each term in

the chain of (nonzero) differences

x0 − x1, x1 − x2, . . . , xk−1 − xk, xk − xk+1 (2)

is a divisor of the next one; and since xk − xk+1 = x0 − x1, all these differences have equal
absolute values. For xm = min(x1, . . . , xk) this means that xm−1 − xm = −(xm − xm+1). Thus
xm−1 = xm+1( 6= xm). It follows that consecutive differences in the sequence (2) have opposite
signs. Consequently, x0, x1, x2, . . . is an alternating sequence of two distinct values. In other
words, every integer fixed point of Q is a fixed point of the polynomial P (P (x)). Our task is
to prove that there are at most n such points.

Let a be one of them so that b = P (a) 6= a (we have assumed that such an a exists); then
a = P (b). Take any other integer fixed point α of P (P (x)) and let P (α) = β, so that P (β) = α;
the numbers α and β need not be distinct (α can be a fixed point of P ), but each of α, β is
different from each of a, b. Applying property (1) to the four pairs of integers (α, a), (β, b),
(α, b), (β, a) we get that the numbers α− a and β − b divide each other, and also α− b and
β − a divide each other. Consequently

α− b = ±(β − a), α− a = ±(β − b). (3)

Suppose we have a plus in both instances: α− b = β − a and α− a = β − b. Subtraction yields
a− b = b− a, a contradiction, as a 6= b. Therefore at least one equality in (3) holds with a minus
sign. For each of them this means that α + β = a + b; equivalently a+ b− α− P (α) = 0.

Denote a + b by C. We have shown that every integer fixed point of Q other that a and b is
a root of the polynomial F (x) = C − x− P (x). This is of course true for a and b as well. And
since P has degree n > 1, the polynomial F has the same degree, so it cannot have more than
n roots. Hence the result.

Comment. The first part of the solution, showing that integer fixed points of any iterate of P are
in fact fixed points of the second iterate P◦P is standard; moreover, this fact has already appeared
in contests. We however do not consider this as a major drawback to the problem because the only
tricky moment comes up only at the next stage of the reasoning—to apply the divisibility property (1)
to points from distinct 2-orbits of P . Yet maybe it would be more appropriate to state the problem
in a version involving k = 2 only.
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N5. Find all integer solutions of the equation

x7 − 1

x− 1
= y5 − 1.

(Russia)

Solution. The equation has no integer solutions. To show this, we first prove a lemma.

Lemma. If x is an integer and p is a prime divisor of
x7 − 1

x− 1
then either p ≡ 1 (mod 7) or p = 7.

Proof. Both x7−1 and xp−1−1 are divisible by p, by hypothesis and by Fermat’s little theorem,
respectively. Suppose that 7 does not divide p− 1. Then gcd(p−1, 7) = 1, so there exist integers
k and m such that 7k + (p− 1)m = 1. We therefore have

x ≡ x7k+(p−1)m ≡ (x7)k · (xp−1)m ≡ 1 (mod p),

and so
x7 − 1

x− 1
= 1 + x+ · · ·+ x6 ≡ 7 (mod p).

It follows that p divides 7, hence p = 7 must hold if p ≡ 1 (mod 7) does not, as stated. �

The lemma shows that each positive divisor d of
x7 − 1

x− 1
satisfies either d ≡ 0 (mod 7) or

d ≡ 1 (mod 7).
Now assume that (x, y) is an integer solution of the original equation. Notice that y − 1 > 0,

because
x7 − 1

x− 1
> 0 for all x 6= 1. Since y − 1 divides

x7 − 1

x− 1
= y5 − 1, we have y ≡ 1 (mod 7)

or y ≡ 2 (mod 7) by the previous paragraph. In the first case, 1+y+ y2+ y3+ y4 ≡ 5 (mod 7),
and in the second 1 + y + y2 + y3 + y4 ≡ 3 (mod 7). Both possibilities contradict the fact that

the positive divisor 1+ y+ y2+ y3+ y4 of
x7 − 1

x− 1
is congruent to 0 or 1 modulo 7. So the given

equation has no integer solutions.
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N6. Let a > b > 1 be relatively prime positive integers. Define the weight of an integer c,
denoted by w(c), to be the minimal possible value of |x|+ |y| taken over all pairs of integers x
and y such that

ax+ by = c.

An integer c is called a local champion if w(c) ≥ w(c± a) and w(c) ≥ w(c± b).
Find all local champions and determine their number.

(USA)

Solution. Call the pair of integers (x, y) a representation of c if ax+ by = c and |x| + |y| has
the smallest possible value, i.e. |x|+ |y| = w(c).

We characterise the local champions by the following three observations.

Lemma 1. If (x, y) a representation of a local champion c then xy < 0.

Proof. Suppose indirectly that x ≥ 0 and y ≥ 0 and consider the values w(c) and w(c+ a). All
representations of the numbers c and c + a in the form au+ bv can be written as

c = a(x− kb) + b(y + ka), c+ a = a(x+ 1− kb) + b(y + ka)

where k is an arbitrary integer.
Since |x|+ |y| is minimal, we have

x+ y = |x|+ |y| ≤ |x− kb|+ |y + ka|

for all k. On the other hand, w(c+ a) ≤ w(c), so there exists a k for which

|x+ 1− kb| + |y + ka| ≤ |x|+ |y| = x+ y.

Then

(x+ 1− kb) + (y + ka) ≤ |x+ 1− kb|+ |y + ka| ≤ x+ y ≤ |x− kb| + |y + ka|.

Comparing the first and the third expressions, we find k(a − b) + 1 ≤ 0 implying k < 0.
Comparing the second and fourth expressions, we get |x+ 1− kb| ≤ |x− kb|, therefore kb > x;
this is a contradiction.

If x, y ≤ 0 then we can switch to −c, −x and −y. �

From this point, write c = ax − by instead of c = ax + by and consider only those cases
where x and y are nonzero and have the same sign. By Lemma 1, there is no loss of generality
in doing so.

Lemma 2. Let c = ax− by where |x|+ |y| is minimal and x, y have the same sign. The number
c is a local champion if and only if |x| < b and |x|+ |y| =

⌊
a+b
2

⌋
.

Proof. Without loss of generality we may assume x, y > 0.
The numbers c− a and c+ b can be written as

c− a = a(x− 1)− by and c+ b = ax− b(y − 1)

and trivially w(c− a) ≤ (x− 1) + y < w(c) and w(c+ b) ≤ x+ (y − 1) < w(c) in all cases.
Now assume that c is a local champion and consider w(c+ a). Since w(c+ a) ≤ w(c), there

exists an integer k such that

c+ a = a(x+ 1− kb)− b(y − ka) and |x+ 1− kb| + |y − ka| ≤ x+ y.



61

This inequality cannot hold if k ≤ 0, therefore k > 0. We prove that we can choose k = 1.
Consider the function f(t) = |x+1− bt|+ |y− at| − (x+ y). This is a convex function and

we have f(0) = 1 and f(k) ≤ 0. By Jensen’s inequality, f(1) ≤
(
1− 1

k

)
f(0) + 1

k
f(k) < 1. But

f(1) is an integer. Therefore f(1) ≤ 0 and

|x+ 1− b|+ |y − a| ≤ x+ y.

Knowing c = a(x− b)− b(y − a), we also have

x+ y ≤ |x− b|+ |y − a|.

Combining the two inequalities yields |x+ 1− b| ≤ |x− b| which is equivalent to x < b.
Considering w(c− b), we obtain similarly that y < a.
Now |x− b| = b− x, |x+ 1− b| = b− x− 1 and |y − a| = a− y, therefore we have

(b− x− 1) + (a− y) ≤ x+ y ≤ (b− x) + (a− y),

a+ b− 1

2
≤ x+ y ≤ a+ b

2
.

Hence x+ y =
⌊
a+b
2

⌋
.

To prove the opposite direction, assume 0 < x < b and x+ y =
⌊
a+b
2

⌋
. Since a > b, we also

have 0 < y < a. Then

w(c+ a) ≤ |x+ 1− b|+ |y − a| = a + b− 1− (x+ y) ≤ x+ y = w(c)

and
w(c− b) ≤ |x− b|+ |y + 1− a| = a + b− 1− (x+ y) ≤ x+ y = w(c)

therefore c is a local champion indeed. �

Lemma 3. Let c = ax− by and assume that x and y have the same sign, |x| < b, |y| < a and
|x|+ |y| =

⌊
a+b
2

⌋
. Then w(c) = x+ y.

Proof. By definition w(c) = min{|x − kb| + |y − ka| : k ∈ Z}. If k ≤ 0 then obviously
|x− kb|+ |y − ka| ≥ x+ y. If k ≥ 1 then

|x− kb|+ |y − ka| = (kb− x) + (ka− y) = k(a+ b)− (x+ y) ≥ (2k − 1)(x+ y) ≥ x+ y.

Therefore w(c) = x+ y indeed. �

Lemmas 1, 2 and 3 together yield that the set of local champions is

C =

{

± (ax− by) : 0 < x < b, x+ y =

⌊
a+ b

2

⌋}

.

Denote by C+ and C− the two sets generated by the expressions +(ax− by) and −(ax − by),
respectively. It is easy to see that both sets are arithmetic progressions of length b − 1, with
difference a + b.

If a and b are odd, then C+ = C−, because a(−x) − b(−y) = a(b − x) − b(a − y) and
x + y = a+b

2
is equivalent to (b − x) + (a − y) = a+b

2
. In this case there exist b − 1 local

champions.
If a and b have opposite parities then the answer is different. For any c1 ∈ C+ and c2 ∈ C−,

2c1 ≡ −2c2 ≡ 2

(

a
a+ b− 1

2
− b · 0

)

≡ −a (mod a+ b)
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and
2c1 − 2c2 ≡ −2a (mod a+ b).

The number a+ b is odd and relatively prime to a, therefore the elements of C+ and C− belong
to two different residue classes modulo a + b. Hence, the set C is the union of two disjoint
arithmetic progressions and the number of all local champions is 2(b− 1).

So the number of local champions is b− 1 if both a and b are odd and 2(b− 1) otherwise.

Comment. The original question, as stated by the proposer, was:
(a) Show that there exists only finitely many local champions;
(b) Show that there exists at least one local champion.
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N7. Prove that, for every positive integer n, there exists an integer m such that 2m +m is
divisible by n.

(Estonia)

Solution.We will prove by induction on d that, for every positive integer N , there exist positive
integers b0, b1, . . . , bd−1 such that, for each i = 0, 1, 2, . . . , d− 1, we have bi > N and

2bi + bi ≡ i (mod d).

This yields the claim for m = b0.
The base case d = 1 is trivial. Take an a > 1 and assume that the statement holds for

all d < a. Note that the remainders of 2i modulo a repeat periodically starting with some
exponent M . Let k be the length of the period; this means that 2M+k′ ≡ 2M (mod a) holds
only for those k′ which are multiples of k. Note further that the period cannot contain all the
a remainders, since 0 either is missing or is the only number in the period. Thus k < a.

Let d = gcd(a, k) and let a′ = a/d, k′ = k/d. Since 0 < k < a, we also have 0 < d < a. By
the induction hypothesis, there exist positive integers b0, b1, . . . , bd−1 such that bi > max(2M , N)
and

2bi + bi ≡ i (mod d) for i = 0, 1, 2, . . . , d− 1. (1)

For each i = 0, 1, . . . , d− 1 consider the sequence

2bi + bi, 2bi+k + (bi + k), . . . , 2bi+(a′−1)k + (bi + (a′ − 1)k). (2)

Modulo a, these numbers are congruent to

2bi + bi, 2bi + (bi + k), . . . , 2bi + (bi + (a′ − 1)k),

respectively. The d sequences contain a′d = a numbers altogether. We shall now prove that no
two of these numbers are congruent modulo a.

Suppose that
2bi + (bi +mk) ≡ 2bj + (bj + nk) (mod a) (3)

for some values of i, j ∈ {0, 1, . . . , d− 1} and m,n ∈ {0, 1, . . . , a′− 1}. Since d is a divisor of a,
we also have

2bi + (bi +mk) ≡ 2bj + (bj + nk) (mod d).

Because d is a divisor of k and in view of (1), we obtain i ≡ j (mod d). As i, j ∈ {0, 1, . . . , d−1},
this just means that i = j. Substituting this into (3) yields mk ≡ nk (mod a). Therefore
mk′ ≡ nk′ (mod a′); and since a′ and k′ are coprime, we get m ≡ n (mod a′). Hence also
m = n.

It follows that the a numbers that make up the d sequences (2) satisfy all the requirements;
they are certainly all greater than N because we chose each bi > max(2M , N). So the statement
holds for a, completing the induction.
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Algebra

A1. Given a sequence a1, a2, . . . , an of real numbers. For each i (1 ≤ i ≤ n) define

di = max{aj : 1 ≤ j ≤ i} −min{aj : i ≤ j ≤ n}

and let
d = max{di : 1 ≤ i ≤ n}.

(a) Prove that for arbitrary real numbers x1 ≤ x2 ≤ . . . ≤ xn,

max
{

|xi − ai| : 1 ≤ i ≤ n
}

≥ d

2
. (1)

(b) Show that there exists a sequence x1 ≤ x2 ≤ . . . ≤ xn of real numbers such that we have
equality in (1).

(New Zealand)

Solution 1. (a) Let 1 ≤ p ≤ q ≤ r ≤ n be indices for which

d = dq, ap = max{aj : 1 ≤ j ≤ q}, ar = min{aj : q ≤ j ≤ n}

and thus d = ap − ar. (These indices are not necessarily unique.)

xp

ap

p q r

x1

a1

xr

ar

xn

an

For arbitrary real numbers x1 ≤ x2 ≤ . . . ≤ xn, consider just the two quantities |xp − ap|
and |xr − ar|. Since

(ap − xp) + (xr − ar) = (ap − ar) + (xr − xp) ≥ ap − ar = d,

we have either ap − xp ≥
d

2
or xr − ar ≥

d

2
. Hence,

max{|xi − ai| : 1 ≤ i ≤ n} ≥ max
{

|xp − ap|, |xr − ar|
}

≥ max{ap − xp, xr − ar} ≥
d

2
.
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(b) Define the sequence (xk) as

x1 = a1 −
d

2
, xk = max

{

xk−1, ak −
d

2

}

for 2 ≤ k ≤ n.

We show that we have equality in (1) for this sequence.

By the definition, sequence (xk) is non-decreasing and xk − ak ≥ −d

2
for all 1 ≤ k ≤ n.

Next we prove that

xk − ak ≤
d

2
for all 1 ≤ k ≤ n. (2)

Consider an arbitrary index 1 ≤ k ≤ n. Let ℓ ≤ k be the smallest index such that xk = xℓ. We
have either ℓ = 1, or ℓ ≥ 2 and xℓ > xℓ−1. In both cases,

xk = xℓ = aℓ −
d

2
. (3)

Since
aℓ − ak ≤ max{aj : 1 ≤ j ≤ k} −min{aj : k ≤ j ≤ n} = dk ≤ d,

equality (3) implies

xk − ak = aℓ − ak −
d

2
≤ d− d

2
=

d

2
.

We obtained that −d

2
≤ xk − ak ≤

d

2
for all 1 ≤ k ≤ n, so

max
{

|xi − ai| : 1 ≤ i ≤ n
}

≤ d

2
.

We have equality because |x1 − a1| =
d

2
.

Solution 2. We present another construction of a sequence (xi) for part (b).

For each 1 ≤ i ≤ n, let

Mi = max{aj : 1 ≤ j ≤ i} and mi = min{aj : i ≤ j ≤ n}.

For all 1 ≤ i < n, we have

Mi = max{a1, . . . , ai} ≤ max{a1, . . . , ai, ai+1} = Mi+1

and
mi = min{ai, ai+1, . . . , an} ≤ min{ai+1, . . . , an} = mi+1.

Therefore sequences (Mi) and (mi) are non-decreasing. Moreover, since ai is listed in both
definitions,

mi ≤ ai ≤Mi.

To achieve equality in (1), set

xi =
Mi + mi

2
.

Since sequences (Mi) and (mi) are non-decreasing, this sequence is non-decreasing as well.
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From di = Mi −mi we obtain that

−di

2
=

mi −Mi

2
= xi −Mi ≤ xi − ai ≤ xi −mi =

Mi −mi

2
=

di

2
.

Therefore

max
{

|xi − ai| : 1 ≤ i ≤ n
}

≤ max

{

di

2
: 1 ≤ i ≤ n

}

=
d

2
.

Since the opposite inequality has been proved in part (a), we must have equality.
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A2. Consider those functions f : N → N which satisfy the condition

f(m + n) ≥ f(m) + f
(

f(n)
)

− 1 (1)

for all m, n ∈ N. Find all possible values of f(2007).
(N denotes the set of all positive integers.)

(Bulgaria)

Answer. 1, 2, . . . , 2008.

Solution. Suppose that a function f : N → N satisfies (1). For arbitrary positive inte-
gers m > n, by (1) we have

f(m) = f
(

n + (m− n)
)

≥ f(n) + f
(

f(m− n)
)

− 1 ≥ f(n),

so f is nondecreasing.
Function f ≡ 1 is an obvious solution. To find other solutions, assume that f 6≡ 1 and take

the smallest a ∈ N such that f(a) > 1. Then f(b) ≥ f(a) > 1 for all integer b ≥ a.
Suppose that f(n) > n for some n ∈ N. Then we have

f
(

f(n)
)

= f
(

(

f(n)− n
)

+ n
)

≥ f
(

f(n)− n
)

+ f
(

f(n)
)

− 1,

so f
(

f(n)−n
)

≤ 1 and hence f(n)−n < a. Then there exists a maximal value of the expression
f(n)−n; denote this value by c, and let f(k)−k = c ≥ 1. Applying the monotonicity together
with (1), we get

2k + c ≥ f(2k) = f(k + k) ≥ f(k) + f
(

f(k)
)

− 1

≥ f(k) + f(k)− 1 = 2(k + c)− 1 = 2k + (2c− 1),

hence c ≤ 1 and f(n) ≤ n + 1 for all n ∈ N. In particular, f(2007) ≤ 2008.

Now we present a family of examples showing that all values from 1 to 2008 can be realized.
Let

fj(n) = max{1, n + j − 2007} for j = 1, 2, . . . , 2007; f2008(n) =

{

n, 2007 6
∣

∣ n,

n + 1, 2007
∣

∣ n.

We show that these functions satisfy the condition (1) and clearly fj(2007) = j.
To check the condition (1) for the function fj (j ≤ 2007), note first that fj is nondecreasing

and fj(n) ≤ n, hence fj

(

fj(n)
)

≤ fj(n) ≤ n for all n ∈ N. Now, if fj(m) = 1, then the
inequality (1) is clear since fj(m+n) ≥ fj(n) ≥ fj

(

fj(n)
)

= fj(m)+ fj

(

fj(n)
)

− 1. Otherwise,

fj(m) + fj

(

fj(n)
)

− 1 ≤ (m + j − 2007) + n = (m + n) + j − 2007 = fj(m + n).

In the case j = 2008, clearly n + 1 ≥ f2008(n) ≥ n for all n ∈ N; moreover, n + 1 ≥
f2008

(

f2008(n)
)

as well. Actually, the latter is trivial if f2008(n) = n; otherwise, f2008(n) = n+1,
which implies 2007 6

∣

∣ n + 1 and hence n + 1 = f2008(n + 1) = f2008

(

f2008(n)
)

.
So, if 2007

∣

∣ m + n, then

f2008(m + n) = m + n + 1 = (m + 1) + (n + 1)− 1 ≥ f2008(m) + f2008

(

f2008(n)
)

− 1.

Otherwise, 2007 6
∣

∣ m+n, hence 2007 6
∣

∣ m or 2007 6
∣

∣ n. In the former case we have f2008(m) = m,
while in the latter one f2008

(

f2008(n)
)

= f2008(n) = n, providing

f2008(m) + f2008

(

f2008(n)
)

− 1 ≤ (m + n + 1)− 1 = f2008(m + n).
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Comment. The examples above are not unique. The values 1, 2, . . . , 2008 can be realized in several
ways. Here we present other two constructions for j ≤ 2007, without proof:

gj(n) =











1, n < 2007,

j, n = 2007,

n, n > 2007;

hj(n) = max

{

1,

⌊

jn

2007

⌋}

.

Also the example for j = 2008 can be generalized. In particular, choosing a divisor d > 1 of 2007,
one can set

f2008,d(n) =

{

n, d 6
∣

∣ n,

n + 1, d
∣

∣ n.
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A3. Let n be a positive integer, and let x and y be positive real numbers such that xn+yn = 1.
Prove that

(

n
∑

k=1

1 + x2k

1 + x4k

)(

n
∑

k=1

1 + y2k

1 + y4k

)

<
1

(1− x)(1− y)
.

(Estonia)

Solution 1. For each real t ∈ (0, 1),

1 + t2

1 + t4
=

1

t
− (1− t)(1− t3)

t(1 + t4)
<

1

t
.

Substituting t = xk and t = yk,

0 <

n
∑

k=1

1 + x2k

1 + x4k
<

n
∑

k=1

1

xk
=

1− xn

xn(1− x)
and 0 <

n
∑

k=1

1 + y2k

1 + y4k
<

n
∑

k=1

1

yk
=

1− yn

yn(1− y)
.

Since 1− yn = xn and 1− xn = yn,

1− xn

xn(1− x)
=

yn

xn(1− x)
,

1− yn

yn(1− y)
=

xn

yn(1− y)

and therefore
(

n
∑

k=1

1 + x2k

1 + x4k

)(

n
∑

k=1

1 + y2k

1 + y4k

)

<
yn

xn(1− x)
· xn

yn(1− y)
=

1

(1− x)(1− y)
.

Solution 2. We prove

(

n
∑

k=1

1 + x2k

1 + x4k

)(

n
∑

k=1

1 + y2k

1 + y4k

)

<

(

1+
√

2
2

ln 2
)2

(1− x)(1− y)
<

0.7001

(1− x)(1− y)
. (1)

The idea is to estimate each term on the left-hand side with the same constant. To find the

upper bound for the expression
1 + x2k

1 + x4k
, consider the function f(t) =

1 + t

1 + t2
in interval (0, 1).

Since

f ′(t) =
1− 2t− t2

(1 + t2)2
=

(
√

2 + 1 + t)(
√

2− 1− t)

(1 + t2)2
,

the function increases in interval (0,
√

2−1] and decreases in [
√

2−1, 1). Therefore the maximum
is at point t0 =

√
2− 1 and

f(t) =
1 + t

1 + t2
≤ f(t0) =

1 +
√

2

2
= α.

Applying this to each term on the left-hand side of (1), we obtain
(

n
∑

k=1

1 + x2k

1 + x4k

)(

n
∑

k=1

1 + y2k

1 + y4k

)

≤ nα · nα = (nα)2. (2)

To estimate (1− x)(1− y) on the right-hand side, consider the function

g(t) = ln(1− t1/n) + ln
(

1− (1− t)1/n
)

.
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Substituting s for 1− t, we have

−ng′(t) =
t1/n−1

1− t1/n
− s1/n−1

1− s1/n
=

1

st

(

(1− t)t1/n

1− t1/n
− (1− s)s1/n

1− s1/n

)

=
h(t)− h(s)

st
.

The function

h(t) = t1/n 1− t

1− t1/n
=

n
∑

i=1

ti/n

is obviously increasing for t ∈ (0, 1), hence for these values of t we have

g′(t) > 0 ⇐⇒ h(t) < h(s) ⇐⇒ t < s = 1− t ⇐⇒ t <
1

2
.

Then, the maximum of g(t) in (0, 1) is attained at point t1 = 1/2 and therefore

g(t) ≤ g

(

1

2

)

= 2 ln(1− 2−1/n), t ∈ (0, 1).

Substituting t = xn, we have 1− t = yn, (1− x)(1− y) = exp g(t) and hence

(1− x)(1− y) = exp g(t) ≤ (1− 2−1/n)2. (3)

Combining (2) and (3), we get
(

n
∑

k=1

1 + x2k

1 + x4k

)(

n
∑

k=1

1 + y2k

1 + y4k

)

≤ (αn)2 · 1 ≤ (αn)2 (1− 2−1/n)2

(1− x)(1− y)
=

(

αn(1− 2−1/n)
)2

(1− x)(1− y)
.

Applying the inequality 1− exp(−t) < t for t =
ln 2

n
, we obtain

αn(1− 2−1/n) = αn

(

1− exp

(

− ln 2

n

))

< αn · ln 2

n
= α ln 2 =

1 +
√

2

2
ln 2.

Hence,
(

n
∑

k=1

1 + x2k

1 + x4k

)(

n
∑

k=1

1 + y2k

1 + y4k

)

<

(

1+
√

2
2

ln 2
)2

(1− x)(1− y)
.

Comment. It is a natural idea to compare the sum Sn(x) =

n
∑

k=1

1 + x2k

1 + x4k
with the integral In(x) =

∫ n

0

1 + x2t

1 + x4t
dt. Though computing the integral is quite standard, many difficulties arise. First, the

integrand
1 + x2k

1 + x4k
has an increasing segment and, depending on x, it can have a decreasing segment as

well. So comparing Sn(x) and In(x) is not completely obvious. We can add a term to fix the estimate,
e.g. Sn ≤ In + (α − 1), but then the final result will be weak for the small values of n. Second, we
have to minimize (1− x)(1− y)In(x)In(y) which leads to very unpleasant computations.

However, by computer search we found that the maximum of In(x)In(y) is at x = y = 2−1/n, as
well as the maximum of Sn(x)Sn(y), and the latter is less. Hence, one can conjecture that the exact
constant which can be put into the numerator on the right-hand side of (1) is

(

ln 2 ·
∫ 1

0

1 + 4−t

1 + 16−t
dt

)2

=
1

4

(

1

2
ln

17

2
+ arctan 4− π

4

)2

≈ 0.6484.
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A4. Find all functions f : R
+ → R

+ such that

f
(

x + f(y)
)

= f(x + y) + f(y) (1)

for all x, y ∈ R
+. (Symbol R

+ denotes the set of all positive real numbers.)
(Thaliand)

Answer. f(x) = 2x.

Solution 1. First we show that f(y) > y for all y ∈ R
+. Functional equation (1) yields

f
(

x + f(y)
)

> f(x + y) and hence f(y) 6= y immediately. If f(y) < y for some y, then setting
x = y − f(y) we get

f(y) = f
(

(

y − f(y)
)

+ f(y)
)

= f
(

(

y − f(y)
)

+ y
)

+ f(y) > f(y),

contradiction. Therefore f(y) > y for all y ∈ R
+.

For x ∈ R
+ define g(x) = f(x) − x; then f(x) = g(x) + x and, as we have seen, g(x) > 0.

Transforming (1) for function g(x) and setting t = x + y,

f
(

t + g(y)
)

= f(t) + f(y),

g
(

t + g(y)
)

+ t + g(y) =
(

g(t) + t
)

+
(

g(y) + y
)

and therefore
g
(

t + g(y)
)

= g(t) + y for all t > y > 0. (2)

Next we prove that function g(x) is injective. Suppose that g(y1) = g(y2) for some numbers
y1, y2 ∈ R

+. Then by (2),

g(t) + y1 = g
(

t + g(y1)
)

= g
(

t + g(y2)
)

= g(t) + y2

for all t > max{y1, y2}. Hence, g(y1) = g(y2) is possible only if y1 = y2.

Now let u, v be arbitrary positive numbers and t > u + v. Applying (2) three times,

g
(

t + g(u) + g(v)
)

= g
(

t + g(u)
)

+ v = g(t) + u + v = g
(

t + g(u + v)
)

.

By the injective property we conclude that t + g(u) + g(v) = t + g(u + v), hence

g(u) + g(v) = g(u + v). (3)

Since function g(v) is positive, equation (3) also shows that g is an increasing function.

Finally we prove that g(x) = x. Combining (2) and (3), we obtain

g(t) + y = g
(

t + g(y)
)

= g(t) + g
(

g(y)
)

and hence
g
(

g(y)
)

= y.

Suppose that there exists an x ∈ R
+ such that g(x) 6= x. By the monotonicity of g, if

x > g(x) then g(x) > g
(

g(x)
)

= x. Similarly, if x < g(x) then g(x) < g
(

g(x)
)

= x. Both cases
lead to contradiction, so there exists no such x.

We have proved that g(x) = x and therefore f(x) = g(x) + x = 2x for all x ∈ R
+. This

function indeed satisfies the functional equation (1).
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Comment. It is well-known that the additive property (3) together with g(x) ≥ 0 (for x > 0) imply
g(x) = cx. So, after proving (3), it is sufficient to test functions f(x) = (c + 1)x.

Solution 2. We prove that f(y) > y and introduce function g(x) = f(x)− x > 0 in the same
way as in Solution 1.

For arbitrary t > y > 0, substitute x = t− y into (1) to obtain

f
(

t + g(y)
)

= f(t) + f(y)

which, by induction, implies

f
(

t + ng(y)
)

= f(t) + nf(y) for all t > y > 0, n ∈ N. (4)

Take two arbitrary positive reals y and z and a third fixed number t > max{y, z}. For each

positive integer k, let ℓk =

⌊

k
g(y)

g(z)

⌋

. Then t + kg(y)− ℓkg(z) ≥ t > z and, applying (4) twice,

f
(

t + kg(y)− ℓkg(z)
)

+ ℓkf(z) = f
(

t + kg(y)
)

= f(t) + kf(y),

0 <
1

k
f
(

t + kg(y)− ℓkg(z)
)

=
f(t)

k
+ f(y)− ℓk

k
f(z).

As k →∞ we get

0 ≤ lim
k→∞

(

f(t)

k
+ f(y)− ℓk

k
f(z)

)

= f(y)− g(y)

g(z)
f(z) = f(y)− f(y)− y

f(z)− z
f(z)

and therefore
f(y)

y
≤ f(z)

z
.

Exchanging variables y and z, we obtain the reverse inequality. Hence,
f(y)

y
=

f(z)

z
for arbi-

trary y and z; so function
f(x)

x
is constant, f(x) = cx.

Substituting back into (1), we find that f(x) = cx is a solution if and only if c = 2. So the
only solution for the problem is f(x) = 2x.
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A5. Let c > 2, and let a(1), a(2), . . . be a sequence of nonnegative real numbers such that

a(m + n) ≤ 2a(m) + 2a(n) for all m, n ≥ 1, (1)

and

a(2k) ≤ 1

(k + 1)c
for all k ≥ 0. (2)

Prove that the sequence a(n) is bounded.
(Croatia)

Solution 1. For convenience, define a(0) = 0; then condition (1) persists for all pairs of
nonnegative indices.

Lemma 1. For arbitrary nonnegative indices n1, . . . , nk, we have

a

(

k
∑

i=1

ni

)

≤
k
∑

i=1

2ia(ni) (3)

and

a

(

k
∑

i=1

ni

)

≤ 2k
k
∑

i=1

a(ni). (4)

Proof. Inequality (3) is proved by induction on k. The base case k = 1 is trivial, while the
induction step is provided by

a

(

k+1
∑

i=1

ni

)

= a

(

n1+

k+1
∑

i=2

ni

)

≤ 2a(n1)+2a

(

k
∑

i=1

ni+1

)

≤ 2a(n1)+2

k
∑

i=1

2ia(ni+1) =

k+1
∑

i=1

2ia(ni).

To establish (4), first the inequality

a

(

2d
∑

i=1

ni

)

≤ 2d
2d
∑

i=1

a(ni)

can be proved by an obvious induction on d. Then, turning to (4), we find an integer d such
that 2d−1 < k ≤ 2d to obtain

a

(

k
∑

i=1

ni

)

= a

(

k
∑

i=1

ni +

2d
∑

i=k+1

0

)

≤ 2d

(

k
∑

i=1

a(ni) +

2d
∑

i=k+1

a(0)

)

= 2d
k
∑

i=1

a(ni) ≤ 2k

k
∑

i=1

a(ni).

�

Fix an increasing unbounded sequence 0 = M0 < M1 < M2 < . . . of real numbers; the exact
values will be defined later. Let n be an arbitrary positive integer and write

n =

d
∑

i=0

εi · 2i, where εi ∈ {0, 1}.

Set εi = 0 for i > d, and take some positive integer f such that Mf > d. Applying (3), we get

a(n) = a

(

f
∑

k=1

∑

Mk−1≤i<Mk

εi · 2i

)

≤
f
∑

k=1

2ka

(

∑

Mk−1≤i<Mk

εi · 2i

)

.
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Note that there are less than Mk −Mk−1 + 1 integers in interval [Mk−1, Mk); hence, using (4)
we have

a(n) ≤
f
∑

k=1

2k · 2(Mk −Mk−1 + 1)
∑

Mk−1≤i<Mk

εi · a(2i)

≤
f
∑

k=1

2k · 2(Mk −Mk−1 + 1)2 max
Mk−1≤i<Mk

a(2i)

≤
f
∑

k=1

2k+1(Mk + 1)2 · 1

(Mk−1 + 1)c
=

f
∑

k=1

(

Mk + 1

Mk−1 + 1

)2
2k+1

(Mk−1 + 1)c−2
.

Setting Mk = 4k/(c−2) − 1, we obtain

a(n) ≤
f
∑

k=1

42/(c−2) 2k+1

(4(k−1)/(c−2))c−2
= 8 · 42/(c−2)

f
∑

k=1

(

1

2

)k

< 8 · 42/(c−2),

and the sequence a(n) is bounded.

Solution 2.

Lemma 2. Suppose that s1, . . . , sk are positive integers such that

k
∑

i=1

2−si ≤ 1.

Then for arbitrary positive integers n1, . . . , nk we have

a

(

k
∑

i=1

ni

)

≤
k
∑

i=1

2sia(ni).

Proof. Apply an induction on k. The base cases are k = 1 (trivial) and k = 2 (follows from the
condition (1)). Suppose that k > 2. We can assume that s1 ≤ s2 ≤ · · · ≤ sk. Note that

k−1
∑

i=1

2−si ≤ 1− 2−sk−1,

since the left-hand side is a fraction with the denominator 2sk−1, and this fraction is less than 1.
Define s′k−1 = sk−1 − 1 and n′k−1 = nk−1 + nk; then we have

k−2
∑

i=1

2−si + 2−s′
k−1 ≤ (1− 2 · 2−sk−1) + 21−sk−1 = 1.

Now, the induction hypothesis can be applied to achieve

a

(

k
∑

i=1

ni

)

= a

(

k−2
∑

i=1

ni + n′k−1

)

≤
k−2
∑

i=1

2sia(ni) + 2s′
k−1a(n′k−1)

≤
k−2
∑

i=1

2sia(ni) + 2sk−1−1 · 2
(

a(nk−1) + a(nk)
)

≤
k−2
∑

i=1

2sia(ni) + 2sk−1a(nk−1) + 2ska(nk). �
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Let q = c/2 > 1. Take an arbitrary positive integer n and write

n =

k
∑

i=1

2ui, 0 ≤ u1 < u2 < · · · < uk.

Choose si = ⌊log2(ui + 1)q⌋+ d (i = 1, . . . , k) for some integer d. We have

k
∑

i=1

2−si = 2−d
k
∑

i=1

2−⌊log2(ui+1)q⌋,

and we choose d in such a way that

1

2
<

k
∑

i=1

2−si ≤ 1.

In particular, this implies

2d < 2

k
∑

i=1

2−⌊log2(ui+1)q⌋ < 4

k
∑

i=1

1

(ui + 1)q
.

Now, by Lemma 2 we obtain

a(n) = a

(

k
∑

i=1

2ui

)

≤
k
∑

i=1

2sia(2ui) ≤
k
∑

i=1

2d(ui + 1)q · 1

(ui + 1)2q

= 2d
k
∑

i=1

1

(ui + 1)q
< 4

(

k
∑

i=1

1

(ui + 1)q

)2

,

which is bounded since q > 1.

Comment 1. In fact, Lemma 2 (applied to the case ni = 2ui only) provides a sharp bound for

any a(n). Actually, let b(k) =
1

(k + 1)c
and consider the sequence

a(n) = min

{

k
∑

i=1

2sib(ui)

∣

∣

∣

∣

∣

k ∈ N,

k
∑

i=1

2−si ≤ 1,

k
∑

i=1

2ui = n

}

. (5)

We show that this sequence satisfies the conditions of the problem. Take two arbitrary indices m
and n. Let

a(m) =
k
∑

i=1

2sib(ui),
k
∑

i=1

2−si ≤ 1,
k
∑

i=1

2ui = m;

a(n) =
l
∑

i=1

2rib(wi),
l
∑

i=1

2−ri ≤ 1,
l
∑

i=1

2wi = n.

Then we have

k
∑

i=1

2−1−si +

l
∑

i=1

2−1−ri ≤ 1

2
+

1

2
= 1,

k
∑

i=1

2ui +

l
∑

i=1

2wi = m + n,

so by (5) we obtain

a(n + m) ≤
k
∑

i=1

21+sib(ui) +
l
∑

i=1

21+rib(wi) = 2a(m) + 2a(n).
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Comment 2. The condition c > 2 is sharp; we show that the sequence (5) is not bounded if c ≤ 2.
First, we prove that for an arbitrary n the minimum in (5) is attained with a sequence (ui)

consisting of distinct numbers. To the contrary, assume that uk−1 = uk. Replace uk−1 and uk by
a single number u′k−1 = uk + 1, and sk−1 and sk by s′k−1 = min{sk−1, sk}. The modified sequences
provide a better bound since

2s′
k−1b(u′k−1) = 2s′

k−1b(uk + 1) < 2sk−1b(uk−1) + 2skb(uk)

(we used the fact that b(k) is decreasing). This is impossible.
Hence, the claim is proved, and we can assume that the minimum is attained with u1 < · · · < uk;

then

n =
k
∑

i=1

2ui

is simply the binary representation of n. (In particular, it follows that a(2n) = b(n) for each n.)
Now we show that the sequence

(
a(2k − 1)

)
is not bounded. For some s1, . . . , sk we have

a(2k − 1) = a

(
k∑

i=1

2i−1

)

=
k∑

i=1

2sib(i− 1) =
k∑

i=1

2si

ic
.

By the Cauchy–Schwarz inequality we get

a(2k − 1) = a(2k − 1) · 1 ≥
(

k∑

i=1

2si

ic

)(
k∑

i=1

1

2si

)

≥
(

k∑

i=1

1

ic/2

)2

,

which is unbounded.
For c ≤ 2, it is also possible to show a concrete counterexample. Actually, one can prove that the

sequence

a

(
k∑

i=1

2ui

)

=

k∑

i=1

i

(ui + 1)2
(0 ≤ u1 < . . . < uk)

satisfies (1) and (2) but is not bounded.
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A6. Let a1, a2, . . . , a100 be nonnegative real numbers such that a2
1 +a2

2 + . . .+a2
100 = 1. Prove

that

a2
1a2 + a2

2a3 + . . . + a2
100a1 <

12

25
.

(Poland)

Solution. Let S =
100∑

k=1

a2
kak+1. (As usual, we consider the indices modulo 100, e.g. we set

a101 = a1 and a102 = a2.)
Applying the Cauchy-Schwarz inequality to sequences (ak+1) and (a2

k + 2ak+1ak+2), and then
the AM-GM inequality to numbers a2

k+1 and a2
k+2,

(3S)2 =

(

100
∑

k=1

ak+1(a
2
k + 2ak+1ak+2)

)2

≤
(

100
∑

k=1

a2
k+1

)(

100
∑

k=1

(a2
k + 2ak+1ak+2)

2

)

(1)

= 1 ·
100
∑

k=1

(a2
k + 2ak+1ak+2)

2 =

100
∑

k=1

(a4
k + 4a2

kak+1ak+2 + 4a2
k+1a

2
k+2)

≤
100
∑

k=1

(

a4
k + 2a2

k(a
2
k+1 + a2

k+2) + 4a2
k+1a

2
k+2

)

=

100
∑

k=1

(

a4
k + 6a2

ka
2
k+1 + 2a2

ka
2
k+2

)

.

Applying the trivial estimates

100
∑

k=1

(a4
k + 2a2

ka
2
k+1 + 2a2

ka
2
k+2) ≤

(

100
∑

k=1

a2
k

)2

and

100
∑

k=1

a2
ka

2
k+1 ≤

(

50
∑

i=1

a2
2i−1

)(

50
∑

j=1

a2
2j

)

,

we obtain that

(3S)2 ≤
(

100
∑

k=1

a2
k

)2

+ 4

(

50
∑

i=1

a2
2i−1

)(

50
∑

j=1

a2
2j

)

≤ 1 +

(

50
∑

i=1

a2
2i−1 +

50
∑

j=1

a2
2j

)2

= 2,

hence

S ≤
√

2

3
≈ 0.4714 <

12

25
= 0.48.

Comment 1. By applying the Lagrange multiplier method, one can see that the maximum is
attained at values of ai satisfying

a2
k−1 + 2akak+1 = 2λak (2)

for all k = 1, 2, . . . , 100. Though this system of equations seems hard to solve, it can help to find the
estimate above; it may suggest to have a closer look at the expression a2

k−1ak + 2a2
kak+1.

Moreover, if the numbers a1, . . . , a100 satisfy (2), we have equality in (1). (See also Comment 3.)

Comment 2. It is natural to ask what is the best constant cn in the inequality

a2
1a2 + a2

2a3 + . . . + a2
na1 ≤ cn

(

a2
1 + a2

2 + . . . + a2
n

)3/2
. (3)

For 1 ≤ n ≤ 4 one may prove cn = 1/
√

n which is achieved when a1 = a2 = . . . = an. However, the
situation changes completely if n ≥ 5. In this case we do not know the exact value of cn. By computer
search it can be found that cn ≈ 0.4514 and it is realized for example if

a1 ≈ 0.5873, a2 ≈ 0.6771, a3 ≈ 0.4224, a4 ≈ 0.1344, a5 ≈ 0.0133

and ak ≈ 0 for k ≥ 6. This example also proves that cn > 0.4513.
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Comment 3. The solution can be improved in several ways to give somewhat better bounds for cn.
Here we show a variant which proves cn < 0.4589 for n ≥ 5.

The value of cn does not change if negative values are also allowed in (3). So the problem is
equivalent to maximizing

f(a1, a2, . . . , an) = a2
1a2 + a2

2a3 + . . . + a2
na1

on the unit sphere a2
1 + a2

2 + . . . + a2
n = 1 in R

n. Since the unit sphere is compact, the function has a
maximum and we can apply the Lagrange multiplier method; for each maximum point there exists a
real number λ such that

a2
k−1 + 2akak+1 = λ · 2ak for all k = 1, 2, . . . , n.

Then

3S =
n∑

k=1

(
a2

k−1ak + 2a2
kak+1

)
=

n∑

k=1

2λa2
k = 2λ

and therefore
a2

k−1 + 2akak+1 = 3Sak for all k = 1, 2, . . . , n. (4)

From (4) we can derive

9S2 =
n∑

k=1

(3Sak)
2 =

n∑

k=1

(
a2

k−1 + 2akak+1

)2
=

n∑

k=1

a4
k + 4

n∑

k=1

a2
ka

2
k+1 + 4

n∑

k=1

a2
kak+1ak+2 (5)

and

3S2 =
n∑

k=1

3Sa2
k−1ak =

n∑

k=1

a2
k−1

(
a2

k−1 + 2akak+1

)
=

n∑

k=1

a4
k + 2

n∑

k=1

a2
kak+1ak+2. (6)

Let p be a positive number. Combining (5) and (6) and applying the AM-GM inequality,

(9 + 3p)S2 = (1 + p)

n∑

k=1

a4
k + 4

n∑

k=1

a2
ka

2
k+1 + (4 + 2p)

n∑

k=1

a2
kak+1ak+2

≤ (1 + p)
n∑

k=1

a4
k + 4

n∑

k=1

a2
ka

2
k+1 +

n∑

k=1

(

2(1 + p)a2
ka

2
k+2 +

(2 + p)2

2(1 + p)
a2

ka
2
k+1

)

= (1 + p)
n∑

k=1

(a4
k + 2a2

ka
2
k+1 + 2a2

ka
2
k+2) +

(

4 +
(2 + p)2

2(1 + p)
− 2(1 + p)

) n∑

k=1

a2
ka

2
k+1

≤ (1 + p)

(
n∑

k=1

a2
k

)2

+
8 + 4p − 3p2

2(1 + p)

n∑

k=1

a2
ka

2
k+1

= (1 + p) +
8 + 4p− 3p2

2(1 + p)

n∑

k=1

a2
ka

2
k+1.

Setting p =
2 + 2

√
7

3
which is the positive root of 8 + 4p− 3p2 = 0, we obtain

S ≤
√

1 + p

9 + 3p
=

√

5 + 2
√

7

33 + 6
√

7
≈ 0.458879.
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A7. Let n > 1 be an integer. In the space, consider the set

S =
{
(x, y, z) | x, y, z ∈ {0, 1, . . . , n}, x + y + z > 0

}
.

Find the smallest number of planes that jointly contain all (n + 1)3− 1 points of S but none of
them passes through the origin.

(Netherlands)

Answer. 3n planes.

Solution. It is easy to find 3n such planes. For example, planes x = i, y = i or z = i
(i = 1, 2, . . . , n) cover the set S but none of them contains the origin. Another such collection
consists of all planes x + y + z = k for k = 1, 2, . . . , 3n.

We show that 3n is the smallest possible number.

Lemma 1. Consider a nonzero polynomial P (x1, . . . , xk) in k variables. Suppose that P
vanishes at all points (x1, . . . , xk) such that x1, . . . , xk ∈ {0, 1, . . . , n} and x1 + · · · + xk > 0,
while P (0, 0, . . . , 0) 6= 0. Then deg P ≥ kn.

Proof. We use induction on k. The base case k = 0 is clear since P 6= 0. Denote for clarity
y = xk.

Let R(x1, . . . , xk−1, y) be the residue of P modulo Q(y) = y(y − 1) . . . (y − n). Polyno-
mial Q(y) vanishes at each y = 0, 1, . . . , n, hence P (x1, . . . , xk−1, y) = R(x1, . . . , xk−1, y) for
all x1, . . . , xk−1, y ∈ {0, 1, . . . , n}. Therefore, R also satisfies the condition of the Lemma;
moreover, degy R ≤ n. Clearly, deg R ≤ deg P , so it suffices to prove that deg R ≥ nk.

Now, expand polynomial R in the powers of y:

R(x1, . . . , xk−1, y) = Rn(x1, . . . , xk−1)y
n + Rn−1(x1, . . . , xk−1)y

n−1 + · · ·+ R0(x1, . . . , xk−1).

We show that polynomial Rn(x1, . . . , xk−1) satisfies the condition of the induction hypothesis.
Consider the polynomial T (y) = R(0, . . . , 0, y) of degree ≤ n. This polynomial has n roots

y = 1, . . . , n; on the other hand, T (y) 6≡ 0 since T (0) 6= 0. Hence deg T = n, and its leading
coefficient is Rn(0, 0, . . . , 0) 6= 0. In particular, in the case k = 1 we obtain that coefficient Rn

is nonzero.
Similarly, take any numbers a1, . . . , ak−1 ∈ {0, 1, . . . , n} with a1+· · ·+ak−1 > 0. Substituting

xi = ai into R(x1, . . . , xk−1, y), we get a polynomial in y which vanishes at all points y = 0, . . . , n
and has degree ≤ n. Therefore, this polynomial is null, hence Ri(a1, . . . , ak−1) = 0 for all
i = 0, 1, . . . , n. In particular, Rn(a1, . . . , ak−1) = 0.

Thus, the polynomial Rn(x1, . . . , xk−1) satisfies the condition of the induction hypothesis.
So, we have deg Rn ≥ (k − 1)n and deg P ≥ deg R ≥ deg Rn + n ≥ kn. �

Now we can finish the solution. Suppose that there are N planes covering all the points
of S but not containing the origin. Let their equations be aix + biy + ciz + di = 0. Consider
the polynomial

P (x, y, z) =

N∏

i=1

(aix + biy + ciz + di).

It has total degree N . This polynomial has the property that P (x0, y0, z0) = 0 for any
(x0, y0, z0) ∈ S, while P (0, 0, 0) 6= 0. Hence by Lemma 1 we get N = deg P ≥ 3n, as de-
sired.

Comment 1. There are many other collections of 3n planes covering the set S but not covering the
origin.
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Solution 2. We present a different proof of the main Lemma 1. Here we confine ourselves to
the case k = 3, which is applied in the solution, and denote the variables by x, y and z. (The
same proof works for the general statement as well.)

The following fact is known with various proofs; we provide one possible proof for the
completeness.

Lemma 2. For arbitrary integers 0 ≤ m < n and for an arbitrary polynomial P (x) of degree m,

n∑

k=0

(−1)k

(
n

k

)

P (k) = 0. (1)

Proof. We use an induction on n. If n = 1, then P (x) is a constant polynomial, hence
P (1)− P (0) = 0, and the base is proved.

For the induction step, define P1(x) = P (x + 1)−P (x). Then clearly deg P1 = deg P − 1 =
m− 1 < n− 1, hence by the induction hypothesis we get

0 = −
n−1∑

k=0

(−1)k

(
n− 1

k

)

P1(k) =

n−1∑

k=0

(−1)k

(
n− 1

k

)
(
P (k)− P (k + 1)

)

=

n−1∑

k=0

(−1)k

(
n− 1

k

)

P (k)−
n−1∑

k=0

(−1)k

(
n− 1

k

)

P (k + 1)

=

n−1∑

k=0

(−1)k

(
n− 1

k

)

P (k) +

n∑

k=1

(−1)k

(
n− 1

k − 1

)

P (k)

= P (0) +

n−1∑

k=1

(−1)k

((
n− 1

k − 1

)

+

(
n− 1

k

))

P (k) + (−1)nP (n) =

n∑

k=0

(−1)k

(
n

k

)

P (k). �

Now return to the proof of Lemma 1. Suppose, to the contrary, that deg P = N < 3n.
Consider the sum

Σ =

n∑

i=0

n∑

j=0

n∑

k=0

(−1)i+j+k

(
n

i

)(
n

j

)(
n

k

)

P (i, j, k).

The only nonzero term in this sum is P (0, 0, 0) and its coefficient is

(
n

0

)3

= 1; therefore

Σ = P (0, 0, 0) 6= 0.

On the other hand, if P (x, y, z) =
∑

α+β+γ≤N

pα,β,γx
αyβzγ , then

Σ =
n∑

i=0

n∑

j=0

n∑

k=0

(−1)i+j+k

(
n

i

)(
n

j

)(
n

k

)
∑

α+β+γ≤N

pα,β,γi
αjβkγ

=
∑

α+β+γ≤N

pα,β,γ

(
n∑

i=0

(−1)i

(
n

i

)

iα

)(
n∑

j=0

(−1)j

(
n

j

)

jβ

)(
n∑

k=0

(−1)k

(
n

k

)

kγ

)

.

Consider an arbitrary term in this sum. We claim that it is zero. Since N < 3n, one of three
inequalities α < n, β < n or γ < n is valid. For the convenience, suppose that α < n. Applying

Lemma 2 to polynomial xα, we get

n∑

i=0

(−1)i

(
n

i

)

iα = 0, hence the term is zero as required.

This yields Σ = 0 which is a contradiction. Therefore, deg P ≥ 3n.
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Comment 2. The proof does not depend on the concrete coefficients in Lemma 2. Instead of this
Lemma, one can simply use the fact that there exist numbers α0, α1, . . . , αn (α0 6= 0) such that

n∑

k=0

αkk
m = 0 for every 0 ≤ m < n.

This is a system of homogeneous linear equations in variables αi. Since the number of equations is
less than the number of variables, the only nontrivial thing is that there exists a solution with α0 6= 0.
It can be shown in various ways.



Combinatorics

C1. Let n > 1 be an integer. Find all sequences a1, a2, . . . , an2+n satisfying the following
conditions:

(a) ai ∈ {0, 1} for all 1 ≤ i ≤ n2 + n;

(b) ai+1 + ai+2 + . . . + ai+n < ai+n+1 + ai+n+2 + . . . + ai+2n for all 0 ≤ i ≤ n2 − n.
(Serbia)

Answer. Such a sequence is unique. It can be defined as follows:

au+vn =

{

0, u + v ≤ n,

1, u + v ≥ n + 1
for all 1 ≤ u ≤ n and 0 ≤ v ≤ n. (1)

The terms can be arranged into blocks of length n as

(
︸ ︷︷ ︸

n

0 . . . 0) (
︸ ︷︷ ︸

n− 1

0 . . . 0 1) (
︸ ︷︷ ︸

n− 2

0 . . . 0 1 1) . . . (
︸ ︷︷ ︸

n− v

0 . . . 0
︸ ︷︷ ︸

v

1 . . . 1) . . . (0
︸ ︷︷ ︸

n− 1

1 . . . 1) (
︸ ︷︷ ︸

n

1 . . . 1).

Solution 1. Consider a sequence (ai) satisfying the conditions. For arbitrary integers 0 ≤
k ≤ l ≤ n2 + n denote S(k, l] = ak+1 + · · ·+ al. (If k = l then S(k, l] = 0.) Then condition (b)
can be rewritten as S(i, i + n] < S(i + n, i + 2n] for all 0 ≤ i ≤ n2 − n. Notice that for
0 ≤ k ≤ l ≤ m ≤ n2 + n we have S(k, m] = S(k, l] + S(l, m].

By condition (b),

0 ≤ S(0, n] < S(n, 2n] < · · · < S(n2, n2 + n] ≤ n.

We have only n + 1 distinct integers in the interval [0, n]; hence,

S
(
vn, (v + 1)n

]
= v for all 0 ≤ v ≤ n. (2)

In particular, S(0, n] = 0 and S(n2, n2 + n] = n, therefore

a1 = a2 = . . . = an = 0, (3)

an2+1 = an2+2 = . . . = an2+n = 1. (4)

Subdivide sequence (ai) into n+1 blocks, each consisting of n consecutive terms, and number
them from 0 to n. We show by induction on v that the vth blocks has the form

(
︸ ︷︷ ︸

n− v

0 . . . 0
︸ ︷︷ ︸

v

1 . . . 1).

The base case v = 0 is provided by (3).
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Consider the vth block for v > 0. By (2), it contains some “ones”. Let the first “one” in this
block be at the uth position (that is, au+vn = 1). By the induction hypothesis, the (v − 1)th
and vth blocks of (ai) have the form

(
︸ ︷︷ ︸

n− v + 1

0 . . .

P

= v

0 . . . 0
︸ ︷︷ ︸

v − 1

1 . . . 1) (
︸ ︷︷ ︸

u− 1

0 . . . 0 1 ∗ . . . ∗),

where each star can appear to be any binary digit. Observe that u ≤ n− v + 1, since the sum
in this block is v. Then, the fragment of length n bracketed above has exactly (v− 1)+1 ones,
i. e. S

(
u + (v − 1)n, u + vn

]
= v. Hence,

v = S
(
u + (v − 1)n, u + vn

]
< S

(
u + vn, u + (v + 1)n

]
< · · · < S

(
u + (n− 1)n, u + n2

]
≤ n;

we have n− v +1 distinct integers in the interval [v, n], therefore S(u + (t− 1)n, u + tn] = t for
each t = v, . . . , n.

Thus, the end of sequence (ai) looks as following:

(
︸ ︷︷ ︸

P

= v − 1

u zeroes
︷ ︸︸ ︷

0 . . . 0

P

= v

0 . . . 0 1 . . . 1) (
︸ ︷︷ ︸

P

= v

0 . . . 0 1

P

= v + 1

∗ . . . ∗) (
︸ ︷︷ ︸

P

= v + 1

∗ . . . ∗
· · ·

∗ . . . ∗) . . .

P

= n

(
︸ ︷︷ ︸

P

= n

1 . . . 1

n− u ones
︷ ︸︸ ︷

1 . . . 1)

(each bracketed fragment contains n terms). Computing in two ways the sum of all digits
above, we obtain n − u = v − 1 and u = n − v + 1. Then, the first n − v terms in the vth
block are zeroes, and the next v terms are ones, due to the sum of all terms in this block. The
statement is proved.

We are left to check that the sequence obtained satisfies the condition. Notice that ai ≤ ai+n

for all 1 ≤ i ≤ n2. Moreover, if 1 ≤ u ≤ n and 0 ≤ v ≤ n − 1, then au+vn < au+vn+n exactly
when u + v = n. In this case we have u + vn = n + v(n− 1).

Consider now an arbitrary index 0 ≤ i ≤ n2−n. Clearly, there exists an integer v such that
n+ v(n− 1) ∈ [i+1, i+n]. Then, applying the above inequalities we obtain that condition (b)
is valid.

Solution 2. Similarly to Solution 1, we introduce the notation S(k, l] and obtain (2), (3),
and (4) in the same way. The sum of all elements of the sequence can be computed as

S(0, n2 + n] = S(0, n] + S(n, 2n] + . . . + S(n2, n2 + n] = 0 + 1 + . . . + n.

For an arbitrary integer 0 ≤ u ≤ n, consider the numbers

S(u, u + n] < S(u + n, u + 2n] < . . . < S
(
u + (n− 1)n, u + n2

]
. (5)

They are n distinct integers from the n + 1 possible values 0, 1, 2, . . . , n. Denote by m the
“missing” value which is not listed. We determine m from S(0, n2 + n]. Write this sum as

S(0, n2+n] = S(0, u]+S(u, u+n]+S(u+n, u+2n]+. . .+S(u+(n−1)n, u+n2]+S(u+n2, n2+n].

Since a1 = a2 = . . . = au = 0 and au+n2+1 = . . . = an2+n = 1, we have S(0, u] = 0 and
S(u + n2, n + n2] = n− u. Then

0 + 1 + . . . + n = S(0, n2 + n] = 0 +
(
(0 + 1 + . . . + n)−m

)
+ (n− u),
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so m = n− u.
Hence, the numbers listed in (5) are 0, 1, . . . , n − u − 1 and n − u + 1, . . . , n, respectively,

therefore

S
(

u + vn, u + (v + 1)n
]

=

{

v, v ≤ n− u− 1,

v + 1, v ≥ n− u
for all 0 ≤ u ≤ n, 0 ≤ v ≤ n− 1. (6)

Conditions (6), together with (3), provide a system of linear equations in variables ai. Now
we solve this system and show that the solution is unique and satisfies conditions (a) and (b).

First, observe that any solution of the system (3), (6) satisfies the condition (b). By the con-
struction, equations (6) immediately imply (5). On the other hand, all inequalities mentioned
in condition (b) are included into the chain (5) for some value of u.

Next, note that the system (3), (6) is redundant. The numbers S
(

kn, (k + 1)n
]

, where
1 ≤ k ≤ n− 1, appear twice in (6). For u = 0 and v = k we have v ≤ n− u− 1, and (6) gives
S
(

kn, (k + 1)n
]

= v = k. For u = n and v = k − 1 we have v ≥ n− u and we obtain the same
value, S

(

kn, (k +1)n
]

= v +1 = k. Therefore, deleting one equation from each redundant pair,
we can make every sum S(k, k + n] appear exactly once on the left-hand side in (6).

Now, from (3), (6), the sequence (ai) can be reconstructed inductively by

a1 = a2 = . . . = an−1 = 0, ak+n = S(k, k +n]− (ak+1 + ak+2 + . . . + ak+n−1) (0 ≤ k ≤ n2),

taking the values of S(k, k+n] from (6). This means first that there exists at most one solution
of our system. Conversely, the constructed sequence obviously satisfies all equations (3), (6)
(the only missing equation is an = 0, which follows from S(0, n] = 0). Hence it satisfies
condition (b), and we are left to check condition (a) only.

For arbitrary integers 1 ≤ u, t ≤ n we get

au+tn − au+(t−1)n = S
(

u + (t− 1)n, u + tn
]

− S
(

(u− 1) + (t− 1)n, (u− 1) + tn
]

=











(t− 1)− (t− 1) = 0, t ≤ n− u,

t− (t− 1) = 1, t = n− u + 1,

t− t = 0, t ≥ n− u + 2.

Since au = 0, we have

au+vn = au+vn − au =

v
∑

t=1

(au+tn − au+(t−1)n)

for all 1 ≤ u, v ≤ n. If v < n−u+1 then all terms are 0 on the right-hand side. If v ≥ n−u+1,
then variable t attains the value n− u + 1 once. Hence,

au+vn =

{

0, u + v ≤ n,

1, u + v ≥ n + 1,

according with (1). Note that the formula is valid for v = 0 as well.

Finally, we presented the direct formula for (ai), and we have proved that it satisfies condi-
tion (a). So, the solution is complete.
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C2. A unit square is dissected into n > 1 rectangles such that their sides are parallel to the
sides of the square. Any line, parallel to a side of the square and intersecting its interior, also
intersects the interior of some rectangle. Prove that in this dissection, there exists a rectangle
having no point on the boundary of the square.

(Japan)

Solution 1. Call the directions of the sides of the square horizontal and vertical. A horizontal
or vertical line, which intersects the interior of the square but does not intersect the interior of
any rectangle, will be called a splitting line. A rectangle having no point on the boundary of
the square will be called an interior rectangle.

Suppose, to the contrary, that there exists a dissection of the square into more than one
rectangle, such that no interior rectangle and no splitting line appear. Consider such a dissection
with the least possible number of rectangles. Notice that this number of rectangles is greater
than 2, otherwise their common side provides a splitting line.

If there exist two rectangles having a common side, then we can replace them by their union
(see Figure 1). The number of rectangles was greater than 2, so in a new dissection it is greater
than 1. Clearly, in the new dissection, there is also no splitting line as well as no interior
rectangle. This contradicts the choice of the original dissection.

Denote the initial square by ABCD, with A and B being respectively the lower left and lower
right vertices. Consider those two rectangles a and b containing vertices A and B, respectively.
(Note that a 6= b, otherwise its top side provides a splitting line.) We can assume that the
height of a is not greater than that of b. Then consider the rectangle c neighboring to the lower
right corner of a (it may happen that c = b). By aforementioned, the heights of a and c are
distinct. Then two cases are possible.

a b
c

d

A B

D C

a b
c

d

A B

D C

Figure 1 Figure 2 Figure 3

Case 1. The height of c is less than that of a. Consider the rectangle d which is adjacent
to both a and c, i. e. the one containing the angle marked in Figure 2. This rectangle has no
common point with BC (since a is not higher than b), as well as no common point with AB
or with AD (obviously). Then d has a common point with CD, and its left side provides a
splitting line. Contradiction.

Case 2. The height of c is greater than that of a. Analogously, consider the rectangle d
containing the angle marked on Figure 3. It has no common point with AD (otherwise it has
a common side with a), as well as no common point with AB or with BC (obviously). Then d
has a common point with CD. Hence its right side provides a splitting line, and we get the
contradiction again.
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Solution 2. Again, we suppose the contrary. Consider an arbitrary counterexample. Then we
know that each rectangle is attached to at least one side of the square. Observe that a rectangle
cannot be attached to two opposite sides, otherwise one of its sides lies on a splitting line.

We say that two rectangles are opposite if they are attached to opposite sides of ABCD. We
claim that there exist two opposite rectangles having a common point.

Consider the union L of all rectangles attached to the left. Assume, to the contrary, that L
has no common point with the rectangles attached to the right. Take a polygonal line p
connecting the top and the bottom sides of the square and passing close from the right to the
boundary of L (see Figure 4). Then all its points belong to the rectangles attached either to
the top or to the bottom. Moreover, the upper end-point of p belongs to a rectangle attached
to the top, and the lower one belongs to an other rectangle attached to the bottom. Hence,
there is a point on p where some rectangles attached to the top and to the bottom meet each
other. So, there always exists a pair of neighboring opposite rectangles.

L

p

a

b
X

a

b

a′ b′

c

ℓ

X

Y

Figure 4 Figure 5 Figure 6

Now, take two opposite neighboring rectangles a and b. We can assume that a is attached
to the left and b is attached to the right. Let X be their common point. If X belongs to their
horizontal sides (in particular, X may appear to be a common vertex of a and b), then these
sides provide a splitting line (see Figure 5). Otherwise, X lies on the vertical sides. Let ℓ be
the line containing these sides.

Since ℓ is not a splitting line, it intersects the interior of some rectangle. Let c be such a
rectangle, closest to X; we can assume that c lies above X. Let Y be the common point of ℓ
and the bottom side of c (see Figure 6). Then Y is also a vertex of two rectangles lying below c.

So, let Y be the upper-right and upper-left corners of the rectangles a′ and b′, respectively.
Then a′ and b′ are situated not lower than a and b, respectively (it may happen that a = a′

or b = b′). We claim that a′ is attached to the left. If a = a′ then of course it is. If a 6= a′

then a′ is above a, below c and to the left from b′. Hence, it can be attached to the left only.
Analogously, b′ is attached to the right. Now, the top sides of these two rectangles pass

through Y , hence they provide a splitting line again. This last contradiction completes the
proof.
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C3. Find all positive integers n, for which the numbers in the set S = {1, 2, . . . , n} can be
colored red and blue, with the following condition being satisfied: the set S × S × S contains
exactly 2007 ordered triples (x, y, z) such that (i) x, y, z are of the same color and (ii) x+ y + z
is divisible by n.

(Netherlands)

Answer. n = 69 and n = 84.

Solution. Suppose that the numbers 1, 2, . . . , n are colored red and blue. Denote by R and B
the sets of red and blue numbers, respectively; let |R| = r and |B| = b = n − r. Call a
triple (x, y, z) ∈ S × S × S monochromatic if x, y, z have the same color, and bichromatic
otherwise. Call a triple (x, y, z) divisible if x + y + z is divisible by n. We claim that there are
exactly r2 − rb + b2 divisible monochromatic triples.

For any pair (x, y) ∈ S × S there exists a unique zx,y ∈ S such that the triple (x, y, zx,y) is
divisible; so there are exactly n2 divisible triples. Furthermore, if a divisible triple (x, y, z) is
bichromatic, then among x, y, z there are either one blue and two red numbers, or vice versa.
In both cases, exactly one of the pairs (x, y), (y, z) and (z, x) belongs to the set R×B. Assign
such pair to the triple (x, y, z).

Conversely, consider any pair (x, y) ∈ R × B, and denote z = zx,y. Since x 6= y, the
triples (x, y, z), (y, z, x) and (z, x, y) are distinct, and (x, y) is assigned to each of them. On the
other hand, if (x, y) is assigned to some triple, then this triple is clearly one of those mentioned
above. So each pair in R ×B is assigned exactly three times.

Thus, the number of bichromatic divisible triples is three times the number of elements
in R × B, and the number of monochromatic ones is n2 − 3rb = (r + b)2 − 3rb = r2 − rb + b2,
as claimed.

So, to find all values of n for which the desired coloring is possible, we have to find all
n, for which there exists a decomposition n = r + b with r2 − rb + b2 = 2007. Therefore,
9
∣
∣ r2 − rb + b2 = (r + b)2 − 3rb. From this it consequently follows that 3

∣
∣ r + b, 3

∣
∣ rb, and

then 3
∣
∣ r, 3

∣
∣ b. Set r = 3s, b = 3c. We can assume that s ≥ c. We have s2 − sc + c2 = 223.

Furthermore,

892 = 4(s2 − sc + c2) = (2c− s)2 + 3s2 ≥ 3s2 ≥ 3s2 − 3c(s− c) = 3(s2 − sc + c2) = 669,

so 297 ≥ s2 ≥ 223 and 17 ≥ s ≥ 15. If s = 15 then

c(15− c) = c(s− c) = s2 − (s2 − sc + c2) = 152 − 223 = 2

which is impossible for an integer c. In a similar way, if s = 16 then c(16 − c) = 33, which is
also impossible. Finally, if s = 17 then c(17− c) = 66, and the solutions are c = 6 and c = 11.
Hence, (r, b) = (51, 18) or (r, b) = (51, 33), and the possible values of n are n = 51 + 18 = 69
and n = 51 + 33 = 84.

Comment. After the formula for the number of monochromatic divisible triples is found, the solution
can be finished in various ways. The one presented is aimed to decrease the number of considered
cases.
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C4. Let A0 = (a1, . . . , an) be a finite sequence of real numbers. For each k ≥ 0, from the
sequence Ak = (x1, . . . , xn) we construct a new sequence Ak+1 in the following way.

1. We choose a partition {1, . . . , n} = I ∪ J , where I and J are two disjoint sets, such that
the expression ∣

∣
∣
∣

∑

i∈I

xi −
∑

j∈J

xj

∣
∣
∣
∣

attains the smallest possible value. (We allow the sets I or J to be empty; in this case the
corresponding sum is 0.) If there are several such partitions, one is chosen arbitrarily.

2. We set Ak+1 = (y1, . . . , yn), where yi = xi + 1 if i ∈ I, and yi = xi − 1 if i ∈ J .
Prove that for some k, the sequence Ak contains an element x such that |x| ≥ n/2.

(Iran)

Solution.

Lemma. Suppose that all terms of the sequence (x1, . . . , xn) satisfy the inequality |xi| < a.
Then there exists a partition {1, 2, . . . , n} = I ∪ J into two disjoint sets such that

∣
∣
∣
∣

∑

i∈I

xi −
∑

j∈J

xj

∣
∣
∣
∣
< a. (1)

Proof. Apply an induction on n. The base case n = 1 is trivial. For the induction step,
consider a sequence (x1, . . . , xn) (n > 1). By the induction hypothesis there exists a splitting
{1, . . . , n− 1} = I ′ ∪ J ′ such that

∣
∣
∣
∣

∑

i∈I′

xi −
∑

j∈J ′

xj

∣
∣
∣
∣
< a.

For convenience, suppose that
∑

i∈I′
xi ≥

∑

j∈J ′
xj . If xn ≥ 0 then choose I = I ′, J = J ∪ {n}; other-

wise choose I = I ′ ∪ {n}, J = J ′. In both cases, we have
∑

i∈I′
xi−

∑

j∈J ′
xj ∈ [0, a) and |xn| ∈ [0, a);

hence ∑

i∈I

xi −
∑

j∈J

xj =
∑

i∈I′

xi −
∑

j∈J ′

xj − |xn| ∈ (−a, a),

as desired. �

Let us turn now to the problem. To the contrary, assume that for all k, all the numbers
in Ak lie in interval (−n/2, n/2). Consider an arbitrary sequence Ak = (b1, . . . , bn). To obtain
the term bi, we increased and decreased number ai by one several times. Therefore bi − ai is
always an integer, and there are not more than n possible values for bi. So, there are not more
than nn distinct possible sequences Ak, and hence two of the sequences A1, A2, . . . , Ann+1

should be identical, say Ap = Aq for some p < q.
For any positive integer k, let Sk be the sum of squares of elements in Ak. Consider two

consecutive sequences Ak = (x1, . . . , xn) and Ak+1 = (y1, . . . , yn). Let {1, 2, . . . , n} = I ∪ J be
the partition used in this step — that is, yi = xi + 1 for all i ∈ I and yj = xj − 1 for all j ∈ J .

Since the value of
∣
∣
∣

∑

i∈I

xi −
∑

j∈J

xj

∣
∣
∣ is the smallest possible, the Lemma implies that it is less

than n/2. Then we have

Sk+1−Sk =
∑

i∈I

(
(xi +1)2−x2

i

)
+
∑

j∈J

(
(xj −1)2−x2

j

)
= n+2

(
∑

i∈I

xi−
∑

j∈J

xj

)

> n−2 · n
2

= 0.

Thus we obtain Sq > Sq−1 > · · · > Sp. This is impossible since Ap = Aq and hence Sp = Sq.
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C5. In the Cartesian coordinate plane define the strip Sn = {(x, y) | n ≤ x < n + 1} for
every integer n. Assume that each strip Sn is colored either red or blue, and let a and b be two
distinct positive integers. Prove that there exists a rectangle with side lengths a and b such
that its vertices have the same color.

(Romania)

Solution. If Sn and Sn+a have the same color for some integer n, then we can choose the
rectangle with vertices (n, 0) ∈ Sn, (n, b) ∈ Sn, (n + a, 0) ∈ Sn+a, and (n + a, b) ∈ Sn+a, and we
are done. So it can be assumed that Sn and Sn+a have opposite colors for each n.

Similarly, it also can be assumed that Sn and Sn+b have opposite colors. Then, by induction
on |p|+ |q|, we obtain that for arbitrary integers p and q, strips Sn and Sn+pa+qb have the same
color if p + q is even, and these two strips have opposite colors if p + q is odd.

Let d = gcd(a, b), a1 = a/d and b1 = b/d. Apply the result above for p = b1 and q = −a1.
The strips S0 and S0+b1a−a1b are identical and therefore they have the same color. Hence, a1+b1

is even. By the construction, a1 and b1 are coprime, so this is possible only if both are odd.
Without loss of generality, we can assume a > b. Then a1 > b1 ≥ 1, so a1 ≥ 3.
Choose integers k and ℓ such that ka1 − ℓb1 = 1 and therefore ka− ℓb = d. Since a1 and b1

are odd, k + ℓ is odd as well. Hence, for every integer n, strips Sn and Sn+ka−ℓb = Sn+d have
opposite colors. This also implies that the coloring is periodic with period 2d, i.e. strips Sn

and Sn+2d have the same color for every n.

A

B

C

D

D0B0

t t + 2d u u + 2d

a

b

a

b

x

Figure 1

We will construct the desired rectangle ABCD with AB = CD = a and BC = AD = b in
a position such that vertex A lies on the x-axis, and the projection of side AB onto the x-axis
is of length 2d (see Figure 1). This is possible since a = a1d > 2d. The coordinates of the
vertices will have the forms

A = (t, 0), B = (t + 2d, y1), C = (u + 2d, y2), D = (u, y3).

Let ϕ =
√

a2
1 − 4. By Pythagoras’ theorem,

y1 = BB0 =
√

a2 − 4d2 = d
√

a2
1 − 4 = dϕ.

So, by the similar triangles ADD0 and BAB0, we have the constraint

u− t = AD0 =
AD

AB
· BB0 =

bd

a
ϕ (1)
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for numbers t and u. Computing the numbers y2 and y3 is not required since they have no
effect to the colors.

Observe that the number ϕ is irrational, because ϕ2 is an integer, but ϕ is not: a1 > ϕ ≥
√

a2
1 − 2a1 + 2 > a1 − 1.

By the periodicity, points A and B have the same color; similarly, points C and D have the
same color. Furthermore, these colors depend only on the values of t and u. So it is sufficient
to choose numbers t and u such that vertices A and D have the same color.

Let w be the largest positive integer such that there exist w consecutive strips Sn0
, Sn0+1, . . . ,

Sn0+w−1 with the same color, say red. (Since Sn0+d must be blue, we have w ≤ d.) We will
choose t from the interval (n0, n0 + w).

I

A D0B0

t t + 2d u x( )
n0 n0 + w

( )

Figure 2

Consider the interval I =

(

n0 +
bd

a
ϕ, n0 +

bd

a
ϕ+w

)

on the x-axis (see Figure 2). Its length

is w, and the end-points are irrational. Therefore, this interval intersects w + 1 consecutive
strips. Since at most w consecutive strips may have the same color, interval I must contain both

red and blue points. Choose u ∈ I such that the line x = u is red and set t = u− bd

a
ϕ, according

to the constraint (1). Then t ∈ (n0, n0 + w) and A = (t, 0) is red as well as D = (u, y3).
Hence, variables u and t can be set such that they provide a rectangle with four red vertices.

Comment. The statement is false for squares, i.e. in the case a = b. If strips S2ka, S2ka+1, . . .,
S(2k+1)a−1 are red, and strips S(2k+1)a, S(2k+1)a+1, . . ., S(2k+2)a−1 are blue for every integer k, then
each square of size a× a has at least one red and at least one blue vertex as well.
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C6. In a mathematical competition some competitors are friends; friendship is always mutual.
Call a group of competitors a clique if each two of them are friends. The number of members
in a clique is called its size.

It is known that the largest size of cliques is even. Prove that the competitors can be
arranged in two rooms such that the largest size of cliques in one room is the same as the
largest size of cliques in the other room.

(Russia)

Solution. We present an algorithm to arrange the competitors. Let the two rooms be Room A
and Room B. We start with an initial arrangement, and then we modify it several times by
sending one person to the other room. At any state of the algorithm, A and B denote the sets
of the competitors in the rooms, and c(A) and c(B) denote the largest sizes of cliques in the
rooms, respectively.

Step 1. Let M be one of the cliques of largest size, |M | = 2m. Send all members of M to
Room A and all other competitors to Room B.

Since M is a clique of the largest size, we have c(A) = |M | ≥ c(B).

Step 2. While c(A) > c(B), send one person from Room A to Room B.

Room A Room B

A ∩M B ∩M

Note that c(A) > c(B) implies that Room A is not empty.
In each step, c(A) decreases by one and c(B) increases by at most one. So at the end we

have c(A) ≤ c(B) ≤ c(A) + 1.
We also have c(A) = |A| ≥ m at the end. Otherwise we would have at least m+1 members

of M in Room B and at most m−1 in Room A, implying c(B)−c(A) ≥ (m+1)− (m−1) = 2.

Step 3. Let k = c(A). If c(B) = k then STOP.
If we reached c(A) = c(B) = k then we have found the desired arrangement.
In all other cases we have c(B) = k + 1.
From the estimate above we also know that k = |A| = |A ∩M | ≥ m and |B ∩M | ≤ m.

Step 4. If there exists a competitor x ∈ B ∩M and a clique C ⊂ B such that |C| = k + 1
and x /∈ C, then move x to Room A and STOP.

Room A Room B

A ∩M B ∩M

x C

After moving x back to Room A, we will have k + 1 members of M in Room A, thus
c(A) = k + 1. Due to x /∈ C, c(B) = |C| is not decreased, and after this step we have
c(A) = c(B) = k + 1.
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If there is no such competitor x, then in Room B, all cliques of size k + 1 contain B ∩M
as a subset.

Step 5. While c(B) = k + 1, choose a clique C ⊂ B such that |C| = k + 1 and move one
member of C \M to Room A.

Room A Room B

A ∩M B ∩MC

Note that |C| = k + 1 > m ≥ |B ∩M |, so C \M cannot be empty.
Every time we move a single person from Room B to Room A, so c(B) decreases by at

most 1. Hence, at the end of this loop we have c(B) = k.

In Room A we have the clique A∩M with size |A∩M | = k thus c(A) ≥ k. We prove that
there is no clique of larger size there. Let Q ⊂ A be an arbitrary clique. We show that |Q| ≤ k.

Room A Room B

B ∩M
A ∩M

Q

In Room A, and specially in set Q, there can be two types of competitors:
– Some members of M . Since M is a clique, they are friends with all members of B ∩M .
– Competitors which were moved to Room A in Step 5. Each of them has been in a clique

with B ∩M so they are also friends with all members of B ∩M .
Hence, all members of Q are friends with all members of B ∩M . Sets Q and B ∩M are

cliques themselves, so Q ∪ (B ∩M) is also a clique. Since M is a clique of the largest size,

|M | ≥ |Q ∪ (B ∩M)| = |Q|+ |B ∩M | = |Q|+ |M | − |A ∩M |,

therefore
|Q| ≤ |A ∩M | = k.

Finally, after Step 5 we have c(A) = c(B) = k.

Comment. Obviously, the statement is false without the assumption that the largest clique size is
even.
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C7. Let α <
3−

√
5

2
be a positive real number. Prove that there exist positive integers n

and p > α · 2n for which one can select 2p pairwise distinct subsets S1, . . . , Sp, T1, . . . , Tp of
the set {1, 2, . . . , n} such that Si ∩ Tj 6= ∅ for all 1 ≤ i, j ≤ p.

(Austria)

Solution. Let k and m be positive integers (to be determined later) and set n = km. De-
compose the set {1, 2, . . . , n} into k disjoint subsets, each of size m; denote these subsets
by A1, . . . , Ak. Define the following families of sets:

S =
{
S ⊂ {1, 2, . . . , n} : ∀i S ∩ Ai 6= ∅

}
,

T1 =
{
T ⊂ {1, 2, . . . , n} : ∃i Ai ⊂ T

}
, T = T1 \ S.

For each set T ∈ T ⊂ T1, there exists an index 1 ≤ i ≤ k such that Ai ⊂ T . Then for all S ∈ S,
S ∩ T ⊃ S ∩Ai 6= ∅. Hence, each S ∈ S and each T ∈ T have at least one common element.

Below we show that the numbers m and k can be chosen such that |S|, |T | > α · 2n. Then,
choosing p = min

{
|S|, |T |

}
, one can select the desired 2p sets S1, . . . , Sp and T1, . . . , Tp from

families S and T , respectively. Since families S and T are disjoint, sets Si and Tj will be
pairwise distinct.

To count the sets S ∈ S, observe that each Ai has 2m−1 nonempty subsets so we have 2m−1
choices for S ∩ Ai. These intersections uniquely determine set S, so

|S| = (2m − 1)k. (1)

Similarly, if a set H ⊂ {1, 2, . . . , n} does not contain a certain set Ai then we have 2m − 1
choices for H ∩ Ai: all subsets of Ai, except Ai itself. Therefore, the complement of T1 con-
tains (2m − 1)k sets and

|T1| = 2km − (2m − 1)k. (2)

Next consider the family S \T1. If a set S intersects all Ai but does not contain any of them,
then there exists 2m − 2 possible values for each S ∩ Ai: all subsets of Ai except ∅ and Ai.
Therefore the number of such sets S is (2m − 2)k, so

|S \ T1| = (2m − 2)k. (3)

From (1), (2), and (3) we obtain

|T | = |T1| − |S ∩ T1| = |T1| −
(
|S| − |S \ T1|

)
= 2km − 2(2m − 1)k + (2m − 2)k.

Let δ =
3−

√
5

2
and k = k(m) =

[
2m log 1

δ

]
. Then

lim
m→∞

|S|
2km

= lim
m→∞

(

1− 1

2m

)k

= exp

(

− lim
m→∞

k

2m

)

= δ

and similarly

lim
m→∞

|T |
2km

= 1− 2 lim
m→∞

(

1− 1

2m

)k

+ lim
m→∞

(

1− 2

2m

)k

= 1− 2δ + δ2 = δ.

Hence, if m is sufficiently large then
|S|
2mk

and
|T |
2mk

are greater than α (since α < δ). So

|S|, |T | > α · 2mk = α · 2n.

Comment. It can be proved that the constant
3−

√
5

2
is sharp. Actually, if S1, . . . , Sp, T1, . . . , Tp

are distinct subsets of {1, 2, . . . , n} such that each Si intersects each Tj, then p <
3−

√
5

2
· 2n.



37

C8. Given a convex n-gon P in the plane. For every three vertices of P , consider the triangle
determined by them. Call such a triangle good if all its sides are of unit length.

Prove that there are not more than 2
3
n good triangles.

(Ukraine)

Solution. Consider all good triangles containing a certain vertex A. The other two vertices
of any such triangle lie on the circle ωA with unit radius and center A. Since P is convex, all
these vertices lie on an arc of angle less than 180◦. Let LARA be the shortest such arc, oriented
clockwise (see Figure 1). Each of segments ALA and ARA belongs to a unique good triangle.
We say that the good triangle with side ALA is assigned counterclockwise to A, and the second
one, with side ARA, is assigned clockwise to A. In those cases when there is a single good
triangle containing vertex A, this triangle is assigned to A twice.

There are at most two assignments to each vertex of the polygon. (Vertices which do not
belong to any good triangle have no assignment.) So the number of assignments is at most 2n.

Consider an arbitrary good triangle ABC, with vertices arranged clockwise. We prove
that ABC is assigned to its vertices at least three times. Then, denoting the number of good
triangles by t, we obtain that the number K of all assignments is at most 2n, while it is not
less than 3t. Then 3t ≤ K ≤ 2n, as required.

Actually, we prove that triangle ABC is assigned either counterclockwise to C or clockwise
to B. Then, by the cyclic symmetry of the vertices, we obtain that triangle ABC is assigned
either counterclockwise to A or clockwise to C, and either counterclockwise to B or clockwise
to A, providing the claim.

A

LA

RA

ωA

A

LA

RA

ωA A

B C

A′

B′C ′

X=L
(′)
C

Y =R
(′)
B

ωA

ωBωC

Figure 1 Figure 2

Assume, to the contrary, that LC 6= A and RB 6= A. Denote by A′, B′, C ′ the intersection
points of circles ωA, ωB and ωC , distinct from A, B, C (see Figure 2). Let CLCL′C be the good
triangle containing CLC . Observe that the angle of arc LCA is less than 120◦. Then one of the
points LC and L′C belongs to arc B′A of ωC ; let this point be X. In the case when LC = B′

and L′C = A, choose X = B′.
Analogously, considering the good triangle BR′BRB which contains BRB as an edge, we see

that one of the points RB and R′B lies on arc AC ′ of ωB. Denote this point by Y , Y 6= A.
Then angles XAY , Y AB, BAC and CAX (oriented clockwise) are not greater than 180◦.
Hence, point A lies in quadrilateral XY BC (either in its interior or on segment XY ). This is
impossible, since all these five points are vertices of P .

Hence, each good triangle has at least three assignments, and the statement is proved.

Comment 1. Considering a diameter AB of the polygon, one can prove that every good triangle
containing either A or B has at least four assignments. This observation leads to t ≤

⌊
2
3(n− 1)

⌋
.
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A

B1

Bn

C1
Cn

D1

Dn

Figure 3

Comment 2. The result t ≤
⌊

2
3(n − 1)

⌋
is sharp. To

construct a polygon with n = 3k + 1 vertices and t = 2k tri-
angles, take a rhombus AB1C1D1 with unit side length and
∠B1 = 60◦. Then rotate it around A by small angles ob-
taining rhombi AB2C2D2, . . . , ABkCkDk (see Figure 3). The
polygon AB1 . . . BkC1 . . . CkD1 . . . Dk has 3k +1 vertices and
contains 2k good triangles.

The construction for n = 3k and n = 3k − 1 can be
obtained by deleting vertices Dn and Dn−1.



Geometry

G1. In triangle ABC, the angle bisector at vertex C intersects the circumcircle and the per-
pendicular bisectors of sides BC and CA at points R, P , and Q, respectively. The midpoints of
BC and CA are S and T , respectively. Prove that triangles RQT and RPS have the same area.

(Czech Republic)

Solution 1. If AC = BC then triangle ABC is isosceles, triangles RQT and RPS are
symmetric about the bisector CR and the statement is trivial. If AC 6= BC then it can be
assumed without loss of generality that AC < BC.

R

B

S
OQT

A

C

P
ℓ

Denote the circumcenter by O. The right triangles CTQ and CSP have equal angles at
vertex C, so they are similar, ∠CPS = ∠CQT = ∠OQP and

QT

PS
=

CQ

CP
. (1)

Let ℓ be the perpendicular bisector of chord CR; of course, ℓ passes through the circum-
center O. Due to the equal angles at P and Q, triangle OPQ is isosceles with OP = OQ.
Then line ℓ is the axis of symmetry in this triangle as well. Therefore, points P and Q lie
symmetrically on line segment CR,

RP = CQ and RQ = CP. (2)

Triangles RQT and RPS have equal angles at vertices Q and P , respectively. Then

area(RQT )

area(RPS)
=

1
2
· RQ ·QT · sin ∠RQT

1
2
· RP · PS · sin ∠RPS

=
RQ

RP
· QT

PS
.

Substituting (1) and (2),

area(RQT )

area(RPS)
=

RQ

RP
· QT

PS
=

CP

CQ
· CQ

CP
= 1.

Hence, area(RQT ) = area(RSP ).
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Solution 2. Assume again AC < BC. Denote the circumcenter by O, and let γ be the
angle at C. Similarly to the first solution, from right triangles CTQ and CSP we obtain
that ∠OPQ = ∠OQP = 90◦ − γ

2
. Then triangle OPQ is isosceles, OP = OQ and moreover

∠POQ = γ.
As is well-known, point R is the midpoint of arc AB and ∠ROA = ∠BOR = γ.

C

B

ST

A

γ
γ

Q O

γ

P

R

Consider the rotation around point O by angle γ. This transform moves A to R, R to B
and Q to P ; hence triangles RQA and BPR are congruent and they have the same area.

Triangles RQT and RQA have RQ as a common side, so the ratio between their areas is

area(RQT )

area(RQA)
=

d(T, CR)

d(A, CR)
=

CT

CA
=

1

2
.

(d(X, Y Z) denotes the distance between point X and line Y Z).

It can be obtained similarly that

area(RPS)

area(BPR)
=

CS

CB
=

1

2
.

Now the proof can be completed as

area(RQT ) =
1

2
area(RQA) =

1

2
area(BPR) = area(RPS).
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G2. Given an isosceles triangle ABC with AB = AC. The midpoint of side BC is denoted
by M . Let X be a variable point on the shorter arc MA of the circumcircle of triangle ABM .
Let T be the point in the angle domain BMA, for which ∠TMX = 90◦ and TX = BX. Prove
that ∠MTB − ∠CTM does not depend on X.

(Canada)

Solution 1. Let N be the midpoint of segment BT (see Figure 1). Line XN is the axis of
symmetry in the isosceles triangle BXT , thus ∠TNX = 90◦ and ∠BXN = ∠NXT . Moreover,
in triangle BCT , line MN is the midline parallel to CT ; hence ∠CTM = ∠NMT .

Due to the right angles at points M and N , these points lie on the circle with diameter XT .
Therefore,

∠MTB = ∠MTN = ∠MXN and ∠CTM = ∠NMT = ∠NXT = ∠BXN.

Hence
∠MTB − ∠CTM = ∠MXN − ∠BXN = ∠MXB = ∠MAB

which does not depend on X.

A

B C

N

T

X

M

A

B C

S

T

X

M

Figure 1 Figure 2

Solution 2. Let S be the reflection of point T over M (see Figure 2). Then XM is the per-
pendicular bisector of TS, hence XB = XT = XS, and X is the circumcenter of triangle BST .
Moreover, ∠BSM = ∠CTM since they are symmetrical about M . Then

∠MTB − ∠CTM = ∠STB − ∠BST =
∠SXB − ∠BXT

2
.

Observe that ∠SXB = ∠SXT − ∠BXT = 2∠MXT − ∠BXT , so

∠MTB − ∠CTM =
2∠MXT − 2∠BXT

2
= ∠MXB = ∠MAB,

which is constant.
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G3. The diagonals of a trapezoid ABCD intersect at point P . Point Q lies between the
parallel lines BC and AD such that ∠AQD = ∠CQB, and line CD separates points P and Q.
Prove that ∠BQP = ∠DAQ.

(Ukraine)

Solution. Let t =
AD

BC
. Consider the homothety h with center P and scale −t. Triangles PDA

and PBC are similar with ratio t, hence h(B) = D and h(C) = A.

B C

Q′

Q

A D

P

Let Q′ = h(Q) (see Figure 1). Then points Q, P and Q′ are obviously collinear. Points Q
and P lie on the same side of AD, as well as on the same side of BC; hence Q′ and P are
also on the same side of h(BC) = AD, and therefore Q and Q′ are on the same side of AD.
Moreover, points Q and C are on the same side of BD, while Q′ and A are on the opposite
side (see Figure above).

By the homothety, ∠AQ′D = ∠CQB = ∠AQD, hence quadrilateral AQ′QD is cyclic. Then

∠DAQ = ∠DQ′Q = ∠DQ′P = ∠BQP

(the latter equality is valid by the homothety again).

Comment. The statement of the problem is a limit case of the following result.
In an arbitrary quadrilateral ABCD, let P = AC ∩BD, I = AD ∩BC, and let Q be an arbitrary

point which is not collinear with any two of points A, B, C, D. Then ∠AQD = ∠CQB if and only if
∠BQP = ∠IQA (angles are oriented; see Figure below to the left).

In the special case of the trapezoid, I is an ideal point and ∠DAQ = ∠IQA = ∠BQP .

i

p

a

b

c

d
A

B

C

D

P

Q

I

U V

A

B C

D

P

Q

I

I

I

Let a = QA, b = QB, c = QC, d = QD, i = QI and p = QP . Let line QA intersect lines BC
and BD at points U and V , respectively. On lines BC and BD we have

(abci) = (UBCI) and (badp) = (abpd) = (V BPD).

Projecting from A, we get
(abci) = (UBCI) = (V BPD) = (badp).

Suppose that ∠AQD = ∠CQB. Let line p′ be the reflection of line i about the bisector of
angle AQB. Then by symmetry we have (badp′) = (abci) = (badp). Hence p = p′, as desired.

The converse statement can be proved analogously.
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G4. Consider five points A, B, C, D, E such that ABCD is a parallelogram and BCED is
a cyclic quadrilateral. Let ℓ be a line passing through A, and let ℓ intersect segment DC and
line BC at points F and G, respectively. Suppose that EF = EG = EC. Prove that ℓ is the
bisector of angle DAB.

(Luxembourg)

Solution. If CF = CG, then ∠FGC = ∠GFC, hence ∠GAB = ∠GFC = ∠FGC = ∠FAD,
and ℓ is a bisector.

Assume that CF < GC. Let EK and EL be the altitudes in the isosceles triangles ECF
and EGC, respectively. Then in the right triangles EKF and ELC we have EF = EC and

KF =
CF

2
<

GC

2
= LC,

so
KE =

√
EF 2 −KF 2 >

√
EC2 − LC2 = LE.

Since quadrilateral BCED is cyclic, we have ∠EDC = ∠EBC, so the right triangles BEL
and DEK are similar. Then KE > LE implies DK > BL, and hence

DF = DK −KF > BL− LC = BC = AD.

But triangles ADF and GCF are similar, so we have 1 >
AD

DF
=

GC

CF
; this contradicts our

assumption.

The case CF > GC is completely similar. We consequently obtain the converse inequalities

KF > LC, KE < LE, DK < BL, DF < AD, hence 1 <
AD

DF
=

GC

CF
; a contradiction.

A

B C

D

E

F

G

K

L

ℓ
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G5. Let ABC be a fixed triangle, and let A1, B1, C1 be the midpoints of sides BC, CA, AB,
respectively. Let P be a variable point on the circumcircle. Let lines PA1, PB1, PC1 meet the
circumcircle again at A′, B′, C ′ respectively. Assume that the points A, B, C, A′, B′, C ′ are
distinct, and lines AA′, BB′, CC ′ form a triangle. Prove that the area of this triangle does not
depend on P .

(United Kingdom)

Solution 1. Let A0, B0, C0 be the points of intersection of the lines AA′, BB′ and CC ′ (see
Figure). We claim that area(A0B0C0) = 1

2
area(ABC), hence it is constant.

Consider the inscribed hexagon ABCC ′PA′. By Pascal’s theorem, the points of intersection
of its opposite sides (or of their extensions) are collinear. These points are AB ∩ C ′P = C1,
BC ∩ PA′ = A1, CC ′ ∩ A′A = B0. So point B0 lies on the midline A1C1 of triangle ABC.
Analogously, points A0 and C0 lie on lines B1C1 and A1B1, respectively.

Lines AC and A1C1 are parallel, so triangles B0C0A1 and AC0B1 are similar; hence we have

P

A B

C

A1
B1

C1

A′

B′

C ′

A0

B0

C0

B0C0

AC0
=

A1C0

B1C0
.

Analogously, from BC ‖ B1C1 we obtain

A1C0

B1C0
=

BC0

A0C0
.

Combining these equalities, we get

B0C0

AC0
=

BC0

A0C0
,

or
A0C0 ·B0C0 = AC0 · BC0.

Hence we have

area(A0B0C0) =
1

2
A0C0 · B0C0 sin ∠A0C0B0 =

1

2
AC0 ·BC0 sin ∠AC0B = area(ABC0).

Since C0 lies on the midline, we have d(C0, AB) = 1
2
d(C, AB) (we denote by d(X, Y Z) the

distance between point X and line Y Z). Then we obtain

area(A0B0C0) = area(ABC0) =
1

2
AB · d(C0, AB) =

1

4
AB · d(C, AB) =

1

2
area(ABC).

Solution 2. Again, we prove that area(A0B0C0) = 1
2
area(ABC).

We can assume that P lies on arc AC. Mark a point L on side AC such that ∠CBL =
∠PBA; then ∠LBA = ∠CBA − ∠CBL = ∠CBA − ∠PBA = ∠CBP . Note also that
∠BAL = ∠BAC = ∠BPC and ∠LCB = ∠APB. Hence, triangles BAL and BPC are
similar, and so are triangles LCB and APB.

Analogously, mark points K and M respectively on the extensions of sides CB and AB
beyond point B, such that ∠KAB = ∠CAP and ∠BCM = ∠PCA. For analogous reasons,
∠KAC = ∠BAP and ∠ACM = ∠PCB. Hence △ABK ∼ △APC ∼ △MBC, △ACK ∼
△APB, and△MAC ∼ △BPC. From these similarities, we have ∠CMB = ∠KAB = ∠CAP ,
while we have seen that ∠CAP = ∠CBP = ∠LBA. Hence, AK ‖ BL ‖ CM .
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P

A
B

C

A1

C1

A′

B′ C ′

A0

X=B0

C0

K

L

M

Let line CC ′ intersect BL at point X. Note that ∠LCX = ∠ACC ′ = ∠APC ′ = ∠APC1,
and PC1 is a median in triangle APB. Since triangles APB and LCB are similar, CX is a
median in triangle LCB, and X is a midpoint of BL. For the same reason, AA′ passes through
this midpoint, so X = B0. Analogously, A0 and C0 are the midpoints of AK and CM .

Now, from AA0 ‖ CC0, we have

area(A0B0C0) = area(AC0A0)− area(AB0A0) = area(ACA0)− area(AB0A0) = area(ACB0).

Finally,

area(A0B0C0) = area(ACB0) =
1

2
B0L · AC sin ALB0 =

1

4
BL · AC sin ALB =

1

2
area(ABC).

Comment 1. The equality area(A0B0C0) = area(ACB0) in Solution 2 does not need to be proved
since the following fact is frequently known.

Suppose that the lines KL and MN are parallel, while the lines KM and LN intersect in a point E.
Then area(KEN) = area(MEL).

Comment 2. It follows immediately from both solutions that AA0 ‖ BB0 ‖ CC0. These lines pass
through an ideal point which is isogonally conjugate to P . It is known that they are parallel to the
Simson line of point Q which is opposite to P on the circumcircle.

Comment 3. If A = A′, then one can define the line AA′ to be the tangent to the circumcircle at
point A. Then the statement of the problem is also valid in this case.
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G6. Determine the smallest positive real number k with the following property.

Let ABCD be a convex quadrilateral, and let points A1, B1, C1 and D1 lie on sides AB, BC,
CD and DA, respectively. Consider the areas of triangles AA1D1, BB1A1, CC1B1, and DD1C1;
let S be the sum of the two smallest ones, and let S1 be the area of quadrilateral A1B1C1D1.
Then we always have kS1 ≥ S.

(U.S.A.)

Answer. k = 1.

Solution. Throughout the solution, triangles AA1D1, BB1A1, CC1B1, and DD1C1 will be
referred to as border triangles. We will denote by [R] the area of a region R.

First, we show that k ≥ 1. Consider a triangle ABC with unit area; let A1, B1, K be
the midpoints of its sides AB, BC, AC, respectively. Choose a point D on the extension
of BK, close to K. Take points C1 and D1 on sides CD and DA close to D (see Figure 1).
We have [BB1A1] = 1

4
. Moreover, as C1, D1, D → K, we get [A1B1C1D1] → [A1B1K] = 1

4
,

[AA1D1] → [AA1K] = 1
4
, [CC1B1] → [CKB1] = 1

4
and [DD1C1] → 0. Hence, the sum of the

two smallest areas of border triangles tends to 1
4
, as well as [A1B1C1D1]; therefore, their ratio

tends to 1, and k ≥ 1.
We are left to prove that k = 1 satisfies the desired property.
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D

A1 B1

C1D1
K
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B

C

A1

B1

C1

A′

B′

C ′

X

A

B

C

A1

B1

C1

A′

B′

C ′

Y

Z

Figure 1 Figure 2 Figure 3

Lemma. Let points A1, B1, C1 lie respectively on sides BC, CA, AB of a triangle ABC. Then
[A1B1C1] ≥ min

{
[AC1B1], [BA1C1], [CB1A1]

}
.

Proof. Let A′, B′, C ′ be the midpoints of sides BC, CA and AB, respectively.
Suppose that two of points A1, B1, C1 lie in one of triangles AC ′B′, BA′C ′ and CB′A′

(for convenience, let points B1 and C1 lie in triangle AC ′B′; see Figure 2). Let segments B1C1

and AA1 intersect at point X. Then X also lies in triangle AC ′B′. Hence A1X ≥ AX, and we
have

[A1B1C1]

[AC1B1]
=

1
2
A1X · B1C1 · sin ∠A1XC1

1
2
AX · B1C1 · sin ∠AXB1

=
A1X

AX
≥ 1,

as required.
Otherwise, each one of triangles AC ′B′, BA′C ′, CB′A′ contains exactly one of points A1,

B1, C1, and we can assume that BA1 < BA′, CB1 < CB′, AC1 < AC ′ (see Figure 3). Then
lines B1A1 and AB intersect at a point Y on the extension of AB beyond point B, hence
[A1B1C1]

[A1B1C ′]
=

C1Y

C ′Y
> 1; also, lines A1C

′ and CA intersect at a point Z on the extension

of CA beyond point A, hence
[A1B1C

′]

[A1B′C ′]
=

B1Z

B′Z
> 1. Finally, since A1A

′ ‖ B′C ′, we have

[A1B1C1] > [A1B1C
′] > [A1B

′C ′] = [A′B′C ′] = 1
4
[ABC].



47

Now, from [A1B1C1] + [AC1B1] + [BA1C1] + [CB1A1] = [ABC] we obtain that one of
the remaining triangles AC1B1, BA1C1, CB1A1 has an area less than 1

4
[ABC], so it is less

than [A1B1C1]. �

Now we return to the problem. We say that triangle A1B1C1 is small if [A1B1C1] is less than
each of [BB1A1] and [CC1B1]; otherwise this triangle is big (the similar notion is introduced
for triangles B1C1D1, C1D1A1, D1A1B1). If both triangles A1B1C1 and C1D1A1 are big,
then [A1B1C1] is not less than the area of some border triangle, and [C1D1A1] is not less than
the area of another one; hence, S1 = [A1B1C1] + [C1D1A1] ≥ S. The same is valid for the pair
of B1C1D1 and D1A1B1. So it is sufficient to prove that in one of these pairs both triangles
are big.

Suppose the contrary. Then there is a small triangle in each pair. Without loss of generality,
assume that triangles A1B1C1 and D1A1B1 are small. We can assume also that [A1B1C1] ≤
[D1A1B1]. Note that in this case ray D1C1 intersects line BC.

Consider two cases.

A

B

C

D

A1

B1

C1D1
K L

A
B

C

D

A1

B1

C1D1

K

L

Figure 4 Figure 5

Case 1. Ray C1D1 intersects line AB at some point K. Let ray D1C1 intersect line BC at
point L (see Figure 4). Then we have [A1B1C1] < [CC1B1] < [LC1B1], [A1B1C1] < [BB1A1]
(both — since [A1B1C1] is small), and [A1B1C1] ≤ [D1A1B1] < [AA1D1] < [KA1D1] < [KA1C1]
(since triangle D1A1B1 is small). This contradicts the Lemma, applied for triangle A1B1C1

inside LKB.

Case 2. Ray C1D1 does not intersect AB. Then choose a “sufficiently far” point K on
ray BA such that [KA1C1] > [A1B1C1], and that ray KC1 intersects line BC at some point L
(see Figure 5). Since ray C1D1 does not intersect line AB, the points A and D1 are on different
sides of KL; then A and D are also on different sides, and C is on the same side as A and B.
Then analogously we have [A1B1C1] < [CC1B1] < [LC1B1] and [A1B1C1] < [BB1A1] since
triangle A1B1C1 is small. This (together with [A1B1C1] < [KA1C1]) contradicts the Lemma
again.



48



49

G7. Given an acute triangle ABC with angles α, β and γ at vertices A, B and C, respectively,
such that β > γ. Point I is the incenter, and R is the circumradius. Point D is the foot of
the altitude from vertex A. Point K lies on line AD such that AK = 2R, and D separates A
and K. Finally, lines DI and KI meet sides AC and BC at E and F , respectively.

Prove that if IE = IF then β ≤ 3γ.
(Iran)

Solution 1. We first prove that

∠KID =
β − γ

2
(1)

even without the assumption that IE = IF . Then we will show that the statement of the
problem is a consequence of this fact.

Denote the circumcenter by O. On the circumcircle, let P be the point opposite to A, and
let the angle bisector AI intersect the circle again at M . Since AK = AP = 2R, triangle AKP
is isosceles. It is known that ∠BAD = ∠CAO, hence ∠DAI = ∠BAI − ∠BAD = ∠CAI −
∠CAO = ∠OAI, and AM is the bisector line in triangle AKP . Therefore, points K and P
are symmetrical about AM , and ∠AMK = ∠AMP = 90◦. Thus, M is the midpoint of KP ,
and AM is the perpendicular bisector of KP .

A

B C

B1

A1

I O
T

D

P

M

D′

K

Denote the perpendicular feet of incenter I on lines BC, AC, and AD by A1, B1, and T ,
respectively. Quadrilateral DA1IT is a rectangle, hence TD = IA1 = IB1.

Due to the right angles at T and B1, quadrilateral AB1IT is cyclic. Hence ∠B1TI =
∠B1AI = ∠CAM = ∠BAM = ∠BPM and ∠IB1T = ∠IAT = ∠MAK = ∠MAP =

∠MBP . Therefore, triangles B1TI and BPM are similar and
IT

IB1
=

MP

MB
.

It is well-known that MB = MC = MI. Then right triangles ITD and KMI are also
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similar, because
IT

TD
=

IT

IB1
=

MP

MB
=

KM

MI
. Hence, ∠KIM = ∠IDT = ∠IDA, and

∠KID = ∠MID −∠KIM = (∠IAD + ∠IDA)−∠IDA = ∠IAD.

Finally, from the right triangle ADB we can compute

∠KID = ∠IAD = ∠IAB − ∠DAB =
α

2
− (90◦ − β) =

α

2
− α + β + γ

2
+ β =

β − γ

2
.

Now let us turn to the statement and suppose that IE = IF . Since IA1 = IB1, the right
triangles IEB1 and IFA1 are congruent and ∠IEB1 = ∠IFA1. Since β > γ, A1 lies in the
interior of segment CD and F lies in the interior of A1D. Hence, ∠IFC is acute. Then two
cases are possible depending on the order of points A, C, B1 and E.

A

B C
A1

B1

I

K

D

E

F

M

A

B C
A1

B1

I

K

D

E

F

M

If point E lies between C and B1 then ∠IFC = ∠IEA, hence quadrilateral CEIF is cyclic
and ∠FCE = 180◦ −∠EIF = ∠KID. By (1), in this case we obtain ∠FCE = γ = ∠KID =
β − γ

2
and β = 3γ.

Otherwise, if point E lies between A and B1, quadrilateral CEIF is a deltoid such that
∠IEC = ∠IFC < 90◦. Then we have ∠FCE > 180◦ − ∠EIF = ∠KID. Therefore,

∠FCE = γ > ∠KID =
β − γ

2
and β < 3γ.

Comment 1. In the case when quadrilateral CEIF is a deltoid, one can prove the desired inequality
without using (1). Actually, from ∠IEC = ∠IFC < 90◦ it follows that ∠ADI = 90◦ − ∠EDC <
∠AED − ∠EDC = γ. Since the incircle lies inside triangle ABC, we have AD > 2r (here r is the

inradius), which implies DT < TA and DI < AI; hence
β − γ

2
= ∠IAD < ∠ADI < γ.

Solution 2. We give a different proof for (1). Then the solution can be finished in the same
way as above.

Define points M and P again; it can be proved in the same way that AM is the perpendicular
bisector of KP . Let J be the center of the excircle touching side BC. It is well-known that
points B, C, I, J lie on a circle with center M ; denote this circle by ω1.

Let B′ be the reflection of point B about the angle bisector AM . By the symmetry, B′ is the
second intersection point of circle ω1 and line AC. Triangles PBA and KB′A are symmetrical
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with respect to line AM , therefore ∠KB′A = ∠PBA = 90◦. By the right angles at D and B′,
points K, D, B′, C are concyclic and

AD ·AK = AB′ ·AC.

From the cyclic quadrilateral IJCB′ we obtain AB′ · AC = AI · AJ as well, therefore

AD · AK = AB′ · AC = AI · AJ

and points I, J , K, D are also concyclic. Denote circle IDKJ by ω2.

A

B
C

I

D

P

M
K

B′

J

N

ω1
ω2

Let N be the point on circle ω2 which is opposite to K. Since ∠NDK = 90◦ = ∠CDK,
point N lies on line BC. Point M , being the center of circle ω1, is the midpoint of segment IJ ,
and KM is perpendicular to IJ . Therefore, line KM is the perpendicular bisector of IJ and
hence it passes through N .

From the cyclic quadrilateral IDKN we obtain

∠KID = ∠KND = 90◦ − ∠DKN = 90◦ −∠AKM = ∠MAK =
β − γ

2
.

Comment 2. The main difficulty in the solution is finding (1). If someone can guess this fact, he or
she can compute it in a relatively short way.

One possible way is finding and applying the relation AI2 = 2R(ha − 2r), where ha = AD is the
length of the altitude. Using this fact, one can see that triangles AKI and AID′ are similar (here D′

is the point symmetrical to D about T ). Hence, ∠MIK = ∠DD′I = ∠IDD′. The proof can be
finished as in Solution 1.
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G8. Point P lies on side AB of a convex quadrilateral ABCD. Let ω be the incircle
of triangle CPD, and let I be its incenter. Suppose that ω is tangent to the incircles of
triangles APD and BPC at points K and L, respectively. Let lines AC and BD meet at E,
and let lines AK and BL meet at F . Prove that points E, I, and F are collinear.

(Poland)

Solution. Let Ω be the circle tangent to segment AB and to rays AD and BC; let J be its
center. We prove that points E and F lie on line IJ .

A BP

K
L

C

D

J

I

F

IA

IB

Ω

ω

ωA

ωB

Denote the incircles of triangles ADP and BCP by ωA and ωB. Let h1 be the homothety
with a negative scale taking ω to Ω. Consider this homothety as the composition of two
homotheties: one taking ω to ωA (with a negative scale and center K), and another one
taking ωA to Ω (with a positive scale and center A). It is known that in such a case the three
centers of homothety are collinear (this theorem is also referred to as the theorem on the three
similitude centers). Hence, the center of h1 lies on line AK. Analogously, it also lies on BL,
so this center is F . Hence, F lies on the line of centers of ω and Ω, i. e. on IJ (if I = J ,
then F = I as well, and the claim is obvious).

Consider quadrilateral APCD and mark the equal segments of tangents to ω and ωA (see the
figure below to the left). Since circles ω and ωA have a common point of tangency with PD,
one can easily see that AD + PC = AP + CD. So, quadrilateral APCD is circumscribed;
analogously, circumscribed is also quadrilateral BCDP . Let ΩA and ΩB respectively be their
incircles.

A

C

D

P

ω

ΩA

ωA

A B

C

D

P

E

I

J
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Ω

ω

ΩA

ΩB
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Consider the homothety h2 with a positive scale taking ω to Ω. Consider h2 as the compo-
sition of two homotheties: taking ω to ΩA (with a positive scale and center C), and taking ΩA

to Ω (with a positive scale and center A), respectively. So the center of h2 lies on line AC. By
analogous reasons, it lies also on BD, hence this center is E. Thus, E also lies on the line of
centers IJ , and the claim is proved.

Comment. In both main steps of the solution, there can be several different reasonings for the same
claims. For instance, one can mostly use Desargues’ theorem instead of the three homotheties theorem.
Namely, if IA and IB are the centers of ωA and ωB, then lines IAIB , KL and AB are concurrent (by
the theorem on three similitude centers applied to ω, ωA and ωB). Then Desargues’ theorem, applied
to triangles AIAK and BIBL, yields that the points J = AIA∩BIB, I = IAK∩IBL and F = AK∩BL
are collinear.

For the second step, let JA and JB be the centers of ΩA and ΩB. Then lines JAJB , AB and CD are
concurrent, since they appear to be the two common tangents and the line of centers of ΩA and ΩB .
Applying Desargues’ theorem to triangles AJAC and BJBD, we obtain that the points J = AJA∩BJB ,
I = CJA ∩DJB and E = AC ∩BD are collinear.
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Number Theory

N1. Find all pairs (k, n) of positive integers for which 7k − 3n divides k4 + n2.
(Austria)

Answer. (2, 4).

Solution. Suppose that a pair (k, n) satisfies the condition of the problem. Since 7k − 3n is
even, k4 + n2 is also even, hence k and n have the same parity. If k and n are odd, then
k4 +n2 ≡ 1 +1 = 2 (mod 4), while 7k− 3n ≡ 7− 3 ≡ 0 (mod 4), so k4 +n2 cannot be divisible
by 7k − 3n. Hence, both k and n must be even.

Write k = 2a, n = 2b. Then 7k − 3n = 72a − 32b =
7a − 3b

2
· 2(7a + 3b), and both factors are

integers. So 2(7a + 3b)
∣
∣ 7k − 3n and 7k − 3n

∣
∣ k4 + n2 = 2(8a4 + 2b2), hence

7a + 3b ≤ 8a4 + 2b2. (1)

We prove by induction that 8a4 < 7a for a ≥ 4, 2b2 < 3b for b ≥ 1 and 2b2 +9 ≤ 3b for b ≥ 3.
In the initial cases a = 4, b = 1, b = 2 and b = 3 we have 8 · 44 = 2048 < 74 = 2401, 2 < 3,
2 · 22 = 8 < 32 = 9 and 2 · 32 + 9 = 33 = 27, respectively.

If 8a4 < 7a (a ≥ 4) and 2b2 + 9 ≤ 3b (b ≥ 3), then

8(a + 1)4 = 8a4

(
a + 1

a

)4

< 7a

(
5

4

)4

= 7a625

256
< 7a+1 and

2(b + 1)2 + 9 < (2b2 + 9)

(
b + 1

b

)2

≤ 3b

(
4

3

)2

= 3b 16

9
< 3b+1,

as desired.

For a ≥ 4 we obtain 7a + 3b > 8a4 + 2b2 and inequality (1) cannot hold. Hence a ≤ 3, and
three cases are possible.

Case 1: a = 1. Then k = 2 and 8 + 2b2 ≥ 7 + 3b, thus 2b2 + 1 ≥ 3b. This is possible only

if b ≤ 2. If b = 1 then n = 2 and
k4 + n2

7k − 3n
=

24 + 22

72 − 32
=

1

2
, which is not an integer. If b = 2

then n = 4 and
k4 + n2

7k − 3n
=

24 + 42

72 − 34
= −1, so (k, n) = (2, 4) is a solution.

Case 2: a = 2. Then k = 4 and k4 + n2 = 256 + 4b2 ≥ |74 − 3n| = |49− 3b| · (49 + 3b). The
smallest value of the first factor is 22, attained at b = 3, so 128 + 2b2 ≥ 11(49 + 3b), which is
impossible since 3b > 2b2.

Case 3: a = 3. Then k = 6 and k4 + n2 = 1296 + 4b2 ≥ |76 − 3n| = |343− 3b| · (343 + 3b).
Analogously, |343− 3b| ≥ 100 and we have 324 + b2 ≥ 25(343 + 3b), which is impossible again.

We find that there exists a unique solution (k, n) = (2, 4).
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N2. Let b, n > 1 be integers. Suppose that for each k > 1 there exists an integer ak such
that b− an

k is divisible by k. Prove that b = An for some integer A.
(Canada)

Solution. Let the prime factorization of b be b = pα1

1 . . . pαs
s , where p1, . . . , ps are distinct primes.

Our goal is to show that all exponents αi are divisible by n, then we can set A = p
α1/n
1 . . . p

αs/n
s .

Apply the condition for k = b2. The number b − an
k is divisible by b2 and hence, for

each 1 ≤ i ≤ s, it is divisible by p2αi

i > pαi

i as well. Therefore

an
k ≡ b ≡ 0 (mod pαi

i )

and
an

k ≡ b 6≡ 0 (mod pαi+1
i ),

which implies that the largest power of pi dividing an
k is pαi

i . Since an
k is a complete nth power,

this implies that αi is divisible by n.

Comment. If n = 8 and b = 16, then for each prime p there exists an integer ap such that b− an
p is

divisible by p. Actually, the congruency x8 − 16 ≡ 0 (mod p) expands as

(x2 − 2)(x2 + 2)(x2 − 2x + 2)(x2 + 2x + 2) ≡ 0 (mod p).

Hence, if −1 is a quadratic residue modulo p, then congruency x2 + 2x + 2 = (x + 1)2 + 1 ≡ 0 has a
solution. Otherwise, one of congruencies x2 ≡ 2 and x2 ≡ −2 has a solution.

Thus, the solution cannot work using only prime values of k.
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N3. Let X be a set of 10 000 integers, none of them is divisible by 47. Prove that there
exists a 2007-element subset Y of X such that a− b + c− d + e is not divisible by 47 for any
a, b, c, d, e ∈ Y .

(Netherlands)

Solution. Call a set M of integers good if 47 6
∣
∣ a− b + c− d + e for any a, b, c, d, e ∈M .

Consider the set J = {−9,−7,−5,−3,−1, 1, 3, 5, 7, 9}. We claim that J is good. Actually,
for any a, b, c, d, e ∈ J the number a− b + c− d + e is odd and

−45 = (−9)− 9 + (−9)− 9 + (−9) ≤ a− b + c− d + e ≤ 9− (−9) + 9− (−9) + 9 = 45.

But there is no odd number divisible by 47 between −45 and 45.
For any k = 1, . . . , 46 consider the set

Ak = {x ∈ X | ∃j ∈ J : kx ≡ j (mod 47)}.

If Ak is not good, then 47
∣
∣ a − b + c − d + e for some a, b, c, d, e ∈ Ak, hence 47

∣
∣ ka − kb +

kc− kd + ke. But set J contains numbers with the same residues modulo 47, so J also is not
good. This is a contradiction; therefore each Ak is a good subset of X.

Then it suffices to prove that there exists a number k such that |Ak| ≥ 2007. Note that
each x ∈ X is contained in exactly 10 sets Ak. Then

46∑

k=1

|Ak| = 10|X| = 100 000,

hence for some value of k we have

|Ak| ≥
100 000

46
> 2173 > 2007.

This completes the proof.

Comment. For the solution, it is essential to find a good set consisting of 10 different residues.
Actually, consider a set X containing almost uniform distribution of the nonzero residues (i. e. each
residue occurs 217 or 218 times). Let Y ⊂ X be a good subset containing 2007 elements. Then the
set K of all residues appearing in Y contains not less than 10 residues, and obviously this set is good.

On the other hand, there is no good set K consisting of 11 different residues. The Cauchy–
Davenport theorem claims that for any sets A, B of residues modulo a prime p,

|A + B| ≥ min{p, |A|+ |B| − 1}.

Hence, if |K| ≥ 11, then |K + K| ≥ 21, |K + K + K| ≥ 31 > 47 − |K + K|, hence |K + K + K +
(−K) + (−K)| = 47, and 0 ≡ a + c + e− b− d (mod 47) for some a, b, c, d, e ∈ K.

From the same reasoning, one can see that a good set K containing 10 residues should satisfy
equalities |K + K| = 19 = 2|K| − 1 and |K + K + K| = 28 = |K + K|+ |K| − 1. It can be proved that
in this case set K consists of 10 residues forming an arithmetic progression. As an easy consequence,
one obtains that set K has the form aJ for some nonzero residue a.
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N4. For every integer k ≥ 2, prove that 23k divides the number

(
2k+1

2k

)

−
(

2k

2k−1

)

(1)

but 23k+1 does not.
(Poland)

Solution. We use the notation (2n− 1)!! = 1 · 3 · · · (2n− 1) and (2n)!! = 2 · 4 · · · (2n) = 2nn!
for any positive integer n. Observe that (2n)! = (2n)!! (2n− 1)!! = 2nn! (2n− 1)!!.

For any positive integer n we have

(
4n

2n

)

=
(4n)!

(2n)!2
=

22n(2n)! (4n− 1)!!

(2n)!2
=

22n

(2n)!
(4n− 1)!!,

(
2n

n

)

=
1

(2n)!

(
(2n)!

n!

)2

=
1

(2n)!

(
2n(2n− 1)!!

)2
=

22n

(2n)!
(2n− 1)!!2.

Then expression (1) can be rewritten as follows:

(
2k+1

2k

)

−
(

2k

2k−1

)

=
22k

(2k)!
(2k+1 − 1)!!− 22k

(2k)!
(2k − 1)!!2

=
22k

(2k − 1)!!

(2k)!
·
(

(2k +1)(2k +3) . . . (2k +2k−1)− (2k−1)(2k−3) . . . (2k−2k +1)
)

.

(2)

We compute the exponent of 2 in the prime decomposition of each factor (the first one is a
rational number but not necessarily an integer; it is not important).

First, we show by induction on n that the exponent of 2 in (2n)! is 2n − 1. The base
case n = 1 is trivial. Suppose that (2n)! = 22n−1(2d + 1) for some integer d. Then we have

(2n+1)! = 22n

(2n)! (2n+1 − 1)!! = 22n

22n−1 · (2d + 1)(2n+1 − 1)!! = 22n+1−1 · (2q + 1)

for some integer q. This finishes the induction step.
Hence, the exponent of 2 in the first factor in (2) is 2k − (2k − 1) = 1.

The second factor in (2) can be considered as the value of the polynomial

P (x) = (x + 1)(x + 3) . . . (x + 2k − 1)− (x− 1)(x− 3) . . . (x− 2k + 1). (3)

at x = 2k. Now we collect some information about P (x).
Observe that P (−x) = −P (x), since k ≥ 2. So P (x) is an odd function, and it has nonzero

coefficients only at odd powers of x. Hence P (x) = x3Q(x) + cx, where Q(x) is a polynomial
with integer coefficients.

Compute the exponent of 2 in c. We have

c = 2(2k − 1)!!

2k−1

∑

i=1

1

2i− 1
= (2k − 1)!!

2k−1

∑

i=1

(
1

2i− 1
+

1

2k − 2i + 1

)

= (2k − 1)!!

2k−1

∑

i=1

2k

(2i− 1)(2k − 2i + 1)
= 2k

2k−1

∑

i=1

(2k − 1)!!

(2i− 1)(2k − 2i + 1)
= 2kS.
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For any integer i = 1, . . . , 2k−1, denote by a2i−1 the residue inverse to 2i−1 modulo 2k. Clearly,
when 2i− 1 runs through all odd residues, so does a2i−1, hence

S =

2k−1

∑

i=1

(2k − 1)!!

(2i− 1)(2k − 2i + 1)
≡ −

2k−1

∑

i=1

(2k − 1)!!

(2i− 1)2
≡ −

2k−1

∑

i=1

(2k − 1)!! a2
2i−1

= −(2k − 1)!!

2k−1

∑

i=1

(2i− 1)2 = −(2k − 1)!!
2k−1(22k − 1)

3
(mod 2k).

Therefore, the exponent of 2 in S is k − 1, so c = 2kS = 22k−1(2t + 1) for some integer t.

Finally we obtain that

P (2k) = 23kQ(2k) + 2kc = 23kQ(2k) + 23k−1(2t + 1),

which is divisible exactly by 23k−1. Thus, the exponent of 2 in (2) is 1 + (3k − 1) = 3k.

Comment. The fact that (1) is divisible by 22k is known; but it does not help in solving this problem.
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N5. Find all surjective functions f : N → N such that for every m, n ∈ N and every prime p,
the number f(m + n) is divisible by p if and only if f(m) + f(n) is divisible by p.

(N is the set of all positive integers.)
(Iran)

Answer. f(n) = n.

Solution. Suppose that function f : N → N satisfies the problem conditions.

Lemma. For any prime p and any x, y ∈ N, we have x ≡ y (mod p) if and only if f(x) ≡ f(y)
(mod p). Moreover, p

∣
∣ f(x) if and only if p

∣
∣ x.

Proof. Consider an arbitrary prime p. Since f is surjective, there exists some x ∈ N such
that p

∣
∣ f(x). Let

d = min
{
x ∈ N : p

∣
∣ f(x)

}
.

By induction on k, we obtain that p
∣
∣ f(kd) for all k ∈ N. The base is true since p

∣
∣ f(d).

Moreover, if p
∣
∣ f(kd) and p

∣
∣ f(d) then, by the problem condition, p

∣
∣ f(kd+ d) = f

(
(k +1)d

)

as required.
Suppose that there exists an x ∈ N such that d 6

∣
∣ x but p

∣
∣ f(x). Let

y = min
{
x ∈ N : d 6

∣
∣ x, p

∣
∣ f(x)

}
.

By the choice of d, we have y > d, and y − d is a positive integer not divisible by d.
Then p 6

∣
∣ f(y − d), while p

∣
∣ f(d) and p

∣
∣ f

(
d + (y − d)

)
= f(y). This contradicts the problem

condition. Hence, there is no such x, and

p
∣
∣ f(x) ⇐⇒ d

∣
∣ x. (1)

Take arbitrary x, y ∈ N such that x ≡ y (mod d). We have p
∣
∣ f

(
x + (2xd− x)

)
= f(2xd);

moreover, since d
∣
∣ 2xd+(y−x) = y+(2xd−x), we get p

∣
∣ f

(
y+(2xd−x)

)
. Then by the problem

condition p
∣
∣ f(x) + f(2xd− x), p

∣
∣ f(y) + f(2xd− x), and hence f(x) ≡ −f(2xd− x) ≡ f(y)

(mod p).
On the other hand, assume that f(x) ≡ f(y) (mod p). Again we have p

∣
∣ f(x)+f(2xd−x)

which by our assumption implies that p
∣
∣ f(x)+f(2xd−x)+

(
f(y)−f(x)

)
= f(y)+f(2xd−x).

Hence by the problem condition p
∣
∣ f

(
y+(2xd−x)

)
. Using (1) we get 0 ≡ y+(2xd−x) ≡ y−x

(mod d).
Thus, we have proved that

x ≡ y (mod d) ⇐⇒ f(x) ≡ f(y) (mod p). (2)

We are left to show that p = d: in this case (1) and (2) provide the desired statements.

The numbers 1, 2, . . . , d have distinct residues modulo d. By (2), numbers f(1), f(2), . . . ,
f(d) have distinct residues modulo p; hence there are at least d distinct residues, and p ≥ d.
On the other hand, by the surjectivity of f , there exist x1, . . . , xp ∈ N such that f(xi) = i for
any i = 1, 2, . . . , p. By (2), all these xi’s have distinct residues modulo d. For the same reasons,
d ≥ p. Hence, d = p. �

Now we prove that f(n) = n by induction on n. If n = 1 then, by the Lemma, p 6
∣
∣ f(1) for

any prime p, so f(1) = 1, and the base is established. Suppose that n > 1 and denote k = f(n).
Note that there exists a prime q

∣
∣ n, so by the Lemma q

∣
∣ k and k > 1.

If k > n then k − n + 1 > 1, and there exists a prime p
∣
∣ k − n + 1; we have k ≡ n − 1

(mod p). By the induction hypothesis we have f(n − 1) = n − 1 ≡ k = f(n) (mod p). Now,
by the Lemma we obtain n− 1 ≡ n (mod p) which cannot be true.
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Analogously, if k < n, then f(k−1) = k−1 by induction hypothesis. Moreover, n−k+1 > 1,
so there exists a prime p

∣
∣ n− k + 1 and n ≡ k− 1 (mod p). By the Lemma again, k = f(n) ≡

f(k − 1) = k − 1 (mod p), which is also false. The only remaining case is k = n, so f(n) = n.

Finally, the function f(n) = n obviously satisfies the condition.
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N6. Let k be a positive integer. Prove that the number (4k2 − 1)2 has a positive divisor of
the form 8kn− 1 if and only if k is even.

(United Kingdom)

Solution. The statement follows from the following fact.

Lemma. For arbitrary positive integers x and y, the number 4xy − 1 divides (4x2 − 1)2 if and
only if x = y.

Proof. If x = y then 4xy− 1 = 4x2− 1 obviously divides (4x2− 1)2 so it is sufficient to consider
the opposite direction.

Call a pair (x, y) of positive integers bad if 4xy−1 divides (4x2−1)2 but x 6= y. In order to
prove that bad pairs do not exist, we present two properties of them which provide an infinite
descent.

Property (i). If (x, y) is a bad pair and x < y then there exists a positive integer z < x such
that (x, z) is also bad.

Let r =
(4x2 − 1)2

4xy − 1
. Then

r = −r · (−1) ≡ −r(4xy − 1) = −(4x2 − 1)2 ≡ −1 (mod 4x)

and r = 4xz − 1 with some positive integer z. From x < y we obtain that

4xz − 1 =
(4x2 − 1)2

4xy − 1
< 4x2 − 1

and therefore z < x. By the construction, the number 4xz−1 is a divisor of (4x2−1)2 so (x, z)
is a bad pair.

Property (ii). If (x, y) is a bad pair then (y, x) is also bad.

Since 1 = 12 ≡ (4xy)2 (mod 4xy − 1), we have

(4y2 − 1)2 ≡
(

4y2 − (4xy)2
)2

= 16y4(4x2 − 1)2 ≡ 0 (mod 4xy − 1).

Hence, the number 4xy − 1 divides (4y2 − 1)2 as well.

Now suppose that there exists at least one bad pair. Take a bad pair (x, y) such that 2x + y
attains its smallest possible value. If x < y then property (i) provides a bad pair (x, z)
with z < y and thus 2x+ z < 2x+ y. Otherwise, if y < x, property (ii) yields that pair (y, x) is
also bad while 2y + x < 2x + y. Both cases contradict the assumption that 2x + y is minimal;
the Lemma is proved. �

To prove the problem statement, apply the Lemma for x = k and y = 2n; the num-
ber 8kn− 1 divides (4k2 − 1)2 if and only if k = 2n. Hence, there is no such n if k is odd and
n = k/2 is the only solution if k is even.

Comment. The constant 4 in the Lemma can be replaced with an arbitrary integer greater than 1:
if a > 1 and axy − 1 divides (ax2 − 1)2 then x = y.
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N7. For a prime p and a positive integer n, denote by νp(n) the exponent of p in the prime
factorization of n!. Given a positive integer d and a finite set {p1, . . . , pk} of primes. Show that
there are infinitely many positive integers n such that d

∣
∣ νpi

(n) for all 1 ≤ i ≤ k.
(India)

Solution 1. For arbitrary prime p and positive integer n, denote by ordp(n) the exponent of p
in n. Thus,

νp(n) = ordp(n!) =
n∑

i=1

ordp(i).

Lemma. Let p be a prime number, q be a positive integer, k and r be positive integers such
that pk > r. Then νp(qp

k + r) = νp(qp
k) + νp(r).

Proof. We claim that ordp(qp
k + i) = ordp(i) for all 0 < i < pk. Actually, if d = ordp(i)

then d < k, so qpk + i is divisible by pd, but only the first term is divisible by pd+1; hence the
sum is not.

Using this claim, we obtain

νp(qp
k + r) =

qpk

∑

i=1

ordp(i) +

qpk+r
∑

i=qpk+1

ordp(i) =

qpk

∑

i=1

ordp(i) +

r∑

i=1

ordp(i) = νp(qp
k) + νp(r). �

For any integer a, denote by a its residue modulo d. The addition of residues will also be
performed modulo d, i. e. a+b = a + b. For any positive integer n, let f(n) =

(
f1(n), . . . , fk(n)

)
,

where fi(n) = νpi
(n).

Define the sequence n1 = 1, nℓ+1 = (p1p2 . . . pk)
nℓ . We claim that

f(nℓ1 + nℓ2 + . . . + nℓm
) = f(nℓ1) + f(nℓ2) + . . . + f(nℓm

)

for any ℓ1 < ℓ2 < . . . < ℓm. (The addition of k-tuples is componentwise.) The base case m = 1
is trivial.

Suppose that m > 1. By the construction of the sequence, p
nℓ1

i divides nℓ2 +. . .+nℓm
; clearly,

p
nℓ1

i > nℓ1 for all 1 ≤ i ≤ k. Therefore the Lemma can be applied for p = pi, k = r = nℓ1

and qpk = nℓ2 + . . . + nℓm
to obtain

fi(nℓ1 + nℓ2 + . . . + nℓm
) = fi(nℓ1) + fi(nℓ2 + . . . + nℓm

) for all 1 ≤ i ≤ k,

and hence

f(nℓ1 + nℓ2 + . . . + nℓm
) = f(nℓ1) + f(nℓ2 + . . . + nℓm

) = f(nℓ1) + f(nℓ2) + . . . + f(nℓm
)

by the induction hypothesis.

Now consider the values f(n1), f(n2), . . . . There exist finitely many possible values of f .
Hence, there exists an infinite sequence of indices ℓ1 < ℓ2 < . . . such that f(nℓ1) = f(nℓ2) = . . .
and thus

f(nℓm+1
+ nℓm+2

+ . . . + nℓm+d
) = f(nℓm+1

) + . . . + f(nℓm+d
) = d · f(nℓ1) = (0, . . . , 0)

for all m. We have found infinitely many suitable numbers.



64

Solution 2. We use the same Lemma and definition of the function f .
Let S = {f(n) : n ∈ N}. Obviously, set S is finite. For every s ∈ S choose the minimal ns

such that f(ns) = s. Denote N = max
s∈S

ns. Moreover, let g be an integer such that pg
i > N for

each i = 1, 2, . . . , k. Let P = (p1p2 . . . pk)
g.

We claim that
{
f(n) | n ∈ [mP, mP + N ]

}
= S (1)

for every positive integer m. In particular, since (0, . . . , 0) = f(1) ∈ S, it follows that for an
arbitrary m there exists n ∈ [mP, mP + N ] such that f(n) = (0, . . . , 0). So there are infinitely
many suitable numbers.

To prove (1), let ai = fi(mP ). Consider all numbers of the form nm,s = mP + ns with
s = (s1, . . . , sk) ∈ S (clearly, all nm,s belong to [mP, mP +N ]). Since ns ≤ N < pg

i and pg
i

∣
∣ mP ,

we can apply the Lemma for the values p = pi, r = ns, k = g, qpk = mP to obtain

fi(nm,s) = fi(mP ) + fi(ns) = ai + si;

hence for distinct s, t ∈ S we have f(nm,s) 6= f(nm,t).
Thus, the function f attains at least |S| distinct values in [mP, mP + N ]. Since all these

values belong to S, f should attain all possible values in [mP, mP + N ].

Comment. Both solutions can be extended to prove the following statements.
Claim 1. For any K there exist infinitely many n divisible by K, such that d

∣
∣ νpi

(n) for each i.
Claim 2. For any s ∈ S, there exist infinitely many n ∈ N such that f(n) = s.
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Algebra

A1. Find all functions f : (0,∞)→ (0,∞) such that

f(p)2 + f(q)2

f(r2) + f(s2)
=

p2 + q2

r2 + s2

for all p, q, r, s > 0 with pq = rs.

Solution. Let f satisfy the given condition. Setting p = q = r = s = 1 yields f(1)2 = f(1) and
hence f(1) = 1. Now take any x > 0 and set p = x, q = 1, r = s =

√
x to obtain

f(x)2 + 1

2f(x)
=

x2 + 1

2x
.

This recasts into

xf(x)2 + x = x2f(x) + f(x),
(
xf(x)− 1

)(
f(x)− x

)
= 0.

And thus,

for every x > 0, either f(x) = x or f(x) =
1

x
. (1)

Obviously, if

f(x) = x for all x > 0 or f(x) =
1

x
for all x > 0 (2)

then the condition of the problem is satisfied. We show that actually these two functions are
the only solutions.

So let us assume that there exists a function f satisfying the requirement, other than
those in (2). Then f(a) 6= a and f(b) 6= 1/b for some a, b > 0. By (1), these values must be
f(a) = 1/a, f(b) = b. Applying now the equation with p = a, q = b, r = s =

√
ab we obtain

(a−2 + b2)/2f(ab) = (a2 + b2)/2ab ; equivalently,

f(ab) =
ab(a−2 + b2)

a2 + b2
. (3)

We know however (see (1)) that f(ab) must be either ab or 1/ab . If f(ab) = ab then by (3)
a−2 + b2 = a2 + b2, so that a = 1. But, as f(1) = 1, this contradicts the relation f(a) 6= a.
Likewise, if f(ab) = 1/ab then (3) gives a2b2(a−2 + b2) = a2 + b2, whence b = 1, in contradiction
to f(b) 6= 1/b . Thus indeed the functions listed in (2) are the only two solutions.
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Comment. The equation has as many as four variables with only one constraint pq = rs, leaving
three degrees of freedom and providing a lot of information. Various substitutions force various useful
properties of the function searched. We sketch one more method to reach conclusion (1); certainly
there are many others.

Noticing that f(1) = 1 and setting, first, p = q = 1, r =
√

x, s = 1/
√

x, and then p = x, q = 1/x,
r = s = 1, we obtain two relations, holding for every x > 0,

f(x) + f

(
1

x

)

= x +
1

x
and f(x)2 + f

(
1

x

)2

= x2 +
1

x2
. (4)

Squaring the first and subtracting the second gives 2f(x)f(1/x) = 2. Subtracting this from the second
relation of (4) leads to

(

f(x)− f

(
1

x

))2

=

(

x− 1

x

)2

or f(x)− f

(
1

x

)

= ±
(

x− 1

x

)

.

The last two alternatives combined with the first equation of (4) imply the two alternatives of (1).
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A2. (a) Prove the inequality

x2

(x− 1)2
+

y2

(y − 1)2
+

z2

(z − 1)2
≥ 1

for real numbers x, y, z 6= 1 satisfying the condition xyz = 1.
(b) Show that there are infinitely many triples of rational numbers x, y, z for which this

inequality turns into equality.

Solution 1. (a) We start with the substitution

x

x− 1
= a,

y

y − 1
= b,

z

z − 1
= c, i.e., x =

a

a− 1
, y =

b

b− 1
, z =

c

c− 1
.

The inequality to be proved reads a2 + b2 + c2 ≥ 1. The new variables are subject to the
constraints a, b, c 6= 1 and the following one coming from the condition xyz = 1,

(a− 1)(b− 1)(c− 1) = abc.

This is successively equivalent to

a + b + c− 1 = ab + bc + ca,

2(a + b + c− 1) = (a + b + c)2 − (a2 + b2 + c2),

a2 + b2 + c2 − 2 = (a + b + c)2 − 2(a + b + c),

a2 + b2 + c2 − 1 = (a + b + c− 1)2.

Thus indeed a2 + b2 + c2 ≥ 1, as desired.

(b) From the equation a2 + b2 + c2 − 1 = (a + b + c− 1)2 we see that the proposed inequal-
ity becomes an equality if and only if both sums a2 + b2 + c2 and a + b + c have value 1. The
first of them is equal to (a + b + c)2 − 2(ab + bc + ca). So the instances of equality are described
by the system of two equations

a + b + c = 1, ab + bc + ca = 0

plus the constraint a, b, c 6= 1. Elimination of c leads to a2 + ab + b2 = a + b, which we regard
as a quadratic equation in b,

b2 + (a− 1)b + a(a− 1) = 0,

with discriminant
∆ = (a− 1)2 − 4a(a− 1) = (1− a)(1 + 3a).

We are looking for rational triples (a, b, c); it will suffice to have a rational such that 1− a
and 1 + 3a are both squares of rational numbers (then ∆ will be so too). Set a = k/m. We
want m− k and m + 3k to be squares of integers. This is achieved for instance by taking
m = k2 − k + 1 (clearly nonzero); then m− k = (k − 1)2, m + 3k = (k + 1)2. Note that dis-
tinct integers k yield distinct values of a = k/m.

And thus, if k is any integer and m = k2 − k + 1, a = k/m then ∆ = (k2 − 1)2/m2 and the
quadratic equation has rational roots b = (m− k ± k2 ∓ 1)/(2m). Choose e.g. the larger root,

b =
m− k + k2 − 1

2m
=

m + (m− 2)

2m
=

m− 1

m
.
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Computing c from a + b + c = 1 then gives c = (1− k)/m. The condition a, b, c 6= 1 eliminates
only k = 0 and k = 1. Thus, as k varies over integers greater than 1, we obtain an infinite family
of rational triples (a, b, c)—and coming back to the original variables (x = a/(a− 1) etc.)—an
infinite family of rational triples (x, y, z) with the needed property. (A short calculation shows
that the resulting triples are x = −k/(k − 1)2, y = k − k2, z = (k − 1)/k2; but the proof was
complete without listing them.)

Comment 1. There are many possible variations in handling the equation system a2 + b2 + c2 = 1,
a + b + c = 1 (a, b, c 6= 1) which of course describes a circle in the (a, b, c)-space (with three points
excluded), and finding infinitely many rational points on it.

Also the initial substitution x = a/(a− 1) (etc.) can be successfully replaced by other similar
substitutions, e.g. x = 1− 1/α (etc.); or x = x′ − 1 (etc.); or 1− yz = u (etc.)—eventually reducing
the inequality to (· · · )2 ≥ 0, the expression in the parentheses depending on the actual substitution.

Depending on the method chosen, one arrives at various sequences of rational triples (x, y, z)
as needed; let us produce just one more such example: x = (2r − 2)/(r + 1)2, y = (2r + 2)/(r − 1)2,
z = (r2 − 1)/4 where r can be any rational number different from 1 or −1.

Solution 2 (an outline). (a) Without changing variables, just setting z = 1/xy and clearing
fractions, the proposed inequality takes the form

(xy − 1)2
(
x2(y − 1)2 + y2(x− 1)2

)
+ (x− 1)2(y − 1)2 ≥ (x− 1)2(y − 1)2(xy − 1)2.

With the notation p = x + y, q = xy this becomes, after lengthy routine manipulation and a
lot of cancellation

q4 − 6q3 + 2pq2 + 9q2 − 6pq + p2 ≥ 0.

It is not hard to notice that the expression on the left is just (q2 − 3q + p)2, hence nonnegative.
(Without introducing p and q, one is of course led with some more work to the same

expression, just written in terms of x and y; but then it is not that easy to see that it is a
square.)

(b) To have equality, one needs q2 − 3q + p = 0. Note that x and y are the roots of
the quadratic trinomial (in a formal variable t): t2 − pt + q. When q2 − 3q + p = 0, the
discriminant equals

δ = p2 − 4q = (3q − q2)2 − 4q = q(q − 1)2(q − 4).

Now it suffices to have both q and q − 4 squares of rational numbers (then p = 3q − q2 and
√

δ
are also rational, and so are the roots of the trinomial). On setting q = (n/m)2 = 4 + (l/m)2 the
requirement becomes 4m2 + l2 = n2 (with l, m, n being integers). This is just the Pythagorean
equation, known to have infinitely many integer solutions.

Comment 2. Part (a) alone might also be considered as a possible contest problem (in the category
of easy problems).
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A3. Let S ⊆ R be a set of real numbers. We say that a pair (f, g) of functions from S into S
is a Spanish Couple on S, if they satisfy the following conditions:

(i) Both functions are strictly increasing, i.e. f(x) < f(y) and g(x) < g(y) for all x, y ∈ S
with x < y;

(ii) The inequality f(g(g(x))) < g(f(x)) holds for all x ∈ S.

Decide whether there exists a Spanish Couple

(a) on the set S = N of positive integers;

(b) on the set S = {a− 1/b : a, b ∈ N}.

Solution. We show that the answer is NO for part (a), and YES for part (b).

(a) Throughout the solution, we will use the notation gk(x) =

k
︷ ︸︸ ︷

g(g(. . . g(x) . . .)), including
g0(x) = x as well.

Suppose that there exists a Spanish Couple (f, g) on the set N. From property (i) we have
f(x) ≥ x and g(x) ≥ x for all x ∈ N.

We claim that gk(x) ≤ f(x) for all k ≥ 0 and all positive integers x. The proof is done by
induction on k. We already have the base case k = 0 since x ≤ f(x). For the induction step
from k to k + 1, apply the induction hypothesis on g2(x) instead of x, then apply (ii):

g(gk+1(x)) = gk

(
g2(x)

)
≤ f

(
g2(x)

)
< g(f(x)).

Since g is increasing, it follows that gk+1(x) < f(x). The claim is proven.

If g(x) = x for all x ∈ N then f(g(g(x))) = f(x) = g(f(x)), and we have a contradiction
with (ii). Therefore one can choose an x0 ∈ S for which x0 < g(x0). Now consider the sequence
x0, x1, . . . where xk = gk(x0). The sequence is increasing. Indeed, we have x0 < g(x0) = x1,
and xk < xk+1 implies xk+1 = g(xk) < g(xk+1) = xk+2.

Hence, we obtain a strictly increasing sequence x0 < x1 < . . . of positive integers which on
the other hand has an upper bound, namely f(x0). This cannot happen in the set N of positive
integers, thus no Spanish Couple exists on N.

(b) We present a Spanish Couple on the set S = {a− 1/b : a, b ∈ N}.
Let

f(a− 1/b) = a + 1− 1/b,

g(a− 1/b) = a− 1/(b + 3a).

These functions are clearly increasing. Condition (ii) holds, since

f(g(g(a− 1/b))) = (a + 1)− 1/(b + 2 · 3a) < (a + 1)− 1/(b + 3a+1) = g(f(a− 1/b)).

Comment. Another example of a Spanish couple is f(a− 1/b) = 3a− 1/b, g(a− 1/b) = a− 1/(a+b).
More generally, postulating f(a− 1/b) = h(a) − 1/b, g(a− 1/b) = a− 1/G(a, b) with h increasing
and G increasing in both variables, we get that f ◦ g ◦ g < g ◦ f holds if G

(
a,G(a, b)

)
< G

(
h(a), b

)
.

A search just among linear functions h(a) = Ca, G(a, b) = Aa + Bb results in finding that any in-
tegers A > 0, C > 2 and B = 1 produce a Spanish couple (in the example above, A = 1, C = 3). The
proposer’s example results from taking h(a) = a + 1, G(a, b) = 3a + b.
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A4. For an integer m, denote by t(m) the unique number in {1, 2, 3} such that m + t(m) is a
multiple of 3. A function f : Z → Z satisfies f(−1) = 0, f(0) = 1, f(1) = −1 and

f(2n + m) = f(2n − t(m))− f(m) for all integers m, n ≥ 0 with 2n > m.

Prove that f(3p) ≥ 0 holds for all integers p ≥ 0.

Solution. The given conditions determine f uniquely on the positive integers. The signs of
f(1), f(2), . . . seem to change quite erratically. However values of the form f(2n − t(m)) are
sufficient to compute directly any functional value. Indeed, let n > 0 have base 2 representation
n = 2a0 +2a1 + · · ·+2ak , a0 > a1 > · · · > ak ≥ 0, and let nj = 2aj +2aj−1 + · · ·+2ak , j = 0, . . . , k.
Repeated applications of the recurrence show that f(n) is an alternating sum of the quantities
f(2aj − t(nj+1)) plus (−1)k+1. (The exact formula is not needed for our proof.)

So we focus attention on the values f(2n−1), f(2n−2) and f(2n−3). Six cases arise; more
specifically,

t(22k−3) = 2, t(22k−2) = 1, t(22k−1) = 3, t(22k+1−3) = 1, t(22k+1−2) = 3, t(22k+1−1) = 2.

Claim. For all integers k ≥ 0 the following equalities hold:

f(22k+1 − 3) = 0, f(22k+1 − 2) = 3k, f(22k+1 − 1) = −3k,

f(22k+2 − 3) = −3k, f(22k+2 − 2) = −3k, f(22k+2 − 1) = 2 · 3k.

Proof. By induction on k. The base k = 0 comes down to checking that f(2) = −1 and
f(3) = 2; the given values f(−1) = 0, f(0) = 1, f(1) = −1 are also needed. Suppose the claim
holds for k− 1. For f(22k+1− t(m)), the recurrence formula and the induction hypothesis yield

f(22k+1 − 3) = f(22k + (22k − 3)) = f(22k − 2)− f(22k − 3) = −3k−1 + 3k−1 = 0,

f(22k+1 − 2) = f(22k + (22k − 2)) = f(22k − 1)− f(22k − 2) = 2 · 3k−1 + 3k−1 = 3k,

f(22k+1 − 1) = f(22k + (22k − 1)) = f(22k − 3)− f(22k − 1) = −3k−1 − 2 · 3k−1 = −3k.

For f(22k+2 − t(m)) we use the three equalities just established:

f(22k+2 − 3) = f(22k+1 + (22k+1 − 3)) = f(22k+1 − 1)− f(22k+1 − 3) = −3k − 0 = −3k,

f(22k+2 − 2) = f(22k+1 + (22k+1 − 2)) = f(22k+1 − 3)− f(22k − 2) = 0− 3k = −3k,

f(22k+2 − 1) = f(22k+1 + (22k+1 − 1)) = f(22k+1 − 2)− f(22k+1 − 1) = 3k + 3k = 2 · 3k.

The claim follows.

A closer look at the six cases shows that f(2n − t(m)) ≥ 3(n−1)/2 if 2n − t(m) is divisible
by 3, and f(2n− t(m)) ≤ 0 otherwise. On the other hand, note that 2n− t(m) is divisible by 3
if and only if 2n + m is. Therefore, for all nonnegative integers m and n,

(i) f(2n − t(m)) ≥ 3(n−1)/2 if 2n + m is divisible by 3;

(ii) f(2n − t(m)) ≤ 0 if 2n + m is not divisible by 3.

One more (direct) consequence of the claim is that |f(2n − t(m))| ≤ 2
3
· 3n/2 for all m, n ≥ 0.

The last inequality enables us to find an upper bound for |f(m)| for m less than a given
power of 2. We prove by induction on n that |f(m)| ≤ 3n/2 holds true for all integers m, n ≥ 0
with 2n > m.
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The base n = 0 is clear as f(0) = 1. For the inductive step from n to n + 1, let m and n
satisfy 2n+1 > m. If m < 2n, we are done by the inductive hypothesis. If m ≥ 2n then
m = 2n + k where 2n > k ≥ 0. Now, by |f(2n− t(k))| ≤ 2

3
· 3n/2 and the inductive assumption,

|f(m)| = |f(2n − t(k))− f(k)| ≤ |f(2n − t(k))|+ |f(k)| ≤ 2

3
· 3n/2 + 3n/2 < 3(n+1)/2.

The induction is complete.

We proceed to prove that f(3p) ≥ 0 for all integers p ≥ 0. Since 3p is not a power of 2, its
binary expansion contains at least two summands. Hence one can write 3p = 2a + 2b + c where
a > b and 2b > c ≥ 0. Applying the recurrence formula twice yields

f(3p) = f(2a + 2b + c) = f(2a − t(2b + c))− f(2b − t(c)) + f(c).

Since 2a + 2b + c is divisible by 3, we have f(2a − t(2b + c)) ≥ 3(a−1)/2 by (i). Since 2b + c is
not divisible by 3, we have f(2b − t(c)) ≤ 0 by (ii). Finally |f(c)| ≤ 3b/2 as 2b > c ≥ 0, so that
f(c) ≥ −3b/2. Therefore f(3p) ≥ 3(a−1)/2 − 3b/2 which is nonnegative because a > b.
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A5. Let a, b, c, d be positive real numbers such that

abcd = 1 and a + b + c + d >
a

b
+

b

c
+

c

d
+

d

a
.

Prove that

a + b + c + d <
b

a
+

c

b
+

d

c
+

a

d
.

Solution. We show that if abcd = 1, the sum a + b + c + d cannot exceed a certain weighted

mean of the expressions
a

b
+

b

c
+

c

d
+

d

a
and

b

a
+

c

b
+

d

c
+

a

d
.

By applying the AM-GM inequality to the numbers
a

b
,

a

b
,

b

c
and

a

d
, we obtain

a =
4

√

a4

abcd
=

4

√

a

b
· a
b
· b
c
· a
d
≤ 1

4

(
a

b
+

a

b
+

b

c
+

a

d

)

.

Analogously,

b ≤ 1

4

(
b

c
+

b

c
+

c

d
+

b

a

)

, c ≤ 1

4

(
c

d
+

c

d
+

d

a
+

c

b

)

and d ≤ 1

4

(
d

a
+

d

a
+

a

b
+

d

c

)

.

Summing up these estimates yields

a + b + c + d ≤ 3

4

(
a

b
+

b

c
+

c

d
+

d

a

)

+
1

4

(
b

a
+

c

b
+

d

c
+

a

d

)

.

In particular, if a + b + c + d >
a

b
+

b

c
+

c

d
+

d

a
then a + b + c + d <

b

a
+

c

b
+

d

c
+

a

d
.

Comment. The estimate in the above solution was obtained by applying the AM-GM inequality to
each column of the 4× 4 array

a/b b/c c/d d/a
a/b b/c c/d d/a
b/c c/d d/a a/b
a/d b/a c/b d/c

and adding up the resulting inequalities. The same table yields a stronger bound: If a, b, c, d > 0 and
abcd = 1 then (

a

b
+

b

c
+

c

d
+

d

a

)3 ( b

a
+

c

b
+

d

c
+

a

d

)

≥ (a + b + c + d)4.

It suffices to apply Hölder’s inequality to the sequences in the four rows, with weights 1/4:

(
a

b
+

b

c
+

c

d
+

d

a

)1/4 (a

b
+

b

c
+

c

d
+

d

a

)1/4 (b

c
+

c

d
+

d

a
+

a

b

)1/4 (a

d
+

b

a
+

c

b
+

d

c

)1/4

≥
(

aaba

bbcd

)1/4

+

(
bbcb

ccda

)1/4

+

(
ccdc

ddab

)1/4

+

(
ddad

aabc

)1/4

= a + b + c + d.
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A6. Let f : R → N be a function which satisfies

f

(

x +
1

f(y)

)

= f

(

y +
1

f(x)

)

for all x, y ∈ R. (1)

Prove that there is a positive integer which is not a value of f .

Solution. Suppose that the statement is false and f(R) = N. We prove several properties of
the function f in order to reach a contradiction.

To start with, observe that one can assume f(0) = 1. Indeed, let a ∈ R be such that
f(a) = 1, and consider the function g(x) = f(x + a). By substituting x + a and y + a for x
and y in (1), we have

g

(

x +
1

g(y)

)

= f

(

x + a +
1

f(y + a)

)

= f

(

y + a +
1

f(x + a)

)

= g

(

y +
1

g(x)

)

.

So g satisfies the functional equation (1), with the additional property g(0) = 1. Also, g and f
have the same set of values: g(R) = f(R) = N. Henceforth we assume f(0) = 1.

Claim 1. For an arbitrary fixed c ∈ R we have

{

f

(

c +
1

n

)

: n ∈ N

}

= N.

Proof. Equation (1) and f(R) = N imply

f(R) =

{

f

(

x +
1

f(c)

)

: x ∈ R

}

=

{

f

(

c +
1

f(x)

)

: x ∈ R

}

⊂
{

f

(

c +
1

n

)

: n ∈ N

}

⊂ f(R).

The claim follows.

We will use Claim 1 in the special cases c = 0 and c = 1/3:
{

f

(
1

n

)

: n ∈ N

}

=

{

f

(
1

3
+

1

n

)

: n ∈ N

}

= N. (2)

Claim 2. If f(u) = f(v) for some u, v ∈ R then f(u+q) = f(v+q) for all nonnegative rational q.
Furthermore, if f(q) = 1 for some nonnegative rational q then f(kq) = 1 for all k ∈ N.

Proof. For all x ∈ R we have by (1)

f

(

u +
1

f(x)

)

= f

(

x +
1

f(u)

)

= f

(

x +
1

f(v)

)

= f

(

v +
1

f(x)

)

.

Since f(x) attains all positive integer values, this yields f(u + 1/n) = f(v + 1/n) for all n ∈ N.
Let q = k/n be a positive rational number. Then k repetitions of the last step yield

f(u + q) = f

(

u +
k

n

)

= f

(

v +
k

n

)

= f(v + q).

Now let f(q) = 1 for some nonnegative rational q, and let k ∈ N. As f(0) = 1, the previous
conclusion yields successively f(q) = f(2q), f(2q) = f(3q), . . . , f ((k − 1)q) = f(kq), as needed.

Claim 3. The equality f(q) = f(q + 1) holds for all nonnegative rational q.

Proof. Let m be a positive integer such that f(1/m) = 1. Such an m exists by (2). Applying
the second statement of Claim 2 with q = 1/m and k = m yields f(1) = 1.

Given that f(0) = f(1) = 1, the first statement of Claim 2 implies f(q) = f(q + 1) for all
nonnegative rational q.
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Claim 4. The equality f

(
1

n

)

= n holds for every n ∈ N.

Proof. For a nonnegative rational q we set x = q, y = 0 in (1) and use Claim 3 to obtain

f

(
1

f(q)

)

= f

(

q +
1

f(0)

)

= f(q + 1) = f(q).

By (2), for each n ∈ N there exists a k ∈ N such that f(1/k) = n. Applying the last equation
with q = 1/k, we have

n = f

(
1

k

)

= f

(
1

f(1/k)

)

= f

(
1

n

)

.

Now we are ready to obtain a contradiction. Let n ∈ N be such that f(1/3 + 1/n) = 1.
Such an n exists by (2). Let 1/3 + 1/n = s/t, where s, t ∈ N are coprime. Observe that t > 1
as 1/3 + 1/n is not an integer. Choose k, l ∈ N so that that ks− lt = 1.

Because f(0) = f(s/t) = 1, Claim 2 implies f(ks/t) = 1. Now f(ks/t) = f(1/t + l); on the
other hand f(1/t + l) = f(1/t) by l successive applications of Claim 3. Finally, f(1/t) = t by
Claim 4, leading to the impossible t = 1. The solution is complete.
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A7. Prove that for any four positive real numbers a, b, c, d the inequality

(a− b)(a− c)

a + b + c
+

(b− c)(b− d)

b + c + d
+

(c− d)(c− a)

c + d + a
+

(d− a)(d− b)

d + a + b
≥ 0

holds. Determine all cases of equality.

Solution 1. Denote the four terms by

A =
(a− b)(a− c)

a + b + c
, B =

(b− c)(b− d)

b + c + d
, C =

(c− d)(c− a)

c + d + a
, D =

(d− a)(d− b)

d + a + b
.

The expression 2A splits into two summands as follows,

2A = A′ + A′′ where A′ =
(a− c)2

a + b + c
, A′′ =

(a− c)(a− 2b + c)

a + b + c
;

this is easily verified. We analogously represent 2B = B′ + B′′, 2C = C ′ + C ′′, 2B = D′ + D′′

and examine each of the sums A′ + B′ + C ′ + D′ and A′′ + B′′ + C ′′ + D′′ separately.
Write s = a + b + c + d ; the denominators become s− d, s− a, s− b, s− c. By the Cauchy-

Schwarz inequality,

( |a− c|√
s− d

·
√

s− d +
|b− d|√

s− a
·
√

s− a +
|c− a|√

s− b
·
√

s− b +
|d− b|√

s− c
·
√

s− c

)2

≤
(

(a− c)2

s− d
+

(b− d)2

s− a
+

(c− a)2

s− b
+

(d− b)2

s− c

)
(
4s− s

)
= 3s

(
A′ + B′ + C ′ + D′

)
.

Hence

A′ + B′ + C ′ + D′ ≥
(
2|a− c|+ 2|b− d|

)2

3s
≥ 16 · |a− c| · |b− d|

3s
. (1)

Next we estimate the absolute value of the other sum. We couple A′′ with C ′′ to obtain

A′′ + C ′′ =
(a− c)(a + c− 2b)

s− d
+

(c− a)(c + a− 2d)

s− b

=
(a− c)(a + c− 2b)(s− b) + (c− a)(c + a− 2d)(s− d)

(s− d)(s− b)

=
(a− c)

(
−2b(s− b)− b(a + c) + 2d(s− d) + d(a + c)

)

s(a + c) + bd

=
3(a− c)(d− b)(a + c)

M
, with M = s(a + c) + bd.

Hence by cyclic shift

B′′ + D′′ =
3(b− d)(a− c)(b + d)

N
, with N = s(b + d) + ca.

Thus

A′′ + B′′ + C ′′ + D′′ = 3(a− c)(b− d)

(
b + d

N
− a + c

M

)

=
3(a− c)(b− d)W

MN
(2)

where
W = (b + d)M − (a + c)N = bd(b + d)− ac(a + c). (3)
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Note that
MN >

(
ac(a + c) + bd(b + d)

)
s ≥ |W | · s. (4)

Now (2) and (4) yield

|A′′ + B′′ + C ′′ + D′′| ≤ 3 · |a− c| · |b− d|
s

. (5)

Combined with (1) this results in

2(A + B + C + D) = (A′ + B′ + C ′ + D′) + (A′′ + B′′ + C ′′ + D′′)

≥ 16 · |a− c| · |b− d|
3s

− 3 · |a− c| · |b− d|
s

=
7 · |a− c| · |b− d|
3(a + b + c + d)

≥ 0.

This is the required inequality. From the last line we see that equality can be achieved only if
either a = c or b = d. Since we also need equality in (1), this implies that actually a = c and
b = d must hold simultaneously, which is obviously also a sufficient condition.

Solution 2. We keep the notations A, B, C, D, s, and also M , N , W from the preceding
solution; the definitions of M , N , W and relations (3), (4) in that solution did not depend on
the foregoing considerations. Starting from

2A =
(a− c)2 + 3(a + c)(a− c)

a + b + c
− 2a + 2c,

we get

2(A + C) = (a− c)2

(
1

s− d
+

1

s− b

)

+ 3(a + c)(a− c)

(
1

s− d
− 1

s− b

)

= (a− c)2 2s− b− d

M
+ 3(a + c)(a− c) · d− b

M
=

p(a− c)2 − 3(a + c)(a− c)(b− d)

M

where p = 2s− b− d = s + a + c. Similarly, writing q = s + b + d we have

2(B + D) =
q(b− d)2 − 3(b + d)(b− d)(c− a)

N
;

specific grouping of terms in the numerators has its aim. Note that pq > 2s2. By adding the
fractions expressing 2(A + C) and 2(B + D),

2(A + B + C + D) =
p(a− c)2

M
+

3(a− c)(b− d)W

MN
+

q(b− d)2

N

with W defined by (3).

Substitution x = (a− c)/M , y = (b− d)/N brings the required inequality to the form

2(A + B + C + D) = Mpx2 + 3Wxy + Nqy2 ≥ 0. (6)

It will be enough to verify that the discriminant ∆ = 9W 2 − 4MNpq of the quadratic trinomial
Mpt2 + 3Wt + Nq is negative; on setting t = x/y one then gets (6). The first inequality in (4)
together with pq > 2s2 imply 4MNpq > 8s3

(
ac(a + c) + bd(b + d)

)
. Since

(a + c)s3 > (a + c)4 ≥ 4ac(a + c)2 and likewise (b + d)s3 > 4bd(b + d)2,

the estimate continues as follows,

4MNpq > 8
(
4(ac)2(a + c)2 + 4(bd)2(b + d)2

)
> 32

(
bd(b + d)− ac(a + c)

)2
= 32W 2 ≥ 9W 2.

Thus indeed ∆ < 0. The desired inequality (6) hence results. It becomes an equality if and
only if x = y = 0; equivalently, if and only if a = c and simultaneously b = d.



19

Comment. The two solutions presented above do not differ significantly; large portions overlap. The
properties of the number W turn out to be crucial in both approaches. The Cauchy-Schwarz inequality,
applied in the first solution, is avoided in the second, which requires no knowledge beyond quadratic
trinomials.

The estimates in the proof of ∆ < 0 in the second solution seem to be very wasteful. However,
they come close to sharp when the terms in one of the pairs (a, c), (b, d) are equal and much bigger
than those in the other pair.

In attempts to prove the inequality by just considering the six cases of arrangement of the numbers
a, b, c, d on the real line, one soon discovers that the cases which create real trouble are precisely
those in which a and c are both greater or both smaller than b and d.

Solution 3.

(a− b)(a− c)(a + b + d)(a + c + d)(b + c + d) =

=
(

(a− b)(a + b + d)
)(

(a− c)(a + c + d)
)

(b + c + d) =

= (a2 + ad− b2 − bd)(a2 + ad− c2 − cd)(b + c + d) =

=
(
a4+2a3d−a2b2−a2bd−a2c2−a2cd+a2d2−ab2d−abd2−ac2d−acd2+b2c2+b2cd+bc2d+bcd2

)
(b+c+d) =

= a4b + a4c + a4d + (b3c2 + a2d3)− a2c3 + (2a3d2 − b3a2 + c3b2)+

+(b3cd− c3da− d3ab) + (2a3bd + c3db− d3ac) + (2a3cd− b3da + d3bc)

+(−a2b2c + 3b2c2d− 2ac2d2) + (−2a2b2d + 2bc2d2) + (−a2bc2 − 2a2c2d− 2ab2d2 + 2b2cd2)+

+(−2a2bcd− ab2cd− abc2d− 2abcd2)

Introducing the notation Sxyzw =
∑

cyc

axbyczdw, one can write

∑

cyc

(a− b)(a− c)(a + b + d)(a + c + d)(b + c + d) =

= S4100 + S4010 + S4001 + 2S3200 − S3020 + 2S3002 − S3110 + 2S3101 + 2S3011 − 3S2120 − 6S2111 =

+

(

S4100 + S4001 +
1

2
S3110 +

1

2
S3011 − 3S2120

)

+

+

(

S4010 − S3020 −
3

2
S3110 +

3

2
S3011 +

9

16
S2210 +

9

16
S2201 −

9

8
S2111

)

+

+
9

16

(

S3200 − S2210 − S2201 + S3002

)

+
23

16

(

S3200 − 2S3101 + S3002

)

+
39

8

(

S3101 − S2111

)

,

where the expressions

S4100 + S4001 +
1

2
S3110 +

1

2
S3011 − 3S2120 =

∑

cyc

(

a4b + bc4 +
1

2
a3bc +

1

2
abc3 − 3a2bc2

)

,

S4010 − S3020 −
3

2
S3110 +

3

2
S3011 +

9

16
S2210 +

9

16
S2201 −

9

8
S2111 =

∑

cyc

a2c

(

a− c− 3

4
b +

3

4
d

)2

,

S3200 − S2210 − S2201 + S3002 =
∑

cyc

b2(a3 − a2c− ac2 + c3) =
∑

cyc

b2(a + c)(a− c)2,

S3200 − 2S3101 + S3002 =
∑

cyc

a3(b− d)2 and S3101 − S2111 =
1

3

∑

cyc

bd(2a3 + c3 − 3a2c)

are all nonnegative.
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Combinatorics

C1. In the plane we consider rectangles whose sides are parallel to the coordinate axes and
have positive length. Such a rectangle will be called a box . Two boxes intersect if they have a
common point in their interior or on their boundary.

Find the largest n for which there exist n boxes B1, . . . , Bn such that Bi and Bj intersect if
and only if i 6≡ j ± 1 (mod n).

Solution. The maximum number of such boxes is 6. One example is shown in the figure.

B2B1

B4
B3

B6

B5

Now we show that 6 is the maximum. Suppose that boxes B1, . . . , Bn satisfy the condition.
Let the closed intervals Ik and Jk be the projections of Bk onto the x- and y-axis, for 1 ≤ k ≤ n.

If Bi and Bj intersect, with a common point (x, y), then x ∈ Ii ∩ Ij and y ∈ Ji ∩ Jj. So the
intersections Ii∩ Ij and Ji∩Jj are nonempty. Conversely, if x ∈ Ii∩ Ij and y ∈ Ji∩Jj for some
real numbers x, y, then (x, y) is a common point of Bi and Bj. Putting it around, Bi and Bj

are disjoint if and only if their projections on at least one coordinate axis are disjoint.
For brevity we call two boxes or intervals adjacent if their indices differ by 1 modulo n, and

nonadjacent otherwise.
The adjacent boxes Bk and Bk+1 do not intersect for each k = 1, . . . , n. Hence (Ik, Ik+1)

or (Jk, Jk+1) is a pair of disjoint intervals, 1 ≤ k ≤ n. So there are at least n pairs of disjoint
intervals among (I1, I2), . . . , (In−1, In), (In, I1); (J1, J2), . . . , (Jn−1, Jn), (Jn, J1).

Next, every two nonadjacent boxes intersect, hence their projections on both axes intersect,
too. Then the claim below shows that at most 3 pairs among (I1, I2), . . . , (In−1, In), (In, I1) are
disjoint, and the same holds for (J1, J2), . . . , (Jn−1, Jn), (Jn, J1). Consequently n ≤ 3 + 3 = 6,
as stated. Thus we are left with the claim and its justification.

Claim. Let ∆1, ∆2, . . . , ∆n be intervals on a straight line such that every two nonadjacent
intervals intersect. Then ∆k and ∆k+1 are disjoint for at most three values of k = 1, . . . , n.

Proof. Denote ∆k = [ak, bk], 1 ≤ k ≤ n. Let α = max(a1, . . . , an) be the rightmost among
the left endpoints of ∆1, . . . , ∆n, and let β = min(b1, . . . , bn) be the leftmost among their right
endpoints. Assume that α = a2 without loss of generality.

If α ≤ β then ai ≤ α ≤ β ≤ bi for all i. Every ∆i contains α, and thus no disjoint pair
(∆i, ∆i+1) exists.
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If β < α then β = bi for some i such that ai < bi = β < α = a2 < b2, hence ∆2 and ∆i are
disjoint. Now ∆2 intersects all remaining intervals except possibly ∆1 and ∆3, so ∆2 and ∆i

can be disjoint only if i = 1 or i = 3. Suppose by symmetry that i = 3; then β = b3. Since
each of the intervals ∆4, . . . , ∆n intersects ∆2, we have ai ≤ α ≤ bi for i = 4, . . . , n. Therefore
α ∈ ∆4 ∩ . . . ∩∆n, in particular ∆4 ∩ . . . ∩∆n 6= ∅. Similarly, ∆5, . . . , ∆n, ∆1 all intersect ∆3,
so that ∆5 ∩ . . . ∩∆n ∩∆1 6= ∅ as β ∈ ∆5 ∩ . . . ∩∆n ∩∆1. This leaves (∆1, ∆2), (∆2, ∆3) and
(∆3, ∆4) as the only candidates for disjoint interval pairs, as desired.

Comment.The problem is a two-dimensional version of the original proposal which is included below.
The extreme shortage of easy and appropriate submissions forced the Problem Selection Committee
to shortlist a simplified variant. The same one-dimensional Claim is used in both versions.

Original proposal. We consider parallelepipeds in three-dimensional space, with edges par-
allel to the coordinate axes and of positive length. Such a parallelepiped will be called a box .
Two boxes intersect if they have a common point in their interior or on their boundary.

Find the largest n for which there exist n boxes B1, . . . , Bn such that Bi and Bj intersect if
and only if i 6≡ j ± 1 (mod n).

The maximum number of such boxes is 9. Suppose that boxes B1, . . . , Bn satisfy the con-
dition. Let the closed intervals Ik, Jk and Kk be the projections of box Bk onto the x-, y-
and z-axis, respectively, for 1 ≤ k ≤ n. As before, Bi and Bj are disjoint if and only if their
projections on at least one coordinate axis are disjoint.

We call again two boxes or intervals adjacent if their indices differ by 1 modulo n, and
nonadjacent otherwise.

The adjacent boxes Bi and Bi+1 do not intersect for each i = 1, . . . , n. Hence at least one of
the pairs (Ii, Ii+1), (Ji, Ji+1) and (Ki, Ki+1) is a pair of disjoint intervals. So there are at least
n pairs of disjoint intervals among (Ii, Ii+1), (Ji, Ji+1), (Ki, Ki+1), 1 ≤ i ≤ n.

Next, every two nonadjacent boxes intersect, hence their projections on the three axes
intersect, too. Referring to the Claim in the solution of the two-dimensional version, we
cocnclude that at most 3 pairs among (I1, I2), . . . , (In−1, In), (In, I1) are disjoint; the same
holds for (J1, J2), . . . , (Jn−1, Jn), (Jn, J1) and (K1, K2), . . . , (Kn−1, Kn), (Kn, K1). Consequently
n ≤ 3 + 3 + 3 = 9, as stated.

For n = 9, the desired system of boxes exists. Consider the intervals in the following table:

i Ii Ji Ki

1 [1, 4] [1, 6] [3, 6]
2 [5, 6] [1, 6] [1, 6]
3 [1, 2] [1, 6] [1, 6]
4 [3, 6] [1, 4] [1, 6]
5 [1, 6] [5, 6] [1, 6]
6 [1, 6] [1, 2] [1, 6]
7 [1, 6] [3, 6] [1, 4]
8 [1, 6] [1, 6] [5, 6]
9 [1, 6] [1, 6] [1, 2]

We have I1 ∩ I2 = I2 ∩ I3 = I3 ∩ I4 = ∅, J4 ∩ J5 = J5 ∩ J6 = J6 ∩ J7 = ∅, and finally
K7 ∩K8 = K8 ∩K9 = K9 ∩K1 = ∅. The intervals in each column intersect in all other cases.
It follows that the boxes Bi = Ii × Ji ×Ki, i = 1, . . . , 9, have the stated property.
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C2. For every positive integer n determine the number of permutations (a1, a2, . . . , an) of the
set {1, 2, . . . , n} with the following property:

2(a1 + a2 + · · ·+ ak) is divisible by k for k = 1, 2, . . . , n.

Solution. For each n let Fn be the number of permutations of {1, 2, . . . , n} with the required
property; call them nice. For n = 1, 2, 3 every permutation is nice, so F1 = 1, F2 = 2, F3 = 6.

Take an n > 3 and consider any nice permutation (a1, a2, . . . , an) of {1, 2, . . . , n}. Then
n− 1 must be a divisor of the number

2(a1 + a2 + · · ·+ an−1) = 2
(
(1 + 2 + · · ·+ n)− an

)

= n(n + 1)− 2an = (n + 2)(n− 1) + (2− 2an).

So 2an − 2 must be divisible by n− 1, hence equal to 0 or n− 1 or 2n− 2. This means that

an = 1 or an =
n + 1

2
or an = n.

Suppose that an = (n + 1)/2. Since the permutation is nice, taking k = n− 2 we get that n− 2
has to be a divisor of

2(a1 + a2 + · · ·+ an−2) = 2
(
(1 + 2 + · · ·+ n)− an − an−1

)

= n(n + 1)− (n + 1)− 2an−1 = (n + 2)(n− 2) + (3− 2an−1).

So 2an−1 − 3 should be divisible by n− 2, hence equal to 0 or n− 2 or 2n− 4. Obviously 0 and
2n− 4 are excluded because 2an−1 − 3 is odd. The remaining possibility (2an−1 − 3 = n− 2)
leads to an−1 = (n + 1)/2 = an, which also cannot hold. This eliminates (n + 1)/2 as a possible
value of an. Consequently an = 1 or an = n.

If an = n then (a1, a2, . . . , an−1) is a nice permutation of {1, 2, . . . , n−1}. There are Fn−1

such permutations. Attaching n to any one of them at the end creates a nice permutation of
{1, 2, . . . , n}.

If an = 1 then (a1−1, a2−1, . . . , an−1−1) is a permutation of {1, 2, . . . , n−1}. It is also nice
because the number

2
(
(a1−1) + · · ·+ (ak−1)

)
= 2(a1 + · · ·+ ak)− 2k

is divisible by k, for any k ≤ n− 1. And again, any one of the Fn−1 nice permutations
(b1, b2, . . . , bn−1) of {1, 2, . . . , n−1} gives rise to a nice permutation of {1, 2, . . . , n} whose last
term is 1, namely (b1+1, b2+1, . . . , bn−1+1, 1).

The bijective correspondences established in both cases show that there are Fn−1 nice per-
mutations of {1, 2, . . . , n} with the last term 1 and also Fn−1 nice permutations of {1, 2, . . . , n}
with the last term n. Hence follows the recurrence Fn = 2Fn−1. With the base value F3 = 6
this gives the outcome formula Fn = 3 · 2n−2 for n ≥ 3.
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C3. In the coordinate plane consider the set S of all points with integer coordinates. For a
positive integer k, two distinct points A, B ∈ S will be called k-friends if there is a point C ∈ S
such that the area of the triangle ABC is equal to k. A set T ⊂ S will be called a k-clique
if every two points in T are k-friends. Find the least positive integer k for which there exists
a k-clique with more than 200 elements.

Solution. To begin, let us describe those points B ∈ S which are k-friends of the point (0, 0).
By definition, B = (u, v) satisfies this condition if and only if there is a point C = (x, y) ∈ S
such that 1

2
|uy − vx| = k. (This is a well-known formula expressing the area of triangle ABC

when A is the origin.)
To say that there exist integers x, y for which |uy − vx| = 2k, is equivalent to saying that the

greatest common divisor of u and v is also a divisor of 2k. Summing up, a point B = (u, v) ∈ S
is a k-friend of (0, 0) if and only if gcd(u, v) divides 2k.

Translation by a vector with integer coordinates does not affect k-friendship; if two points are
k-friends, so are their translates. It follows that two points A, B ∈ S, A = (s, t), B = (u, v), are
k-friends if and only if the point (u− s, v − t) is a k-friend of (0, 0); i.e., if gcd(u− s, v − t)|2k.

Let n be a positive integer which does not divide 2k. We claim that a k-clique cannot have
more than n2 elements.

Indeed, all points (x, y) ∈ S can be divided into n2 classes determined by the remainders
that x and y leave in division by n. If a set T has more than n2 elements, some two points
A, B ∈ T , A = (s, t), B = (u, v), necessarily fall into the same class. This means that n|u− s
and n|v − t. Hence n|d where d = gcd(u− s, v − t). And since n does not divide 2k, also d
does not divide 2k. Thus A and B are not k-friends and the set T is not a k-clique.

Now let M(k) be the least positive integer which does not divide 2k. Write M(k) = m for
the moment and consider the set T of all points (x, y) with 0 ≤ x, y < m. There are m2 of
them. If A = (s, t), B = (u, v) are two distinct points in T then both differences |u− s|, |v − t|
are integers less than m and at least one of them is positive. By the definition of m, every
positive integer less than m divides 2k. Therefore u− s (if nonzero) divides 2k, and the same
is true of v − t. So 2k is divisible by gcd(u− s, v − t), meaning that A, B are k-friends. Thus
T is a k-clique.

It follows that the maximum size of a k-clique is M(k)2, with M(k) defined as above. We
are looking for the minimum k such that M(k)2 > 200.

By the definition of M(k), 2k is divisible by the numbers 1, 2, . . . , M(k)−1, but not by
M(k) itself. If M(k)2 > 200 then M(k) ≥ 15. Trying to hit M(k) = 15 we get a contradiction
immediately (2k would have to be divisible by 3 and 5, but not by 15).

So let us try M(k) = 16. Then 2k is divisible by the numbers 1, 2, . . . , 15, hence also by
their least common multiple L, but not by 16. And since L is not a multiple of 16, we infer
that k = L/2 is the least k with M(k) = 16.

Finally, observe that if M(k) ≥ 17 then 2k must be divisible by the least common multiple
of 1, 2, . . . , 16, which is equal to 2L. Then 2k ≥ 2L, yielding k > L/2.

In conclusion, the least k with the required property is equal to L/2 = 180180.
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C4. Let n and k be fixed positive integers of the same parity, k ≥ n. We are given 2n lamps
numbered 1 through 2n; each of them can be on or off. At the beginning all lamps are off. We
consider sequences of k steps. At each step one of the lamps is switched (from off to on or from
on to off).

Let N be the number of k-step sequences ending in the state: lamps 1, . . . , n on, lamps
n+1, . . . , 2n off.

Let M be the number of k-step sequences leading to the same state and not touching lamps
n+1, . . . , 2n at all.

Find the ratio N/M .

Solution. A sequence of k switches ending in the state as described in the problem statement
(lamps 1, . . . , n on, lamps n+1, . . . , 2n off ) will be called an admissible process. If, moreover,
the process does not touch the lamps n+1, . . . , 2n, it will be called restricted. So there are N
admissible processes, among which M are restricted.

In every admissible process, restricted or not, each one of the lamps 1, . . . , n goes from off

to on, so it is switched an odd number of times; and each one of the lamps n+1, . . . , 2n goes
from off to off, so it is switched an even number of times.

Notice that M > 0; i.e., restricted admissible processes do exist (it suffices to switch each
one of the lamps 1, . . . , n just once and then choose one of them and switch it k − n times,
which by hypothesis is an even number).

Consider any restricted admissible process p. Take any lamp ℓ, 1 ≤ ℓ ≤ n, and suppose
that it was switched kℓ times. As noticed, kℓ must be odd. Select arbitrarily an even number
of these kℓ switches and replace each of them by the switch of lamp n+ℓ. This can be done
in 2kℓ−1 ways (because a kℓ-element set has 2kℓ−1 subsets of even cardinality). Notice that
k1 + · · ·+ kn = k.

These actions are independent, in the sense that the action involving lamp ℓ does not
affect the action involving any other lamp. So there are 2k1−1 · 2k2−1 · · · 2kn−1 = 2k−n ways of
combining these actions. In any of these combinations, each one of the lamps n+1, . . . , 2n gets
switched an even number of times and each one of the lamps 1, . . . , n remains switched an odd
number of times, so the final state is the same as that resulting from the original process p.

This shows that every restricted admissible process p can be modified in 2k−n ways, giving
rise to 2k−n distinct admissible processes (with all lamps allowed).

Now we show that every admissible process q can be achieved in that way. Indeed, it is
enough to replace every switch of a lamp with a label ℓ > n that occurs in q by the switch of
the corresponding lamp ℓ−n; in the resulting process p the lamps n+1, . . . , 2n are not involved.

Switches of each lamp with a label ℓ > n had occurred in q an even number of times. So
the performed replacements have affected each lamp with a label ℓ ≤ n also an even number of
times; hence in the overall effect the final state of each lamp has remained the same. This means
that the resulting process p is admissible—and clearly restricted, as the lamps n+1, . . . , 2n are
not involved in it any more.

If we now take process p and reverse all these replacements, then we obtain process q.
These reversed replacements are nothing else than the modifications described in the foregoing
paragraphs.

Thus there is a one–to–(2k−n) correspondence between the M restricted admissible processes
and the total of N admissible processes. Therefore N/M = 2k−n.
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C5. Let S = {x1, x2, . . . , xk+ℓ} be a (k + ℓ)-element set of real numbers contained in the
interval [0, 1]; k and ℓ are positive integers. A k-element subset A ⊂ S is called nice if

∣
∣
∣
∣
∣
∣

1

k

∑

xi∈A

xi −
1

ℓ

∑

xj∈S\A

xj

∣
∣
∣
∣
∣
∣

≤ k + ℓ

2kℓ
.

Prove that the number of nice subsets is at least
2

k + ℓ

(
k + ℓ

k

)

.

Solution. For a k-element subset A ⊂ S, let f(A) =
1

k

∑

xi∈A

xi−
1

ℓ

∑

xj∈S\A

xj . Denote
k + ℓ

2kℓ
= d.

By definition a subset A is nice if |f(A)| ≤ d.

To each permutation (y1, y2, . . . , yk+ℓ) of the set S = {x1, x2, . . . , xk+ℓ} we assign k+ℓ subsets
of S with k elements each, namely Ai = {yi, yi+1, . . . , yi+k−1}, i = 1, 2, . . . , k + ℓ. Indices are
taken modulo k + ℓ here and henceforth. In other words, if y1, y2, . . . , yk+ℓ are arranged around
a circle in this order, the sets in question are all possible blocks of k consecutive elements.

Claim. At least two nice sets are assigned to every permutation of S.

Proof. Adjacent sets Ai and Ai+1 differ only by the elements yi and yi+k, i = 1, . . . , k + ℓ. By
the definition of f , and because yi, yi+k ∈ [0, 1],

|f(Ai+1)− f(Ai)| =
∣
∣
∣
∣

(
1

k
+

1

ℓ

)

(yi+k − yi)

∣
∣
∣
∣
≤ 1

k
+

1

ℓ
= 2d.

Each element yi ∈ S belongs to exactly k of the sets A1, . . . , Ak+ℓ. Hence in k of the
expressions f(A1), . . . , f(Ak+ℓ) the coefficient of yi is 1/k; in the remaining ℓ expressions, its
coefficient is −1/ℓ. So the contribution of yi to the sum of all f(Ai) equals k · 1/k− ℓ · 1/ℓ = 0.
Since this holds for all i, it follows that f(A1) + · · ·+ f(Ak+ℓ) = 0.

If f(Ap) = min f(Ai), f(Aq) = max f(Ai), we obtain in particular f(Ap) ≤ 0, f(Aq) ≥ 0.
Let p < q (the case p > q is analogous; and the claim is true for p = q as f(Ai) = 0 for all i).

We are ready to prove that at least two of the sets A1, . . . , Ak+ℓ are nice. The interval [−d, d]
has length 2d, and we saw that adjacent numbers in the circular arrangement f(A1), . . . , f(Ak+ℓ)
differ by at most 2d. Suppose that f(Ap) < −d and f(Aq) > d. Then one of the numbers
f(Ap+1), . . . , f(Aq−1) lies in [−d, d], and also one of the numbers f(Aq+1), . . . , f(Ap−1) lies there.
Consequently, one of the sets Ap+1, . . . , Aq−1 is nice, as well as one of the sets Aq+1, . . . , Ap−1.
If −d ≤ f(Ap) and f(Aq) ≤ d then Ap and Aq are nice.

Let now f(Ap) < −d and f(Aq) ≤ d. Then f(Ap) + f(Aq) < 0, and since
∑

f(Ai) = 0,
there is an r 6= q such that f(Ar) > 0. We have 0 < f(Ar) ≤ f(Aq) ≤ d, so the sets f(Ar)
and f(Aq) are nice. The only case remaining, −d ≤ f(Ap) and d < f(Aq), is analogous.

Apply the claim to each of the (k + ℓ)! permutations of S = {x1, x2, . . . , xk+ℓ}. This gives
at least 2(k + ℓ)! nice sets, counted with repetitions: each nice set is counted as many times as
there are permutations to which it is assigned.

On the other hand, each k-element set A ⊂ S is assigned to exactly (k+ℓ) k! ℓ! permutations.
Indeed, such a permutation (y1, y2, . . . , yk+ℓ) is determined by three independent choices: an in-
dex i ∈ {1, 2, . . . , k+ℓ} such that A = {yi, yi+1, . . . , yi+k−1}, a permutation (yi, yi+1, . . . , yi+k−1)
of the set A, and a permutation (yi+k, yi+k+1, . . . , yi−1) of the set S \ A.

In summary, there are at least
2(k + ℓ)!

(k + ℓ) k! ℓ!
=

2

k + ℓ

(
k + ℓ

k

)

nice sets.
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C6. For n ≥ 2, let S1, S2, . . . , S2n be 2n subsets of A = {1, 2, 3, . . . , 2n+1} that satisfy the
following property: There do not exist indices a and b with a < b and elements x, y, z ∈ A with
x < y < z such that y, z ∈ Sa and x, z ∈ Sb. Prove that at least one of the sets S1, S2, . . . , S2n

contains no more than 4n elements.

Solution 1. We prove that there exists a set Sa with at most 3n + 1 elements.
Given a k ∈ {1, . . . , n}, we say that an element z ∈ A is k-good to a set Sa if z ∈ Sa and

Sa contains two other elements x and y with x < y < z such that z − y < 2k and z − x ≥ 2k.
Also, z ∈ A will be called good to Sa if z is k-good to Sa for some k = 1, . . . , n.

We claim that each z ∈ A can be k-good to at most one set Sa. Indeed, suppose on the
contrary that z is k-good simultaneously to Sa and Sb, with a < b. Then there exist ya ∈ Sa,
ya < z, and xb ∈ Sb, xb < z, such that z − ya < 2k and z − xb ≥ 2k. On the other hand, since
z ∈ Sa∩Sb, by the condition of the problem there is no element of Sa strictly between xb and z.
Hence ya ≤ xb, implying z− ya ≥ z−xb. However this contradicts z− ya < 2k and z−xb ≥ 2k.
The claim follows.

As a consequence, a fixed z ∈ A can be good to at most n of the given sets (no more than
one of them for each k = 1, . . . , n).

Furthermore, let u1 < u2 < · · · < um < · · · < up be all elements of a fixed set Sa that are
not good to Sa. We prove that um − u1 > 2(um−1 − u1) for all m ≥ 3.

Indeed, assume that um− u1 ≤ 2(um−1− u1) holds for some m ≥ 3. This inequality can be
written as 2(um − um−1) ≤ um − u1. Take the unique k such that 2k ≤ um − u1 < 2k+1. Then
2(um− um−1) ≤ um− u1 < 2k+1 yields um− um−1 < 2k. However the elements z = um, x = u1,
y = um−1 of Sa then satisfy z − y < 2k and z − x ≥ 2k, so that z = um is k-good to Sa.

Thus each term of the sequence u2−u1, u3−u1, . . . , up−u1 is more than twice the previous
one. Hence up − u1 > 2p−1(u2 − u1) ≥ 2p−1. But up ∈ {1, 2, 3, . . . , 2n+1}, so that up ≤ 2n+1.
This yields p− 1 ≤ n, i. e. p ≤ n + 1.

In other words, each set Sa contains at most n + 1 elements that are not good to it.
To summarize the conclusions, mark with red all elements in the sets Sa that are good to

the respective set, and with blue the ones that are not good. Then the total number of red
elements, counting multiplicities, is at most n · 2n+1 (each z ∈ A can be marked red in at
most n sets). The total number of blue elements is at most (n + 1)2n (each set Sa contains
at most n + 1 blue elements). Therefore the sum of cardinalities of S1, S2, . . . , S2n does not
exceed (3n + 1)2n. By averaging, the smallest set has at most 3n + 1 elements.

Solution 2. We show that one of the sets Sa has at most 2n + 1 elements. In the sequel | · |
denotes the cardinality of a (finite) set.

Claim. For n ≥ 2, suppose that k subsets S1, . . . , Sk of {1, 2, . . . , 2n} (not necessarily different)
satisfy the condition of the problem. Then

k∑

i=1

(|Si| − n) ≤ (2n− 1)2n−2.

Proof. Observe that if the sets Si (1 ≤ i ≤ k) satisfy the condition then so do their arbitrary
subsets Ti (1 ≤ i ≤ k). The condition also holds for the sets t + Si = {t + x | x ∈ Si} where t
is arbitrary.

Note also that a set may occur more than once among S1, . . . , Sk only if its cardinality is
less than 3, in which case its contribution to the sum

∑k
i=1(|Si| − n) is nonpositive (as n ≥ 2).

The proof is by induction on n. In the base case n = 2 we have subsets Si of {1, 2, 3, 4}.
Only the ones of cardinality 3 and 4 need to be considered by the remark above; each one of
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them occurs at most once among S1, . . . , Sk. If Si = {1, 2, 3, 4} for some i then no Sj is a

3-element subset in view of the condition, hence
∑k

i=1(|Si| − 2) ≤ 2. By the condition again,
it is impossible that Si = {1, 3, 4} and Sj = {2, 3, 4} for some i, j. So if |Si| ≤ 3 for all i then
at most 3 summands |Si| − 2 are positive, corresponding to 3-element subsets. This implies
∑k

i=1(|Si| − 2) ≤ 3, therefore the conclusion is true for n = 2.
Suppose that the claim holds for some n ≥ 2, and let the sets S1, . . . , Sk ⊆ {1, 2, . . . , 2n+1}

satisfy the given property. Denote Ui = Si ∩ {1, 2, . . . , 2n}, Vi = Si ∩ {2n + 1, . . . , 2n+1}. Let

I = {i | 1 ≤ i ≤ k, |Ui| 6= 0}, J = {1, . . . , k} \ I.

The sets Sj with j ∈ J are all contained in {2n + 1, . . . , 2n+1}, so the induction hypothesis
applies to their translates −2n +Sj which have the same cardinalities. Consequently, this gives
∑

j∈J(|Sj| − n) ≤ (2n− 1)2n−2, so that

∑

j∈J

(|Sj | − (n + 1)) ≤
∑

j∈J

(|Sj| − n) ≤ (2n− 1)2n−2. (1)

For i ∈ I, denote by vi the least element of Vi. Observe that if Va and Vb intersect, with a < b,
a, b ∈ I, then va is their unique common element. Indeed, let z ∈ Va ∩ Vb ⊆ Sa ∩ Sb and let m
be the least element of Sb. Since b ∈ I, we have m ≤ 2n. By the condition, there is no element
of Sa strictly between m ≤ 2n and z > 2n, which implies z = va.

It follows that if the element vi is removed from each Vi, a family of pairwise disjoint sets
Wi = Vi \ {vi} is obtained, i ∈ I (we assume Wi = ∅ if Vi = ∅). As Wi ⊆ {2n + 1, . . . , 2n+1} for
all i, we infer that

∑

i∈I |Wi| ≤ 2n. Therefore
∑

i∈I(|Vi| − 1) ≤∑

i∈I |Wi| ≤ 2n.
On the other hand, the induction hypothesis applies directly to the sets Ui, i ∈ I, so that

∑

i∈I(|Ui| − n) ≤ (2n− 1)2n−2. In summary,

∑

i∈I

(|Si| − (n + 1)) =
∑

i∈I

(|Ui| − n) +
∑

i∈I

(|Vi| − 1) ≤ (2n− 1)2n−2 + 2n. (2)

The estimates (1) and (2) are sufficient to complete the inductive step:

k∑

i=1

(|Si| − (n + 1)) =
∑

i∈I

(|Si| − (n + 1)) +
∑

j∈J

(|Sj| − (n + 1))

≤ (2n− 1)2n−2 + 2n + (2n− 1)2n−2 = (2n + 1)2n−1.

Returning to the problem, consider k = 2n subsets S1, S2, . . . , S2n of {1, 2, 3, . . . , 2n+1}. If
they satisfy the given condition, the claim implies

∑2n

i=1(|Si| − (n + 1)) ≤ (2n + 1)2n−1. By
averaging again, we see that the smallest set has at most 2n + 1 elements.

Comment. It can happen that each set Si has cardinality at least n + 1. Here is an example by the
proposer.

For i = 1, . . . , 2n, let Si = {i + 2k | 0 ≤ k ≤ n}. Then |Si| = n + 1 for all i. Suppose that there
exist a < b and x < y < z such that y, z ∈ Sa and x, z ∈ Sb. Hence z = a + 2k = b + 2l for some k > l.
Since y ∈ Sa and y < z, we have y ≤ a + 2k−1. So the element x ∈ Sb satisfies

x < y ≤ a + 2k−1 = z − 2k−1 ≤ z − 2l = b.

However the least element of Sb is b + 1, a contradiction.



Geometry

G1. In an acute-angled triangle ABC, point H is the orthocentre and A0, B0, C0 are the
midpoints of the sides BC, CA, AB, respectively. Consider three circles passing through
H : ωa around A0, ωb around B0 and ωc around C0. The circle ωa intersects the line BC at
A1 and A2; ωb intersects CA at B1 and B2; ωc intersects AB at C1 and C2. Show that the
points A1, A2, B1, B2, C1, C2 lie on a circle.

Solution 1. The perpendicular bisectors of the segments A1A2, B1B2, C1C2 are also the
perpendicular bisectors of BC, CA, AB. So they meet at O, the circumcentre of ABC. Thus
O is the only point that can possibly be the centre of the desired circle.

From the right triangle OA0A1 we get

OA2
1 = OA2

0 + A0A
2
1 = OA2

0 + A0H
2. (1)

Let K be the midpoint of AH and let L be the midpoint of CH. Since A0 and B0 are the
midpoints of BC and CA, we see that A0L‖BH and B0L‖AH . Thus the segments A0L and B0L
are perpendicular to AC and BC, hence parallel to OB0 and OA0, respectively. Consequently
OA0LB0 is a parallelogram, so that OA0 and B0L are equal and parallel. Also, the midline B0L
of triangle AHC is equal and parallel to AK and KH .

It follows that AKA0O and HA0OK are parallelograms. The first one gives A0K = OA = R,
where R is the circumradius of ABC. From the second one we obtain

2(OA2
0 + A0H

2) = OH2 + A0K
2 = OH2 + R2. (2)

(In a parallelogram, the sum of squares of the diagonals equals the sum of squares of the sides).
From (1) and (2) we get OA2

1 = (OH2 + R2)/2. By symmetry, the same holds for the
distances OA2, OB1, OB2, OC1 and OC2. Thus A1, A2, B1, B2, C1, C2 all lie on a circle with
centre at O and radius (OH2 + R2)/2.

A

K

B A0 C

H

A1

B0

L

O
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Solution 2. We are going to show again that the circumcentre O is equidistant from the six
points in question.

Let A′ be the second intersection point of ωb and ωc. The line B0C0, which is the line of
centers of circles ωb and ωc, is a midline in triangle ABC, parallel to BC and perpendicular
to the altitude AH . The points A′ and H are symmetric with respect to the line of centers.
Therefore A′ lies on the line AH .

From the two circles ωb and ωc we obtain AC1 · AC2 = AA′ · AH = AB1 ·AB2. So the
quadrilateral B1B2C1C2 is cyclic. The perpendicular bisectors of the sides B1B2 and C1C2

meet at O. Hence O is the circumcentre of B1B2C1C2 and so OB1 = OB2 = OC1 = OC2.
Analogous arguments yield OA1 = OA2 = OB1 = OB2 and OA1 = OA2 = OC1 = OC2.

Thus A1, A2, B1, B2, C1, C2 lie on a circle centred at O.

C1

A′

ωc

A

A2

B1

O
C2

CB

B2

ωb

A1

H

C0 B0

A0

Comment. The problem can be solved without much difficulty in many ways by calculation, using
trigonometry, coordinate geometry or complex numbers. As an example we present a short proof using
vectors.

Solution 3. Let again O and R be the circumcentre and circumradius. Consider the vectors

−→
OA = a,

−−→
OB = b,

−→
OC = c, where a2 = b2 = c2 = R2.

It is well known that
−−→
OH = a + b + c. Accordingly,

−−→
A0H =

−−→
OH −−−→OA0 = (a + b + c)− b + c

2
=

2a + b + c

2
,

and

OA2
1 = OA2

0 + A0A
2
1 = OA2

0 + A0H
2 =

(
b + c

2

)2

+

(
2a + b + c

2

)2

=
1

4
(b2 + 2bc + c2) +

1

4
(4a2 + 4ab + 4ac + b2 + 2bc + c2) = 2R2 + (ab + ac + bc);

here ab, bc, etc. denote dot products of vectors. We get the same for the distances OA2, OB1,
OB2, OC1 and OC2.
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G2. Given trapezoid ABCD with parallel sides AB and CD, assume that there exist points
E on line BC outside segment BC, and F inside segment AD, such that ∠DAE = ∠CBF .
Denote by I the point of intersection of CD and EF , and by J the point of intersection of AB
and EF . Let K be the midpoint of segment EF ; assume it does not lie on line AB.

Prove that I belongs to the circumcircle of ABK if and only if K belongs to the circumcircle
of CDJ .

Solution. Assume that the disposition of points is as in the diagram.
Since ∠EBF = 180◦ − ∠CBF = 180◦ − ∠EAF by hypothesis, the quadrilateral AEBF is

cyclic. Hence AJ · JB = FJ · JE. In view of this equality, I belongs to the circumcircle
of ABK if and only if IJ · JK = FJ · JE. Expressing IJ = IF + FJ , JE = FE − FJ ,
and JK = 1

2
FE − FJ , we find that I belongs to the circumcircle of ABK if and only if

FJ =
IF · FE

2IF + FE
.

Since AEBF is cyclic and AB, CD are parallel, ∠FEC = ∠FAB = 180◦ − ∠CDF . Then
CDFE is also cyclic, yielding ID · IC = IF · IE. It follows that K belongs to the circumcircle
of CDJ if and only if IJ · IK = IF · IE. Expressing IJ = IF + FJ , IK = IF + 1

2
FE, and

IE = IF + FE, we find that K is on the circumcircle of CDJ if and only if

FJ =
IF · FE

2IF + FE
.

The conclusion follows.
E

I C

K

J

D

F

BA

Comment. While the figure shows B inside segment CE, it is possible that C is inside segment BE.
Consequently, I would be inside segment EF and J outside segment EF . The position of point K on
line EF with respect to points I, J may also vary.

Some case may require that an angle ϕ be replaced by 180◦ − ϕ, and in computing distances, a
sum may need to become a difference. All these cases can be covered by the proposed solution if it is
clearly stated that signed distances and angles are used.
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G3. Let ABCD be a convex quadrilateral and let P and Q be points in ABCD such that
PQDA and QPBC are cyclic quadrilaterals. Suppose that there exists a point E on the line
segment PQ such that ∠PAE = ∠QDE and ∠PBE = ∠QCE. Show that the quadrilateral
ABCD is cyclic.

Solution 1. Let F be the point on the line AD such that EF‖PA. By hypothesis, the quadri-
lateral PQDA is cyclic. So if F lies between A and D then ∠EFD = ∠PAD = 180◦ −∠EQD;
the points F and Q are on distinct sides of the line DE and we infer that EFDQ is a
cyclic quadrilateral. And if D lies between A and F then a similar argument shows that
∠EFD = ∠EQD; but now the points F and Q lie on the same side of DE, so that EDFQ is
a cyclic quadrilateral.

In either case we obtain the equality ∠EFQ = ∠EDQ = ∠PAE which implies that FQ‖AE.
So the triangles EFQ and PAE are either homothetic or parallel-congruent. More specifically,
triangle EFQ is the image of PAE under the mapping f which carries the points P , E respec-
tively to E, Q and is either a homothety or translation by a vector. Note that f is uniquely
determined by these conditions and the position of the points P , E, Q alone.

Let now G be the point on the line BC such that EG‖PB. The same reasoning as above
applies to points B, C in place of A, D, implying that the triangle EGQ is the image of PBE
under the same mapping f . So f sends the four points A, P, B, E respectively to F, E, G, Q.

If PE 6= QE, so that f is a homothety with a centre X, then the lines AF , PE, BG—i.e. the
lines AD, PQ, BC—are concurrent at X. And since PQDA and QPBC are cyclic quadri-
laterals, the equalities XA ·XD = XP ·XQ = XB ·XC hold, showing that the quadrilateral
ABCD is cyclic.

Finally, if PE = QE, so that f is a translation, then AD‖PQ‖BC. Thus PQDA and
QPBC are isosceles trapezoids. Then also ABCD is an isosceles trapezoid, hence a cyclic
quadrilateral.

D

F

P E

A

Q

Y

X

B
G

C

Solution 2. Here is another way to reach the conclusion that the lines AD, BC and PQ are
either concurrent or parallel. From the cyclic quadrilateral PQDA we get

∠PAD = 180◦ − ∠PQD = ∠QDE + ∠QED = ∠PAE + ∠QED.
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Hence ∠QED = ∠PAD − ∠PAE = ∠EAD. This in view of the tangent-chord theorem means
that the circumcircle of triangle EAD is tangent to the line PQ at E. Analogously, the
circumcircle of triangle EBC is tangent to PQ at E.

Suppose that the line AD intersects PQ at X. Since XE is tangent to the circle (EAD),
XE2 = XA ·XD. Also, XA ·XD = XP ·XQ because P, Q, D, A lie on a circle. Therefore
XE2 = XP ·XQ.

It is not hard to see that this equation determines the position of the point X on the line
PQ uniquely. Thus, if BC also cuts PQ, say at Y , then the analogous equation for Y yields
X = Y , meaning that the three lines indeed concur. In this case, as well as in the case where
AD‖PQ‖BC, the concluding argument is the same as in the first solution.

It remains to eliminate the possibility that e.g. AD meets PQ at X while BC‖PQ. Indeed,
QPBC would then be an isosceles trapezoid and the angle equality ∠PBE = ∠QCE would
force that E is the midpoint of PQ. So the length of XE, which is the geometric mean of the
lengths of XP and XQ, should also be their arithmetic mean—impossible, as XP 6= XQ. The
proof is now complete.

Comment. After reaching the conclusion that the circles (EDA) and (EBC) are tangent to PQ one
may continue as follows. Denote the circles (PQDA), (EDA), (EBC), (QPBC) by ω1, ω2, ω3, ω4

respectively. Let ℓij be the radical axis of the pair (ωi, ωj) for i < j. As is well-known, the lines
ℓ12, ℓ13, ℓ23 concur, possibly at infinity (let this be the meaning of the word concur in this comment).
So do the lines ℓ12, ℓ14, ℓ24. Note however that ℓ23 and ℓ14 both coincide with the line PQ. Hence the
pair ℓ12, PQ is in both triples; thus the four lines ℓ12, ℓ13, ℓ24 and PQ are concurrent.

Similarly, ℓ13, ℓ14, ℓ34 concur, ℓ23, ℓ24, ℓ34 concur, and since ℓ14 = ℓ23 = PQ, the four lines
ℓ13, ℓ24, ℓ34 and PQ are concurrent. The lines ℓ13 and ℓ24 are present in both quadruples, there-
fore all the lines ℓij are concurrent. Hence the result.
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G4. In an acute triangle ABC segments BE and CF are altitudes. Two circles passing
through the points A and F are tangent to the line BC at the points P and Q so that B lies
between C and Q. Prove that the lines PE and QF intersect on the circumcircle of triangle
AEF .

Solution 1. To approach the desired result we need some information about the slopes of the
lines PE and QF ; this information is provided by formulas (1) and (2) which we derive below.

The tangents BP and BQ to the two circles passing through A and F are equal, as
BP 2 = BA · BF = BQ2. Consider the altitude AD of triangle ABC and its orthocentre H .
From the cyclic quadrilaterals CDFA and CDHE we get BA ·BF = BC · BD = BE · BH.
Thus BP 2 = BE · BH, or BP/BH = BE/BP , implying that the triangles BPH and BEP
are similar. Hence

∠BPE = ∠BHP. (1)

The point P lies between D and C; this follows from the equality BP 2 = BC · BD. In view
of this equality, and because BP = BQ,

DP ·DQ = (BP −BD) · (BP + BD) = BP 2 −BD2 = BD · (BC −BD) = BD ·DC.

Also AD ·DH = BD ·DC, as is seen from the similar triangles BDH and ADC. Combining
these equalities we obtain AD ·DH = DP ·DQ. Therefore DH/DP = DQ/DA, showing that
the triangles HDP and QDA are similar. Hence ∠HPD = ∠QAD, which can be rewritten as
∠BPH = ∠BAD + ∠BAQ. And since BQ is tangent to the circumcircle of triangle FAQ,

∠BQF = ∠BAQ = ∠BPH − ∠BAD. (2)

From (1) and (2) we deduce

∠BPE + ∠BQF = (∠BHP + ∠BPH)− ∠BAD = (180◦ −∠PBH)− ∠BAD

= (90◦ + ∠BCA)− (90◦ − ∠ABC) = ∠BCA + ∠ABC = 180◦ − ∠CAB.

Thus ∠BPE + ∠BQF < 180◦, which means that the rays PE and QF meet. Let S be the
point of intersection. Then ∠PSQ = 180◦ − (∠BPE + ∠BQF ) = ∠CAB = ∠EAF .

If S lies between P and E then ∠PSQ = 180◦ − ∠ESF ; and if E lies between P and S
then ∠PSQ = ∠ESF . In either case the equality ∠PSQ = ∠EAF which we have obtained
means that S lies on the circumcircle of triangle AEF .

A

B P C

S

H

F
E

DQ
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Solution 2. Let H be the orthocentre of triangle ABC and let ω be the circle with diameter
AH , passing through E and F . Introduce the points of intersection of ω with the following lines
emanating from P : PA ∩ ω = {A, U}, PH ∩ ω = {H, V }, PE ∩ ω = {E, S}. The altitudes of
triangle AHP are contained in the lines AV , HU , BC, meeting at its orthocentre Q′.

By Pascal’s theorem applied to the (tied) hexagon AESFHV , the points AE ∩ FH = C,
ES ∩HV = P and SF ∩ V A are collinear, so FS passes through Q′.

Denote by ω1 and ω2 the circles with diameters BC and PQ′, respectively. Let D be the
foot of the altitude from A in triangle ABC. Suppose that AD meets the circles ω1 and ω2 at
the respective points K and L.

Since H is the orthocentre of ABC, the triangles BDH and ADC are similar, and so
DA ·DH = DB ·DC = DK2; the last equality holds because BKC is a right triangle. Since
H is the orthocentre also in triangle AQ′P , we analogously have DL2 = DA ·DH. Therefore
DK = DL and K = L.

Also, BD · BC = BA ·BF , from the similar triangles ABD, CBF . In the right triangle
BKC we have BK2 = BD · BC. Hence, and because BA · BF = BP 2 = BQ2 (by the defini-
tion of P and Q in the problem statement), we obtain BK = BP = BQ. It follows that B is
the centre of ω2 and hence Q′ = Q. So the lines PE and QF meet at the point S lying on the
circumcircle of triangle AEF .

A

Q′ B P C

V

UT

E
F

K

ω1

H

S

ω2

ω

D

Comment 1. If T is the point defined by PF ∩ ω = {F, T}, Pascal’s theorem for the hexagon
AFTEHV will analogously lead to the conclusion that the line ET goes through Q′. In other words,
the lines PF and QE also concur on ω.

Comment 2. As is known from algebraic geometry, the points of the circle ω form a commutative
groups with the operation defined as follows. Choose any point 0 ∈ ω (to be the neutral element of
the group) and a line ℓ exterior to the circle. For X,Y ∈ ω, draw the line from the point XY ∩ ℓ
through 0 to its second intersection with ω and define this point to be X + Y .

In our solution we have chosen H to be the neutral element in this group and line BC to be ℓ. The
fact that the lines AV , HU , ET , FS are concurrent can be deduced from the identities A + A = 0,
F = E + A, V = U + A = S + E = T + F .

Comment 3. The problem was submitted in the following equivalent formulation:
Let BE and CF be altitudes of an acute triangle ABC. We choose P on the side BC and Q

on the extension of CB beyond B such that BQ2 = BP 2 = BF ·AB. If QF and PE intersect at S,
prove that ESAF is cyclic.
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G5. Let k and n be integers with 0 ≤ k ≤ n− 2. Consider a set L of n lines in the plane such
that no two of them are parallel and no three have a common point. Denote by I the set of
intersection points of lines in L. Let O be a point in the plane not lying on any line of L.

A point X ∈ I is colored red if the open line segment OX intersects at most k lines in L.
Prove that I contains at least 1

2
(k + 1)(k + 2) red points.

Solution. There are at least 1
2
(k + 1)(k + 2) points in the intersection set I in view of the

condition n ≥ k + 2.
For each point P ∈ I, define its order as the number of lines that intersect the open line

segment OP . By definition, P is red if its order is at most k. Note that there is always at
least one point X ∈ I of order 0. Indeed, the lines in L divide the plane into regions, bounded
or not, and O belongs to one of them. Clearly any corner of this region is a point of I with
order 0.

Claim. Suppose that two points P, Q ∈ I lie on the same line of L, and no other line of L
intersects the open line segment PQ. Then the orders of P and Q differ by at most 1.

Proof. Let P and Q have orders p and q, respectively, with p ≥ q. Consider triangle OPQ.
Now p equals the number of lines in L that intersect the interior of side OP . None of these
lines intersects the interior of side PQ, and at most one can pass through Q. All remaining
lines must intersect the interior of side OQ, implying that q ≥ p− 1. The conclusion follows.

We prove the main result by induction on k. The base k = 0 is clear since there is a point
of order 0 which is red. Assuming the statement true for k − 1, we pass on to the inductive
step. Select a point P ∈ I of order 0, and consider one of the lines ℓ ∈ L that pass through P .
There are n− 1 intersection points on ℓ, one of which is P . Out of the remaining n− 2 points,
the k closest to P have orders not exceeding k by the Claim. It follows that there are at least
k + 1 red points on ℓ.

Let us now consider the situation with ℓ removed (together with all intersection points
it contains). By hypothesis of induction, there are at least 1

2
k(k + 1) points of order not

exceeding k − 1 in the resulting configuration. Restoring ℓ back produces at most one new
intersection point on each line segment joining any of these points to O, so their order is at
most k in the original configuration. The total number of points with order not exceeding k is
therefore at least (k + 1) + 1

2
k(k + 1) = 1

2
(k + 1)(k + 2). This completes the proof.

Comment. The steps of the proof can be performed in reverse order to obtain a configuration of n
lines such that equality holds simultaneously for all 0 ≤ k ≤ n− 2. Such a set of lines is illustrated in
the Figure.
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G6. There is given a convex quadrilateral ABCD. Prove that there exists a point P inside
the quadrilateral such that

∠PAB + ∠PDC = ∠PBC + ∠PAD = ∠PCD + ∠PBA = ∠PDA + ∠PCB = 90◦ (1)

if and only if the diagonals AC and BD are perpendicular.

Solution 1. For a point P in ABCD which satisfies (1), let K, L, M, N be the feet of per-
pendiculars from P to lines AB, BC, CD, DA, respectively. Note that K, L, M, N are interior
to the sides as all angles in (1) are acute. The cyclic quadrilaterals AKPN and DNPM give

∠PAB + ∠PDC = ∠PNK + ∠PNM = ∠KNM.

Analogously, ∠PBC + ∠PAD = ∠LKN and ∠PCD + ∠PBA = ∠MLK . Hence the equal-
ities (1) imply ∠KNM = ∠LKN = ∠MLK = 90◦, so that KLMN is a rectangle. The
converse also holds true, provided that K, L, M, N are interior to sides AB, BC, CD, DA.

(i) Suppose that there exists a point P in ABCD such that KLMN is a rectangle. We show
that AC and BD are parallel to the respective sides of KLMN .

Let OA and OC be the circumcentres of the cyclic quadrilaterals AKPN and CMPL. Line
OAOC is the common perpendicular bisector of LM and KN , therefore OAOC is parallel to KL
and MN . On the other hand, OAOC is the midline in the triangle ACP that is parallel to AC.
Therefore the diagonal AC is parallel to the sides KL and MN of the rectangle. Likewise, BD
is parallel to KN and LM . Hence AC and BD are perpendicular.
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(ii) Suppose that AC and BD are perpendicular and meet at R. If ABCD is a rhombus, P
can be chosen to be its centre. So assume that ABCD is not a rhombus, and let BR < DR
without loss of generality.

Denote by UA and UC the circumcentres of the triangles ABD and CDB, respectively. Let
AVA and CVC be the diameters through A and C of the two circumcircles. Since AR is an
altitude in triangle ADB, lines AC and AVA are isogonal conjugates, i. e. ∠DAVA = ∠BAC.
Now BR < DR implies that ray AUA lies in ∠DAC. Similarly, ray CUC lies in ∠DCA. Both
diameters AVA and CVC intersect BD as the angles at B and D of both triangles are acute.
Also UAUC is parallel to AC as it is the perpendicular bisector of BD. Hence VAVC is parallel
to AC, too. We infer that AVA and CVC intersect at a point P inside triangle ACD, hence
inside ABCD.
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Construct points K, L, M, N, OA and OC in the same way as in the introduction. It follows
from the previous paragraph that K, L, M, N are interior to the respective sides. Now OAOC

is a midline in triangle ACP again. Therefore lines AC, OAOC and UAUC are parallel.
The cyclic quadrilateral AKPN yields ∠NKP = ∠NAP . Since ∠NAP = ∠DAUA =

∠BAC, as specified above, we obtain ∠NKP = ∠BAC. Because PK is perpendicular to AB,
it follows that NK is perpendicular to AC, hence parallel to BD. Likewise, LM is parallel
to BD.

Consider the two homotheties with centres A and C which transform triangles ABD and
CDB into triangles AKN and CML, respectively. The images of points UA and UC are OA and
OC, respectively. Since UAUC and OAOC are parallel to AC, the two ratios of homothety are
the same, equal to λ = AN/AD = AK/AB = AOA/AUA = COC/CUC = CM/CD = CL/CB.
It is now straightforward that DN/DA = DM/DC = BK/BA = BL/BC = 1−λ. Hence KL
and MN are parallel to AC, implying that KLMN is a rectangle and completing the proof.
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Solution 2. For a point P distinct from A, B, C, D, let circles (APD) and (BPC) inter-
sect again at Q (Q = P if the circles are tangent). Next, let circles (AQB) and (CQD)
intersect again at R. We show that if P lies in ABCD and satisfies (1) then AC and BD
intersect at R and are perpendicular; the converse is also true. It is convenient to use directed
angles. Let ∡(UV, XY ) denote the angle of counterclockwise rotation that makes line UV
parallel to line XY . Recall that four noncollinear points U, V, X, Y are concyclic if and only if
∡(UX, V X) = ∡(UY, V Y ).

The definitions of points P , Q and R imply

∡(AR, BR) = ∡(AQ, BQ) = ∡(AQ, PQ) + ∡(PQ, BQ) = ∡(AD, PD) + ∡(PC, BC),

∡(CR, DR) = ∡(CQ, DQ) = ∡(CQ, PQ) + ∡(PQ, DQ) = ∡(CB, PB) + ∡(PA, DA),

∡(BR, CR) = ∡(BR, RQ) + ∡(RQ, CR) = ∡(BA, AQ) + ∡(DQ, CD)

= ∡(BA, AP ) + ∡(AP, AQ) + ∡(DQ, DP ) + ∡(DP, CD)

= ∡(BA, AP ) + ∡(DP, CD).

Observe that the whole construction is reversible. One may start with point R, define Q as the
second intersection of circles (ARB) and (CRD), and then define P as the second intersection
of circles (AQD) and (BQC). The equalities above will still hold true.
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Assume in addition that P is interior to ABCD. Then

∡(AD, PD) = ∠PDA, ∡(PC, BC) = ∠PCB, ∡(CB, PB) = ∠PBC, ∡(PA, DA) = ∠PAD,

∡(BA, AP ) = ∠PAB, ∡(DP, CD) = ∠PDC.

(i) Suppose that P lies in ABCD and satisfies (1). Then ∡(AR, BR) = ∠PDA+∠PCB = 90◦

and similarly ∡(BR, CR) = ∡(CR, DR) = 90◦. It follows that R is the common point of
lines AC and BD, and that these lines are perpendicular.
(ii) Suppose that AC and BD are perpendicular and intersect at R. We show that the point P
defined by the reverse construction (starting with R and ending with P ) lies in ABCD. This
is enough to finish the solution, because then the angle equalities above will imply (1).

One can assume that Q, the second common point of circles (ABR) and (CDR), lies
in ∠ARD. Then in fact Q lies in triangle ADR as angles AQR and DQR are obtuse. Hence
∠AQD is obtuse, too, so that B and C are outside circle (ADQ) (∠ABD and ∠ACD are
acute).

Now ∠CAB+∠CDB = ∠BQR+∠CQR = ∠CQB implies ∠CAB < ∠CQB and ∠CDB <
∠CQB. Hence A and D are outside circle (BCQ). In conclusion, the second common point P
of circles (ADQ) and (BCQ) lies on their arcs ADQ and BCQ.

We can assume that P lies in ∠CQD. Since

∠QPC + ∠QPD = (180◦ − ∠QBC) + (180◦ − ∠QAD) =

= 360◦ − (∠RBC + ∠QBR)− (∠RAD − ∠QAR) = 360◦ − ∠RBC − ∠RAD > 180◦,

point P lies in triangle CDQ, and hence in ABCD. The proof is complete.
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P



40

G7. Let ABCD be a convex quadrilateral with AB 6= BC. Denote by ω1 and ω2 the incircles
of triangles ABC and ADC. Suppose that there exists a circle ω inscribed in angle ABC,
tangent to the extensions of line segments AD and CD. Prove that the common external
tangents of ω1 and ω2 intersect on ω.

Solution. The proof below is based on two known facts.

Lemma 1. Given a convex quadrilateral ABCD, suppose that there exists a circle which is
inscribed in angle ABC and tangent to the extensions of line segments AD and CD. Then
AB + AD = CB + CD.

Proof. The circle in question is tangent to each of the lines AB, BC, CD, DA, and the respective
points of tangency K, L, M, N are located as with circle ω in the figure. Then

AB + AD = (BK −AK) + (AN −DN), CB + CD = (BL− CL) + (CM −DM).

Also BK = BL, DN = DM , AK = AN , CL = CM by equalities of tangents. It follows that
AB + AD = CB + CD.
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For brevity, in the sequel we write “excircle AC” for the excircle of a triangle with side AC
which is tangent to line segment AC and the extensions of the other two sides.

Lemma 2. The incircle of triangle ABC is tangent to its side AC at P . Let PP ′ be the diameter
of the incircle through P , and let line BP ′ intersect AC at Q. Then Q is the point of tangency
of side AC and excircle AC.

Proof. Let the tangent at P ′ to the incircle ω1 meet BA and BC at A′ and C ′. Now ω1 is the
excircle A′C ′ of triangle A′BC ′, and it touches side A′C ′ at P ′. Since A′C ′ ‖ AC, the homothety
with centre B and ratio BQ/BP ′ takes ω1 to the excircle AC of triangle ABC. Because this
homothety takes P ′ to Q, the lemma follows.
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Recall also that if the incircle of a triangle touches its side AC at P , then the tangency
point Q of the same side and excircle AC is the unique point on line segment AC such that
AP = CQ.

We pass on to the main proof. Let ω1 and ω2 touch AC at P and Q, respectively; then
AP = (AC + AB − BC)/2, CQ = (CA + CD − AD)/2. Since AB − BC = CD − AD
by Lemma 1, we obtain AP = CQ. It follows that in triangle ABC side AC and excircle AC
are tangent at Q. Likewise, in triangle ADC side AC and excircle AC are tangent at P . Note
that P 6= Q as AB 6= BC.

Let PP ′ and QQ′ be the diameters perpendicular to AC of ω1 and ω2, respectively. Then
Lemma 2 shows that points B, P ′ and Q are collinear, and so are points D, Q′ and P .

Consider the diameter of ω perpendicular to AC and denote by T its endpoint that is closer
to AC. The homothety with centre B and ratio BT/BP ′ takes ω1 to ω. Hence B, P ′ and T
are collinear. Similarly, D, Q′ and T are collinear since the homothety with centre D and
ratio −DT/DQ′ takes ω2 to ω.

We infer that points T, P ′ and Q are collinear, as well as T, Q′ and P . Since PP ′ ‖ QQ′, line
segments PP ′ and QQ′ are then homothetic with centre T . The same holds true for circles ω1

and ω2 because they have PP ′ and QQ′ as diameters. Moreover, it is immediate that T lies on
the same side of line PP ′ as Q and Q′, hence the ratio of homothety is positive. In particular
ω1 and ω2 are not congruent.

In summary, T is the centre of a homothety with positive ratio that takes circle ω1 to
circle ω2. This completes the solution, since the only point with the mentioned property is the
intersection of the the common external tangents of ω1 and ω2.
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Number Theory

N1. Let n be a positive integer and let p be a prime number. Prove that if a, b, c are integers
(not necessarily positive) satisfying the equations

an + pb = bn + pc = cn + pa,

then a = b = c.

Solution 1. If two of a, b, c are equal, it is immediate that all the three are equal. So we
may assume that a 6= b 6= c 6= a. Subtracting the equations we get an − bn = −p(b− c) and two
cyclic copies of this equation, which upon multiplication yield

an − bn

a− b
· b

n − cn

b− c
· c

n − an

c− a
= −p3. (1)

If n is odd then the differences an − bn and a− b have the same sign and the product on the
left is positive, while −p3 is negative. So n must be even.

Let d be the greatest common divisor of the three differences a− b, b− c, c− a, so that
a− b = du, b− c = dv, c− a = dw; gcd(u, v, w) = 1, u + v + w = 0.

From an − bn = −p(b− c) we see that (a− b)|p(b− c), i.e., u|pv; and cyclically v|pw, w|pu.
As gcd(u, v, w) = 1 and u + v + w = 0, at most one of u, v, w can be divisible by p. Sup-
posing that the prime p does not divide any one of them, we get u|v, v|w, w|u, whence
|u| = |v| = |w| = 1; but this quarrels with u + v + w = 0.

Thus p must divide exactly one of these numbers. Let e.g. p|u and write u = pu1. Now
we obtain, similarly as before, u1|v, v|w, w|u1 so that |u1| = |v| = |w| = 1. The equation
pu1 + v + w = 0 forces that the prime p must be even; i.e. p = 2. Hence v + w = −2u1 = ±2,
implying v = w (= ±1) and u = −2v. Consequently a− b = −2(b− c).

Knowing that n is even, say n = 2k, we rewrite the equation an − bn = −p(b− c) with p = 2
in the form

(ak + bk)(ak − bk) = −2(b− c) = a− b.

The second factor on the left is divisible by a− b, so the first factor (ak + bk) must be ±1.
Then exactly one of a and b must be odd; yet a− b = −2(b− c) is even. Contradiction ends
the proof.

Solution 2. The beginning is as in the first solution. Assuming that a, b, c are not all equal,
hence are all distinct, we derive equation (1) with the conclusion that n is even. Write n = 2k.

Suppose that p is odd. Then the integer

an − bn

a− b
= an−1 + an−2b + · · ·+ bn−1,
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which is a factor in (1), must be odd as well. This sum of n = 2k summands is odd only if
a and b have different parities. The same conclusion holding for b, c and for c, a, we get that
a, b, c, a alternate in their parities, which is clearly impossible.

Thus p = 2. The original system shows that a, b, c must be of the same parity. So we may
divide (1) by p3, i.e. 23, to obtain the following product of six integer factors:

ak + bk

2
· a

k − bk

a− b
· b

k + ck

2
· b

k − ck

b− c
· c

k + ak

2
· c

k − ak

c− a
= −1. (2)

Each one of the factors must be equal to ±1. In particular, ak + bk = ±2. If k is even, this
becomes ak + bk = 2 and yields |a| = |b| = 1, whence ak − bk = 0, contradicting (2).

Let now k be odd. Then the sum ak + bk, with value ±2, has a + b as a factor. Since a and b
are of the same parity, this means that a + b = ±2; and cyclically, b + c = ±2, c + a = ±2. In
some two of these equations the signs must coincide, hence some two of a, b, c are equal. This
is the desired contradiction.

Comment. Having arrived at the equation (1) one is tempted to write down all possible decomposi-
tions of −p3 (cube of a prime) into a product of three integers. This leads to cumbersome examination
of many cases, some of which are unpleasant to handle. One may do that just for p = 2, having earlier
in some way eliminated odd primes from consideration.

However, the second solution shows that the condition of p being a prime is far too strong. What
is actually being used in that solution, is that p is either a positive odd integer or p = 2.
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N2. Let a1, a2, . . . , an be distinct positive integers, n ≥ 3. Prove that there exist distinct
indices i and j such that ai + aj does not divide any of the numbers 3a1, 3a2, . . . , 3an.

Solution. Without loss of generality, let 0 < a1 < a2 < · · · < an. One can also assume that
a1, a2, . . . , an are coprime. Otherwise division by their greatest common divisor reduces the
question to the new sequence whose terms are coprime integers.

Suppose that the claim is false. Then for each i < n there exists a j such that an + ai

divides 3aj . If an + ai is not divisible by 3 then an + ai divides aj which is impossible as
0 < aj ≤ an < an +ai. Thus an+ai is a multiple of 3 for i = 1, . . . , n−1, so that a1, a2, . . . , an−1

are all congruent (to −an) modulo 3.
Now an is not divisible by 3 or else so would be all remaining ai’s, meaning that a1, a2, . . . , an

are not coprime. Hence an ≡ r (mod 3) where r ∈ {1, 2}, and ai ≡ 3 − r (mod 3) for all
i = 1, . . . , n− 1.

Consider a sum an−1 +ai where 1 ≤ i ≤ n−2. There is at least one such sum as n ≥ 3. Let
j be an index such that an−1 + ai divides 3aj. Observe that an−1 + ai is not divisible by 3 since
an−1 + ai ≡ 2ai 6≡ 0 (mod 3). It follows that an−1 + ai divides aj, in particular an−1 + ai ≤ aj .
Hence an−1 < aj ≤ an, implying j = n. So an is divisible by all sums an−1 + ai, 1 ≤ i ≤ n− 2.
In particular an−1 + ai ≤ an for i = 1, . . . , n− 2.

Let j be such that an + an−1 divides 3aj. If j ≤ n− 2 then an + an−1 ≤ 3aj < aj + 2an−1.
This yields an < an−1 +aj; however an−1 +aj ≤ an for j ≤ n−2. Therefore j = n−1 or j = n.

For j = n − 1 we obtain 3an−1 = k(an + an−1) with k an integer, and it is straightforward
that k = 1 (k ≤ 0 and k ≥ 3 contradict 0 < an−1 < an; k = 2 leads to an−1 = 2an > an−1).
Thus 3an−1 = an + an−1, i. e. an = 2an−1.

Similarly, if j = n then 3an = k(an + an−1) for some integer k, and only k = 2 is possible.
Hence an = 2an−1 holds true in both cases remaining, j = n− 1 and j = n.

Now an = 2an−1 implies that the sum an−1 + a1 is strictly between an/2 and an. But an−1

and a1 are distinct as n ≥ 3, so it follows from the above that an−1 + a1 divides an. This
provides the desired contradiction.
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N3. Let a0, a1, a2, . . . be a sequence of positive integers such that the greatest common divisor
of any two consecutive terms is greater than the preceding term; in symbols, gcd(ai, ai+1) > ai−1.
Prove that an ≥ 2n for all n ≥ 0.

Solution. Since ai ≥ gcd(ai, ai+1) > ai−1, the sequence is strictly increasing. In particular
a0 ≥ 1, a1 ≥ 2. For each i ≥ 1 we also have ai+1 − ai ≥ gcd(ai, ai+1) > ai−1, and consequently
ai+1 ≥ ai + ai−1 + 1. Hence a2 ≥ 4 and a3 ≥ 7. The equality a3 = 7 would force equalities
in the previous estimates, leading to gcd(a2, a3) = gcd(4, 7) > a1 = 2, which is false. Thus
a3 ≥ 8; the result is valid for n = 0, 1, 2, 3. These are the base cases for a proof by induction.

Take an n ≥ 3 and assume that ai ≥ 2i for i = 0, 1, . . . , n. We must show that an+1 ≥ 2n+1.
Let gcd(an, an+1) = d. We know that d > an−1. The induction claim is reached immediately
in the following cases:

if an+1 ≥ 4d then an+1 > 4an−1 ≥ 4 · 2n−1 = 2n+1 ;

if an ≥ 3d then an+1 ≥ an +d ≥ 4d > 4an−1 ≥ 4 ·2n−1 = 2n+1 ;

if an = d then an+1 ≥ an + d = 2an ≥ 2 · 2n = 2n+1.

The only remaining possibility is that an = 2d and an+1 = 3d, which we assume for the
sequel. So an+1 = 3

2
an.

Let now gcd(an−1, an) = d′; then d′ > an−2. Write an = md′ (m an integer). Keeping
in mind that d′ ≤ an−1 < d and an = 2d, we get that m ≥ 3. Also an−1 < d = 1

2
md′,

an+1 = 3
2
md′. Again we single out the cases which imply the induction claim immediately:

if m ≥ 6 then an+1 = 3
2
md′ ≥ 9d′ > 9an−2 ≥ 9 · 2n−2 > 2n+1 ;

if 3 ≤ m ≤ 4 then an−1 < 1
2
· 4d′, and hence an−1 = d′,

an+1 = 3
2
man−1 ≥ 3

2
·3an−1 ≥ 9

2
·2n−1 > 2n+1.

So we are left with the case m = 5, which means that an = 5d′, an+1 = 15
2
d′ , an−1 < d = 5

2
d′.

The last relation implies that an−1 is either d′ or 2d′. Anyway, an−1|2d′.
The same pattern repeats once more. We denote gcd(an−2, an−1) = d′′; then d′′ > an−3.

Because d′′ is a divisor of an−1, hence also of 2d′, we may write 2d′ = m′d′′ (m′ an integer).
Since d′′ ≤ an−2 < d′, we get m′ ≥ 3. Also, an−2 < d′ = 1

2
m′d′′, an+1 = 15

2
d′ = 15

4
m′d′′. As

before, we consider the cases:

if m′ ≥ 5 then an+1 = 15
4
m′d′′ ≥ 75

4
d′′ > 75

4
an−3 ≥ 75

4
·2n−3 > 2n+1 ;

if 3 ≤ m′ ≤ 4 then an−2 < 1
2
· 4d′′, and hence an−2 = d′′,

an+1 = 15
4
m′an−2 ≥ 15

4
·3an−2 ≥ 45

4
·2n−2 > 2n+1.

Both of them have produced the induction claim. But now there are no cases left. Induction
is complete; the inequality an ≥ 2n holds for all n.
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N4. Let n be a positive integer. Show that the numbers
(

2n − 1

0

)

,

(
2n − 1

1

)

,

(
2n − 1

2

)

, . . . ,

(
2n − 1

2n−1 − 1

)

are congruent modulo 2n to 1, 3, 5, . . . , 2n−1 in some order.

Solution 1. It is well-known that all these numbers are odd. So the assertion that their
remainders (mod 2n) make up a permutation of {1, 3, . . . , 2n−1} is equivalent just to saying
that these remainders are all distinct. We begin by showing that
(

2n − 1

2k

)

+

(
2n − 1

2k + 1

)

≡ 0 (mod 2n) and

(
2n − 1

2k

)

≡ (−1)k

(
2n−1 − 1

k

)

(mod 2n). (1)

The first relation is immediate, as the sum on the left is equal to
(

2n

2k+1

)
= 2n

2k+1

(
2n−1
2k

)
, hence

is divisible by 2n. The second relation:

(
2n − 1

2k

)

=
2k∏

j=1

2n − j

j
=

k∏

i=1

2n − (2i−1)

2i− 1
·

k∏

i=1

2n−1 − i

i
≡ (−1)k

(
2n−1 − 1

k

)

(mod 2n).

This prepares ground for a proof of the required result by induction on n. The base case
n = 1 is obvious. Assume the assertion is true for n− 1 and pass to n, denoting ak =

(
2n−1−1

k

)
,

bm =
(
2n−1

m

)
. The induction hypothesis is that all the numbers ak (0 ≤ k < 2n−2) are distinct

(mod 2n−1); the claim is that all the numbers bm (0 ≤ m < 2n−1) are distinct (mod 2n).
The congruence relations (1) are restated as

b2k ≡ (−1)kak ≡ −b2k+1 (mod 2n). (2)

Shifting the exponent in the first relation of (1) from n to n− 1 we also have the congruence
a2i+1 ≡ −a2i (mod 2n−1). We hence conclude:

If, for some j, k < 2n−2, ak ≡ −aj (mod 2n−1), then {j, k} = {2i, 2i+1} for some i. (3)

This is so because in the sequence (ak : k < 2n−2) each term aj is complemented to 0 (mod 2n−1)
by only one other term ak, according to the induction hypothesis.

From (2) we see that b4i ≡ a2i and b4i+3 ≡ a2i+1 (mod 2n). Let

M = {m : 0 ≤ m < 2n−1, m ≡ 0 or 3 (mod 4)}, L= {l : 0 ≤ l < 2n−1, l ≡ 1 or 2 (mod 4)}.
The last two congruences take on the unified form

bm ≡ a⌊m/2⌋ (mod 2n) for all m ∈M. (4)

Thus all the numbers bm for m ∈ M are distinct (mod 2n) because so are the numbers ak (they
are distinct (mod 2n−1), hence also (mod 2n)).

Every l ∈ L is paired with a unique m ∈M into a pair of the form {2k, 2k+1}. So (2) implies
that also all the bl for l ∈ L are distinct (mod 2n). It remains to eliminate the possibility that
bm ≡ bl (mod 2n) for some m ∈M , l ∈ L.

Suppose that such a situation occurs. Let m′ ∈M be such that {m′, l} is a pair of the form
{2k, 2k+1}, so that (see (2)) bm′ ≡ −bl (mod 2n). Hence bm′ ≡ −bm (mod 2n). Since both
m′ and m are in M , we have by (4) bm′ ≡ aj , bm ≡ ak (mod 2n) for j = ⌊m′/2⌋, k = ⌊m/2⌋.

Then aj ≡ −ak (mod 2n). Thus, according to (3), j = 2i, k = 2i + 1 for some i (or vice

versa). The equality a2i+1 ≡ −a2i (mod 2n) now means that
(
2n−1−1

2i

)
+

(
2n−1−1

2i+1

)
≡ 0 (mod 2n).

However, the sum on the left is equal to
(
2n−1

2i+1

)
. A number of this form cannot be divisible

by 2n. This is a contradiction which concludes the induction step and proves the result.
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Solution 2. We again proceed by induction, writing for brevity N = 2n−1 and keeping notation
ak =

(
N−1

k

)
, bm =

(
2N−1

m

)
. Assume that the result holds for the sequence (a0, a1, a2, . . . , aN/2−1).

In view of the symmetry aN−1−k = ak this sequence is a permutation of (a0, a2, a4, . . . , aN−2).
So the induction hypothesis says that this latter sequence, taken (mod N), is a permutation of
(1, 3, 5, . . . , N−1). Similarly, the induction claim is that (b0, b2, b4, . . . , b2N−2), taken (mod 2N),
is a permutation of (1, 3, 5, . . . , 2N−1).

In place of the congruence relations (2) we now use the following ones,

b4i ≡ a2i (mod N) and b4i+2 ≡ b4i + N (mod 2N). (5)

Given this, the conclusion is immediate: the first formula of (5) together with the induction
hypothesis tells us that (b0, b4, b8, . . . , b2N−4) (mod N) is a permutation of (1, 3, 5, . . . , N−1).
Then the second formula of (5) shows that (b2, b6, b10, . . . , b2N−2) (mod N) is exactly the same
permutation; moreover, this formula distinguishes (mod 2N) each b4i from b4i+2.

Consequently, these two sequences combined represent (mod 2N) a permutation of the
sequence (1, 3, 5, . . . , N−1, N+1, N+3, N+5, . . . , N+N−1), and this is precisely the induction
claim.

Now we prove formulas (5); we begin with the second one. Since bm+1 = bm · 2N−m−1
m+1

,

b4i+2 = b4i ·
2N − 4i− 1

4i + 1
· 2N − 4i− 2

4i + 2
= b4i ·

2N − 4i− 1

4i + 1
· N − 2i− 1

2i + 1
.

The desired congruence b4i+2 ≡ b4i + N may be multiplied by the odd number (4i + 1)(2i + 1),
giving rise to a chain of successively equivalent congruences:

b4i(2N − 4i− 1)(N − 2i− 1) ≡ (b4i + N)(4i + 1)(2i + 1) (mod 2N),

b4i(2i + 1−N) ≡ (b4i + N)(2i + 1) (mod 2N),

(b4i + 2i + 1)N ≡ 0 (mod 2N);

and the last one is satisfied, as b4i is odd. This settles the second relation in (5).
The first one is proved by induction on i. It holds for i = 0. Assume b4i ≡ a2i (mod 2N)

and consider i + 1:

b4i+4 = b4i+2 ·
2N − 4i− 3

4i + 3
· 2N − 4i− 4

4i + 4
; a2i+2 = a2i ·

N − 2i− 1

2i + 1
· N − 2i− 2

2i + 2
.

Both expressions have the fraction N−2i−2
2i+2

as the last factor. Since 2i + 2 < N = 2n−1, this
fraction reduces to ℓ/m with ℓ and m odd. In showing that b4i+4 ≡ a2i+2 (mod 2N), we may
ignore this common factor ℓ/m. Clearing other odd denominators reduces the claim to

b4i+2(2N − 4i− 3)(2i + 1) ≡ a2i(N − 2i− 1)(4i + 3) (mod 2N).

By the inductive assumption (saying that b4i ≡ a2i (mod 2N)) and by the second relation of (5),
this is equivalent to

(b4i + N)(2i + 1) ≡ b4i(2i + 1−N) (mod 2N),

a congruence which we have already met in the preceding proof a few lines above. This com-
pletes induction (on i) and the proof of (5), hence also the whole solution.

Comment. One can avoid the words congruent modulo in the problem statement by rephrasing the
assertion into: Show that these numbers leave distinct remainders in division by 2n.
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N5. For every n ∈ N let d(n) denote the number of (positive) divisors of n. Find all func-
tions f : N → N with the following properties:

(i) d(f(x)) = x for all x ∈ N;

(ii) f(xy) divides (x− 1)yxy−1f(x) for all x, y ∈ N.

Solution. There is a unique solution: the function f : N → N defined by f(1) = 1 and

f(n) = p
p

a1

1
−1

1 p
p

a2

2
−1

2 · · · pp
ak
k
−1

k where n = pa1

1 pa2

2 · · ·pak

k is the prime factorization of n > 1. (1)

Direct verification shows that this function meets the requirements.

Conversely, let f : N → N satisfy (i) and (ii). Applying (i) for x = 1 gives d(f(1)) = 1, so
f(1) = 1. In the sequel we prove that (1) holds for all n > 1. Notice that f(m) = f(n) implies

m = n in view of (i). The formula d
(

pb1
1 · · ·pbk

k

)

= (b1 +1) · · · (bk +1) will be used throughout.

Let p be a prime. Since d(f(p)) = p, the formula just mentioned yields f(p) = qp−1 for some
prime q; in particular f(2) = q2−1 = q is a prime. We prove that f(p) = pp−1 for all primes p.

Suppose that p is odd and f(p) = qp−1 for a prime q. Applying (ii) first with x = 2,
y = p and then with x = p, y = 2 shows that f(2p) divides both (2− 1)p2p−1f(2) = p2p−1f(2)
and (p − 1)22p−1f(p) = (p − 1)22p−1qp−1. If q 6= p then the odd prime p does not divide
(p−1)22p−1qp−1, hence the greatest common divisor of p2p−1f(2) and (p−1)22p−1qp−1 is a divisor
of f(2). Thus f(2p) divides f(2) which is a prime. As f(2p) > 1, we obtain f(2p) = f(2) which
is impossible. So q = p, i. e. f(p) = pp−1.

For p = 2 the same argument with x = 2, y = 3 and x = 3, y = 2 shows that f(6)
divides both 35f(2) and 26f(3) = 2632. If the prime f(2) is odd then f(6) divides 32 = 9, so
f(6) ∈ {1, 3, 9}. However then 6 = d(f(6)) ∈ {d(1), d(3), d(9)} = {1, 2, 3} which is false. In
conclusion f(2) = 2.

Next, for each n > 1 the prime divisors of f(n) are among the ones of n. Indeed, let p be
the least prime divisor of n. Apply (ii) with x = p and y = n/p to obtain that f(n) divides
(p−1)yn−1f(p) = (p−1)yn−1pp−1. Write f(n) = ℓP where ℓ is coprime to n and P is a product
of primes dividing n. Since ℓ divides (p−1)yn−1pp−1 and is coprime to yn−1pp−1, it divides p−1;
hence d(ℓ) ≤ ℓ < p. But (i) gives n = d(f(n)) = d(ℓP ), and d(ℓP ) = d(ℓ)d(P ) as ℓ and P are
coprime. Therefore d(ℓ) is a divisor of n less than p, meaning that ℓ = 1 and proving the claim.

Now (1) is immediate for prime powers. If p is a prime and a ≥ 1, by the above the
only prime factor of f (pa) is p (a prime factor does exist as f (pa) > 1). So f (pa) = pb for
some b ≥ 1, and (i) yields pa = d(f (pa)) = d

(
pb
)

= b + 1. Hence f (pa) = ppa−1, as needed.
Let us finally show that (1) is true for a general n > 1 with prime factorization n = pa1

1 · · · pak

k .
We saw that the prime factorization of f(n) has the form f(n) = pb1

1 · · · pbk

k . For i = 1, . . . , k,
set x = pai

i and y = n/x in (ii) to infer that f(n) divides (pai

i − 1) yn−1f (pai

i ). Hence pbi

i divides
(pai

i − 1) yn−1f (pai

i ), and because pbi

i is coprime to (pai

i − 1) yn−1, it follows that pbi

i divides

f (pai

i ) = p
p

ai
i
−1

i . So bi ≤ pai

i −1 for all i = 1, . . . , k. Combined with (i), these conclusions imply

pa1

1 · · ·pak

k = n = d(f(n)) = d
(

pb1
1 · · · pbk

k

)

= (b1 + 1) · · · (bk + 1) ≤ pa1

1 · · · pak

k .

Hence all inequalities bi ≤ pai

i −1 must be equalities, i = 1, . . . , k, implying that (1) holds true.
The proof is complete.
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N6. Prove that there exist infinitely many positive integers n such that n2 + 1 has a prime
divisor greater than 2n +

√
2n.

Solution. Let p ≡ 1 (mod 8) be a prime. The congruence x2 ≡ −1 (mod p) has two solutions
in [1, p−1] whose sum is p. If n is the smaller one of them then p divides n2+1 and n ≤ (p−1)/2.
We show that p > 2n +

√
10n.

Let n = (p− 1)/2− ℓ where ℓ ≥ 0. Then n2 ≡ −1 (mod p) gives

(
p− 1

2
− ℓ

)2

≡ −1 (mod p) or (2ℓ + 1)2 + 4 ≡ 0 (mod p).

Thus (2ℓ+1)2 +4 = rp for some r ≥ 0. As (2ℓ+1)2 ≡ 1 ≡ p (mod 8), we have r ≡ 5 (mod 8),
so that r ≥ 5. Hence (2ℓ + 1)2 + 4 ≥ 5p, implying ℓ ≥

(√
5p− 4− 1

)
/2. Set

√
5p− 4 = u for

clarity; then ℓ ≥ (u− 1)/2. Therefore

n =
p− 1

2
− ℓ ≤ 1

2

(
p− u

)
.

Combined with p = (u2 + 4)/5, this leads to u2 − 5u− 10n + 4 ≥ 0. Solving this quadratic
inequality with respect to u ≥ 0 gives u ≥

(
5 +

√
40n + 9

)
/2. So the estimate n ≤

(
p − u

)
/2

leads to

p ≥ 2n + u ≥ 2n +
1

2

(
5 +

√
40n + 9

)
> 2n +

√
10n.

Since there are infinitely many primes of the form 8k + 1, it follows easily that there are
also infinitely many n with the stated property.

Comment. By considering the prime factorization of the product

N∏

n=1

(n2 +1), it can be obtained that

its greatest prime divisor is at least cN log N . This could improve the statement as p > n log n.
However, the proof applies some advanced information about the distribution of the primes of the

form 4k + 1, which is inappropriate for high schools contests.
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Algebra Problem Shortlist 50th IMO 2009

Algebra
A1 CZE (Czech Republic)

Find the largest possible integer k, such that the following statement is true:

Let 2009 arbitrary non-degenerated triangles be given. In every triangle the three sides are
colored, such that one is blue, one is red and one is white. Now, for every color separately, let
us sort the lengths of the sides. We obtain

b1 ≤ b2 ≤ . . . ≤ b2009 the lengths of the blue sides,

r1 ≤ r2 ≤ . . . ≤ r2009 the lengths of the red sides,

and w1 ≤ w2≤ . . . ≤ w2009 the lengths of the white sides.

Then there exist k indices j such that we can form a non-degenerated triangle with side lengths
bj, rj, wj.

A2 EST (Estonia)

Let a, b, c be positive real numbers such that
1

a
+

1

b
+

1

c
= a+ b+ c. Prove that

1

(2a+ b+ c)2
+

1

(2b+ c+ a)2
+

1

(2c+ a+ b)2
≤ 3

16
.

A3 FRA (France)

Determine all functions f from the set of positive integers into the set of positive integers such
that for all x and y there exists a non degenerated triangle with sides of lengths

x, f(y) and f(y + f(x)− 1).

A4 BLR (Belarus)

Let a, b, c be positive real numbers such that ab+ bc+ ca ≤ 3abc. Prove that

√

a2 + b2

a+ b
+

√

b2 + c2

b+ c
+

√

c2 + a2

c+ a
+ 3 ≤

√
2
(√

a+ b+
√
b+ c+

√
c+ a

)

.

A5 BLR (Belarus)

Let f be any function that maps the set of real numbers into the set of real numbers. Prove
that there exist real numbers x and y such that

f (x− f(y)) > yf(x) + x.

4



50th IMO 2009 Problem Shortlist Algebra

A6 USA (United States of America)

Suppose that s1, s2, s3, . . . is a strictly increasing sequence of positive integers such that the
subsequences

ss1 , ss2 , ss3 , . . . and ss1+1, ss2+1, ss3+1, . . .

are both arithmetic progressions. Prove that s1, s2, s3, . . . is itself an arithmetic progression.

A7 JPN (Japan)

Find all functions f from the set of real numbers into the set of real numbers which satisfy for
all real x, y the identity

f(xf(x+ y)) = f(yf(x)) + x2.

5



Combinatorics Problem Shortlist 50th IMO 2009

Combinatorics
C1 NZL (New Zealand)

Consider 2009 cards, each having one gold side and one black side, lying in parallel on a long
table. Initially all cards show their gold sides. Two players, standing by the same long side of
the table, play a game with alternating moves. Each move consists of choosing a block of 50
consecutive cards, the leftmost of which is showing gold, and turning them all over, so those
which showed gold now show black and vice versa. The last player who can make a legal move
wins.

(a) Does the game necessarily end?

(b) Does there exist a winning strategy for the starting player?

C2 ROU (Romania)

For any integer n ≥ 2, let N(n) be the maximal number of triples (ai, bi, ci), i = 1, . . . , N(n),
consisting of nonnegative integers ai, bi and ci such that the following two conditions are satis-
fied:

(1) ai + bi + ci = n for all i = 1, . . . , N(n),

(2) If i 6= j, then ai 6= aj, bi 6= bj and ci 6= cj.

Determine N(n) for all n ≥ 2.

Comment. The original problem was formulated form-tuples instead for triples. The numbers
N(m,n) are then defined similarly to N(n) in the case m = 3. The numbers N(3, n) and
N(n, n) should be determined. The case m = 3 is the same as in the present problem. The
upper bound for N(n, n) can be proved by a simple generalization. The construction of a set
of triples attaining the bound can be easily done by induction from n to n+ 2.

C3 RUS (Russian Federation)

Let n be a positive integer. Given a sequence ε1, . . . , εn−1 with εi = 0 or εi = 1 for each
i = 1, . . . , n− 1, the sequences a0, . . . , an and b0, . . . , bn are constructed by the following rules:

a0 = b0 = 1, a1 = b1 = 7,

ai+1 =

{

2ai−1 + 3ai, if εi = 0,

3ai−1 + ai, if εi = 1,
for each i = 1, . . . , n− 1,

bi+1 =

{

2bi−1 + 3bi, if εn−i = 0,

3bi−1 + bi, if εn−i = 1,
for each i = 1, . . . , n− 1.

Prove that an = bn.

C4 NLD (Netherlands)

For an integer m ≥ 1, we consider partitions of a 2m× 2m chessboard into rectangles consisting
of cells of the chessboard, in which each of the 2m cells along one diagonal forms a separate
rectangle of side length 1. Determine the smallest possible sum of rectangle perimeters in such
a partition.

6
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C5 NLD (Netherlands)

Five identical empty buckets of 2-liter capacity stand at the vertices of a regular pentagon.
Cinderella and her wicked Stepmother go through a sequence of rounds: At the beginning of
every round, the Stepmother takes one liter of water from the nearby river and distributes it
arbitrarily over the five buckets. Then Cinderella chooses a pair of neighboring buckets, empties
them into the river, and puts them back. Then the next round begins. The Stepmother’s goal
is to make one of these buckets overflow. Cinderella’s goal is to prevent this. Can the wicked
Stepmother enforce a bucket overflow?

C6 BGR (Bulgaria)

On a 999× 999 board a limp rook can move in the following way: From any square it can move
to any of its adjacent squares, i.e. a square having a common side with it, and every move
must be a turn, i.e. the directions of any two consecutive moves must be perpendicular. A non-
intersecting route of the limp rook consists of a sequence of pairwise different squares that the
limp rook can visit in that order by an admissible sequence of moves. Such a non-intersecting
route is called cyclic, if the limp rook can, after reaching the last square of the route, move
directly to the first square of the route and start over.

How many squares does the longest possible cyclic, non-intersecting route of a limp rook
visit?

C7 RUS (Russian Federation)

Variant 1. A grasshopper jumps along the real axis. He starts at point 0 and makes 2009
jumps to the right with lengths 1, 2, . . . , 2009 in an arbitrary order. Let M be a set of 2008
positive integers less than 1005 · 2009. Prove that the grasshopper can arrange his jumps in
such a way that he never lands on a point from M .

Variant 2. Let n be a nonnegative integer. A grasshopper jumps along the real axis. He starts
at point 0 and makes n+ 1 jumps to the right with pairwise different positive integral lengths
a1, a2, . . . , an+1 in an arbitrary order. Let M be a set of n positive integers in the interval (0, s),
where s = a1 + a2 + · · · + an+1. Prove that the grasshopper can arrange his jumps in such a
way that he never lands on a point from M .

C8 AUT (Austria)

For any integer n ≥ 2, we compute the integer h(n) by applying the following procedure to its
decimal representation. Let r be the rightmost digit of n.

(1) If r = 0, then the decimal representation of h(n) results from the decimal representation
of n by removing this rightmost digit 0.

(2) If 1 ≤ r ≤ 9 we split the decimal representation of n into a maximal right part R that
solely consists of digits not less than r and into a left part L that either is empty or ends
with a digit strictly smaller than r. Then the decimal representation of h(n) consists of the
decimal representation of L, followed by two copies of the decimal representation of R− 1.
For instance, for the number n = 17,151,345,543, we will have L = 17,151, R = 345,543
and h(n) = 17,151,345,542,345,542.

Prove that, starting with an arbitrary integer n ≥ 2, iterated application of h produces the
integer 1 after finitely many steps.

7
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Geometry
G1 BEL (Belgium)

Let ABC be a triangle with AB = AC. The angle bisectors of A and B meet the sides BC
and AC in D and E, respectively. Let K be the incenter of triangle ADC. Suppose that
∠BEK = 45◦. Find all possible values of ∠BAC.

G2 RUS (Russian Federation)

Let ABC be a triangle with circumcenter O. The points P and Q are interior points of the
sides CA and AB, respectively. The circle k passes through the midpoints of the segments BP ,
CQ, and PQ. Prove that if the line PQ is tangent to circle k then OP = OQ.

G3 IRN (Islamic Republic of Iran)

Let ABC be a triangle. The incircle of ABC touches the sides AB and AC at the points Z
and Y , respectively. Let G be the point where the lines BY and CZ meet, and let R and S be
points such that the two quadrilaterals BCY R and BCSZ are parallelograms.

Prove that GR = GS.

G4 UNK (United Kingdom)

Given a cyclic quadrilateral ABCD, let the diagonals AC and BD meet at E and the lines AD
and BC meet at F . The midpoints of AB and CD are G and H, respectively. Show that EF
is tangent at E to the circle through the points E, G, and H.

G5 POL (Poland)

Let P be a polygon that is convex and symmetric to some point O. Prove that for some
parallelogram R satisfying P ⊂ R we have

|R|
|P | ≤

√
2

where |R| and |P | denote the area of the sets R and P , respectively.

G6 UKR (Ukraine)

Let the sides AD and BC of the quadrilateral ABCD (such that AB is not parallel to CD)
intersect at point P . Points O1 and O2 are the circumcenters and points H1 and H2 are the
orthocenters of triangles ABP and DCP , respectively. Denote the midpoints of segments
O1H1 and O2H2 by E1 and E2, respectively. Prove that the perpendicular from E1 on CD, the
perpendicular from E2 on AB and the line H1H2 are concurrent.

G7 IRN (Islamic Republic of Iran)

Let ABC be a triangle with incenter I and let X, Y and Z be the incenters of the triangles
BIC, CIA and AIB, respectively. Let the triangle XY Z be equilateral. Prove that ABC is
equilateral too.

8
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G8 BGR (Bulgaria)

Let ABCD be a circumscribed quadrilateral. Let g be a line through A which meets the
segment BC in M and the line CD in N . Denote by I1, I2, and I3 the incenters of △ABM ,
△MNC, and △NDA, respectively. Show that the orthocenter of △I1I2I3 lies on g.

9
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Number Theory
N1 AUS (Australia)

A social club has n members. They have the membership numbers 1, 2, . . . , n, respectively.
From time to time members send presents to other members, including items they have already
received as presents from other members. In order to avoid the embarrassing situation that a
member might receive a present that he or she has sent to other members, the club adds the
following rule to its statutes at one of its annual general meetings:

“A member with membership number a is permitted to send a present to a member with
membership number b if and only if a(b− 1) is a multiple of n.”

Prove that, if each member follows this rule, none will receive a present from another member
that he or she has already sent to other members.

Alternative formulation: Let G be a directed graph with n vertices v1, v2, . . . , vn, such that
there is an edge going from va to vb if and only if a and b are distinct and a(b− 1) is a multiple
of n. Prove that this graph does not contain a directed cycle.

N2 PER (Peru)

A positive integer N is called balanced, if N = 1 or if N can be written as a product of an
even number of not necessarily distinct primes. Given positive integers a and b, consider the
polynomial P defined by P (x) = (x+ a)(x+ b).

(a) Prove that there exist distinct positive integers a and b such that all the numbers P (1), P (2),
. . . , P (50) are balanced.

(b) Prove that if P (n) is balanced for all positive integers n, then a = b.

N3 EST (Estonia)

Let f be a non-constant function from the set of positive integers into the set of positive integers,
such that a− b divides f(a)− f(b) for all distinct positive integers a, b. Prove that there exist
infinitely many primes p such that p divides f(c) for some positive integer c.

N4 PRK (Democratic People’s Republic of Korea)

Find all positive integers n such that there exists a sequence of positive integers a1, a2, . . . , an

satisfying

ak+1 =
a2

k + 1

ak−1 + 1
− 1

for every k with 2 ≤ k ≤ n− 1.

N5 HUN (Hungary)

Let P (x) be a non-constant polynomial with integer coefficients. Prove that there is no function
T from the set of integers into the set of integers such that the number of integers x with
T n(x) = x is equal to P (n) for every n ≥ 1, where T n denotes the n-fold application of T .

10
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N6 TUR (Turkey)

Let k be a positive integer. Show that if there exists a sequence a0, a1, . . . of integers satisfying
the condition

an =
an−1 + nk

n
for all n ≥ 1,

then k − 2 is divisible by 3.

N7 MNG (Mongolia)

Let a and b be distinct integers greater than 1. Prove that there exists a positive integer n such
that (an − 1)(bn − 1) is not a perfect square.

11
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Algebra
A1 CZE (Czech Republic)

Find the largest possible integer k, such that the following statement is true:

Let 2009 arbitrary non-degenerated triangles be given. In every triangle the three sides are
colored, such that one is blue, one is red and one is white. Now, for every color separately, let
us sort the lengths of the sides. We obtain

b1 ≤ b2 ≤ . . . ≤ b2009 the lengths of the blue sides,

r1 ≤ r2 ≤ . . . ≤ r2009 the lengths of the red sides,

and w1 ≤ w2≤ . . . ≤ w2009 the lengths of the white sides.

Then there exist k indices j such that we can form a non-degenerated triangle with side lengths
bj, rj, wj.

Solution. We will prove that the largest possible number k of indices satisfying the given
condition is one.

Firstly we prove that b2009, r2009, w2009 are always lengths of the sides of a triangle. Without
loss of generality we may assume that w2009 ≥ r2009 ≥ b2009. We show that the inequality
b2009 + r2009 > w2009 holds. Evidently, there exists a triangle with side lengths w, b, r for the
white, blue and red side, respectively, such that w2009 = w. By the conditions of the problem
we have b+ r > w, b2009 ≥ b and r2009 ≥ r. From these inequalities it follows

b2009 + r2009 ≥ b+ r > w = w2009.

Secondly we will describe a sequence of triangles for which wj, bj, rj with j < 2009 are not the
lengths of the sides of a triangle. Let us define the sequence ∆j, j = 1, 2, . . . , 2009, of triangles,
where ∆j has

a blue side of length 2j,
a red side of length j for all j ≤ 2008 and 4018 for j = 2009,
and a white side of length j + 1 for all j ≤ 2007, 4018 for j = 2008 and 1 for j = 2009.

Since

(j + 1) + j > 2j ≥ j + 1> j, if j ≤ 2007,

2j + j > 4018 > 2j > j, if j = 2008,

4018 + 1 > 2j = 4018> 1, if j = 2009,

such a sequence of triangles exists. Moreover, wj = j, rj = j and bj = 2j for 1 ≤ j ≤ 2008.
Then

wj + rj = j + j = 2j = bj,

i.e., bj, rj and wj are not the lengths of the sides of a triangle for 1 ≤ j ≤ 2008.

12



50th IMO 2009 Algebra A2

A2 EST (Estonia)

Let a, b, c be positive real numbers such that
1

a
+

1

b
+

1

c
= a+ b+ c. Prove that

1

(2a+ b+ c)2
+

1

(2b+ c+ a)2
+

1

(2c+ a+ b)2
≤ 3

16
.

Solution 1. For positive real numbers x, y, z, from the arithmetic-geometric-mean inequality,

2x+ y + z = (x+ y) + (x+ z) ≥ 2
√

(x+ y)(x+ z),

we obtain

1

(2x+ y + z)2
≤ 1

4(x+ y)(x+ z)
.

Applying this to the left-hand side terms of the inequality to prove, we get

1

(2a+ b+ c)2
+

1

(2b+ c+ a)2
+

1

(2c+ a+ b)2

≤ 1

4(a+ b)(a+ c)
+

1

4(b+ c)(b+ a)
+

1

4(c+ a)(c+ b)

=
(b+ c) + (c+ a) + (a+ b)

4(a+ b)(b+ c)(c+ a)
=

a+ b+ c

2(a+ b)(b+ c)(c+ a)
. (1)

A second application of the inequality of the arithmetic-geometric mean yields

a2b+ a2c+ b2a+ b2c+ c2a+ c2b ≥ 6abc,

or, equivalently,

9(a+ b)(b+ c)(c+ a) ≥ 8(a+ b+ c)(ab+ bc+ ca). (2)

The supposition 1
a

+ 1
b
+ 1

c
= a+ b+ c can be written as

ab+ bc+ ca = abc(a+ b+ c). (3)

Applying the arithmetic-geometric-mean inequality x2y2 + x2z2 ≥ 2x2yz thrice, we get

a2b2 + b2c2 + c2a2 ≥ a2bc+ ab2c+ abc2,

which is equivalent to

(ab+ bc+ ca)2 ≥ 3abc(a+ b+ c). (4)

13



A2 Algebra 50th IMO 2009

Combining (1), (2), (3), and (4), we will finish the proof:

a+ b+ c

2(a+ b)(b+ c)(c+ a)
=

(a+ b+ c)(ab+ bc+ ca)

2(a+ b)(b+ c)(c+ a)
· ab+ bc+ ca

abc(a+ b+ c)
· abc(a+ b+ c)

(ab+ bc+ ca)2

≤ 9

2 · 8 · 1 ·
1

3
=

3

16
.

Solution 2. Equivalently, we prove the homogenized inequality

(a+ b+ c)2

(2a+ b+ c)2
+

(a+ b+ c)2

(a+ 2b+ c)2
+

(a+ b+ c)2

(a+ b+ 2c)2
≤ 3

16
(a+ b+ c)

(
1

a
+

1

b
+

1

c

)

for all positive real numbers a, b, c. Without loss of generality we choose a+ b+ c = 1. Thus,
the problem is equivalent to prove for all a, b, c > 0, fulfilling this condition, the inequality

1

(1 + a)2
+

1

(1 + b)2
+

1

(1 + c)2
≤ 3

16

(
1

a
+

1

b
+

1

c

)

. (5)

Applying Jensen’s inequality to the function f(x) =
x

(1 + x)2
, which is concave for 0 ≤ x ≤ 2

and increasing for 0 ≤ x ≤ 1, we obtain

α
a

(1 + a)2
+ β

b

(1 + b)2
+ γ

c

(1 + c)2
≤ (α+ β + γ)

A

(1 + A)2
, where A =

αa+ βb+ γc

α+ β + γ
.

Choosing α =
1

a
, β =

1

b
, and γ =

1

c
, we can apply the harmonic-arithmetic-mean inequality

A =
3

1
a

+ 1
b
+ 1

c

≤ a+ b+ c

3
=

1

3
< 1.

Finally we prove (5):

1

(1 + a)2
+

1

(1 + b)2
+

1

(1 + c)2
≤

(
1

a
+

1

b
+

1

c

)
A

(1 + A)2

≤
(

1

a
+

1

b
+

1

c

) 1
3

(
1 + 1

3

)2 =
3

16

(
1

a
+

1

b
+

1

c

)

.
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A3 FRA (France)

Determine all functions f from the set of positive integers into the set of positive integers such
that for all x and y there exists a non degenerated triangle with sides of lengths

x, f(y) and f(y + f(x)− 1).

Solution. The identity function f(x) = x is the only solution of the problem.

If f(x) = x for all positive integers x, the given three lengths are x, y = f(y) and z =
f (y + f(x)− 1) = x + y − 1. Because of x ≥ 1, y ≥ 1 we have z ≥ max{x, y} > |x − y| and
z < x + y. From this it follows that a triangle with these side lengths exists and does not
degenerate. We prove in several steps that there is no other solution.

Step 1. We show f(1) = 1.
If we had f(1) = 1+m > 1 we would conclude f(y) = f(y+m) for all y considering the triangle
with the side lengths 1, f(y) and f(y + m). Thus, f would be m-periodic and, consequently,
bounded. Let B be a bound, f(x) ≤ B. If we choose x > 2B we obtain the contradiction
x > 2B ≥ f(y) + f(y + f(x)− 1).

Step 2. For all positive integers z, we have f(f(z)) = z.
Setting x = z and y = 1 this follows immediately from Step 1.

Step 3. For all integers z ≥ 1, we have f(z) ≤ z.
Let us show, that the contrary leads to a contradiction. Assume w + 1 = f(z) > z for some
z. From Step 1 we know that w ≥ z ≥ 2. Let M = max{f(1), f(2), . . . , f(w)} be the largest
value of f for the first w integers. First we show, that no positive integer t exists with

f(t) >
z − 1

w
· t+M, (1)

otherwise we decompose the smallest value t as t = wr+s where r is an integer and 1 ≤ s ≤ w.
Because of the definition of M , we have t > w. Setting x = z and y = t − w we get from the
triangle inequality

z + f(t− w) > f((t− w) + f(z)− 1) = f(t− w + w) = f(t).

Hence,

f(t− w) ≥ f(t)− (z − 1) >
z − 1

w
(t− w) +M,

a contradiction to the minimality of t.

Therefore the inequality (1) fails for all t ≥ 1, we have proven

f(t) ≤ z − 1

w
· t+M, (2)

instead.
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Now, using (2), we finish the proof of Step 3. Because of z ≤ w we have
z − 1

w
< 1 and we can

choose an integer t sufficiently large to fulfill the condition

(
z − 1

w

)2

t+

(
z − 1

w
+ 1

)

M < t.

Applying (2) twice we get

f (f(t)) ≤ z − 1

w
f(t) +M ≤ z − 1

w

(
z − 1

w
t+M

)

+M < t

in contradiction to Step 2, which proves Step 3.

Final step. Thus, following Step 2 and Step 3, we obtain

z = f(f(z)) ≤ f(z) ≤ z

and f(z) = z for all positive integers z is proven.
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A4 BLR (Belarus)

Let a, b, c be positive real numbers such that ab+ bc+ ca ≤ 3abc. Prove that

√

a2 + b2

a+ b
+

√

b2 + c2

b+ c
+

√

c2 + a2

c+ a
+ 3 ≤

√
2
(√

a+ b+
√
b+ c+

√
c+ a

)

.

Solution. Starting with the terms of the right-hand side, the quadratic-arithmetic-mean in-
equality yields

√
2
√
a+ b = 2

√

ab

a+ b

√

1

2

(

2 +
a2 + b2

ab

)

≥ 2

√

ab

a+ b
· 1
2

(

√
2 +

√

a2 + b2

ab

)

=

√

2ab

a+ b
+

√

a2 + b2

a+ b

and, analogously,

√
2
√
b+ c ≥

√

2bc

b+ c
+

√

b2 + c2

b+ c
,

√
2
√
c+ a ≥

√

2ca

c+ a
+

√

c2 + a2

c+ a
.

Applying the inequality between the arithmetic mean and the squared harmonic mean will
finish the proof:

√

2ab

a+ b
+

√

2bc

b+ c
+

√

2ca

c+ a
≥ 3 ·

√

√

√

√

3
√

a+b
2ab

2

+
√

b+c
2bc

2

+
√

c+a
2ca

2
= 3 ·

√

3abc

ab+ bc+ ca
≥ 3.
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A5 BLR (Belarus)

Let f be any function that maps the set of real numbers into the set of real numbers. Prove
that there exist real numbers x and y such that

f (x− f(y)) > yf(x) + x.

Solution 1. Assume that

f(x− f(y)) ≤ yf(x) + x for all real x, y. (1)

Let a = f(0). Setting y = 0 in (1) gives f(x− a) ≤ x for all real x and, equivalently,

f(y) ≤ y + a for all real y. (2)

Setting x = f(y) in (1) yields in view of (2)

a = f(0) ≤ yf(f(y)) + f(y) ≤ yf(f(y)) + y + a.

This implies 0 ≤ y(f(f(y)) + 1) and thus

f(f(y)) ≥ −1 for all y > 0. (3)

From (2) and (3) we obtain −1 ≤ f(f(y)) ≤ f(y) + a for all y > 0, so

f(y) ≥ −a− 1 for all y > 0. (4)

Now we show that
f(x) ≤ 0 for all real x. (5)

Assume the contrary, i.e. there is some x such that f(x) > 0. Take any y such that

y < x− a and y <
−a− x− 1

f(x)
.

Then in view of (2)
x− f(y) ≥ x− (y + a) > 0

and with (1) and (4) we obtain

yf(x) + x ≥ f(x− f(y)) ≥ −a− 1,

whence

y ≥ −a− x− 1

f(x)

contrary to our choice of y. Thereby, we have established (5).

Setting x = 0 in (5) leads to a = f(0) ≤ 0 and (2) then yields

f(x) ≤ x for all real x. (6)

Now choose y such that y > 0 and y > −f(−1) − 1 and set x = f(y) − 1. From (1), (5) and
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(6) we obtain

f(−1) = f(x− f(y)) ≤ yf(x) + x = yf(f(y)− 1) + f(y)− 1 ≤ y(f(y)− 1)− 1 ≤ −y − 1,

i.e. y ≤ −f(−1)− 1, a contradiction to the choice of y.

Solution 2. Assume that

f(x− f(y)) ≤ yf(x) + x for all real x, y. (7)

Let a = f(0). Setting y = 0 in (7) gives f(x− a) ≤ x for all real x and, equivalently,

f(y) ≤ y + a for all real y. (8)

Now we show that
f(z) ≥ 0 for all z ≥ 1. (9)

Let z ≥ 1 be fixed, set b = f(z) and assume that b < 0. Setting x = w + b and y = z in (7)
gives

f(w)− zf(w + b) ≤ w + b for all real w. (10)

Applying (10) to w,w + b, . . . , w + (n− 1)b, where n = 1, 2, . . . , leads to

f(w)− znf(w + nb) = (f(w)− zf(w + b)) + z (f(w + b)− zf(w + 2b))

+ · · · + zn−1 (f(w + (n− 1)b)− zf(w + nb))

≤(w + b) + z(w + 2b) + · · · + zn−1(w + nb).

From (8) we obtain
f(w + nb) ≤ w + nb+ a

and, thus, we have for all positive integers n

f(w) ≤ (1 + z + · · ·+ zn−1 + zn)w + (1 + 2z + · · ·+ nzn−1 + nzn)b+ zna. (11)

With w = 0 we get
a ≤ (1 + 2z + · · ·+ nzn−1 + nzn)b+ azn. (12)

In view of the assumption b < 0 we find some n such that

a > (nb+ a)zn (13)

because the right hand side tends to −∞ as n → ∞. Now (12) and (13) give the desired
contradiction and (9) is established. In addition, we have for z = 1 the strict inequality

f(1) > 0. (14)

Indeed, assume that f(1) = 0. Then setting w = −1 and z = 1 in (11) leads to

f(−1) ≤ −(n+ 1) + a

which is false if n is sufficiently large.

To complete the proof we set t = min{−a,−2/f(1)}. Setting x = 1 and y = t in (7) gives

f(1− f(t)) ≤ tf(1) + 1 ≤ −2 + 1 = −1. (15)
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On the other hand, by (8) and the choice of t we have f(t) ≤ t+ a ≤ 0 and hence 1− f(t) ≥ 1.
The inequality (9) yields

f(1− f(t)) ≥ 0,

which contradicts (15).
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A6 USA (United States of America)

Suppose that s1, s2, s3, . . . is a strictly increasing sequence of positive integers such that the
subsequences

ss1 , ss2 , ss3 , . . . and ss1+1, ss2+1, ss3+1, . . .

are both arithmetic progressions. Prove that s1, s2, s3, . . . is itself an arithmetic progression.

Solution 1. Let D be the common difference of the progression ss1 , ss2 , . . . . Let for n =
1, 2, . . .

dn = sn+1 − sn.

We have to prove that dn is constant. First we show that the numbers dn are bounded. Indeed,
by supposition dn ≥ 1 for all n. Thus, we have for all n

dn = sn+1 − sn ≤ dsn
+ dsn+1 + · · ·+ dsn+1−1 = ssn+1 − ssn

= D.

The boundedness implies that there exist

m = min{dn : n = 1, 2, . . . } and M = max{dn : n = 1, 2, . . . }.

It suffices to show that m = M . Assume that m < M . Choose n such that dn = m. Considering
a telescoping sum of m = dn = sn+1 − sn items not greater than M leads to

D = ssn+1 − ssn
= ssn+m − ssn

= dsn
+ dsn+1 + · · ·+ dsn+m−1 ≤ mM (1)

and equality holds if and only if all items of the sum are equal to M . Now choose n such that
dn = M . In the same way, considering a telescoping sum of M items not less than m we obtain

D = ssn+1 − ssn
= ssn+M − ssn

= dsn
+ dsn+1 + · · ·+ dsn+M−1 ≥Mm (2)

and equality holds if and only if all items of the sum are equal to m. The inequalities (1) and
(2) imply that D = Mm and that

dsn
= dsn+1 = · · · = dsn+1−1 = M if dn = m,

dsn
= dsn+1 = · · · = dsn+1−1 = m if dn = M.

Hence, dn = m implies dsn
= M . Note that sn ≥ s1 +(n−1) ≥ n for all n and moreover sn > n

if dn = n, because in the case sn = n we would have m = dn = dsn
= M in contradiction to

the assumption m < M . In the same way dn = M implies dsn
= m and sn > n. Consequently,

there is a strictly increasing sequence n1, n2, . . . such that

dsn1
= M, dsn2

= m, dsn3
= M, dsn4

= m, . . . .

The sequence ds1 , ds2 , . . . is the sequence of pairwise differences of ss1+1, ss2+1, . . . and ss1 , ss2 , . . . ,
hence also an arithmetic progression. Thus m = M .
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Solution 2. Let the integersD and E be the common differences of the progressions ss1 , ss2 , . . .
and ss1+1, ss2+1, . . . , respectively. Let briefly A = ss1 − D and B = ss1+1 − E. Then, for all
positive integers n,

ssn
= A+ nD, ssn+1 = B + nE.

Since the sequence s1, s2, . . . is strictly increasing, we have for all positive integers n

ssn
< ssn+1 ≤ ssn+1 ,

which implies
A+ nD < B + nE ≤ A+ (n+ 1)D,

and thereby
0 < B − A+ n(E −D) ≤ D,

which implies D − E = 0 and thus

0 ≤ B − A ≤ D. (3)

Let m = min{sn+1 − sn : n = 1, 2, . . . }. Then

B − A = (ss1+1 − E)− (ss1 −D) = ss1+1 − ss1 ≥ m (4)

and
D = A+ (s1 + 1)D − (A+ s1D) = sss1+1 − sss1

= sB+D − sA+D ≥ m(B − A). (5)

From (3) we consider two cases.

Case 1. B − A = D.
Then, for each positive integer n, ssn+1 = B+nD = A+(n+1)D = ssn+1 , hence sn+1 = sn +1
and s1, s2, . . . is an arithmetic progression with common difference 1.

Case 2. B − A < D. Choose some positive integer N such that sN+1 − sN = m. Then

m(A−B +D − 1) = m((A+ (N + 1)D)− (B +ND + 1))

≤ sA+(N+1)D − sB+ND+1 = sssN+1
− sssN +1+1

= (A+ sN+1D)− (B + (sN + 1)D) = (sN+1 − sN)D + A−B −D

= mD + A−B −D,

i.e.,
(B − A−m) + (D −m(B − A)) ≤ 0. (6)

The inequalities (4)-(6) imply that

B − A = m and D = m(B − A).

Assume that there is some positive integer n such that sn+1 > sn +m. Then

m(m+1) ≤ m(sn+1− sn) ≤ ssn+1 − ssn
= (A+(n+1)D)− (A+nD)) = D = m(B−A) = m2,

a contradiction. Hence s1, s2, . . . is an arithmetic progression with common difference m.
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A7 JPN (Japan)

Find all functions f from the set of real numbers into the set of real numbers which satisfy for
all real x, y the identity

f(xf(x+ y)) = f(yf(x)) + x2.

Solution 1. It is no hard to see that the two functions given by f(x) = x and f(x) = −x for
all real x respectively solve the functional equation. In the sequel, we prove that there are no
further solutions.
Let f be a function satisfying the given equation. It is clear that f cannot be a constant. Let us
first show that f(0) = 0. Suppose that f(0) 6= 0. For any real t, substituting (x, y) = (0, t

f(0)
)

into the given functional equation, we obtain

f(0) = f(t), (1)

contradicting the fact that f is not a constant function. Therefore, f(0) = 0. Next for any t,
substituting (x, y) = (t, 0) and (x, y) = (t,−t) into the given equation, we get

f (tf(t)) = f(0) + t2 = t2,

and
f(tf(0)) = f(−tf(t)) + t2,

respectively. Therefore, we conclude that

f(tf(t)) = t2, f(−tf(t)) = −t2, for every real t. (2)

Consequently, for every real v, there exists a real u, such that f(u) = v. We also see that if
f(t) = 0, then 0 = f(tf(t)) = t2 so that t = 0, and thus 0 is the only real number satisfying
f(t) = 0.
We next show that for any real number s,

f(−s) = −f(s). (3)

This is clear if f(s) = 0. Suppose now f(s) < 0, then we can find a number t for which
f(s) = −t2. As t 6= 0 implies f(t) 6= 0, we can also find number a such that af(t) = s.
Substituting (x, y) = (t, a) into the given equation, we get

f(tf(t+ a)) = f(af(t)) + t2 = f(s) + t2 = 0,

and therefore, tf(t + a) = 0, which implies t + a = 0, and hence s = −tf(t). Consequently,
f(−s) = f(tf(t)) = t2 = −(−t2) = −f(s) holds in this case.
Finally, suppose f(s) > 0 holds. Then there exists a real number t 6= 0 for which f(s) = t2.
Choose a number a such that tf(a) = s. Substituting (x, y) = (t, a− t) into the given equation,
we get f(s) = f(tf(a)) = f((a−t)f(t))+t2 = f((a−t)f(t))+f(s). So we have f((a−t)f(t)) = 0,
from which we conclude that (a − t)f(t) = 0. Since f(t) 6= 0, we get a = t so that s = tf(t)
and thus we see f(−s) = f(−tf(t)) = −t2 = −f(s) holds in this case also. This observation
finishes the proof of (3).
By substituting (x, y) = (s, t), (x, y) = (t,−s−t) and (x, y) = (−s−t, s) into the given equation,
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we obtain

f(sf(s+ t))) = f(tf(s)) + s2,

f(tf(−s)) = f((−s− t)f(t)) + t2,

and
f((−s− t)f(−t)) = f(sf(−s− t)) + (s+ t)2,

respectively. Using the fact that f(−x) = −f(x) holds for all x to rewrite the second and the
third equation, and rearranging the terms, we obtain

f(tf(s))− f(sf(s+ t)) = −s2,

f(tf(s))− f((s+ t)f(t)) = −t2,
f((s+ t)f(t)) + f(sf(s+ t)) = (s+ t)2.

Adding up these three equations now yields 2f(tf(s)) = 2ts, and therefore, we conclude that
f(tf(s)) = ts holds for every pair of real numbers s, t. By fixing s so that f(s) = 1, we obtain
f(x) = sx. In view of the given equation, we see that s = ±1. It is easy to check that both
functions f(x) = x and f(x) = −x satisfy the given functional equation, so these are the desired
solutions.

Solution 2. As in Solution 1 we obtain (1), (2) and (3).

Now we prove that f is injective. For this purpose, let us assume that f(r) = f(s) for some
r 6= s. Then, by (2)

r2 = f(rf(r)) = f(rf(s)) = f((s− r)f(r)) + r2,

where the last statement follows from the given functional equation with x = r and y = s− r.
Hence, h = (s− r)f(r) satisfies f(h) = 0 which implies h2 = f(hf(h)) = f(0) = 0, i.e., h = 0.
Then, by s 6= r we have f(r) = 0 which implies r = 0, and finally f(s) = f(r) = f(0) = 0.
Analogously, it follows that s = 0 which gives the contradiction r = s.

To prove |f(1)| = 1 we apply (2) with t = 1 and also with t = f(1) and obtain f(f(1)) = 1 and
(f(1))2 = f(f(1) · f(f(1))) = f(f(1)) = 1.

Now we choose η ∈ {−1, 1} with f(1) = η. Using that f is odd and the given equation with
x = 1, y = z (second equality) and with x = −1, y = z + 2 (fourth equality) we obtain

f(z) + 2η = η(f(zη) + 2) = η(f(f(z + 1)) + 1) = η(−f(−f(z + 1)) + 1)

= −ηf((z + 2)f(−1)) = −ηf((z + 2)(−η)) = ηf((z + 2)η) = f(z + 2). (4)

Hence,
f(z + 2η) = ηf(ηz + 2) = η(f(ηz) + 2η) = f(z) + 2.

Using this argument twice we obtain

f(z + 4η) = f(z + 2η) + 2 = f(z) + 4.

Substituting z = 2f(x) we have

f(2f(x)) + 4 = f(2f(x) + 4η) = f(2f(x+ 2)),
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where the last equality follows from (4). Applying the given functional equation we proceed to

f(2f(x+ 2)) = f(xf(2)) + 4 = f(2ηx) + 4

where the last equality follows again from (4) with z = 0, i.e., f(2) = 2η. Finally, f(2f(x)) =
f(2ηx) and by injectivity of f we get 2f(x) = 2ηx and hence the two solutions.
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Combinatorics
C1 NZL (New Zealand)

Consider 2009 cards, each having one gold side and one black side, lying in parallel on a long
table. Initially all cards show their gold sides. Two players, standing by the same long side of
the table, play a game with alternating moves. Each move consists of choosing a block of 50
consecutive cards, the leftmost of which is showing gold, and turning them all over, so those
which showed gold now show black and vice versa. The last player who can make a legal move
wins.

(a) Does the game necessarily end?

(b) Does there exist a winning strategy for the starting player?

Solution. (a) We interpret a card showing black as the digit 0 and a card showing gold as the
digit 1. Thus each position of the 2009 cards, read from left to right, corresponds bijectively to
a nonnegative integer written in binary notation of 2009 digits, where leading zeros are allowed.
Each move decreases this integer, so the game must end.

(b) We show that there is no winning strategy for the starting player. We label the cards from
right to left by 1, . . . , 2009 and consider the set S of cards with labels 50i, i = 1, 2, . . . , 40. Let
gn be the number of cards from S showing gold after n moves. Obviously, g0 = 40. Moreover,
|gn − gn+1| = 1 as long as the play goes on. Thus, after an odd number of moves, the non-
starting player finds a card from S showing gold and hence can make a move. Consequently,
this player always wins.
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C2 ROU (Romania)

For any integer n ≥ 2, let N(n) be the maximal number of triples (ai, bi, ci), i = 1, . . . , N(n),
consisting of nonnegative integers ai, bi and ci such that the following two conditions are satis-
fied:

(1) ai + bi + ci = n for all i = 1, . . . , N(n),

(2) If i 6= j, then ai 6= aj, bi 6= bj and ci 6= cj.

Determine N(n) for all n ≥ 2.

Comment. The original problem was formulated form-tuples instead for triples. The numbers
N(m,n) are then defined similarly to N(n) in the case m = 3. The numbers N(3, n) and
N(n, n) should be determined. The case m = 3 is the same as in the present problem. The
upper bound for N(n, n) can be proved by a simple generalization. The construction of a set
of triples attaining the bound can be easily done by induction from n to n+ 2.

Solution. Let n ≥ 2 be an integer and let {T1, . . . , TN} be any set of triples of nonnegative
integers satisfying the conditions (1) and (2). Since the a-coordinates are pairwise distinct we
have

N∑

i=1

ai ≥
N∑

i=1

(i− 1) =
N(N − 1)

2
.

Analogously,
N∑

i=1

bi ≥
N(N − 1)

2
and

N∑

i=1

ci ≥
N(N − 1)

2
.

Summing these three inequalities and applying (1) yields

3
N(N − 1)

2
≤

N∑

i=1

ai +
N∑

i=1

bi +
N∑

i=1

ci =
N∑

i=1

(ai + bi + ci) = nN,

hence 3N−1
2
≤ n and, consequently,

N ≤
⌊

2n

3

⌋

+ 1.

By constructing examples, we show that this upper bound can be attained, so N(n) = ⌊2n
3
⌋+1.
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We distinguish the cases n = 3k− 1, n = 3k and n = 3k+1 for k ≥ 1 and present the extremal
examples in form of a table.

n = 3k − 1
⌊

2n
3

⌋
+ 1 = 2k

ai bi ci
0 k + 1 2k − 2
1 k + 2 2k − 4
...

...
...

k − 1 2k 0
k 0 2k − 1

k + 1 1 2k − 3
...

...
...

2k − 1 k − 1 1

n = 3k
⌊

2n
3

⌋
+ 1 = 2k + 1

ai bi ci
0 k 2k
1 k + 1 2k − 2
...

...
...

k 2k 0
k + 1 0 2k − 1
k + 2 1 2k − 3

...
...

...
2k k − 1 1

n = 3k + 1
⌊

2n
3

⌋
+ 1 = 2k + 1

ai bi ci
0 k 2k + 1
1 k + 1 2k − 1
...

...
...

k 2k 1
k + 1 0 2k
k + 2 1 2k − 2

...
...

...
2k k − 1 2

It can be easily seen that the conditions (1) and (2) are satisfied and that we indeed have
⌊2n

3
⌋+ 1 triples in each case.

Comment. A cute combinatorial model is given by an equilateral triangle, partitioned into
n2 congruent equilateral triangles by n− 1 equidistant parallels to each of its three sides. Two
chess-like bishops placed at any two vertices of the small triangles are said to menace one
another if they lie on a same parallel. The problem is to determine the largest number of
bishops that can be placed so that none menaces another. A bishop may be assigned three
coordinates a, b, c, namely the numbers of sides of small triangles they are off each of the sides
of the big triangle. It is readily seen that the sum of these coordinates is always n, therefore
fulfilling the requirements.
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C3 RUS (Russian Federation)

Let n be a positive integer. Given a sequence ε1, . . . , εn−1 with εi = 0 or εi = 1 for each
i = 1, . . . , n− 1, the sequences a0, . . . , an and b0, . . . , bn are constructed by the following rules:

a0 = b0 = 1, a1 = b1 = 7,

ai+1 =

{

2ai−1 + 3ai, if εi = 0,

3ai−1 + ai, if εi = 1,
for each i = 1, . . . , n− 1,

bi+1 =

{

2bi−1 + 3bi, if εn−i = 0,

3bi−1 + bi, if εn−i = 1,
for each i = 1, . . . , n− 1.

Prove that an = bn.

Solution. For a binary word w = σ1 . . . σn of length n and a letter σ ∈ {0, 1} let wσ =
σ1 . . . σnσ and σw = σσ1 . . . σn. Moreover let w = σn . . . σ1 and let ∅ be the empty word (of
length 0 and with ∅ = ∅). Let (u, v) be a pair of two real numbers. For binary words w we
define recursively the numbers (u, v)w as follows:

(u, v)∅ = v, (u, v)0 = 2u+ 3v, (u, v)1 = 3u+ v,

(u, v)wσε =

{

2(u, v)w + 3(u, v)wσ, if ε = 0,

3(u, v)w + (u, v)wσ, if ε = 1.

It easily follows by induction on the length of w that for all real numbers u1, v1, u2, v2, λ1 and
λ2

(λ1u1 + λ2u2, λ1v1 + λ2v2)
w = λ1(u1, v1)

w + λ2(u2, v2)
w (1)

and that for ε ∈ {0, 1}
(u, v)εw = (v, (u, v)ε)w. (2)

Obviously, for n ≥ 1 and w = ε1 . . . εn−1, we have an = (1, 7)w and bn = (1, 7)w. Thus it is
sufficient to prove that

(1, 7)w = (1, 7)w (3)

for each binary word w. We proceed by induction on the length of w. The assertion is obvious
if w has length 0 or 1. Now let wσε be a binary word of length n ≥ 2 and suppose that the
assertion is true for all binary words of length at most n− 1.

Note that (2, 1)σ = 7 = (1, 7)∅ for σ ∈ {0, 1}, (1, 7)0 = 23, and (1, 7)1 = 10.

First let ε = 0. Then in view of the induction hypothesis and the equalities (1) and (2), we
obtain

(1, 7)wσ0 = 2(1, 7)w + 3(1, 7)wσ = 2(1, 7)w + 3(1, 7)σw = 2(2, 1)σw + 3(1, 7)σw

= (7, 23)σw = (1, 7)0σw.
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Now let ε = 1. Analogously, we obtain

(1, 7)wσ1 = 3(1, 7)w + (1, 7)wσ = 3(1, 7)w + (1, 7)σw = 3(2, 1)σw + (1, 7)σw

= (7, 10)σw = (1, 7)1σw.

Thus the induction step is complete, (3) and hence also an = bn are proved.

Comment. The original solution uses the relation

(1, 7)αβw = ((1, 7)w, (1, 7)βw)α, α, β ∈ {0, 1},

which can be proved by induction on the length of w. Then (3) also follows by induction on
the length of w:

(1, 7)αβw = ((1, 7)w, (1, 7)βw)α = ((1, 7)w, (1, 7)wβ)α = (1, 7)wβα.

Here w may be the empty word.
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C4 NLD (Netherlands)

For an integer m ≥ 1, we consider partitions of a 2m× 2m chessboard into rectangles consisting
of cells of the chessboard, in which each of the 2m cells along one diagonal forms a separate
rectangle of side length 1. Determine the smallest possible sum of rectangle perimeters in such
a partition.

Solution 1. For a k×k chessboard, we introduce in a standard way coordinates of the vertices
of the cells and assume that the cell Cij in row i and column j has vertices (i− 1, j − 1), (i−
1, j), (i, j−1), (i, j), where i, j ∈ {1, . . . , k}. Without loss of generality assume that the cells Cii,
i = 1, . . . , k, form a separate rectangle. Then we may consider the boards Bk =

⋃

1≤i<j≤k Cij

below that diagonal and the congruent board B′k =
⋃

1≤j<i≤k Cij above that diagonal separately
because no rectangle can simultaneously cover cells from Bk and B′k. We will show that for
k = 2m the smallest total perimeter of a rectangular partition of Bk is m2m+1. Then the overall
answer to the problem is 2 ·m2m+1 + 4 · 2m = (m+ 1)2m+2.

First we inductively construct for m ≥ 1 a partition of B2m with total perimeter m2m+1. If
m = 0, the boardB2m is empty and the total perimeter is 0. Form ≥ 0, the boardB2m+1 consists
of a 2m × 2m square in the lower right corner with vertices (2m, 2m), (2m, 2m+1), (2m+1, 2m),
(2m+1, 2m+1) to which two boards congruent to B2m are glued along the left and the upper
margin. The square together with the inductive partitions of these two boards yield a partition
with total perimeter 4 · 2m + 2 ·m2m+1 = (m+ 1)2m+2 and the induction step is complete.

Let
Dk = 2k log2 k.

Note that Dk = m2m+1 if k = 2m. Now we show by induction on k that the total perimeter of
a rectangular partition of Bk is at least Dk. The case k = 1 is trivial (see m = 0 from above).
Let the assertion be true for all positive integers less than k. We investigate a fixed rectangular
partition of Bk that attains the minimal total perimeter. Let R be the rectangle that covers the
cell C1k in the lower right corner. Let (i, j) be the upper left corner of R. First we show that
i = j. Assume that i < j. Then the line from (i, j) to (i+ 1, j) or from (i, j) to (i, j − 1) must
belong to the boundary of some rectangle in the partition. Without loss of generality assume
that this is the case for the line from (i, j) to (i+ 1, j).

Case 1. No line from (i, l) to (i + 1, l) where j < l < k belongs to the boundary of some
rectangle of the partition.
Then there is some rectangle R′ of the partition that has with R the common side from (i, j)
to (i, k). If we join these two rectangles to one rectangle we get a partition with smaller total
perimeter, a contradiction.

Case 2. There is some l such that j < l < k and the line from (i, l) to (i+ 1, l) belongs to the
boundary of some rectangle of the partition.
Then we replace the upper side of R by the line (i + 1, j) to (i + 1, k) and for the rectangles
whose lower side belongs to the line from (i, j) to (i, k) we shift the lower side upwards so that
the new lower side belongs to the line from (i + 1, j) to (i + 1, k). In such a way we obtain a
rectangular partition of Bk with smaller total perimeter, a contradiction.

Now the fact that the upper left corner of R has the coordinates (i, i) is established. Conse-
quently, the partition consists of R, of rectangles of a partition of a board congruent to Bi and
of rectangles of a partition of a board congruent to Bk−i. By the induction hypothesis, its total
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perimeter is at least

2(k − i) + 2i+Di +Dk−i ≥ 2k + 2i log2 i+ 2(k − i) log2(k − i). (1)

Since the function f(x) = 2x log2 x is convex for x > 0, Jensen’s inequality immediately shows
that the minimum of the right hand sight of (1) is attained for i = k/2. Hence the total
perimeter of the optimal partition of Bk is at least 2k+ 2k/2 log2 k/2 + 2(k/2) log2(k/2) = Dk.

Solution 2. We start as in Solution 1 and present another proof that m2m+1 is a lower bound
for the total perimeter of a partition of B2m into n rectangles. Let briefly M = 2m. For
1 ≤ i ≤ M , let ri denote the number of rectangles in the partition that cover some cell from
row i and let cj be the number of rectangles that cover some cell from column j. Note that the
total perimeter p of all rectangles in the partition is

p = 2

(

M
∑

i=1

ri +
M
∑

i=1

ci

)

.

No rectangle can simultaneously cover cells from row i and from column i since otherwise it
would also cover the cell Cii. We classify subsets S of rectangles of the partition as follows.
We say that S is of type i, 1 ≤ i ≤M , if S contains all ri rectangles that cover some cell from
row i, but none of the ci rectangles that cover some cell from column i. Altogether there are
2n−ri−ci subsets of type i. Now we show that no subset S can be simultaneously of type i and of
type j if i 6= j. Assume the contrary and let without loss of generality i < j. The cell Cij must
be covered by some rectangle R. The subset S is of type i, hence R is contained in S. S is of
type j, thus R does not belong to S, a contradiction. Since there are 2n subsets of rectangles
of the partition, we infer

2n ≥
M
∑

i=1

2n−ri−ci = 2n

M
∑

i=1

2−(ri+ci). (2)

By applying Jensen’s inequality to the convex function f(x) = 2−x we derive

1

M

M
∑

i=1

2−(ri+ci) ≥ 2−
1
M

∑M
i=1(ri+ci) = 2−

p

2M . (3)

From (2) and (3) we obtain
1 ≥M2−

p

2M

and equivalently
p ≥ m2m+1.
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C5 NLD (Netherlands)

Five identical empty buckets of 2-liter capacity stand at the vertices of a regular pentagon.
Cinderella and her wicked Stepmother go through a sequence of rounds: At the beginning of
every round, the Stepmother takes one liter of water from the nearby river and distributes it
arbitrarily over the five buckets. Then Cinderella chooses a pair of neighboring buckets, empties
them into the river, and puts them back. Then the next round begins. The Stepmother’s goal
is to make one of these buckets overflow. Cinderella’s goal is to prevent this. Can the wicked
Stepmother enforce a bucket overflow?

Solution 1. No, the Stepmother cannot enforce a bucket overflow and Cinderella can keep
playing forever. Throughout we denote the five buckets by B0, B1, B2, B3, and B4, where Bk

is adjacent to bucket Bk−1 and Bk+1 (k = 0, 1, 2, 3, 4) and all indices are taken modulo 5.
Cinderella enforces that the following three conditions are satisfied at the beginning of every
round:

(1) Two adjacent buckets (say B1 and B2) are empty.

(2) The two buckets standing next to these adjacent buckets (here B0 and B3) have total
contents at most 1.

(3) The remaining bucket (here B4) has contents at most 1.

These conditions clearly hold at the beginning of the first round, when all buckets are empty.

Assume that Cinderella manages to maintain them until the beginning of the r-th round (r ≥ 1).
Denote by xk (k = 0, 1, 2, 3, 4) the contents of bucket Bk at the beginning of this round and
by yk the corresponding contents after the Stepmother has distributed her liter of water in this
round.

By the conditions, we can assume x1 = x2 = 0, x0 + x3 ≤ 1 and x4 ≤ 1. Then, since the
Stepmother adds one liter, we conclude y0 +y1 +y2 +y3 ≤ 2. This inequality implies y0 +y2 ≤ 1
or y1 + y3 ≤ 1. For reasons of symmetry, we only consider the second case.

Then Cinderella empties buckets B0 and B4.

At the beginning of the next round B0 and B4 are empty (condition (1) is fulfilled), due to
y1 +y3 ≤ 1 condition (2) is fulfilled and finally since x2 = 0 we also must have y2 ≤ 1 (condition
(3) is fulfilled).

Therefore, Cinderella can indeed manage to maintain the three conditions (1)–(3) also at the
beginning of the (r + 1)-th round. By induction, she thus manages to maintain them at the
beginning of every round. In particular she manages to keep the contents of every single bucket
at most 1 liter. Therefore, the buckets of 2-liter capacity will never overflow.

Solution 2. We prove that Cinderella can maintain the following two conditions and hence
she can prevent the buckets from overflow:

(1′) Every two non-adjacent buckets contain a total of at most 1.

(2′) The total contents of all five buckets is at most 3
2
.

We use the same notations as in the first solution. The two conditions again clearly hold at
the beginning. Assume that Cinderella maintained these two conditions until the beginning of
the r-th round. A pair of non-neighboring buckets (Bi, Bi+2), i = 0, 1, 2, 3, 4 is called critical
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if yi + yi+2 > 1. By condition (2′), after the Stepmother has distributed her water we have
y0 + y1 + y2 + y3 + y4 ≤ 5

2
. Therefore,

(y0 + y2) + (y1 + y3) + (y2 + y4) + (y3 + y0) + (y4 + y1) = 2(y0 + y1 + y2 + y3 + y4) ≤ 5,

and hence there is a pair of non-neighboring buckets which is not critical, say (B0, B2). Now,
if both of the pairs (B3, B0) and (B2, B4) are critical, we must have y1 <

1
2

and Cinderella
can empty the buckets B3 and B4. This clearly leaves no critical pair of buckets and the total
contents of all the buckets is then y1 + (y0 + y2) ≤ 3

2
. Therefore, conditions (1′) and (2′) are

fulfilled.

Now suppose that without loss of generality the pair (B3, B0) is not critical. If in this case
y0 ≤ 1

2
, then one of the inequalities y0 + y1 + y2 ≤ 3

2
and y0 + y3 + y4 ≤ 3

2
must hold. But then

Cinderella can empty B3 and B4 or B1 and B2, respectively and clearly fulfill the conditions.

Finally consider the case y0 >
1
2
. By y0 +y1 +y2 +y3 +y4 ≤ 5

2
, at least one of the pairs (B1, B3)

and (B2, B4) is not critical. Without loss of generality let this be the pair (B1, B3). Since the
pair (B3, B0) is not critical and y0 >

1
2
, we must have y3 ≤ 1

2
. But then, as before, Cinderella

can maintain the two conditions at the beginning of the next round by either emptying B1 and
B2 or B4 and B0.

Comments on GREEDY approaches. A natural approach for Cinderella would be a GREEDY
strategy as for example: Always remove as much water as possible from the system. It is
straightforward to prove that GREEDY can avoid buckets of capacity 5

2
from overflowing: If

before the Stepmothers move one has x0 + x1 + x2 + x3 + x4 ≤ 3
2

then after her move the
inequality Y = y0 + y1 + y2 + y3 + y4 ≤ 5

2
holds. If now Cinderella removes the two adjacent

buckets with maximum total contents she removes at least 2Y
5

and thus the remaining buckets
contain at most 3

5
· Y ≤ 3

2
.

But GREEDY is in general not strong enough to settle this problem as can be seen in the
following example:

• In an initial phase, the Stepmother brings all the buckets (after her move) to contents
of at least 1

2
− 2ǫ, where ǫ is an arbitrary small positive number. This can be done

by always splitting the 1 liter she has to distribute so that all buckets have the same
contents. After her r-th move the total contents of each of the buckets is then cr with
c1 = 1 and cr+1 = 1 + 3

5
· cr and hence cr = 5

2
− 3

2
·
(

3
5

)r−1
. So the contents of each

single bucket indeed approaches 1
2

(from below). In particular, any two adjacent buckets
have total contents strictly less than 1 which enables the Stepmother to always refill the
buckets that Cinderella just emptied and then distribute the remaining water evenly over
all buckets.

• After that phase GREEDY faces a situation like this (1
2
− 2ǫ, 1

2
− 2ǫ, 1

2
− 2ǫ, 1

2
− 2ǫ, 1

2
− 2ǫ)

and leaves a situation of the form (x0, x1, x2, x3, x4) = (1
2
− 2ǫ, 1

2
− 2ǫ, 1

2
− 2ǫ, 0, 0).

• Then the Stepmother can add the amounts (0, 1
4

+ ǫ, ǫ, 3
4
− 2ǫ, 0) to achieve a situation

like this: (y0, y1, y2, y3, y4) = (1
2
− 2ǫ, 3

4
− ǫ, 1

2
− ǫ, 3

4
− 2ǫ, 0).

• Now B1 and B2 are the adjacent buckets with the maximum total contents and thus
GREEDY empties them to yield (x0, x1, x2, x3, x4) = (1

2
− 2ǫ, 0, 0, 3

4
− 2ǫ, 0).

• Then the Stepmother adds (5
8
, 0, 0, 3

8
, 0), which yields (9

8
− 2ǫ, 0, 0, 9

8
− 2ǫ, 0).

• Now GREEDY can only empty one of the two nonempty buckets and in the next step the
Stepmother adds her liter to the other bucket and brings it to 17

8
− 2ǫ, i.e. an overflow.
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A harder variant. Five identical empty buckets of capacity b stand at the vertices of a regular
pentagon. Cinderella and her wicked Stepmother go through a sequence of rounds: At the
beginning of every round, the Stepmother takes one liter of water from the nearby river and
distributes it arbitrarily over the five buckets. Then Cinderella chooses a pair of neighboring
buckets, empties them into the river, and puts them back. Then the next round begins. The
Stepmother’s goal is to make one of these buckets overflow. Cinderella’s goal is to prevent this.
Determine all bucket capacities b for which the Stepmother can enforce a bucket to overflow.

Solution to the harder variant. The answer is b < 2.

The previous proof shows that for all b ≥ 2 the Stepmother cannot enforce overflowing. Now if
b < 2, let R be a positive integer such that b < 2− 21−R. In the first R rounds the Stepmother
now ensures that at least one of the (nonadjacent) buckets B1 and B3 have contents of at
least 1 − 21−r at the beginning of round r (r = 1, 2, . . . , R). This is trivial for r = 1 and if it
holds at the beginning of round r, she can fill the bucket which contains at least 1− 21−r liters
with another 2−r liters and put the rest of her water – 1 − 2−r liters – in the other bucket.
As Cinderella now can remove the water of at most one of the two buckets, the other bucket
carries its contents into the next round.

At the beginning of the R-th round there are 1− 21−R liters in B1 or B3. The Stepmother puts
the entire liter into that bucket and produces an overflow since b < 2− 21−R.
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C6 BGR (Bulgaria)

On a 999× 999 board a limp rook can move in the following way: From any square it can move
to any of its adjacent squares, i.e. a square having a common side with it, and every move
must be a turn, i.e. the directions of any two consecutive moves must be perpendicular. A non-
intersecting route of the limp rook consists of a sequence of pairwise different squares that the
limp rook can visit in that order by an admissible sequence of moves. Such a non-intersecting
route is called cyclic, if the limp rook can, after reaching the last square of the route, move
directly to the first square of the route and start over.

How many squares does the longest possible cyclic, non-intersecting route of a limp rook
visit?

Solution. The answer is 9982 − 4 = 4 · (4992 − 1) squares.

First we show that this number is an upper bound for the number of cells a limp rook can
visit. To do this we color the cells with four colors A, B, C and D in the following way: for
(i, j) ≡ (0, 0) mod 2 use A, for (i, j) ≡ (0, 1) mod 2 use B, for (i, j) ≡ (1, 0) mod 2 use C and
for (i, j) ≡ (1, 1) mod 2 use D. From an A-cell the rook has to move to a B-cell or a C-cell. In
the first case, the order of the colors of the cells visited is given by A,B,D,C,A,B,D,C,A, . . .,
in the second case it is A,C,D,B,A,C,D,B,A, . . .. Since the route is closed it must contain
the same number of cells of each color. There are only 4992 A-cells. In the following we will
show that the rook cannot visit all the A-cells on its route and hence the maximum possible
number of cells in a route is 4 · (4992 − 1).

Assume that the route passes through every single A-cell. Color the A-cells in black and white
in a chessboard manner, i.e. color any two A-cells at distance 2 in different color. Since the
number of A-cells is odd the rook cannot always alternate between visiting black and white
A-cells along its route. Hence there are two A-cells of the same color which are four rook-steps
apart that are visited directly one after the other. Let these two A-cells have row and column
numbers (a, b) and (a+ 2, b+ 2) respectively.

There is up to reflection only one way the rook can take from (a, b) to (a + 2, b + 2). Let this
way be (a, b) → (a, b + 1) → (a + 1, b + 1) → (a + 1, b + 2) → (a + 2, b + 2). Also let without
loss of generality the color of the cell (a, b+1) be B (otherwise change the roles of columns and
rows).

Now consider the A-cell (a, b+2). The only way the rook can pass through it is via (a−1, b+2) →
(a, b + 2) → (a, b + 3) in this order, since according to our assumption after every A-cell the
rook passes through a B-cell. Hence, to connect these two parts of the path, there must be
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a path connecting the cell (a, b + 3) and (a, b) and also a path connecting (a + 2, b + 2) and
(a− 1, b+ 2).

But these four cells are opposite vertices of a convex quadrilateral and the paths are outside of
that quadrilateral and hence they must intersect. This is due to the following fact:

The path from (a, b) to (a, b+ 3) together with the line segment joining these two cells form a
closed loop that has one of the cells (a− 1, b+ 2) and (a+ 2, b+ 2) in its inside and the other
one on the outside. Thus the path between these two points must cross the previous path.

But an intersection is only possible if a cell is visited twice. This is a contradiction.

Hence the number of cells visited is at most 4 · (4992 − 1).

The following picture indicates a recursive construction for all n × n-chessboards with n ≡ 3
mod 4 which clearly yields a path that misses exactly one A-cell (marked with a dot, the center
cell of the 15× 15-chessboard) and hence, in the case of n = 999 crosses exactly 4 · (4992 − 1)
cells.
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C7 RUS (Russian Federation)

Variant 1. A grasshopper jumps along the real axis. He starts at point 0 and makes 2009
jumps to the right with lengths 1, 2, . . . , 2009 in an arbitrary order. Let M be a set of 2008
positive integers less than 1005 · 2009. Prove that the grasshopper can arrange his jumps in
such a way that he never lands on a point from M .

Variant 2. Let n be a nonnegative integer. A grasshopper jumps along the real axis. He starts
at point 0 and makes n+ 1 jumps to the right with pairwise different positive integral lengths
a1, a2, . . . , an+1 in an arbitrary order. Let M be a set of n positive integers in the interval (0, s),
where s = a1 + a2 + · · · + an+1. Prove that the grasshopper can arrange his jumps in such a
way that he never lands on a point from M .

Solution of Variant 1. We construct the set of landing points of the grasshopper.

Case 1. M does not contain numbers divisible by 2009.
We fix the numbers 2009k as landing points, k = 1, 2, . . . , 1005. Consider the open intervals
Ik = (2009(k − 1), 2009k), k = 1, 2, . . . , 1005. We show that we can choose exactly one point
outside of M as a landing point in 1004 of these intervals such that all lengths from 1 to 2009
are realized. Since there remains one interval without a chosen point, the length 2009 indeed
will appear. Each interval has length 2009, hence a new landing point in an interval yields
with a length d also the length 2009− d. Thus it is enough to implement only the lengths from
D = {1, 2, . . . , 1004}. We will do this in a greedy way. Let nk, k = 1, 2, . . . , 1005, be the number
of elements of M that belong to the interval Ik. We order these numbers in a decreasing way,
so let p1, p2, . . . , p1005 be a permutation of {1, 2, . . . , 1005} such that np1 ≥ np2 ≥ · · · ≥ np1005 .
In Ip1 we do not choose a landing point. Assume that landing points have already been chosen
in the intervals Ip2 , . . . , Ipm

and the lengths d2, . . . , dm from D are realized, m = 1, . . . , 1004.
We show that there is some d ∈ D \ {d2, . . . , dm} that can be implemented with a new landing
point in Ipm+1 . Assume the contrary. Then the 1004− (m− 1) other lengths are obstructed by
the npm+1 points of M in Ipm+1 . Each length d can be realized by two landing points, namely
2009(pm+1 − 1) + d and 2009pm+1 − d, hence

npm+1 ≥ 2(1005−m). (1)

Moreover, since |M | = 2008 = n1 + · · ·+ n1005,

2008 ≥ np1 + np2 + · · ·+ npm+1 ≥ (m+ 1)npm+1 . (2)

Consequently, by (1) and (2),

2008 ≥ 2(m+ 1)(1005−m).

The right hand side of the last inequality obviously attains its minimum for m = 1004 and this
minimum value is greater than 2008, a contradiction.

Case 2. M does contain a number µ divisible by 2009.
By the pigeonhole principle there exists some r ∈ {1, . . . , 2008} such that M does not contain
numbers with remainder r modulo 2009. We fix the numbers 2009(k− 1)+ r as landing points,
k = 1, 2, . . . , 1005. Moreover, 1005 · 2009 is a landing point. Consider the open intervals
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Ik = (2009(k − 1) + r, 2009k + r), k = 1, 2, . . . , 1004. Analogously to Case 1, it is enough to
show that we can choose in 1003 of these intervals exactly one landing point outside of M \{µ}
such that each of the lengths of D = {1, 2, . . . , 1004} \ {r} are implemented. Note that r
and 2009 − r are realized by the first and last jump and that choosing µ would realize these
two differences again. Let nk, k = 1, 2, . . . , 1004, be the number of elements of M \ {µ} that
belong to the interval Ik and p1, p2, . . . , p1004 be a permutation of {1, 2, . . . , 1004} such that
np1 ≥ np2 ≥ · · · ≥ np1004 . With the same reasoning as in Case 1 we can verify that a greedy
choice of the landing points in Ip2 , Ip3 , . . . , Ip1004 is possible. We only have to replace (1) by

npm+1 ≥ 2(1004−m)

(D has one element less) and (2) by

2007 ≥ np1 + np2 + · · ·+ npm+1 ≥ (m+ 1)npm+1 .

Comment. The cardinality 2008 of M in the problem is the maximum possible value. For
M = {1, 2, . . . , 2009}, the grasshopper necessarily lands on a point from M .

Solution of Variant 2. First of all we remark that the statement in the problem implies a
strengthening of itself: Instead of |M | = n it is sufficient to suppose that |M ∩ (0, s− a]| ≤ n,
where a = min{a1, a2, . . . , an+1}. This fact will be used in the proof.

We prove the statement by induction on n. The case n = 0 is obvious. Let n > 0 and let the
assertion be true for all nonnegative integers less than n. Moreover let a1, a2, . . . , an+1, s and
M be given as in the problem. Without loss of generality we may assume that an+1 < an <
· · · < a2 < a1. Set

Tk =
k∑

i=1

ai for k = 0, 1, . . . , n+ 1.

Note that 0 = T0 < T1 < · · · < Tn+1 = s. We will make use of the induction hypothesis as
follows:

Claim 1. It suffices to show that for some m ∈ {1, 2, . . . , n + 1} the grasshopper is able to do
at least m jumps without landing on a point of M and, in addition, after these m jumps he
has jumped over at least m points of M .

Proof. Note that m = n+ 1 is impossible by |M | = n. Now set n′ = n−m. Then 0 ≤ n′ < n.
The remaining n′ + 1 jumps can be carried out without landing on one of the remaining at
most n′ forbidden points by the induction hypothesis together with a shift of the origin. This
proves the claim.

An integer k ∈ {1, 2, . . . , n+ 1} is called smooth, if the grasshopper is able to do k jumps with
the lengths a1, a2, . . . , ak in such a way that he never lands on a point of M except for the very
last jump, when he may land on a point of M .

Obviously, 1 is smooth. Thus there is a largest number k∗, such that all the numbers 1, 2, . . . , k∗

are smooth. If k∗ = n+ 1, the proof is complete. In the following let k∗ ≤ n.

Claim 2. We have
Tk∗ ∈M and |M ∩ (0, Tk∗)| ≥ k∗. (3)

Proof. In the case Tk∗ 6∈ M any sequence of jumps that verifies the smoothness of k∗ can be
extended by appending ak∗+1, which is a contradiction to the maximality of k∗. Therefore we
have Tk∗ ∈M . If |M ∩ (0, Tk∗)| < k∗, there exists an l ∈ {1, 2, . . . , k∗} with Tk∗+1−al 6∈M . By
the induction hypothesis with k∗ − 1 instead of n, the grasshopper is able to reach Tk∗+1 − al
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with k∗ jumps of lengths from {a1, a2, . . . , ak∗+1} \ {al} without landing on any point of M .
Therefore k∗+1 is also smooth, which is a contradiction to the maximality of k∗. Thus Claim 2
is proved.

Now, by Claim 2, there exists a smallest integer k ∈ {1, 2, . . . , k∗} with

Tk ∈M and |M ∩ (0, Tk)| ≥ k.

Claim 3. It is sufficient to consider the case

|M ∩ (0, Tk−1]| ≤ k − 1. (4)

Proof. If k = 1, then (4) is clearly satisfied. In the following let k > 1. If Tk−1 ∈ M , then

(4) follows immediately by the minimality of k. If Tk−1 6∈ M , by the smoothness of k − 1, we

obtain a situation as in Claim 1 with m = k − 1 provided that |M ∩ (0, Tk−1]| ≥ k − 1. Hence,

we may even restrict ourselves to |M ∩ (0, Tk−1]| ≤ k − 2 in this case and Claim 3 is proved.

Choose an integer v ≥ 0 with |M ∩ (0, Tk)| = k + v. Let r1 > r2 > · · · > rl be exactly those
indices r from {k + 1, k + 2, . . . , n+ 1} for which Tk + ar 6∈M . Then

n = |M | = |M ∩ (0, Tk)|+ 1 + |M ∩ (Tk, s)| ≥ k + v + 1 + (n+ 1− k − l)

and consequently l ≥ v + 2. Note that

Tk + ar1 − a1 < Tk + ar1 − a2 < · · · < Tk + ar1 − ak < Tk + ar2 − ak < · · · < Tk + arv+2 − ak < Tk

and that this are k + v + 1 numbers from (0, Tk). Therefore we find some r ∈ {k + 1, k +
2, . . . , n+ 1} and some s ∈ {1, 2, . . . , k} with Tk + ar 6∈M and Tk + ar − as 6∈M . Consider the
set of jump lengths B = {a1, a2, . . . , ak, ar} \ {as}. We have

∑

x∈B

x = Tk + ar − as

and
Tk + ar − as −min(B) = Tk − as ≤ Tk−1.

By (4) and the strengthening, mentioned at the very beginning with k − 1 instead of n, the
grasshopper is able to reach Tk + ar − as by k jumps with lengths from B without landing on
any point of M . From there he is able to jump to Tk + ar and therefore we reach a situation as
in Claim 1 with m = k + 1, which completes the proof.

40



50th IMO 2009 Combinatorics C8

C8 AUT (Austria)

For any integer n ≥ 2, we compute the integer h(n) by applying the following procedure to its
decimal representation. Let r be the rightmost digit of n.

(1) If r = 0, then the decimal representation of h(n) results from the decimal representation
of n by removing this rightmost digit 0.

(2) If 1 ≤ r ≤ 9 we split the decimal representation of n into a maximal right part R that
solely consists of digits not less than r and into a left part L that either is empty or ends
with a digit strictly smaller than r. Then the decimal representation of h(n) consists of the
decimal representation of L, followed by two copies of the decimal representation of R− 1.
For instance, for the number n = 17,151,345,543, we will have L = 17,151, R = 345,543
and h(n) = 17,151,345,542,345,542.

Prove that, starting with an arbitrary integer n ≥ 2, iterated application of h produces the
integer 1 after finitely many steps.

Solution 1. We identify integers n ≥ 2 with the digit-strings, briefly strings, of their decimal
representation and extend the definition of h to all non-empty strings with digits from 0 to
9. We recursively define ten functions f0, . . . , f9 that map some strings into integers for k =
9, 8, . . . , 1, 0. The function f9 is only defined on strings x (including the empty string ε) that
entirely consist of nines. If x consists of m nines, then f9(x) = m+ 1, m = 0, 1, . . . . For k ≤ 8,
the domain of fk(x) is the set of all strings consisting only of digits that are ≥ k. We write x
in the form x0kx1kx2k . . . xm−1kxm where the strings xs only consist of digits ≥ k + 1. Note
that some of these strings might equal the empty string ε and that m = 0 is possible, i.e. the
digit k does not appear in x. Then we define

fk(x) =
m∑

s=0

4fk+1(xs).

We will use the following obvious fact:

Fact 1. If x does not contain digits smaller than k, then fi(x) = 4fi+1(x) for all i = 0, . . . , k− 1.
In particular, fi(ε) = 49−i for all i = 0, 1, . . . , 9.

Moreover, by induction on k = 9, 8, . . . , 0 it follows easily:

Fact 2. If the nonempty string x does not contain digits smaller than k, then fi(x) > fi(ε) for
all i = 0, . . . , k.

We will show the essential fact:

Fact 3. f0(n) > f0(h(n)).

Then the empty string will necessarily be reached after a finite number of applications of
h. But starting from a string without leading zeros, ε can only be reached via the strings
1 → 00 → 0 → ε. Hence also the number 1 will appear after a finite number of applications of
h.

Proof of Fact 3. If the last digit r of n is 0, then we write n = x00 . . . 0xm−10ε where the xi do
not contain the digit 0. Then h(n) = x00 . . . 0xm−1 and f0(n)− f0(h(n)) = f0(ε) > 0.

So let the last digit r of n be at least 1. Let L = yk and R = zr be the corresponding left and
right parts where y is some string, k ≤ r − 1 and the string z consists only of digits not less
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than r. Then n = ykzr and h(n) = ykz(r− 1)z(r− 1). Let d(y) be the smallest digit of y. We
consider two cases which do not exclude each other.

Case 1. d(y) ≥ k.
Then

fk(n)− fk(h(n)) = fk(zr)− fk(z(r − 1)z(r − 1)).

In view of Fact 1 this difference is positive if and only if

fr−1(zr)− fr−1(z(r − 1)z(r − 1)) > 0.

We have, using Fact 2,

fr−1(zr) = 4fr(zr) = 4fr(z)+4fr+1(ε) ≥ 4 · 4fr(z) > 4fr(z) + 4fr(z) + 4fr(ε) = fr−1(z(r − 1)z(r − 1)).

Here we use the additional definition f10(ε) = 0 if r = 9. Consequently, fk(n) − fk(h(n)) > 0
and according to Fact 1, f0(n)− f0(h(n)) > 0.

Case 2. d(y) ≤ k.
We prove by induction on d(y) = k, k−1, . . . , 0 that fi(n)−fi(h(n)) > 0 for all i = 0, . . . , d(y).
By Fact 1, it suffices to do so for i = d(y). The initialization d(y) = k was already treated in
Case 1. Let t = d(y) < k. Write y in the form utv where v does not contain digits ≤ t. Then,
in view of the induction hypothesis,

ft(n)− ft(h(n)) = ft(vkzr)− ft(vkz(r − 1)z(r − 1)) = 4ft+1(vkzr) − 4ft+1(vkz(r−1)z(r−1)) > 0.

Thus the inequality fd(y)(n) − fd(y)(h(n)) > 0 is established and from Fact 1 it follows that
f0(n)− f0(h(n)) > 0.

Solution 2. We identify integers n ≥ 2 with the digit-strings, briefly strings, of their decimal
representation and extend the definition of h to all non-empty strings with digits from 0 to
9. Moreover, let us define that the empty string, ε, is being mapped to the empty string. In
the following all functions map the set of strings into the set of strings. For two functions f
and g let g ◦ f be defined by (g ◦ f)(x) = g(f(x)) for all strings x and let, for non-negative
integers n, fn denote the n-fold application of f . For any string x let s(x) be the smallest digit
of x, and for the empty string let s(ε) = ∞. We define nine functions g1, . . . , g9 as follows: Let
k ∈ {1, . . . , 9} and let x be a string. If x = ε then gk(x) = ε. Otherwise, write x in the form
x = yzr where y is either the empty string or ends with a digit smaller than k, s(z) ≥ k and r
is the rightmost digit of x. Then gk(x) = zr.

Lemma 1. We have gk ◦ h = gk ◦ h ◦ gk for all k = 1, . . . , 9.

Proof of Lemma 1. Let x = yzr be as in the definition of gk. If y = ε, then gk(x) = x, whence

gk(h(x)) = gk(h(gk(x)). (1)

So let y 6= ε.

Case 1. z contains a digit smaller than r.
Let z = uav where a < r and s(v) ≥ r. Then

h(x) =

{

yuav if r = 0,

yuav(r − 1)v(r − 1) if r > 0
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and

h(gk(x)) = h(zr) = h(uavr) =

{

uav if r = 0,

uav(r − 1)v(r − 1) if r > 0.

Since y ends with a digit smaller than k, (1) is obviously true.

Case 2. z does not contain a digit smaller than r.
Let y = uv where u is either the empty string or ends with a digit smaller than r and s(v) ≥ r.
We have

h(x) =

{

uvz if r = 0,

uvz(r − 1)vz(r − 1) if r > 0

and

h(gk(x)) = h(zr) =

{

z if r = 0,

z(r − 1)z(r − 1) if r > 0.

Recall that y and hence v ends with a digit smaller than k, but all digits of v are at least r.
Now if r > k, then v = ε, whence the terminal digit of u is smaller than k, which entails

gk(h(x)) = z(r − 1)z(r − 1) = gk(h(gk(x))).

If r ≤ k, then
gk(h(x)) = z(r − 1) = gk(h(gk(x))) ,

so that in both cases (1) is true. Thus Lemma 1 is proved.

Lemma 2. Let k ∈ {1, . . . , 9}, let x be a non-empty string and let n be a positive integer. If
hn(x) = ε then (gk ◦ h)n(x) = ε.

Proof of Lemma 2. We proceed by induction on n. If n = 1 we have

ε = h(x) = gk(h(x)) = (gk ◦ h)(x).

Now consider the step from n − 1 to n where n ≥ 2. Let hn(x) = ε and let y = h(x). Then
hn−1(y) = ε and by the induction hypothesis (gk ◦ h)n−1(y) = ε. In view of Lemma 1,

ε = (gk ◦ h)n−2((gk ◦ h)(y)) = (gk ◦ h)n−2(gk(h(y))

= (gk ◦ h)n−2(gk(h(gk(y))) = (gk ◦ h)n−2(gk(h(gk(h(x)))) = (gk ◦ h)n(x).

Thus the induction step is complete and Lemma 2 is proved.

We say that the non-empty string x terminates if hn(x) = ε for some non-negative integer n.

Lemma 3. Let x = yzr where s(y) ≥ k, s(z) ≥ k, y ends with the digit k and z is possibly
empty. If y and zr terminate then also x terminates.

Proof of Lemma 3. Suppose that y and zr terminate. We proceed by induction on k. Let k = 0.
Obviously, h(yw) = yh(w) for any non-empty string w. Let hn(zr) = ǫ. It follows easily by
induction on m that hm(yzr) = yhm(zr) for m = 1, . . . , n. Consequently, hn(yzr) = y. Since y
terminates, also x = yzr terminates.

Now let the assertion be true for all nonnegative integers less than k and let us prove it for k
where k ≥ 1. It turns out that it is sufficient to prove that ygk(h(zr)) terminates. Indeed:

Case 1. r = 0.
Then h(yzr) = yz = ygk(h(zr)).

Case 2. 0 < r ≤ k.
We have h(zr) = z(r − 1)z(r − 1) and gk(h(zr)) = z(r − 1). Then h(yzr) = yz(r − 1)yz(r −
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1) = ygk(h(zr))ygk(h(zr)) and we may apply the induction hypothesis to see that if ygkh(zr))
terminates, then h(yzr) terminates.

Case 3. r > k.
Then h(yzr) = yh(zr) = ygk(h(zr)).

Note that ygk(h(zr)) has the form yz′r′ where s(z′) ≥ k. By the same arguments it is sufficient
to prove that ygk(h(z

′r′)) = y(gk ◦ h)2(zr) terminates and, by induction, that y(gk ◦ h)m(zr)
terminates for some positive integer m. In view of Lemma 2 there is some m such that (gk ◦
h)m(zr) = ǫ, so x = yzr terminates if y terminates. Thus Lemma 3 is proved.

Now assume that there is some string x that does not terminate. We choose x minimal. If
x ≥ 10, we can write x in the form x = yzr of Lemma 3 and by this lemma x terminates since
y and zr are smaller than x. If x ≤ 9, then h(x) = (x − 1)(x − 1) and h(x) terminates again
by Lemma 3 and the minimal choice of x.

Solution 3. We commence by introducing some terminology. Instead of integers, we will
consider the set S of all strings consisting of the digits 0, 1, . . . , 9, including the empty string
ǫ. If (a1, a2, . . . , an) is a nonempty string, we let ρ(a) = an denote the terminal digit of a and
λ(a) be the string with the last digit removed. We also define λ(ǫ) = ǫ and denote the set of
non-negative integers by N0.

Now let k ∈ {0, 1, 2, . . . , 9} denote any digit. We define a function fk : S −→ S on the set of
strings: First, if the terminal digit of n belongs to {0, 1, . . . , k}, then fk(n) is obtained from n
by deleting this terminal digit, i.e fk(n) = λ(n). Secondly, if the terminal digit of n belongs to
{k+ 1, . . . , 9}, then fk(n) is obtained from n by the process described in the problem. We also
define fk(ǫ) = ǫ. Note that up to the definition for integers n ≤ 1, the function f0 coincides with
the function h in the problem, through interpreting integers as digit strings. The argument will
be roughly as follows. We begin by introducing a straightforward generalization of our claim
about f0. Then it will be easy to see that f9 has all these stronger properties, which means
that is suffices to show for k ∈ {0, 1, . . . , 8} that fk possesses these properties provided that
fk+1 does.

We continue to use k to denote any digit. The operation fk is said to be separating, if the
followings holds: Whenever a is an initial segment of b, there is some N ∈ N0 such that
fN

k (b) = a. The following two notions only apply to the case where fk is indeed separating,
otherwise they remain undefined. For every a ∈ S we denote the least N ∈ N0 for which
fN

k (a) = ǫ occurs by gk(a) (because ǫ is an initial segment of a, such an N exists if fk is
separating). If for every two strings a and b such that a is a terminal segment of b one has
gk(a) ≤ gk(b), we say that fk is coherent. In case that fk is separating and coherent we call the
digit k seductive.

As f9(a) = λ(a) for all a, it is obvious that 9 is seductive. Hence in order to show that 0 is seduc-
tive, which clearly implies the statement of the problem, it suffices to take any k ∈ {0, 1, . . . , 8}
such that k+ 1 is seductive and to prove that k has to be seductive as well. Note that in doing
so, we have the function gk+1 at our disposal. We have to establish two things and we begin with

Step 1. fk is separating.

Before embarking on the proof of this, we record a useful observation which is easily proved by
induction on M .
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Claim 1. For any strings A, B and any positive integer M such that fM−1
k (B) 6= ǫ, we have

fM
k (AkB) = AkfM

k (B).

Now we call a pair (a, b) of strings wicked provided that a is an initial segment of b, but there
is no N ∈ N0 such that fN

k (b) = a. We need to show that there are none, so assume that
there were such pairs. Choose a wicked pair (a, b) for which gk+1(b) attains its minimal possible
value. Obviously b 6= ǫ for any wicked pair (a, b). Let z denote the terminal digit of b. Observe
that a 6= b, which means that a is also an initial segment of λ(b). To facilitate the construction
of the eventual contradiction, we prove

Claim 2. There cannot be an N ∈ N0 such that

fN
k (b) = λ(b).

Proof of Claim 2. For suppose that such an N existed. Because gk+1(λ(b)) < gk+1(b) in view
of the coherency of fk+1, the pair (a, λ(b)) is not wicked. But then there is some N ′ for which
fN ′

k (λ(b)) = a which entails fN+N ′

k (b) = a, contradiction. Hence Claim 2 is proved.

It follows that z ≤ k is impossible, for otherwise N = 1 violated Claim 2.

Also z > k+1 is impossible: Set B = fk(b). Then also fk+1(b) = B, but gk+1(B) < gk+1(b) and
a is an initial segment of B. Thus the pair (a,B) is not wicked. Hence there is some N ∈ N0

with a = fN
k (B), which, however, entails a = fN+1

k (b).

We are left with the case z = k + 1. Let L denote the left part and R = R∗(k + 1) the right
part of b. Then we have symbolically

fk(b) = LR∗kR∗k , f 2
k (b) = LR∗kR∗ and fk+1(b) = LR∗.

Using that R∗ is a terminal segment of LR∗ and the coherency of fk+1, we infer

gk+1(R
∗) ≤ gk+1(LR

∗) < gk+1(b).

Hence the pair (ǫ, R∗) is not wicked, so there is some minimal M ∈ N0 with fM
k (R∗) = ǫ and

by Claim 1 it follows that f 2+M
k (b) = LR∗k. Finally, we infer that λ(b) = LR∗ = fk(LR

∗k) =
f 3+M

k (b), which yields a contradiction to Claim 2.

This final contradiction establishes that fk is indeed separating.

Step 2. fk is coherent.

To prepare the proof of this, we introduce some further pieces of terminology. A nonempty
string (a1, a2, . . . , an) is called a hypostasis, if an < ai for all i = 1, . . . , n − 1. Reading an
arbitrary string a backwards, we easily find a, possibly empty, sequence (A1, A2, . . . , Am) of
hypostases such that ρ(A1) ≤ ρ(A2) ≤ · · · ≤ ρ(Am) and, symbolically, a = A1A2 . . . Am.
The latter sequence is referred to as the decomposition of a. So, for instance, (20, 0, 9) is the
decomposition of 2009 and the string 50 is a hypostasis. Next we explain when we say about
two strings a and b that a is injectible into b. The definition is by induction on the length
of b. Let (B1, B2, . . . , Bn) be the decomposition of b into hypostases. Then a is injectible
into b if for the decomposition (A1, A2, . . . , Am) of a there is a strictly increasing function
H : {1, 2, . . . ,m} −→ {1, 2, . . . , n} satisfying

ρ(Ai) = ρ(BH(i)) for all i = 1, . . . ,m;
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λ(Ai) is injectible into λ(BH(i)) for all i = 1, . . . ,m.

If one can choose H with H(m) = n, then we say that a is strongly injectible into b. Obviously,
if a is a terminal segment of b, then a is strongly injectible into b.

Claim 3. If a and b are two nonempty strings such that a is strongly injectible into b, then λ(a)
is injectible into λ(b).

Proof of Claim 3. Let (B1, B2, . . . , Bn) be the decomposition of b and let (A1, A2, . . . , Am) be
the decomposition of a. Take a function H exemplifying that a is strongly injectible into b.
Let (C1, C2, . . . , Cr) be the decomposition of λ(Am) and let (D1, D2, . . . , Ds) be the decompo-
sition of λ(Bn). Choose a strictly increasing H ′ : {1, 2, . . . , r} −→ {1, 2, . . . s} witnessing that
λ(Am) is injectible into λ(Bn). Clearly, (A1, A2, . . . , Am−1, C1, C2, . . . , Cr) is the decomposition
of λ(a) and (B1, B2, . . . , Bn−1, D1, D2, . . . , Ds) is the decomposition of λ(b). Then the function
H ′′ : {1, 2, . . . ,m+ r−1} −→ {1, 2, . . . , n+ s−1} given by H ′′(i) = H(i) for i = 1, 2, . . . ,m−1
and H ′′(m − 1 + i) = n − 1 + H ′(i) for i = 1, 2, . . . , r exemplifies that λ(a) is injectible into
λ(b), which finishes the proof of the claim.

A pair (a, b) of strings is called aggressive if a is injectible into b and nevertheless gk(a) > gk(b).
Observe that if fk was incoherent, which we shall assume from now on, then such pairs existed.
Now among all aggressive pairs we choose one, say (a, b), for which gk(b) attains its least possible
value. Obviously fk(a) cannot be injectible into fk(b), for otherwise the pair (fk(a), fk(b)) was
aggressive and contradicted our choice of (a, b). Let (A1, A2, . . . , Am) and (B1, B2, . . . , Bn)
be the decompositions of a and b and take a function H : {1, 2, . . . ,m} −→ {1, 2, . . . , n}
exemplifying that a is indeed injectible into b. If we had H(m) < n, then a was also injectible
into the number b′ whose decomposition is (B1, B2, . . . , Bn−1) and by separativity of fk we
obtained gk(b

′) < gk(b), whence the pair (a, b′) was also aggressive, contrary to the minimality
condition imposed on b. Therefore a is strongly injectible into b. In particular, a and b have a
common terminal digit, say z. If we had z ≤ k, then fk(a) = λ(a) and fk(b) = λ(b), so that by
Claim 3, fk(a) was injectible into fk(b), which is a contradiction. Hence, z ≥ k + 1.

Now let r be the minimal element of {1, 2, . . . ,m} for which ρ(Ar) = z. Then the maximal
right part of a consisting of digits ≥ z is equal to Ra, the string whose decomposition is
(Ar, Ar+1, . . . , Am). Then Ra − 1 is a hypostasis and (A1, . . . , Ar−1, Ra − 1, Ra − 1) is the
decomposition of fk(a). Defining s and Rb in a similar fashion with respect to b, we see that
(B1, . . . , Bs−1, Rb − 1, Rb − 1) is the decomposition of fk(b). The definition of injectibility then
easily entails that Ra is strongly injectible into Rb. It follows from Claim 3 that λ(Ra) =
λ(Ra − 1) is injectible into λ(Rb) = λ(Rb − 1), whence the function H ′ : {1, 2, . . . , r + 1} −→
{1, 2, . . . , s+ 1}, given by H ′(i) = H(i) for i = 1, 2, . . . , r− 1, H ′(r) = s and H ′(r + 1) = s+ 1
exemplifies that fk(a) is injectible into fk(b), which yields a contradiction as before.

This shows that aggressive pairs cannot exist, whence fk is indeed coherent, which finishes the
proof of the seductivity of k, whereby the problem is finally solved.
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Geometry
G1 BEL (Belgium)

Let ABC be a triangle with AB = AC. The angle bisectors of A and B meet the sides BC
and AC in D and E, respectively. Let K be the incenter of triangle ADC. Suppose that
∠BEK = 45◦. Find all possible values of ∠BAC.

Solution 1. Answer: ∠BAC = 60◦ or ∠BAC = 90◦ are possible values and the only possible
values.

Let I be the incenter of triangle ABC, then K lies on the line CI. Let F be the point, where
the incircle of triangle ABC touches the side AC; then the segments IF and ID have the same
length and are perpendicular to AC and BC, respectively.

A

B CD

E=F

I

KP

Q

R
S

A

B CD

E

F

I

KP

Q

RS

Figure 1 Figure 2

Let P , Q and R be the points where the incircle of triangle ADC touches the sides AD, DC
and CA, respectively. Since K and I lie on the angle bisector of ∠ACD, the segments ID and
IF are symmetric with respect to the line IC. Hence there is a point S on IF where the incircle
of triangle ADC touches the segment IF . Then segments KP , KQ, KR and KS all have the
same length and are perpendicular to AD, DC, CA and IF , respectively. So – regardless of
the value of ∠BEK – the quadrilateral KRFS is a square and ∠SFK = ∠KFC = 45◦.

Consider the case ∠BAC = 60◦ (see Figure 1). Then triangle ABC is equilateral. Furthermore
we have F = E, hence ∠BEK = ∠IFK = ∠SEK = 45◦. So 60◦ is a possible value for ∠BAC.

Now consider the case ∠BAC = 90◦ (see Figure 2). Then ∠CBA = ∠ACB = 45◦. Fur-
thermore, ∠KIE = 1

2
∠CBA + 1

2
∠ACB = 45◦, ∠AEB = 180◦ − 90◦ − 22.5◦ = 67.5◦ and

∠EIA = ∠BID = 180◦− 90◦− 22.5◦ = 67.5◦. Hence triangle IEA is isosceles and a reflection
of the bisector of ∠IAE takes I to E and K to itself. So triangle IKE is symmetric with
respect to this axis, i.e. ∠KIE = ∠IEK = ∠BEK = 45◦. So 90◦ is a possible value for
∠BAC, too.

If, on the other hand, ∠BEK = 45◦ then ∠BEK = ∠IEK = ∠IFK = 45◦. Then

• either F = E, which makes the angle bisector BI be an altitude, i.e., which makes triangle
ABC isosceles with base AC and hence equilateral and so ∠BAC = 60◦,

• or E lies between F and C, which makes the points K, E, F and I concyclic, so 45◦ =
∠KFC = ∠KFE = ∠KIE = ∠CBI + ∠ICB = 2 · ∠ICB = 90◦ − 1

2
∠BAC, and so

∠BAC = 90◦,
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• or F lies between E and C, then again, K, E, F and I are concyclic, so 45◦ = ∠KFC =
180◦ − ∠KFE = ∠KIE, which yields the same result ∠BAC = 90◦. (However, for
∠BAC = 90◦ E lies, in fact, between F and C, see Figure 2. So this case does not
occur.)

This proves 90◦ and 60◦ to be the only possible values for ∠BAC.

Solution 2. Denote angles at A, B and C as usual by α, β and γ. Since triangle ABC is
isosceles, we have β = γ = 90◦ − α

2
< 90◦, so ∠ECK = 45◦ − α

4
= ∠KCD. Since K is the

incenter of triangle ADC, we have ∠CDK = ∠KDA = 45◦; furthermore ∠DIC = 45◦ + α
4
.

Now, if ∠BEK = 45◦, easy calculations within triangles BCE and KCE yield

∠KEC = 180◦− β

2
− 45◦− β = 135◦− 3

2
β = 3

2
(90◦− β) = 3

4
α,

∠IKE = 3
4
α+ 45◦− α

4
= 45◦+ α

2
.

So in triangles ICE, IKE, IDK and IDC we have (see Figure 3)

IC

IE
=

sin ∠IEC

sin ∠ECI
=

sin(45◦+ 3
4
α)

sin(45◦− α
4
)
,

IE

IK
=

sin ∠EKI

sin ∠IEK
=

sin(45◦+ α
2
)

sin 45◦
,

IK

ID
=

sin ∠KDI

sin ∠IKD
=

sin 45◦

sin(90◦− α
4
)
,

ID

IC
=

sin ∠ICD

sin ∠CDI
=

sin(45◦− α
4
)

sin 90◦
.

A

B CD

E

I

K

α
2

3
α
4

45˚

45˚
α
4

45˚

45˚

45˚
α
4

45˚
α
2

β

Figure 3

Multiplication of these four equations yields

1 =
sin(45◦+ 3

4
α) sin(45◦+ α

2
)

sin(90◦− α
4
)

.

But, since

sin (90◦− α
4
) = cos α

4
= cos

(
(45◦+ 3

4
α)− (45◦+ α

2
)
)

= cos
(
45◦+ 3

4
α
)
cos (45◦+ α

2
) + sin (45◦+ 3

4
α) sin (45◦+ α

2
),

this is equivalent to

sin(45◦+ 3
4
α) sin(45◦+ α

2
) = cos (45◦+ 3

4
α) cos (45◦+ α

2
) + sin (45◦+ 3

4
α) sin (45◦+ α

2
)

and finally
cos (45◦+ 3

4
α) cos (45◦+ α

2
) = 0.
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But this means cos (45◦+ 3
4
α) = 0, hence 45◦ + 3

4
α = 90◦, i.e. α = 60◦ or cos (45◦+ α

2
) = 0,

hence 45◦+ α
2

= 90◦, i.e. α = 90◦. So these values are the only two possible values for α.

On the other hand, both α = 90◦ and α = 60◦ yield ∠BEK = 45◦, this was shown in
Solution 1.
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G2 RUS (Russian Federation)

Let ABC be a triangle with circumcenter O. The points P and Q are interior points of the
sides CA and AB, respectively. The circle k passes through the midpoints of the segments BP ,
CQ, and PQ. Prove that if the line PQ is tangent to circle k then OP = OQ.

Solution 1. Let K, L, M , B′, C ′ be the midpoints of BP , CQ, PQ, CA, and AB, respectively
(see Figure 1). Since CA ‖ LM , we have ∠LMP = ∠QPA. Since k touches the segment PQ
at M , we find ∠LMP = ∠LKM . Thus ∠QPA = ∠LKM . Similarly it follows from AB ‖MK
that ∠PQA = ∠KLM . Therefore, triangles APQ and MKL are similar, hence

AP

AQ
=
MK

ML
=

QB

2
PC
2

=
QB

PC
. (1)

Now (1) is equivalent to AP · PC = AQ ·QB which means that the power of points P and Q
with respect to the circumcircle of △ABC are equal, hence OP = OQ.

A

B

B ′

C

C ′

K

L

M

O

P

Q

k

Figure 1

Comment. The last argument can also be established by the following calculation:

OP 2 −OQ2 = OB′2 +B′P 2 −OC ′2 − C ′Q2

= (OA2 − AB′2) +B′P 2 − (OA2 − AC ′2)− C ′Q2

= (AC ′2 − C ′Q2)− (AB′2 −B′P 2)

= (AC ′ − C ′Q)(AC ′ + C ′Q)− (AB′ −B′P )(AB′ +B′P )

= AQ ·QB − AP · PC.

With (1), we conclude OP 2 −OQ2 = 0, as desired.
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Solution 2. Again, denote by K, L, M the midpoints of segments BP , CQ, and PQ, respec-
tively. Let O, S, T be the circumcenters of triangles ABC, KLM , and APQ, respectively (see
Figure 2). Note thatMK and LM are the midlines in triangles BPQ and CPQ, respectively, so−−→
MK = 1

2

−−→
QB and

−−→
ML = 1

2

−→
PC. Denote by prl(

−→v ) the projection of vector −→v onto line l. Then

prAB(
−→
OT ) = prAB(

−→
OA−−→TA) = 1

2

−→
BA− 1

2

−→
QA = 1

2

−−→
BQ =

−−→
KM and prAB(

−−→
SM) = prMK(

−−→
SM) =

1
2

−−→
KM = 1

2
prAB(

−→
OT ). Analogously we get prCA(

−−→
SM) = 1

2
prCA(

−→
OT ). Since AB and CA are not

parallel, this implies that
−−→
SM = 1

2

−→
OT .

A

B C

K

L

M

O

P

Q

S

T

k

Figure 2

Now, since the circle k touches PQ at M , we get SM ⊥ PQ, hence OT ⊥ PQ. Since T is
equidistant from P and Q, the line OT is a perpendicular bisector of segment PQ, and hence
O is equidistant from P and Q which finishes the proof.
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G3 IRN (Islamic Republic of Iran)

Let ABC be a triangle. The incircle of ABC touches the sides AB and AC at the points Z
and Y , respectively. Let G be the point where the lines BY and CZ meet, and let R and S be
points such that the two quadrilaterals BCY R and BCSZ are parallelograms.

Prove that GR = GS.

Solution 1. Denote by k the incircle and by ka the excircle opposite to A of triangle ABC.
Let k and ka touch the side BC at the points X and T , respectively, let ka touch the lines AB
and AC at the points P and Q, respectively. We use several times the fact that opposing sides
of a parallelogram are of equal length, that points of contact of the excircle and incircle to a
side of a triangle lie symmetric with respect to the midpoint of this side and that segments on
two tangents to a circle defined by the points of contact and their point of intersection have
the same length. So we conclude

ZP = ZB +BP = XB +BT = BX + CX = ZS and

CQ = CT = BX = BZ = CS.

A

B C

G

Ia

P

Q

R
S

TX

Y
Z

k

ka

p

q

xx

y

y

y
z

z

y+z

So for each of the points Z, C, their distances to S equal the length of a tangent segment from
this point to ka. It is well-known, that all points with this property lie on the line ZC, which
is the radical axis of S and ka. Similar arguments yield that BY is the radical axis of R and
ka. So the point of intersection of ZC and BY , which is G by definition, is the radical center
of R, S and ka, from which the claim GR = GS follows immediately.

Solution 2. Denote x = AZ = AY , y = BZ = BX, z = CX = CY , p = ZG, q = GC.
Several lengthy calculations (Menelaos’ theorem in triangle AZC, law of Cosines in triangles
ABC and AZC and Stewart’s theorem in triangle ZCS) give four equations for p, q, cosα
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and GS in terms of x, y, and z that can be resolved for GS. The result is symmetric in y and
z, so GR = GS. More in detail this means:

The line BY intersects the sides of triangle AZC, so Menelaos’ theorem yields p

q
· z

x
· x+y

y
= 1,

hence
p

q
=

xy

yz + zx
. (1)

Since we only want to show that the term for GS is symmetric in y and z, we abbreviate terms
that are symmetric in y and z by capital letters, starting with N = xy+yz+zx. So (1) implies

p

p+ q
=

xy

xy + yz + zx
=
xy

N
and

q

p+ q
=

yz + zx

xy + yz + zx
=
yz + zx

N
. (2)

Now the law of Cosines in triangle ABC yields

cosα =
(x+ y)2 + (x+ z)2 − (y + z)2

2(x+ y)(x+ z)
=

2x2 + 2xy + 2xz − 2yz

2(x+ y)(x+ z)
= 1− 2yz

(x+ y)(x+ z)
.

We use this result to apply the law of Cosines in triangle AZC:

(p+ q)2 = x2 + (x+ z)2 − 2x(x+ z) cosα

= x2 + (x+ z)2 − 2x(x+ z) ·
(

1− 2yz

(x+ y)(x+ z)

)

= z2 +
4xyz

x+ y
. (3)

Now in triangle ZCS the segment GS is a cevian, so with Stewart’s theorem we have
py2 + q(y + z)2 = (p+ q)(GS2 + pq), hence

GS2 =
p

p+ q
· y2 +

q

p+ q
· (y + z)2 − p

p+ q
· q

p+ q
· (p+ q)2.

Replacing the p’s and q’s herein by (2) and (3) yields

GS2 =
xy

N
y2 +

yz + zx

N
(y + z)2 − xy

N
· yz + zx

N
·
(

z2 +
4xyz

x+ y

)

=
xy3

N
+
yz(y + z)2

N
︸ ︷︷ ︸

M1

+
zx(y + z)2

N
− xyz3(x+ y)

N2
− 4x2y2z2

N2
︸ ︷︷ ︸

M2

=
xy3 + zx(y + z)2

N
− xyz3(x+ y)

N2
+M1 −M2

=
x(y3 + y2z + yz2 + z3)

N
︸ ︷︷ ︸

M3

+
xyz2N

N2
− xyz3(x+ y)

N2
+M1 −M2

=
x2y2z2 + xy2z3 + x2yz3 − x2yz3 − xy2z3

N2
+M1 −M2 +M3

=
x2y2z2

N2
+M1 −M2 +M3,

a term that is symmetric in y and z, indeed.

Comment. G is known as Gergonne’s point of △ABC.
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G4 UNK (United Kingdom)

Given a cyclic quadrilateral ABCD, let the diagonals AC and BD meet at E and the lines AD
and BC meet at F . The midpoints of AB and CD are G and H, respectively. Show that EF
is tangent at E to the circle through the points E, G, and H.

Solution 1. It suffices to show that ∠HEF = ∠HGE (see Figure 1), since in circle EGH the
angle over the chord EH at G equals the angle between the tangent at E and EH.

First, ∠BAD = 180◦−∠DCB = ∠FCD. Since triangles FAB and FCD have also a common
interior angle at F , they are similar.

A

B

C

D

E
F

G
H M

X

Y

Figure 1

Denote by T the transformation consisting of a reflection at the bisector of ∠DFC followed
by a dilation with center F and factor of FA

FC
. Then T maps F to F , C to A, D to B, and H

to G. To see this, note that △FCA ∼ △FDB, so FA
FC

= FB
FD

. Moreover, as ∠ADB = ∠ACB,
the image of the line DE under T is parallel to AC (and passes through B) and similarly the
image of CE is parallel to DB and passes through A. Hence E is mapped to the point X which
is the fourth vertex of the parallelogram BEAX. Thus, in particular ∠HEF = ∠FXG.

As G is the midpoint of the diagonal AB of the parallelogram BEAX, it is also the midpoint
of EX. In particular, E, G, X are collinear, and EX = 2 · EG.

Denote by Y the fourth vertex of the parallelogram DECY . By an analogous reasoning as
before, it follows that T maps Y to E, thus E, H, Y are collinear with EY = 2 · EH.
Therefore, by the intercept theorem, HG ‖ XY .

From the construction of T it is clear that the lines FX and FE are symmetric with respect
to the bisector of ∠DFC, as are FY and FE. Thus, F , X, Y are collinear, which together
with HG ‖ XY implies ∠FXE = ∠HGE. This completes the proof.
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Solution 2. We use the following

Lemma (Gauß). Let ABCD be a quadrilateral. Let AB and CD intersect at P , and BC
and DA intersect at Q. Then the midpoints K, L, M of AC, BD, and PQ, respectively, are
collinear.

Proof: Let us consider the points Z that fulfill the equation

(ABZ) + (CDZ) = (BCZ) + (DAZ), (1)

where (RST ) denotes the oriented area of the triangle RST (see Figure 2).

A

B

C

D
K

L

M

P

Q

Figure 2

As (1) is linear in Z, it can either characterize a line, or be contradictory, or be trivially fulfilled
for all Z in the plane. If (1) was fulfilled for all Z, then it would hold for Z = A, Z = B, which
gives (CDA) = (BCA), (CDB) = (DAB), respectively, i.e. the diagonals of ABCD would
bisect each other, thus ABCD would be a parallelogram. This contradicts the hypothesis that
AD and BC intersect. Since E,F,G fulfill (1), it is the equation of a line which completes the
proof of the lemma.

Now consider the parallelograms EAXB and ECYD (see Figure 1). Then G, H are the
midpoints of EX, EY , respectively. Let M be the midpoint of EF . By applying the Lemma to
the (re-entrant) quadrilateral ADBC, it is evident that G, H, and M are collinear. A dilation
by a factor of 2 with center E shows that X, Y , F are collinear. Since AX ‖ DE and BX ‖ CE,
we have pairwise equal interior angles in the quadrilaterals FDEC and FBXA. Since we have
also ∠EBA = ∠DCA = ∠CDY , the quadrilaterals are similar. Thus, ∠FXA = ∠CEF .

Clearly the parallelograms ECYD and EBXA are similar, too, thus ∠EXA = ∠CEY . Con-
sequently, ∠FXE = ∠FXA − ∠EXA = ∠CEF − ∠CEY = ∠Y EF . By the converse of the
tangent-chord angle theorem EF is tangent to the circle XEY . A dilation by a factor of 1

2

completes the proof.
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Solution 3. As in Solution 2, G, H, M are proven to be collinear. It suffices to show that

ME2 = MG ·MH. If p =
−→
OP denotes the vector from circumcenter O to point P , the claim

becomes (
e− f

2

)2

=

(
e + f

2
− a + b

2

)(
e + f

2
− c + d

2

)

,

or equivalently
4 ef − (e + f)(a + b + c + d) + (a + b)(c + d) = 0. (2)

With R as the circumradius of ABCD, we obtain for the powers P(E) and P(F ) of E and F ,
respectively, with respect to the circumcircle

P(E) = (e− a)(e− c) = (e− b)(e− d) = e2 −R2,

P(F ) = (f − a)(f − d) = (f − b)(f − c) = f 2 −R2,

hence

(e− a)(e− c) = e2 −R2, (3)

(e− b)(e− d) = e2 −R2, (4)

(f − a)(f − d) = f 2 −R2, (5)

(f − b)(f − c) = f 2 −R2. (6)

Since F lies on the polar to E with respect to the circumcircle, we have

4 ef = 4R2. (7)

Adding up (3) to (7) yields (2), as desired.
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G5 POL (Poland)

Let P be a polygon that is convex and symmetric to some point O. Prove that for some
parallelogram R satisfying P ⊂ R we have

|R|
|P | ≤

√
2

where |R| and |P | denote the area of the sets R and P , respectively.

Solution 1. We will construct two parallelograms R1 and R3, each of them containing P , and
prove that at least one of the inequalities |R1| ≤

√
2 |P | and |R3| ≤

√
2 |P | holds (see Figure 1).

First we will construct a parallelogram R1 ⊇ P with the property that the midpoints of the
sides of R1 are points of the boundary of P .

Choose two points A and B of P such that the triangle OAB has maximal area. Let a be the
line through A parallel to OB and b the line through B parallel to OA. Let A′, B′, a′ and b′ be
the points or lines, that are symmetric to A, B, a and b, respectively, with respect to O. Now
let R1 be the parallelogram defined by a, b, a′ and b′.

A

A′

BB ′

C

D

O

X

X ′
X

Y

Y ′

a

a ′

b
b ′

a

R1

R2

R3

*

*

Figure 1

Obviously, A and B are located on the boundary of the polygon P , and A, B, A′ and B′ are
midpoints of the sides of R1. We note that P ⊆ R1. Otherwise, there would be a point Z ∈ P
but Z /∈ R1, i.e., one of the lines a, b, a′ or b′ were between O and Z. If it is a, we have
|OZB| > |OAB|, which is contradictory to the choice of A and B. If it is one of the lines b, a′

or b′ almost identical arguments lead to a similar contradiction.

Let R2 be the parallelogram ABA′B′. Since A and B are points of P , segment AB ⊂ P and
so R2 ⊂ R1. Since A, B, A′ and B′ are midpoints of the sides of R1, an easy argument yields

|R1| = 2 · |R2|. (1)

Let R3 be the smallest parallelogram enclosing P defined by lines parallel to AB and BA′.
Obviously R2 ⊂ R3 and every side of R3 contains at least one point of the boundary of P .
Denote by C the intersection point of a and b, by X the intersection point of AB and OC, and
by X ′ the intersection point of XC and the boundary of R3. In a similar way denote by D
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the intersection point of b and a′, by Y the intersection point of A′B and OD, and by Y ′ the
intersection point of Y D and the boundary of R3.

Note that OC = 2 ·OX and OD = 2 ·OY , so there exist real numbers x and y with 1 ≤ x, y ≤ 2
and OX ′ = x · OX and OY ′ = y · OY . Corresponding sides of R3 and R2 are parallel which
yields

|R3| = xy · |R2|. (2)

The side of R3 containing X ′ contains at least one point X∗ of P ; due to the convexity of
P we have AX∗B ⊂ P . Since this side of the parallelogram R3 is parallel to AB we have
|AX∗B| = |AX ′B|, so |OAX ′B| does not exceed the area of P confined to the sector defined
by the rays OB and OA. In a similar way we conclude that |OB′Y ′A′| does not exceed the
area of P confined to the sector defined by the rays OB and OA′. Putting things together we
have |OAX ′B| = x · |OAB|, |OBDA′| = y · |OBA′|. Since |OAB| = |OBA′|, we conclude that
|P | ≥ 2 · |AX ′BY ′A′| = 2 · (x · |OAB|+ y · |OBA′|) = 4 · x+y

2
· |OAB| = x+y

2
·R2; this is in short

x+ y

2
· |R2| ≤ |P |. (3)

Since all numbers concerned are positive, we can combine (1)–(3). Using the arithmetic-
geometric-mean inequality we obtain

|R1| · |R3| = 2 · |R2| · xy · |R2| ≤ 2 · |R2|2
(
x+ y

2

)2

≤ 2 · |P |2.

This implies immediately the desired result |R1| ≤
√

2 · |P | or |R3| ≤
√

2 · |P |.

Solution 2. We construct the parallelograms R1, R2 and R3 in the same way as in Solution
1 and will show that |R1|

|P |
≤
√

2 or |R3|
|P |
≤
√

2.

A

A′

BB ′

R1

R2

R3

a

bc

Figure 2

Recall that affine one-to-one maps of the plane preserve the ratio of areas of subsets of the
plane. On the other hand, every parallelogram can be transformed with an affine map onto
a square. It follows that without loss of generality we may assume that R1 is a square (see
Figure 2).

Then R2, whose vertices are the midpoints of the sides of R1, is a square too, and R3, whose
sides are parallel to the diagonals of R1, is a rectangle.

Let a > 0, b ≥ 0 and c ≥ 0 be the distances introduced in Figure 2. Then |R1| = 2a2 and
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|R3| = (a+ 2b)(a+ 2c).

Points A,A′, B and B′ are in the convex polygon P . Hence the square ABA′B′ is a subset of
P . Moreover, each of the sides of the rectangle R3 contains a point of P , otherwise R3 would
not be minimal. It follows that

|P | ≥ a2 + 2 · ab
2

+ 2 · ac
2

= a(a+ b+ c).

Now assume that both |R1|
|P |

>
√

2 and |R3|
|P |

>
√

2, then

2a2 = |R1| >
√

2 · |P | ≥
√

2 · a(a+ b+ c)

and
(a+ 2b)(a+ 2c) = |R3| >

√
2 · |P | ≥

√
2 · a(a+ b+ c).

All numbers concerned are positive, so after multiplying these inequalities we get

2a2(a+ 2b)(a+ 2c) > 2a2(a+ b+ c)2.

But the arithmetic-geometric-mean inequality implies the contradictory result

2a2(a+ 2b)(a+ 2c) ≤ 2a2

(
(a+ 2b) + (a+ 2c)

2

)2

= 2a2(a+ b+ c)2.

Hence |R1|
|P |
≤
√

2 or |R3|
|P |
≤
√

2, as desired.
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G6 UKR (Ukraine)

Let the sides AD and BC of the quadrilateral ABCD (such that AB is not parallel to CD)
intersect at point P . Points O1 and O2 are the circumcenters and points H1 and H2 are the
orthocenters of triangles ABP and DCP , respectively. Denote the midpoints of segments
O1H1 and O2H2 by E1 and E2, respectively. Prove that the perpendicular from E1 on CD, the
perpendicular from E2 on AB and the line H1H2 are concurrent.

Solution 1. We keep triangle ABP fixed and move the line CD parallel to itself uniformly,
i.e. linearly dependent on a single parameter λ (see Figure 1). Then the points C and D also
move uniformly. Hence, the points O2, H2 and E2 move uniformly, too. Therefore also the
perpendicular from E2 on AB moves uniformly. Obviously, the points O1, H1, E1 and the
perpendicular from E1 on CD do not move at all. Hence, the intersection point S of these
two perpendiculars moves uniformly. Since H1 does not move, while H2 and S move uniformly
along parallel lines (both are perpendicular to CD), it is sufficient to prove their collinearity
for two different positions of CD.

A B

C

D

E1

E2

H1

H2

O1

O2

P

S

Figure 1

Let CD pass through either point A or point B. Note that by hypothesis these two cases
are different. We will consider the case A ∈ CD, i.e. A = D. So we have to show that the
perpendiculars from E1 on AC and from E2 on AB intersect on the altitude AH of triangle
ABC (see Figure 2).
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A=D

A1

B

B1

C

C1

E1

E2
H

H1
H2

O1

O2

P

S

Figure 2

To this end, we consider the midpoints A1, B1, C1 of BC, CA, AB, respectively. As E1 is the
center of Feuerbach’s circle (nine-point circle) of △ABP , we have E1C1 = E1H. Similarly,
E2B1 = E2H. Note further that a point X lies on the perpendicular from E1 on A1C1 if and
only if

XC2
1 −XA2

1 = E1C
2
1 − E1A

2
1.

Similarly, the perpendicular from E2 on A1B1 is characterized by

XA2
1 −XB2

1 = E2A
2
1 − E2B

2
1 .

The line H1H2, which is perpendicular to B1C1 and contains A, is given by

XB2
1 −XC2

1 = AB2
1 − AC2

1 .

The three lines are concurrent if and only if

0 = XC2
1 −XA2

1 +XA2
1 −XB2

1 +XB2
1 −XC2

1

= E1C
2
1 − E1A

2
1 + E2A

2
1 − E2B

2
1 + AB2

1 − AC2
1

= −E1A
2
1 + E2A

2
1 + E1H

2 − E2H
2 + AB2

1 − AC2
1 ,

i.e. it suffices to show that

E1A
2
1 − E2A

2
1 − E1H

2 + E2H
2 =

AC2 − AB2

4
.

We have

AC2 − AB2

4
=
HC2 −HB2

4
=

(HC +HB)(HC −HB)

4
=
HA1 ·BC

2
.

Let F1, F2 be the projections of E1, E2 on BC. Obviously, these are the midpoints of HP1,
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HP2, where P1, P2 are the midpoints of PB and PC respectively. Then

E1A
2
1 − E2A

2
1 − E1H

2 + E2H
2

= F1A
2
1 − F1H

2 − F2A
2
1 + F2H

2

= (F1A1 − F1H)(F1A1 + F1H)− (F2A1 − F2H)(F2A1 + F2H)

= A1H · (A1P1 − A1P2)

=
A1H ·BC

2

=
AC2 − AB2

4
,

which proves the claim.

Solution 2. Let the perpendicular from E1 on CD meet PH1 at X, and the perpendicular
from E2 on AB meet PH2 at Y (see Figure 3). Let ϕ be the intersection angle of AB and CD.
Denote by M , N the midpoints of PH1, PH2 respectively.

A

B

C

D

E1

E2

H1

H2

M

N

P

Q

X

Y

α

β

ϕ

ψ

Figure 3

We will prove now that triangles E1XM and E2Y N have equal angles at E1, E2, and supple-
mentary angles at X, Y .

In the following, angles are understood as oriented, and equalities of angles modulo 180◦.

Let α = ∠H2PD, ψ = ∠DPC, β = ∠CPH1. Then α+ ψ + β = ϕ, ∠E1XH1 = ∠H2Y E2 = ϕ,
thus ∠MXE1 + ∠NY E2 = 180◦.

By considering the Feuerbach circle of△ABP whose center is E1 and which goes through M ,
we have ∠E1MH1 = ψ+ 2β. Analogous considerations with the Feuerbach circle of △DCP
yield ∠H2NE2 = ψ + 2α. Hence indeed ∠XE1M = ϕ− (ψ + 2β) = (ψ + 2α)− ϕ = ∠Y E2N .

It follows now that
XM

ME1

=
Y N

NE2

.

Furthermore, ME1 is half the circumradius of △ABP , while PH1 is the distance of P to the
orthocenter of that triangle, which is twice the circumradius times the cosine of ψ. Together
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with analogous reasoning for △DCP we have

ME1

PH1

=
1

4 cosψ
=
NE2

PH2

.

By multiplication,
XM

PH1

=
Y N

PH2

,

and therefore
PX

XH1

=
H2Y

Y P
.

Let E1X, E2Y meet H1H2 in R, S respectively.

Applying the intercept theorem to the parallels E1X, PH2 and center H1 gives

H2R

RH1

=
PX

XH1

,

while with parallels E2Y , PH1 and center H2 we obtain

H2S

SH1

=
H2Y

Y P
.

Combination of the last three equalities yields that R and S coincide.
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G7 IRN (Islamic Republic of Iran)

Let ABC be a triangle with incenter I and let X, Y and Z be the incenters of the triangles
BIC, CIA and AIB, respectively. Let the triangle XY Z be equilateral. Prove that ABC is
equilateral too.

Solution. AZ, AI and AY divide ∠BAC into four equal angles; denote them by α. In
the same way we have four equal angles β at B and four equal angles γ at C. Obviously
α+ β + γ = 180◦

4
= 45◦; and 0◦ < α, β, γ < 45◦.

A

B C

I

X

YZ

α

β

γ

Easy calculations in various triangles yield ∠BIC = 180◦ − 2β − 2γ = 180◦ − (90◦ − 2α) =
90◦+2α, hence (for X is the incenter of triangle BCI, so IX bisects ∠BIC) we have ∠XIC =
∠BIX = 1

2
∠BIC = 45◦ + α and with similar aguments ∠CIY = ∠Y IA = 45◦ + β and

∠AIZ = ∠ZIB = 45◦ + γ. Furthermore, we have ∠XIY = ∠XIC + ∠CIY = (45◦ + α) +
(45◦+ β) = 135◦− γ, ∠Y IZ = 135◦− α, and ∠ZIX = 135◦− β.

Now we calculate the lengths of IX, IY and IZ in terms of α, β and γ. The perpendicular
from I on CX has length IX · sin ∠CXI = IX · sin (90◦+ β) = IX · cos β. But CI bisects
∠Y CX, so the perpendicular from I on CY has the same length, and we conclude

IX · cos β = IY · cosα.

To make calculations easier we choose a length unit that makes IX = cosα. Then IY = cos β
and with similar arguments IZ = cos γ.

Since XY Z is equilateral we have ZX = ZY . The law of Cosines in triangles XY I, Y ZI yields

ZX2 = ZY 2

=⇒ IZ2 + IX2 − 2 · IZ · IX · cos ∠ZIX = IZ2 + IY 2 − 2 · IZ · IY · cos ∠Y IZ

=⇒ IX2 − IY 2 = 2 · IZ · (IX · cos ∠ZIX − IY · cos ∠Y IZ)

=⇒ cos 2α− cos 2β
︸ ︷︷ ︸

L.H.S.

= 2 · cos γ · (cosα · cos (135◦ − β)− cos β · cos (135◦ − α))
︸ ︷︷ ︸

R.H.S.

.

A transformation of the left-hand side (L.H.S.) yields

L.H.S. = cos 2α ·
(
sin 2β + cos 2β

)
− cos 2β ·

(
sin 2α+ cos 2α

)

= cos 2α · sin 2β − cos 2β · sin 2α
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= (cosα · sin β + cos β · sinα) · (cosα · sin β − cos β · sinα)

= sin (β + α) · sin (β − α) = sin (45◦ − γ) · sin (β − α)

whereas a transformation of the right-hand side (R.H.S.) leads to

R.H.S. = 2 · cos γ · (cosα · (− cos (45◦ + β))− cos β · (− cos (45◦ + α)))

= 2 ·
√

2

2
· cos γ · (cosα · (sin β − cos β) + cos β · (cosα− sinα))

=
√

2 · cos γ · (cosα · sin β − cos β · sinα)

=
√

2 · cos γ · sin (β − α).

Equating L.H.S. and R.H.S. we obtain

sin (45◦ − γ) · sin (β − α) =
√

2 · cos γ · sin (β − α)

=⇒ sin (β − α) ·
(√

2 · cos γ − sin (45◦ − γ)
)

= 0

=⇒ α = β or
√

2 · cos γ = sin (45◦ − γ).

But γ < 45◦; so
√

2 · cos γ > cos γ > cos 45◦ = sin 45◦ > sin(45◦− γ). This leaves α = β.

With similar reasoning we have α = γ, which means triangle ABC must be equilateral.
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G8 BGR (Bulgaria)

Let ABCD be a circumscribed quadrilateral. Let g be a line through A which meets the
segment BC in M and the line CD in N . Denote by I1, I2, and I3 the incenters of △ABM ,
△MNC, and △NDA, respectively. Show that the orthocenter of △I1I2I3 lies on g.

Solution 1. Let k1, k2 and k3 be the incircles of triangles ABM , MNC, and NDA, respec-
tively (see Figure 1). We shall show that the tangent h from C to k1 which is different from
CB is also tangent to k3.

A

B

C

D

H

I1

I2

I3

L1

L3

M

N

X

g
h

k1

k2

k3

Figure 1

To this end, let X denote the point of intersection of g and h. Then ABCX and ABCD are
circumscribed quadrilaterals, whence

CD − CX = (AB + CD)− (AB + CX) = (BC + AD)− (BC + AX) = AD − AX,

i.e.
AX + CD = CX + AD

which in turn reveals that the quadrilateral AXCD is also circumscribed. Thus h touches
indeed the circle k3.

Moreover, we find that ∠I3CI1 = ∠I3CX + ∠XCI1 = 1
2
(∠DCX + ∠XCB) = 1

2
∠DCB =

1
2
(180◦ − ∠MCN) = 180◦ − ∠MI2N = ∠I3I2I1, from which we conclude that C, I1, I2, I3 are

concyclic.

Let now L1 and L3 be the reflection points of C with respect to the lines I2I3 and I1I2 respec-
tively. Since I1I2 is the angle bisector of ∠NMC, it follows that L3 lies on g. By analogous
reasoning, L1 lies on g.

Let H be the orthocenter of △I1I2I3. We have ∠I2L3I1 = ∠I1CI2 = ∠I1I3I2 = 180◦−∠I1HI2,
which entails that the quadrilateral I2HI1L3 is cyclic. Analogously, I3HL1I2 is cyclic.
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Then, working with oriented angles modulo 180◦, we have

∠L3HI2 = ∠L3I1I2 = ∠I2I1C = ∠I2I3C = ∠L1I3I2 = ∠L1HI2,

whence L1, L3, and H are collinear. By L1 6= L3, the claim follows.

Comment. The last part of the argument essentially reproves the following fact: The Simson

line of a point P lying on the circumcircle of a triangle ABC with respect to that triangle bisects
the line segment connecting P with the orthocenter of ABC.

Solution 2. We start by proving that C, I1, I2, and I3 are concyclic.

AB

C

D

I

I1

I2

I3
M

N

Z

g

αβ

γ

δ

Figure 2

To this end, notice first that I2, M , I1 are collinear, as are N , I2, I3 (see Figure 2). Denote by
α, β, γ, δ the internal angles of ABCD. By considerations in triangle CMN , it follows that
∠I3I2I1 = γ

2
. We will show that ∠I3CI1 = γ

2
, too. Denote by I the incenter of ABCD. Clearly,

I1 ∈ BI, I3 ∈ DI, ∠I1AI3 = α
2
.

Using the abbreviation [X, Y Z] for the distance from point X to the line Y Z, we have because
of ∠BAI1 = ∠IAI3 and ∠I1AI = ∠I3AD that

[I1, AB]

[I1, AI]
=

[I3, AI]

[I3, AD]
.

Furthermore, consideration of the angle sums in AIB, BIC, CID and DIA implies ∠AIB +
∠CID = ∠BIC + ∠DIA = 180◦, from which we see

[I1, AI]

[I3, CI]
=
I1I

I3I
=

[I1, CI]

[I3, AI]
.

Because of [I1, AB] = [I1, BC], [I3, AD] = [I3, CD], multiplication yields

[I1, BC]

[I3, CI]
=

[I1, CI]

[I3, CD]
.

By ∠DCI = ∠ICB = γ/2 it follows that ∠I1CB = ∠I3CI which concludes the proof of the
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above statement.

Let the perpendicular from I1 on I2I3 intersect g at Z. Then ∠MI1Z = 90◦ − ∠I3I2I1 =
90◦ − γ/2 = ∠MCI2. Since we have also ∠ZMI1 = ∠I2MC, triangles MZI1 and MI2C are
similar. From this one easily proves that also MI2Z and MCI1 are similar. Because C, I1, I2,
and I3 are concyclic, ∠MZI2 = ∠MI1C = ∠NI3C, thus NI2Z and NCI3 are similar, hence
NCI2 and NI3Z are similar. We conclude ∠ZI3I2 = ∠I2CN = 90◦ − γ/2, hence I1I2 ⊥ ZI3.
This completes the proof.
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Number Theory
N1 AUS (Australia)

A social club has n members. They have the membership numbers 1, 2, . . . , n, respectively.
From time to time members send presents to other members, including items they have already
received as presents from other members. In order to avoid the embarrassing situation that a
member might receive a present that he or she has sent to other members, the club adds the
following rule to its statutes at one of its annual general meetings:

“A member with membership number a is permitted to send a present to a member with
membership number b if and only if a(b− 1) is a multiple of n.”

Prove that, if each member follows this rule, none will receive a present from another member
that he or she has already sent to other members.

Alternative formulation: Let G be a directed graph with n vertices v1, v2, . . . , vn, such that
there is an edge going from va to vb if and only if a and b are distinct and a(b− 1) is a multiple
of n. Prove that this graph does not contain a directed cycle.

Solution 1. Suppose there is an edge from vi to vj. Then i(j − 1) = ij − i = kn for some
integer k, which implies i = ij−kn. If gcd(i, n) = d and gcd(j, n) = e, then e divides ij−kn = i
and thus e also divides d. Hence, if there is an edge from vi to vj, then gcd(j, n)| gcd(i, n).

If there is a cycle in G, say vi1 → vi2 → · · · → vir → vi1 , then we have

gcd(i1, n)| gcd(ir, n)| gcd(ir−1, n)| . . . | gcd(i2, n)| gcd(i1, n),

which implies that all these greatest common divisors must be equal, say be equal to t.

Now we pick any of the ik, without loss of generality let it be i1. Then ir(i1−1) is a multiple of
n and hence also (by dividing by t), i1 − 1 is a multiple of n

t
. Since i1 and i1 − 1 are relatively

prime, also t and n
t

are relatively prime. So, by the Chinese remainder theorem, the value of
i1 is uniquely determined modulo n = t · n

t
by the value of t. But, as i1 was chosen arbitrarily

among the ik, this implies that all the ik have to be equal, a contradiction.

Solution 2. If a, b, c are integers such that ab − a and bc − b are multiples of n, then also
ac − a = a(bc − b) + (ab − a) − (ab − a)c is a multiple of n. This implies that if there is an
edge from va to vb and an edge from vb to vc, then there also must be an edge from va to vc.
Therefore, if there are any cycles at all, the smallest cycle must have length 2. But suppose
the vertices va and vb form such a cycle, i. e., ab− a and ab− b are both multiples of n. Then
a− b is also a multiple of n, which can only happen if a = b, which is impossible.

Solution 3. Suppose there was a cycle vi1 → vi2 → · · · → vir → vi1 . Then i1(i2 − 1)
is a multiple of n, i. e., i1 ≡ i1i2 mod n. Continuing in this manner, we get i1 ≡ i1i2 ≡
i1i2i3 ≡ i1i2i3 . . . ir mod n. But the same holds for all ik, i. e., ik ≡ i1i2i3 . . . ir mod n. Hence
i1 ≡ i2 ≡ · · · ≡ ir mod n, which means i1 = i2 = · · · = ir, a contradiction.
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Solution 4. Let n = k be the smallest value of n for which the corresponding graph has a
cycle. We show that k is a prime power.
If k is not a prime power, it can be written as a product k = de of relatively prime integers
greater than 1. Reducing all the numbers modulo d yields a single vertex or a cycle in the
corresponding graph on d vertices, because if a(b− 1) ≡ 0 mod k then this equation also holds
modulo d. But since the graph on d vertices has no cycles, by the minimality of k, we must
have that all the indices of the cycle are congruent modulo d. The same holds modulo e and
hence also modulo k = de. But then all the indices are equal, which is a contradiction.
Thus k must be a prime power k = pm. There are no edges ending at vk, so vk is not contained
in any cycle. All edges not starting at vk end at a vertex belonging to a non-multiple of p, and
all edges starting at a non-multiple of p must end at v1. But there is no edge starting at v1.
Hence there is no cycle.

Solution 5. Suppose there was a cycle vi1 → vi2 → · · · → vir → vi1 . Let q = pm be a prime
power dividing n. We claim that either i1 ≡ i2 ≡ · · · ≡ ir ≡ 0 mod q or i1 ≡ i2 ≡ · · · ≡ ir ≡
1 mod q.

Suppose that there is an is not divisible by q. Then, as is(is+1 − 1) is a multiple of q, is+1 ≡
1 mod p. Similarly, we conclude is+2 ≡ 1 mod p and so on. So none of the labels is divisible by
p, but since is(is+1 − 1) is a multiple of q = pm for all s, all is+1 are congruent to 1 modulo q.
This proves the claim.

Now, as all the labels are congruent modulo all the prime powers dividing n, they must all be
equal by the Chinese remainder theorem. This is a contradiction.
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N2 PER (Peru)

A positive integer N is called balanced, if N = 1 or if N can be written as a product of an
even number of not necessarily distinct primes. Given positive integers a and b, consider the
polynomial P defined by P (x) = (x+ a)(x+ b).

(a) Prove that there exist distinct positive integers a and b such that all the numbers P (1), P (2),
. . . , P (50) are balanced.

(b) Prove that if P (n) is balanced for all positive integers n, then a = b.

Solution. Define a function f on the set of positive integers by f(n) = 0 if n is balanced and
f(n) = 1 otherwise. Clearly, f(nm) ≡ f(n) + f(m) mod 2 for all positive integers n,m.

(a) Now for each positive integer n consider the binary sequence (f(n+1), f(n+2), . . . , f(n+
50)). As there are only 250 different such sequences there are two different positive integers
a and b such that

(f(a+ 1), f(a+ 2), . . . , f(a+ 50)) = (f(b+ 1), f(b+ 2), . . . , f(b+ 50)).

But this implies that for the polynomial P (x) = (x+a)(x+b) all the numbers P (1), P (2),
. . . , P (50) are balanced, since for all 1 ≤ k ≤ 50 we have f(P (k)) ≡ f(a+k)+f(b+k) ≡
2f(a+ k) ≡ 0 mod 2.

(b) Now suppose P (n) is balanced for all positive integers n and a < b. Set n = k(b− a)− a
for sufficiently large k, such that n is positive. Then P (n) = k(k + 1)(b − a)2, and this
number can only be balanced, if f(k) = f(k + 1) holds. Thus, the sequence f(k) must
become constant for sufficiently large k. But this is not possible, as for every prime p we
have f(p) = 1 and for every square t2 we have f(t2) = 0.

Hence a = b.

Comment. Given a positive integer k, a computer search for the pairs of positive integers
(a, b), for which P (1), P (2), . . . , P (k) are all balanced yields the following results with
minimal sum a+ b and a < b:

k 3 4 5 10 20

(a, b) (2, 4) (6, 11) (8, 14) (20, 34) (1751, 3121)

Therefore, trying to find a and b in part (a) of the problem cannot be done by elementary
calculations.
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N3 EST (Estonia)

Let f be a non-constant function from the set of positive integers into the set of positive integers,
such that a− b divides f(a)− f(b) for all distinct positive integers a, b. Prove that there exist
infinitely many primes p such that p divides f(c) for some positive integer c.

Solution 1. Denote by vp(a) the exponent of the prime p in the prime decomposition of a.

Assume that there are only finitely many primes p1, p2, . . . , pm that divide some function value
produced of f .

There are infinitely many positive integers a such that vpi
(a) > vpi

(f(1)) for all i = 1, 2, . . . ,m,
e.g. a = (p1p2 . . . pm)α with α sufficiently large. Pick any such a. The condition of the problem
then yields a| (f(a+ 1)− f(1)). Assume f(a+ 1) 6= f(1). Then we must have vpi

(f(a+ 1)) 6=
vpi

(f(1)) for at least one i. This yields vpi
(f(a+ 1)− f(1)) = min {vpi

(f(a+ 1)), vpi
(f(1))} ≤

vp1(f(1)) < vpi
(a). But this contradicts the fact that a| (f(a+ 1)− f(1)).

Hence we must have f(a+ 1) = f(1) for all such a.

Now, for any positive integer b and all such a, we have (a + 1 − b)|(f(a + 1) − f(b)), i.e.,
(a+ 1− b)|(f(1)− f(b)). Since this is true for infinitely many positive integers a we must have
f(b) = f(1). Hence f is a constant function, a contradiction. Therefore, our initial assumption
was false and there are indeed infinitely many primes p dividing f(c) for some positive integer
c.

Solution 2. Assume that there are only finitely many primes p1, p2, . . . , pm that divide some
function value of f . Since f is not identically 1, we must have m ≥ 1.

Then there exist non-negative integers α1, . . . , αm such that

f(1) = pα1
1 p

α2
2 . . . pαm

m .

We can pick a positive integer r such that f(r) 6= f(1). Let

M = 1 + pα1+1
1 pα2+1

2 . . . pαm+1
m · (f(r) + r).

Then for all i ∈ {1, . . . ,m} we have that pαi+1
i divides M − 1 and hence by the condition of the

problem also f(M)− f(1). This implies that f(M) is divisible by pαi

i but not by pαi+1
i for all i

and therefore f(M) = f(1).

Hence

M − r > pα1+1
1 pα2+1

2 . . . pαm+1
m · (f(r) + r)− r

≥ pα1+1
1 pα2+1

2 . . . pαm+1
m + (f(r) + r)− r

> pα1
1 p

α2
2 . . . pαm

m + f(r)

≥ |f(M)− f(r)|.

But since M − r divides f(M) − f(r) this can only be true if f(r) = f(M) = f(1), which
contradicts the choice of r.

Comment. In the case that f is a polynomial with integer coefficients the result is well-known,
see e.g. W. Schwarz, Einführung in die Methoden der Primzahltheorie, 1969.
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N4 PRK (Democratic People’s Republic of Korea)

Find all positive integers n such that there exists a sequence of positive integers a1, a2, . . . , an

satisfying

ak+1 =
a2

k + 1

ak−1 + 1
− 1

for every k with 2 ≤ k ≤ n− 1.

Solution 1. Such a sequence exists for n = 1, 2, 3, 4 and no other n. Since the existence of
such a sequence for some n implies the existence of such a sequence for all smaller n, it suffices
to prove that n = 5 is not possible and n = 4 is possible.

Assume first that for n = 5 there exists a sequence of positive integers a1, a2, . . . , a5 satisfying
the conditions

a2
2 + 1 = (a1 + 1)(a3 + 1),

a2
3 + 1 = (a2 + 1)(a4 + 1),

a2
4 + 1 = (a3 + 1)(a5 + 1).

Assume a1 is odd, then a2 has to be odd as well and as then a2
2 + 1 ≡ 2 mod 4, a3 has to be

even. But this is a contradiction, since then the even number a2 + 1 cannot divide the odd
number a2

3 + 1.

Hence a1 is even.

If a2 is odd, a2
3 + 1 is even (as a multiple of a2 + 1) and hence a3 is odd, too. Similarly we must

have a4 odd as well. But then a2
3 + 1 is a product of two even numbers (a2 + 1)(a4 + 1) and

thus is divisible by 4, which is a contradiction as for odd a3 we have a2
3 + 1 ≡ 2 mod 4.

Hence a2 is even. Furthermore a3+1 divides the odd number a2
2+1 and so a3 is even. Similarly,

a4 and a5 are even as well.

Now set x = a2 and y = a3. From the given condition we get (x+1)|(y2+1) and (y+1)|(x2+1).
We will prove that there is no pair of positive even numbers (x, y) satisfying these two conditions,
thus yielding a contradiction to the assumption.

Assume there exists a pair (x0, y0) of positive even numbers satisfying the two conditions
(x0 + 1)|(y2

0 + 1) and (y0 + 1)|(x2
0 + 1).

Then one has (x0 + 1)|(y2
0 + 1 + x2

0− 1), i.e., (x0 + 1)|(x2
0 + y2

0), and similarly (y0 + 1)|(x2
0 + y2

0).
Any common divisor d of x0 + 1 and y0 + 1 must hence also divide the number
(x2

0 + 1) + (y2
0 + 1)− (x2

0 + y2
0) = 2. But as x0 + 1 and y0 + 1 are both odd, we must have d = 1.

Thus x0 + 1 and y0 + 1 are relatively prime and therefore there exists a positive integer k such
that

k(x+ 1)(y + 1) = x2 + y2

has the solution (x0, y0). We will show that the latter equation has no solution (x, y) in positive
even numbers.

Assume there is a solution. Pick the solution (x1, y1) with the smallest sum x1 +y1 and assume
x1 ≥ y1. Then x1 is a solution to the quadratic equation

x2 − k(y1 + 1)x+ y2
1 − k(y1 + 1) = 0.
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Let x2 be the second solution, which by Vieta’s theorem fulfills x1 + x2 = k(y1 + 1) and
x1x2 = y2

1 − k(y1 + 1). If x2 = 0, the second equation implies y2
1 = k(y1 + 1), which is

impossible, as y1 + 1 > 1 cannot divide the relatively prime number y2
1. Therefore x2 6= 0.

Also we get (x1 + 1)(x2 + 1) = x1x2 + x1 + x2 + 1 = y2
1 + 1 which is odd, and hence x2 must

be even and positive. Also we have x2 + 1 =
y2
1+1

x1+1
≤ y2

1+1

y1+1
≤ y1 ≤ x1. But this means that the

pair (x′, y′) with x′ = y1 and y′ = x2 is another solution of k(x + 1)(y + 1) = x2 + y2 in even
positive numbers with x′ + y′ < x1 + y1, a contradiction.

Therefore we must have n ≤ 4.

When n = 4, a possible example of a sequence is a1 = 4, a2 = 33, a3 = 217 and a4 = 1384.

Solution 2. It is easy to check that for n = 4 the sequence a1 = 4, a2 = 33, a3 = 217 and
a4 = 1384 is possible.

Now assume there is a sequence with n ≥ 5. Then we have in particular

a2
2 + 1 = (a1 + 1)(a3 + 1),

a2
3 + 1 = (a2 + 1)(a4 + 1),

a2
4 + 1 = (a3 + 1)(a5 + 1).

Also assume without loss of generality that among all such quintuples (a1, a2, a3, a4, a5) we have
chosen one with minimal a1.

One shows quickly the following fact:

If three positive integers x, y, z fulfill y2 + 1 = (x+ 1)(z + 1) and if y is even, then
x and z are even as well and either x < y < z or z < y < x holds. (1)

Indeed, the first part is obvious and from x < y we conclude

z + 1 =
y2 + 1

x+ 1
≥ y2 + 1

y
> y,

and similarly in the other case.

Now, if a3 was odd, then (a2 + 1)(a4 + 1) = a2
3 + 1 ≡ 2 mod 4 would imply that one of a2 or

a4 is even, this contradicts (1). Thus a3 and hence also a1, a2, a4 and a5 are even. According
to (1), one has a1 < a2 < a3 < a4 < a5 or a1 > a2 > a3 > a4 > a5 but due to the minimality of
a1 the first series of inequalities must hold.

Consider the identity

(a3+1)(a1+a3) = a2
3−1+(a1+1)(a3+1) = a2

2+a2
3 = a2

2−1+(a2+1)(a4+1) = (a2+1)(a2+a4).

Any common divisor of the two odd numbers a2 + 1 and a3 + 1 must also divide (a2 + 1)(a4 +
1)− (a3 + 1)(a3 − 1) = 2, so these numbers are relatively prime. Hence the last identity shows
that a1 + a3 must be a multiple of a2 + 1, i.e. there is an integer k such that

a1 + a3 = k(a2 + 1). (2)

Now set a0 = k(a1 + 1)− a2. This is an integer and we have

(a0 + 1)(a2 + 1) = k(a1 + 1)(a2 + 1)− (a2 − 1)(a2 + 1)

= (a1 + 1)(a1 + a3)− (a1 + 1)(a3 + 1) + 2

= (a1 + 1)(a1 − 1) + 2 = a2
1 + 1.
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Thus a0 ≥ 0. If a0 > 0, then by (1) we would have a0 < a1 < a2 and then the quintuple
(a0, a1, a2, a3, a4) would contradict the minimality of a1.

Hence a0 = 0, implying a2 = a2
1. But also a2 = k(a1 + 1), which finally contradicts the fact

that a1 + 1 > 1 is relatively prime to a2
1 and thus cannot be a divisior of this number.

Hence n ≥ 5 is not possible.

Comment 1. Finding the example for n = 4 is not trivial and requires a tedious calculation,
but it can be reduced to checking a few cases. The equations (a1 + 1)(a3 + 1) = a2

2 + 1 and
(a2 + 1)(a4 + 1) = a2

3 + 1 imply, as seen in the proof, that a1 is even and a2, a3, a4 are odd. The
case a1 = 2 yields a2

2 ≡ −1 mod 3 which is impossible. Hence a1 = 4 is the smallest possibility.
In this case a2

2 ≡ −1 mod 5 and a2 is odd, which implies a2 ≡ 3 or a2 ≡ 7 mod 10. Hence we
have to start checking a2 = 7, 13, 17, 23, 27, 33 and in the last case we succeed.

Comment 2. The choice of a0 = k(a1 +1)−a2 in the second solution appears more natural if
one considers that by the previous calculations one has a1 = k(a2+1)−a3 and a2 = k(a3+1)−a4.

Alternatively, one can solve the equation (2) for a3 and use a2
2 + 1 = (a1 + 1)(a3 + 1) to get

a2
2− k(a1 + 1)a2 + a2

1− k(a1 + 1) = 0. Now a0 is the second solution to this quadratic equation
in a2 (Vieta jumping).
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N5 HUN (Hungary)

Let P (x) be a non-constant polynomial with integer coefficients. Prove that there is no function
T from the set of integers into the set of integers such that the number of integers x with
T n(x) = x is equal to P (n) for every n ≥ 1, where T n denotes the n-fold application of T .

Solution 1. Assume there is a polynomial P of degree at least 1 with the desired property
for a given function T . Let A(n) denote the set of all x ∈ Z such that T n(x) = x and let
B(n) denote the set of all x ∈ Z for which T n(x) = x and T k(x) 6= x for all 1 ≤ k < n. Both
sets are finite under the assumption made. For each x ∈ A(n) there is a smallest k ≥ 1 such
that T k(x) = x, i.e., x ∈ B(k). Let d = gcd(k, n). There are positive integers r, s such that
rk − sn = d and hence x = T rk(x) = T sn+d(x) = T d(T sn(x)) = T d(x). The minimality of k
implies d = k, i.e., k|n. On the other hand one clearly has B(k) ⊂ A(n) if k|n and thus we
have A(n) =

⋃

d|nB(d) as a disjoint union and hence

|A(n)| =
∑

d|n

|B(d)|.

Furthermore, for every x ∈ B(n) the elements x, T 1(x), T 2(x), . . . , T n−1(x) are n distinct
elements of B(n). The fact that they are in A(n) is obvious. If for some k < n and
some 0 ≤ i < n we had T k(T i(x)) = T i(x), i.e. T k+i(x) = T i(x), that would imply
x = T n(x) = T n−i(T i(x)) = T n−i(T k+i(x)) = T k(T n(x)) = T k(x) contradicting the minimality
of n. Thus T i(x) ∈ B(n) and T i(x) 6= T j(x) for 0 ≤ i < j ≤ n− 1.

So indeed, T permutes the elements of B(n) in (disjoint) cycles of length n and in particular
one has n

∣
∣|B(n)|.

Now let P (x) =
∑k

i=0 aix
i, ai ∈ Z, k ≥ 1, ak 6= 0 and suppose that |A(n)| = P (n) for all n ≥ 1.

Let p be any prime. Then

p2
∣
∣|B(p2)| = |A(p2)| − |A(p)| = a1(p

2 − p) + a2(p
4 − p2) + . . .

Hence p|a1 and since this is true for all primes we must have a1 = 0.

Now consider any two different primes p and q. Since a1 = 0 we have that

|A(p2q)| − |A(pq)| = a2(p
4q2 − p2q2) + a3(p

6q3 − p3q3) + . . .

is a multiple of p2q. But we also have

p2q
∣
∣|B(p2q)| = |A(p2q)| − |A(pq)| − |B(p2)|.

This implies

p2q
∣
∣|B(p2)| = |A(p2)| − |A(p)| = a2(p

4 − p2) + a3(p
6 − p3) + · · ·+ ak(p

2k − pk).

Since this is true for every prime q we must have a2(p
4−p2)+a3(p

6−p3)+ · · ·+ak(p
2k−pk) = 0

for every prime p. Since this expression is a polynomial in p of degree 2k (because ak 6= 0) this
is a contradiction, as such a polynomial can have at most 2k zeros.
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Comment. The last contradiction can also be reached via

ak = lim
p→∞

1

p2k

(
a2(p

4 − p2) + a3(p
6 − p3) + · · ·+ ak(p

2k − pk)
)

= 0.

Solution 2. As in the first solution define A(n) and B(n) and assume that a polynomial P
with the required property exists. This again implies that |A(n)| and |B(n)| is finite for all
positive integers n and that

P (n) = |A(n)| =
∑

d|n

|B(d)| and n
∣
∣|B(n)|.

Now, for any two distinct primes p and q, we have

P (0) ≡ P (pq) ≡ |B(1)|+ |B(p)|+ |B(q)|+ |B(pq)| ≡ |B(1)|+ |B(p)| mod q.

Thus, for any fixed p, the expression P (0) − |B(1)| − |B(p)| is divisible by arbitrarily large
primes q which means that P (0) = |B(1)| + |B(p)| = P (p) for any prime p. This implies that
the polynomial P is constant, a contradiction.
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N6 TUR (Turkey)

Let k be a positive integer. Show that if there exists a sequence a0, a1, . . . of integers satisfying
the condition

an =
an−1 + nk

n
for all n ≥ 1,

then k − 2 is divisible by 3.

Solution 1. Part A. For each positive integer k, there exists a polynomial Pk of degree k − 1
with integer coefficients, i. e., Pk ∈ Z[x], and an integer qk such that the polynomial identity

xPk(x) = xk + Pk(x− 1) + qk (Ik)

is satisfied. To prove this, for fixed k we write

Pk(x) = bk−1x
k−1 + · · ·+ b1x+ b0

and determine the coefficients bk−1, bk−2, . . . , b0 and the number qk successively. Obviously, we
have bk−1 = 1. For m = k− 1, k− 2, . . . , 1, comparing the coefficients of xm in the identity (Ik)
results in an expression of bm−1 as an integer linear combination of bk−1, . . . , bm, and finally
qk = −Pk(−1).

Part B. Let k be a positive integer, and let a0, a1, . . . be a sequence of real numbers satisfying
the recursion given in the problem. This recursion can be written as

an − Pk(n) =
an−1 − Pk(n− 1)

n
− qk
n

for all n ≥ 1,

which by induction gives

an − Pk(n) =
a0 − Pk(0)

n!
− qk

n−1∑

i=0

i!

n!
for all n ≥ 1.

Therefore, the numbers an are integers for all n ≥ 1 only if

a0 = Pk(0) and qk = 0.

Part C. Multiplying the identity (Ik) by x2 +x and subtracting the identities (Ik+1), (Ik+2) and
qkx

2 = qkx
2 therefrom, we obtain

xTk(x) = Tk(x− 1) + 2x
(
Pk(x− 1) + qk

)
− (qk+2 + qk+1 + qk),

where the polynomials Tk ∈ Z[x] are defined by Tk(x) = (x2+x)Pk(x)−Pk+1(x)−Pk+2(x)−qkx.
Thus

xTk(x) ≡ Tk(x− 1) + qk+2 + qk+1 + qk mod 2, k = 1, 2, . . .
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Comparing the degrees, we easily see that this is only possible if Tk is the zero polynomial
modulo 2, and

qk+2 ≡ qk+1 + qk mod 2 for k = 1, 2, . . .

Since q1 = −1 and q2 = 0, these congruences finish the proof.

Solution 2. Part A and B. Let k be a positive integer, and suppose there is a sequence
a0, a1, . . . as required. We prove: There exists a polynomial P ∈ Z[x], i. e., with integer
coefficients, such that an = P (n), n = 0, 1, . . . , and xP (x) = xk + P (x− 1).
To prove this, we write P (x) = bk−1x

k−1 + · · · + b1x + b0 and determine the coefficients
bk−1, bk−2, . . . , b0 successively such that

xP (x)− xk − P (x− 1) = q,

where q = qk is an integer. Comparing the coefficients of xm results in an expression of bm−1

as an integer linear combination of bk−1, . . . , bm.
Defining cn = an − P (n), we get

P (n) + cn =
P (n− 1) + cn−1 + nk

n
, i. e.,

q + ncn = cn−1,

hence

cn =
c0
n!
− q · 0! + 1! + · · ·+ (n− 1)!

n!
.

We conclude limn→∞ cn = 0, which, using cn ∈ Z, implies cn = 0 for sufficiently large n.
Therefore, we get q = 0 and cn = 0, n = 0, 1, . . . .

Part C. Suppose that q = qk = 0, i. e. xP (x) = xk + P (x − 1). To consider this identity for
arguments x ∈ F4, we write F4 = {0, 1, α, α+ 1}. Then we get

αPk(α) = αk + Pk(α+ 1) and

(α+ 1)Pk(α+ 1) = (α+ 1)k + Pk(α),

hence

Pk(α) = 1 · Pk(α) = (α+ 1)αPk(α)

= (α+ 1)Pk(α+ 1) + (α+ 1)αk

= Pk(α) + (α+ 1)k + (α+ 1)αk.

Now, (α+ 1)k−1 = αk implies k ≡ 2 mod 3.

Comment 1. For k = 2, the sequence given by an = n+1, n = 0, 1, . . . , satisfies the conditions
of the problem.
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Comment 2. The first few polynomials Pk and integers qk are

P1(x) = 1, q1 = −1,

P2(x) = x+ 1, q2 = 0,

P3(x) = x2 + x− 1, q3 = 1,

P4(x) = x3 + x2 − 2x− 1, q4 = −1,

P5(x) = x4 + x3 − 3x2 + 5, q5 = −2,

P6(x) = x5 + x4 − 4x3 + 2x2 + 10x− 5, q6 = 9,

q7 = −9, q8 = −50, q9 = 267, q10 = −413, q11 = −2180.

A lookup in the On-Line Encyclopedia of Integer Sequences (A000587) reveals that the sequence
q1,−q2, q3,−q4, q5, . . . is known as Uppuluri-Carpenter numbers. The result that qk = 0
implies k ≡ 2 mod 3 is contained in
Murty, Summer: On the p-adic series

∑∞
n=0 n

k · n!. CRM Proc. and Lecture Notes 36, 2004.
As shown by Alexander (Non-Vanishing of Uppuluri-Carpenter Numbers, Preprint 2006),
Uppuluri-Carpenter numbers are zero at most twice.

Comment 3. The numbers qk can be written in terms of the Stirling numbers of the second
kind. To show this, we fix the notation such that

xk =Sk−1,k−1x(x− 1) · · · (x− k + 1)

+ Sk−1,k−2x(x− 1) · · · (x− k + 2) (∗)
+ · · ·+ Sk−1,0x,

e. g., S2,2 = 1, S2,1 = 3, S2,0 = 1, and we define

Ωk = Sk−1,k−1 − Sk−1,k−2 +− · · · .

Replacing x by −x in (∗) results in

xk =Sk−1,k−1x(x+ 1) · · · (x+ k − 1)

− Sk−1,k−2x(x+ 1) · · · (x+ k − 2)

+− · · · ± Sk−1,0x.

Defining

P (x) =Sk−1,k−1(x+ 1) · · · (x+ k − 1)

+ (Sk−1,k−1 − Sk−1,k−2)(x+ 1) · · · (x+ k − 2)

+ (Sk−1,k−1 − Sk−1,k−2 + Sk−1,k−3)(x+ 1) · · · (x+ k − 3)

+ · · ·+ Ωk,

we obtain

xP (x)− P (x− 1) = Sk−1,k−1x(x+ 1) · · · (x+ k − 1)

− Sk−1,k−2x(x+ 1) · · · (x+ k − 2)

+− · · · ± Sk−1,0x− Ωk

= xk − Ωk,

hence qk = −Ωk.
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N7 MNG (Mongolia)

Let a and b be distinct integers greater than 1. Prove that there exists a positive integer n such
that (an − 1)(bn − 1) is not a perfect square.

Solution 1. At first we notice that

(1− α)
1
2 (1− β)

1
2 =

(
1− 1

2
· α− 1

8
· α2 − · · ·

)(
1− 1

2
· β − 1

8
· β2 − · · ·

)

=
∑

k,ℓ≥0

ck,ℓ · αkβℓ for all α, β ∈ (0, 1), (1)

where c0,0 = 1 and ck,ℓ are certain coefficients.

For an indirect proof, we suppose that xn =
√

(an − 1)(bn − 1) ∈ Z for all positive integers n.
Replacing a by a2 and b by b2 if necessary, we may assume that a and b are perfect squares,
hence

√
ab is an integer.

At first we shall assume that aµ 6= bν for all positive integers µ, ν. We have

xn = (
√
ab)n

(

1− 1

an

) 1
2
(

1− 1

bn

) 1
2

=
∑

k,ℓ≥0

ck,ℓ

(√
ab

akbℓ

)n

. (2)

Choosing k0 and ℓ0 such that ak0 >
√
ab, bℓ0 >

√
ab, we define the polynomial

P (x) =

k0−1,ℓ0−1
∏

k=0,ℓ=0

(akbℓx−
√
ab) =:

k0·ℓ0∑

i=0

dix
i

with integer coefficients di. By our assumption, the zeros

√
ab

akbℓ
, k = 0, . . . , k0 − 1, ℓ = 0, . . . , ℓ0 − 1,

of P are pairwise distinct.

Furthermore, we consider the integer sequence

yn =

k0·ℓ0∑

i=0

dixn+i, n = 1, 2, . . . (3)

By the theory of linear recursions, we obtain

yn =
∑

k,ℓ≥0
k≥k0 or ℓ≥ℓ0

ek,ℓ

(√
ab

akbℓ

)n

, n = 1, 2, . . . , (4)

with real numbers ek,ℓ. We have

|yn| ≤
∑

k,ℓ≥0
k≥k0 or ℓ≥ℓ0

|ek,ℓ|
(√

ab

akbℓ

)n

=: Mn.
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Because the series in (4) is obtained by a finite linear combination of the absolutely convergent
series (1), we conclude that in particular M1 <∞. Since

√
ab

akbℓ
≤ λ := max

{√
ab

ak0
,

√
ab

bℓ0

}

for all k, ℓ ≥ 0 such that k ≥ k0 or ℓ ≥ ℓ0,

we get the estimates Mn+1 ≤ λMn, n = 1, 2, . . . Our choice of k0 and ℓ0 ensures λ < 1, which
implies Mn → 0 and consequently yn → 0 as n→∞. It follows that yn = 0 for all sufficiently
large n.

So, equation (3) reduces to
∑k0·ℓ0

i=0 dixn+i = 0.

Using the theory of linear recursions again, for sufficiently large n we have

xn =

k0−1,ℓ0−1
∑

k=0,ℓ=0

fk,ℓ

(√
ab

akbℓ

)n

for certain real numbers fk,ℓ.

Comparing with (2), we see that fk,ℓ = ck,ℓ for all k, ℓ ≥ 0 with k < k0, ℓ < ℓ0, and ck,ℓ = 0 if
k ≥ k0 or ℓ ≥ ℓ0, since we assumed that aµ 6= bν for all positive integers µ, ν.

In view of (1), this means

(1− α)
1
2 (1− β)

1
2 =

k0−1,ℓ0−1
∑

k=0,ℓ=0

ck,ℓ · αkβℓ (5)

for all real numbers α, β ∈ (0, 1). We choose k∗ < k0 maximal such that there is some i
with ck∗,i 6= 0. Squaring (5) and comparing coefficients of α2k∗β2i∗ , where i∗ is maximal with
ck∗,i∗ 6= 0, we see that k∗ = 0. This means that the right hand side of (5) is independent of α,
which is clearly impossible.

We are left with the case that aµ = bν for some positive integers µ and ν. We may assume
that µ and ν are relatively prime. Then there is some positive integer c such that a = cν and
b = cµ. Now starting with the expansion (2), i. e.,

xn =
∑

j≥0

gj

(√
cµ+ν

cj

)n

for certain coefficients gj, and repeating the arguments above, we see that gj = 0 for sufficiently
large j, say j > j0. But this means that

(1− xµ)
1
2 (1− xν)

1
2 =

j0∑

j=0

gjx
j

for all real numbers x ∈ (0, 1). Squaring, we see that

(1− xµ)(1− xν)

is the square of a polynomial in x. In particular, all its zeros are of order at least 2, which
implies µ = ν by looking at roots of unity. So we obtain µ = ν = 1, i. e., a = b, a contradiction.
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Solution 2. We set a2 = A, b2 = B, and zn =
√

(An − 1)(Bn − 1). Let us assume that zn

is an integer for n = 1, 2, . . . Without loss of generality, we may suppose that b < a. We
determine an integer k ≥ 2 such that bk−1 ≤ a < bk, and define a sequence γ1, γ2, . . . of rational
numbers such that

2γ1 = 1 and 2γn+1 =
n∑

i=1

γiγn−i for n = 1, 2, . . .

It could easily be shown that γn = 1·1·3...(2n−3)
2·4·6...2n

, for instance by reading Vandermondes con-
volution as an equation between polynomials, but we shall have no use for this fact.

Using Landaus O–Notation in the usual way, we have

{

(ab)n − γ1

(a

b

)n

− γ2

( a

b3

)n

− · · · − γk

( a

b2k−1

)n

+O

(
b

a

)n}2

= AnBn − 2γ1A
n −

k∑

i=2

(

2γi −
i−1
∑

j=1

γjγi−j

)

(

A

Bi−1

)n

+O

(

A

Bk

)n

+O (Bn)

= AnBn − An +O (Bn) ,

whence

zn = (ab)n − γ1

(a

b

)n

− γ2

( a

b3

)n

− · · · − γk

( a

b2k−1

)n

+O

(

b

a

)n

.

Now choose rational numbers r1, r2, . . . , rk+1 such that

(x− ab) · (x− a
b
) . . . (x− a

b2k−1 ) = xk+1 − r1x
k +− · · · ± rk+1,

and then a natural number M for which Mr1,Mr2, . . .Mrk+1 are integers. For known reasons,

M(zn+k+1 − r1zn+k +− · · · ± rk+1zn) = O

(

b

a

)n

for all n ∈ N and thus there is a natural number N which is so large, that

zn+k+1 = r1zn+k − r2zn+k−1 +− · · · ∓ rk+1zn

holds for all n > N . Now the theory of linear recursions reveals that there are some rational
numbers δ0, δ1, δ2, . . . , δk such that

zn = δ0(ab)
n − δ1

(a

b

)n

− δ2

( a

b3

)n

− · · · − δk

( a

b2k−1

)n

for sufficiently large n, where δ0 > 0 as zn > 0. As before, one obtains

AnBn − An −Bn + 1 = z2
n

=
{

δ0(ab)
n − δ1

(a

b

)n

− δ2

( a

b3

)n

− · · · − δk

( a

b2k−1

)n}2

= δ2
0A

nBn − 2δ0δ1A
n −

i=k∑

i=2

(

2δ0δi −
j=i−1
∑

j=1

δjδi−j

)

(

A

Bi−1

)n

+O

(

A

Bk

)n

.

Easy asymptotic calculations yield δ0 = 1, δ1 = 1
2
, δi = 1

2

∑j=i−1
j=1 δjδi−j for i = 2, 3, . . . , k−2, and

then a = bk−1. It follows that k > 2 and there is some P ∈ Q[X] for which (X−1)(Xk−1−1) =
P (X)2. But this cannot occur, for instance as Xk−1 − 1 has no double zeros. Thus our
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assumption that zn was an integer for n = 1, 2, . . . turned out to be wrong, which solves the
problem.

Original formulation of the problem. a, b are positive integers such that a·b is not a square of
an integer. Prove that there exists a (infinitely many) positive integer n such that (an−1)(bn−1)
is not a square of an integer.

Solution. Lemma. Let c be a positive integer, which is not a perfect square. Then there exists
an odd prime p such that c is not a quadratic residue modulo p.
Proof. Denoting the square-free part of c by c′, we have the equality

(
c′

p

)
=

(
c
p

)
of the corre-

sponding Legendre symbols. Suppose that c′ = q1 · · · qm, where q1 < · · · < qm are primes.
Then we have

(c′

p

)

=
(q1
p

)

· · ·
(qm
p

)

.

Case 1. Let q1 be odd. We choose a quadratic nonresidue r1 modulo q1 and quadratic residues
ri modulo qi for i = 2, . . . ,m. By the Chinese remainder theorem and the Dirichlet theorem,
there exists a (infinitely many) prime p such that

p ≡ r1 mod q1,

p ≡ r2 mod q2,

...
...

p ≡ rm mod qm,

p ≡ 1 mod 4.

By our choice of the residues, we obtain

( p

qi

)

=
(ri

qi

)

=

{

−1, i = 1,

1, i = 2, . . . ,m.

The congruence p ≡ 1 mod 4 implies that
(

qi

p

)
=

(
p

qi

)
, i = 1, . . . ,m, by the law of quadratic

reciprocity. Thus

(c′

p

)

=
(q1
p

)

· · ·
(qm
p

)

= −1.

Case 2. Suppose q1 = 2. We choose quadratic residues ri modulo qi for i = 2, . . . ,m. Again,
by the Chinese remainder theorem and the Dirichlet theorem, there exists a prime p such
that

p ≡ r2 mod q2,

...
...

p ≡ rm mod qm,

p ≡ 5 mod 8.

By the choice of the residues, we obtain
(

p

qi

)
=

(
ri

qi

)
= 1 for i = 2, . . . ,m. Since p ≡ 1 mod 4 we

have
(

qi

p

)
=

(
p

qi

)
, i = 2, . . . ,m, by the law of quadratic reciprocity. The congruence p ≡ 5 mod 8
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implies that
(

2
p

)
= −1. Thus

(c′

p

)

=
(2

p

)(q2
p

)

· · ·
(qm
p

)

= −1,

and the lemma is proved.

Applying the lemma for c = a · b, we find an odd prime p such that

(ab

p

)

=
(a

p

)

·
( b

p

)

= −1.

This implies either

a
p−1
2 ≡ 1 mod p, b

p−1
2 ≡ −1 mod p, or a

p−1
2 ≡ −1 mod p, b

p−1
2 ≡ 1 mod p.

Without loss of generality, suppose that a
p−1
2 ≡ 1 mod p and b

p−1
2 ≡ −1 mod p. The second

congruence implies that b
p−1
2 −1 is not divisible by p. Hence, if the exponent νp(a

p−1
2 −1) of p in

the prime decomposition of (a
p−1
2 − 1) is odd, then (a

p−1
2 − 1)(b

p−1
2 − 1) is not a perfect square.

If νp(a
p−1
2 − 1) is even, then νp(a

p−1
2

p − 1) is odd by the well-known power lifting property

νp

(

a
p−1
2

p − 1
)

= νp

(

a
p−1
2 − 1

)

+ 1.

In this case, (a
p−1
2

p − 1)(b
p−1
2

p − 1) is not a perfect square.

Comment 1. In 1998, the following problem appeared in Crux Mathematicorum:
Problem 2344. Find all positive integers N that are quadratic residues modulo all primes
greater than N .
The published solution (Crux Mathematicorum, 25(1999)4) is the same as the proof of the
lemma given above, see also http://www.mathlinks.ro/viewtopic.php?t=150495.

Comment 2. There is also an elementary proof of the lemma. We cite Theorem 3 of Chapter 5
and its proof from the book
Ireland, Rosen: A Classical Introduction to Modern Number Theory, Springer 1982.

Theorem. Let a be a nonsquare integer. Then there are infinitely many primes p for which a is
a quadratic nonresidue.

Proof. It is easily seen that we may assume that a is square-free. Let a = 2eq1q2 · · · qn, where
qi are distinct odd primes and e = 0 or 1. The case a = 2 has to be dealt with separately. We
shall assume to begin with that n ≥ 1, i. e., that a is divisible by an odd prime.

Let ℓ1, ℓ2, . . . , ℓk be a finite set of odd primes not including any qi. Let s be any quadratic
nonresidue modqn, and find a simultaneous solution to the congruences

x ≡ 1 mod ℓi, i = 1, . . . , k,

x ≡ 1 mod 8,

x ≡ 1 mod qi, i = 1, . . . , n− 1,

x ≡ s mod qn.

Call the solution b. b is odd. Suppose that b = p1p2 · · · pm is its prime decomposition. Since
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b ≡ 1 mod 8 we have
(

2
b

)
= 1 and

(
qi

b

)
=

(
b
qi

)
by a result on Jacobi symbols. Thus

(a

b

)

=
(2

b

)e(q1
b

)

· · ·
(qn−1

b

)(qn
b

)

=
( b

q1

)

· · ·
( b

qn−1

)( b

qn

)

=
( 1

q1

)

· · ·
( 1

qn−1

)( s

qn

)

= −1.

On the other hand, by the definition of
(

a
b

)
, we have

(
a
b

)
=

(
a
p1

)(
a
p2

)
· · ·

(
a

pm

)
. It follows that

(
a
pi

)
= −1 for some i.

Notice that ℓj does not divide b. Thus pi /∈ {ℓ1, ℓ2, . . . , ℓk}.
To summarize, if a is a nonsquare, divisible by an odd prime, we have found a prime p, outside
of a given finite set of primes {2, ℓ1, ℓ2, . . . , ℓk}, such that

(
a
p

)
= −1. This proves the theorem

in this case.

It remains to consider the case a = 2. Let ℓ1, ℓ2, . . . , ℓk be a finite set of primes, excluding 3, for
which

(
2
ℓi

)
= −1. Let b = 8ℓ1ℓ2 · · · ℓk + 3. b is not divisible by 3 or any ℓi. Since b ≡ 3 mod 8

we have
(

2
b

)
= (−1)

b2−1
8 = −1. Suppose that b = p1p2 · · · pm is the prime decomposition of

b. Then, as before, we see that
(

2
pi

)
= −1 for some i. pi /∈ {3, ℓ1, ℓ2, . . . , ℓk}. This proves the

theorem for a = 2.

This proof has also been posted to mathlinks, see http://www.mathlinks.ro/viewtopic.

php?t=150495 again.
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Algebra

A1. Determine all functions f : R R such that the equality

f!"x#y$ % f!x$"f!y$#. (1)

holds for all x, y & R. Here, by "x# we denote the greatest integer not exceeding x.

(France)

Answer. f!x$ % const % C, where C % 0 or 1 ' C ( 2.

Solution 1. First, setting x % 0 in (1) we get

f!0$ % f!0$"f!y$# (2)

for all y & R. Now, two cases are possible.

Case 1. Assume that f!0$ ) 0. Then from (2) we conclude that "f!y$# % 1 for all
y & R. Therefore, equation (1) becomes f!"x#y$ % f!x$, and substituting y % 0 we have
f!x$ % f!0$ % C ) 0. Finally, from "f!y$# % 1 % "C# we obtain that 1 ' C ( 2.

Case 2. Now we have f!0$ % 0. Here we consider two subcases.
Subcase 2a. Suppose that there exists 0 ( α ( 1 such that f!α$ ) 0. Then setting x % α

in (1) we obtain 0 % f!0$ % f!α$"f!y$# for all y & R. Hence, "f!y$# % 0 for all y & R. Finally,
substituting x % 1 in (1) provides f!y$ % 0 for all y & R, thus contradicting the condition
f!α$ ) 0.

Subcase 2b. Conversely, we have f!α$ % 0 for all 0 ' α ( 1. Consider any real z; there

exists an integer N such that α % z

N
& "0, 1$ (one may set N % "z#*1 if z + 0 and N % "z#,1

otherwise). Now, from (1) we get f!z$ % f!"N#α$ % f!N$"f!α$# % 0 for all z & R.

Finally, a straightforward check shows that all the obtained functions satisfy (1).

Solution 2. Assume that "f!y$# % 0 for some y; then the substitution x % 1 provides
f!y$ % f!1$"f!y$# % 0. Hence, if "f!y$# % 0 for all y, then f!y$ % 0 for all y. This function
obviously satisfies the problem conditions.

So we are left to consider the case when "f!a$# ) 0 for some a. Then we have

f!"x#a$ % f!x$"f!a$#, or f!x$ % f!"x#a$"f!a$# . (3)

This means that f!x1$ % f!x2$ whenever "x1# % "x2#, hence f!x$ % f!"x#$, and we may assume
that a is an integer.

Now we have
f!a$ % f

 
2a - 1

2

! % f!2a$ "f  
1

2

!# % f!2a$"f!0$#;
this implies "f!0$# ) 0, so we may even assume that a % 0. Therefore equation (3) provides

f!x$ % f!0$"f!0$# % C ) 0

for each x. Now, condition (1) becomes equivalent to the equation C % C"C# which holds
exactly when "C# % 1.
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A2. Let the real numbers a, b, c, d satisfy the relations a b c d ! 6 and a2 b2 c2 d2 ! 12.
Prove that

36 " 4#a3  b3  c3  d3$ % #a4  b4  c4  d4$ " 48.

(Ukraine)

Solution 1. Observe that

4#a3  b3  c3  d3$ % #a4  b4  c4  d4$ ! %  #a% 1$4  #b% 1$4  #c% 1$4  #d% 1$4! 6#a2  b2  c2  d2$ % 4#a b c d$  4! %  #a% 1$4  #b% 1$4  #c% 1$4  #d% 1$4! 52.

Now, introducing x ! a% 1, y ! b% 1, z ! c% 1, t ! d% 1, we need to prove the inequalities

16 & x4  y4  z4  t4 & 4,

under the constraint

x2  y2  z2  t2 ! #a2  b2  c2  d2$ % 2#a b c d$  4 ! 4 (1)

(we will not use the value of x y  z  t though it can be found).
Now the rightmost inequality in (1) follows from the power mean inequality:

x4  y4  z4  t4 & #x2  y2  z2  t2$2
4

! 4.

For the other one, expanding the brackets we note that#x2  y2  z2  t2$2 ! #x4  y4  z4  t4$  q,

where q is a nonnegative number, so

x4  y4  z4  t4 " #x2  y2  z2  t2$2 ! 16,

and we are done.

Comment 1. The estimates are sharp; the lower and upper bounds are attained at  3, 1, 1, 1! and 0, 2, 2, 2!, respectively.

Comment 2. After the change of variables, one can finish the solution in several different ways.
The latter estimate, for instance, it can be performed by moving the variables – since we need only
the second of the two shifted conditions.

Solution 2. First, we claim that 0 " a, b, c, d " 3. Actually, we have

a b c ! 6% d, a2  b2  c2 ! 12% d2,

hence the power mean inequality

a2  b2  c2 & #a b c$2
3

rewrites as

12% d2 & #6% d$2
3

'( 2d#d% 3$ " 0,
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which implies the desired inequalities for d; since the conditions are symmetric, we also have
the same estimate for the other variables.

Now, to prove the rightmost inequality, we use the obvious inequality x2 x ! 2"2 # 0 for
each real x; this inequality rewrites as 4x3 ! x4 $ 4x2. It follows that 4a3 ! a4" %  4b3 ! b4" %  4c3 ! c4" %  4d3 ! d4" $ 4 a2 % b2 % c2 % d2" & 48,

as desired.
Now we prove the leftmost inequality in an analogous way. For each x ' (0, 3), we have x % 1" x ! 1"2 x ! 3" $ 0 which is equivalent to 4x3 ! x4 # 2x2 % 4x ! 3. This implies that 4a3 !a4"% 4b3 ! b4"% 4c3 ! c4"% 4d3 !d4" # 2 a2 % b2 % c2 %d2"%4 a% b% c%d"!12 & 36,

as desired.

Comment. It is easy to guess the extremal points  0, 2, 2, 2! and  3, 1, 1, 1! for this inequality. This
provides a method of finding the polynomials used in Solution 2. Namely, these polynomials should
have the form x4 " 4x3 # ax2 # bx # c; moreover, the former polynomial should have roots at 2 (with
an even multiplicity) and 0, while the latter should have roots at 1 (with an even multiplicity) and 3.
These conditions determine the polynomials uniquely.

Solution 3. First, expanding 48 & 4 a2 % b2 % c2 % d2" and applying the AM–GM inequality,
we have

a4 % b4 % c4 % d4 % 48 &  a4 % 4a2" %  b4 % 4b2" %  c4 % 4c2" %  d4 % 4d2"# 2
 *

a4 + 4a2 % *
b4 + 4b2 % *

c4 + 4c2 % *
d4 + 4d2

!& 4 ,a3, % ,b3, % ,c3, % ,d3," # 4 a3 % b3 % c3 % d3",
which establishes the rightmost inequality.

To prove the leftmost inequality, we first show that a, b, c, d ' (0, 3) as in the previous
solution. Moreover, we can assume that 0 $ a $ b $ c $ d. Then we have a % b $ b % c $
2

3
 b % c % d" $ 2

3
+ 6 & 4.

Next, we show that 4b!b2 $ 4c!c2. Actually, this inequality rewrites as  c!b" b%c!4" $ 0,
which follows from the previous estimate. The inequality 4a ! a2 $ 4b ! b2 can be proved
analogously.

Further, the inequalities a $ b $ c together with 4a ! a2 $ 4b ! b2 $ 4c ! c2 allow us to
apply the Chebyshev inequality obtaining

a2 4a ! a2" % b2 4b ! b2" % c2 4c ! c2" # 1

3
 a2 % b2 % c2" "4 a % b % c" !  a2 % b2 % c2"#&  12! d2" 4 6! d" !  12! d2""

3
.

This implies that 4a3 ! a4" %  4b3 ! b4" %  4c3 ! c4" %  4d3 ! d4" #  12! d2" d2 ! 4d % 12"
3

% 4d3 ! d4& 144! 48d % 16d3 ! 4d4

3
& 36% 4

3
 3! d" d ! 1" d2 ! 3". (2)

Finally, we have d2 # 1
4
 a2 % b2 % c2 % d2" & 3 (which implies d - 1); so, the expression

4

3
 3! d" d ! 1" d2 ! 3" in the right-hand part of (2) is nonnegative, and the desired inequality
is proved.

Comment. The rightmost inequality is easier than the leftmost one. In particular, Solutions 2 and 3
show that only the condition a2 # b2 # c2 # d2 $ 12 is needed for the former one.
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A3. Let x1, . . . , x100 be nonnegative real numbers such that xi  xi 1  xi 2 ! 1 for all
i " 1, . . . , 100 (we put x101 " x1, x102 " x2). Find the maximal possible value of the sum

S " 100 
i!1

xixi 2.

(Russia)

Answer.
25

2
.

Solution 1. Let x2i " 0, x2i"1 " 1

2
for all i " 1, . . . , 50. Then we have S " 50 # !1

2

"2 " 25

2
. So,

we are left to show that S ! 25
2
for all values of xi’s satisfying the problem conditions.

Consider any 1 ! i ! 50. By the problem condition, we get x2i"1 ! 1 $ x2i $ x2i 1 and
x2i 2 ! 1$ x2i $ x2i 1. Hence by the AM–GM inequality we get

x2i"1x2i 1  x2ix2i 2 ! %1$ x2i $ x2i 1&x2i 1  x2i%1$ x2i $ x2i 1&" %x2i  x2i 1&%1$ x2i $ x2i 1& ! #%x2i  x2i 1&  %1$ x2i $ x2i 1&
2

$2 " 1

4
.

Summing up these inequalities for i " 1, 2, . . . , 50, we get the desired inequality

50 
i!1

%x2i"1x2i 1  x2ix2i 2& ! 50 # 1
4
" 25

2
.

Comment. This solution shows that a bit more general fact holds. Namely, consider 2n nonnegative
numbers x1, . . . , x2n in a row (with no cyclic notation) and suppose that xi  xi 1  xi 2 ! 1 for all

i " 1, 2, . . . , 2n # 2. Then
2n"2 
i!1

xixi 2 ! n# 1

4
.

The proof is the same as above, though if might be easier to find it (for instance, applying
induction). The original estimate can be obtained from this version by considering the sequence
x1, x2, . . . , x100, x1, x2.

Solution 2. We present another proof of the estimate. From the problem condition, we get

S " 100 
i!1

xixi 2 ! 100 
i!1

xi%1$ xi $ xi 1& " 100 
i!1

xi $ 100 
i!1

x2
i $ 100 

i!1

xixi 1" 100 
i!1

xi $ 1

2

100 
i!1

%xi  xi 1&2.
By the AM–QM inequality, we have

%%xi  xi 1&2 ' 1
100

!%%xi  xi 1&"2, so
S ! 100 

i!1

xi $ 1

200

&
100 
i!1

%xi  xi 1&'2 " 100 
i!1

xi $ 2

100

&
100 
i!1

xi

'2" 2

100

&
100 
i!1

xi

'&
100

2
$ 100 

i!1

xi

'
.

And finally, by the AM–GM inequality

S ! 2

100
#&1

2

&
100 
i!1

xi  100

2
$ 100 

i!1

xi

''2 " 2

100
# #100

4

$2 " 25

2
.
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Comment. These solutions are not as easy as they may seem at the first sight. There are two
different optimal configurations in which the variables have different values, and not all of sums of
three consecutive numbers equal 1. Although it is easy to find the value 25

2
, the estimates must be

done with care to preserve equality in the optimal configurations.
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A4. A sequence x1, x2, . . . is defined by x1  1 and x2k  !xk, x2k 1  "!1#k!1xk for all
k $ 1. Prove that x1 % x2 % & & & % xn $ 0 for all n $ 1.

(Austria)

Solution 1. We start with some observations. First, from the definition of xi it follows that
for each positive integer k we have

x4k 3  x2k 1  !x4k 2 and x4k 1  x4k  !x2k  xk. (1)

Hence, denoting Sn   n

i"1 xi, we have

S4k  k!
i"1

""x4k 3 % x4k 2# % "x4k 1 % x4k##  k!
i"1

"0% 2xk#  2Sk, (2)

S4k!2  S4k % "x4k!1 % x4k!2#  S4k. (3)

Observe also that Sn   n

i"1 xi '  n

i"1 1  n "mod 2#.
Now we prove by induction on k that Si $ 0 for all i ( 4k. The base case is valid since

x1  x3  x4  1, x2  !1. For the induction step, assume that Si $ 0 for all i ( 4k. Using
the relations (1)–(3), we obtain

S4k!4  2Sk!1 $ 0, S4k!2  S4k $ 0, S4k!3  S4k!2 % x4k!3  S4k!2 % S4k!4

2
$ 0.

So, we are left to prove that S4k!1 $ 0. If k is odd, then S4k  2Sk $ 0; since k is odd, Sk

is odd as well, so we have S4k $ 2 and hence S4k!1  S4k % x4k!1 $ 1.
Conversely, if k is even, then we have x4k!1  x2k!1  xk!1, hence S4k!1  S4k % x4k!1  

2Sk % xk!1  Sk % Sk!1 $ 0. The step is proved.

Solution 2. We will use the notation of Sn and the relations (1)–(3) from the previous
solution.

Assume the contrary and consider the minimal n such that Sn!1 ) 0; surely n $ 1, and
from Sn $ 0 we get Sn  0, xn!1  !1. Hence, we are especially interested in the set
M  *n : Sn  0+; our aim is to prove that xn!1  1 whenever n , M thus coming to a
contradiction.

For this purpose, we first describe the set M inductively. We claim that (i) M consists only
of even numbers, (ii) 2 , M , and (iii) for every even n $ 4 we have n , M -. /n041 , M .
Actually, (i) holds since Sn ' n "mod 2#, (ii) is straightforward, while (iii) follows from the
relations S4k!2  S4k  2Sk.

Now, we are left to prove that xn!1  1 if n , M . We use the induction on n. The base
case is n  2, that is, the minimal element of M ; here we have x3  1, as desired.

For the induction step, consider some 4 ( n , M and let m  /n041 , M ; then m is even,
and xm!1  1 by the induction hypothesis. We prove that xn!1  xm!1  1. If n  4m then we
have xn!1  x2m!1  xm!1 since m is even; otherwise, n  4m%2, and xn!1  !x2m!2  xm!1,
as desired. The proof is complete.

Comment. Using the inductive definition of set M , one can describe it explicitly. Namely, M consists
exactly of all positive integers not containing digits 1 and 3 in their 4-base representation.
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A5. Denote byQ the set of all positive rational numbers. Determine all functions f : Q  Q 
which satisfy the following equation for all x, y ! Q :

f
 
f"x#2y! $ x3f"xy#. (1)

(Switzerland)

Answer. The only such function is f"x# $ 1

x
.

Solution. By substituting y $ 1, we get

f
 
f"x#2! $ x3f"x#. (2)

Then, whenever f"x# $ f"y#, we have
x3 $ f

 
f"x#2!
f"x# $ f

 
f"y#2!
f"y# $ y3

which implies x $ y, so the function f is injective.

Now replace x by xy in (2), and apply (1) twice, second time to
 
y, f"x#2! instead of "x, y#:

f
 
f"xy#2! $ "xy#3f"xy# $ y3f

 
f"x#2y! $ f

 
f"x#2f"y#2!.

Since f is injective, we get

f"xy#2 $ f"x#2f"y#2,
f"xy# $ f"x#f"y#.

Therefore, f is multiplicative. This also implies f"1# $ 1 and f"xn# $ f"x#n for all integers n.

Then the function equation (1) can be re-written as

f
 
f"x#!2

f"y# $ x3f"x#f"y#,
f
 
f"x#! $"

x3f"x#. (3)

Let g"x# $ xf"x#. Then, by (3), we have
g
 
g"x#! $ g

 
xf"x#! $ xf"x# % f xf"x#! $ xf"x#2f f"x#! $$ xf"x#2"x3f"x# $  

xf"x#!5!2 $  
g"x#!5!2

,

and, by induction,

g
#
g
 
. . . g$%%%%&%%%%'

n 1

"x# . . . !( $  
g"x#!"5!2#n (4)

for every positive integer n.

Consider (4) for a fixed x. The left-hand side is always rational, so
 
g"x#!"5!2#n must be

rational for every n. We show that this is possible only if g"x# $ 1. Suppose that g"x# & 1,
and let the prime factorization of g"x# be g"x# $ pα1

1 . . . pαk

k where p1, . . . , pk are distinct primes
and α1, . . . , αk are nonzero integers. Then the unique prime factorization of (4) is

g
#
g
 
. . . g$%%%%&%%%%'

n 1

"x# . . . !( $  
g"x#!"5!2#n $ p

"5!2#nα1

1 % % % p"5!2#nαk

k
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where the exponents should be integers. But this is not true for large values of n, for example 5

2
!nα1 cannot be a integer number when 2

n    α1. Therefore, g x! " 1 is impossible.

Hence, g x! # 1 and thus f x! # 1

x
for all x.

The function f x! # 1

x
satisfies the equation (1):

f f x!2y! " 1

f x!2y " 1 
1

x

!2
y

" x3

xy
" x3f xy!.

Comment. Among R  R functions, f!x" # 1

x
is not the only solution. Another solution is

f1!x" # x3!2. Using transfinite tools, infinitely many other solutions can be constructed.
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A6. Suppose that f and g are two functions defined on the set of positive integers and taking
positive integer values. Suppose also that the equations f g n!! " f n! # 1 and g f n!! "
g n! # 1 hold for all positive integers. Prove that f n! " g n! for all positive integer n.

(Germany)

Solution 1. Throughout the solution, by N we denote the set of all positive integers. For
any function h : N $ N and for any positive integer k, define hk x! " h

 
h
 
. . . h!""""#""""$

k

 x! . . .
%%

(in

particular, h0 x! " x).
Observe that f

 
gk x!% " f

 
gk 1 x!% # 1 " % % % " f x! # k for any positive integer k, and

similarly g
 
fk x!% " g x! # k. Now let a and b are the minimal values attained by f and g,

respectively; say f nf! " a, g ng! " b. Then we have f
 
gk nf!% " a# k, g

 
fk ng!% " b # k, so

the function f attains all values from the set Nf " &a, a# 1, . . . ', while g attains all the values
from the set Ng " &b, b # 1, . . . '.

Next, note that f x! " f y! implies g x! " g
 
f x!% ( 1 " g

 
f y!% ( 1 " g y!; surely, the

converse implication also holds. Now, we say that x and y are similar (and write x ) y) if
f x! " f y! (equivalently, g x! " g y!). For every x * N, we define +x, " &y * N : x ) y';
surely, y1 ) y2 for all y1, y2 * +x,, so +x, " +y, whenever y * +x,.

Now we investigate the structure of the sets +x,.
Claim 1. Suppose that f x! ) f y!; then x ) y, that is, f x! " f y!. Consequently, each
class +x, contains at most one element from Nf , as well as at most one element from Ng.

Proof. If f x! ) f y!, then we have g x! " g
 
f x!% ( 1 " g

 
f y!% ( 1 " g y!, so x ) y. The

second statement follows now from the sets of values of f and g.  
Next, we clarify which classes do not contain large elements.

Claim 2. For any x * N, we have +x, - &1, 2, . . . , b ( 1' if and only if f x! " a. Analogously,+x, - &1, 2, . . . , a ( 1' if and only if g x! " b.

Proof. We will prove that +x, . &1, 2, . . . , b ( 1' /0 f x! 1 a; the proof of the second
statement is similar.

Note that f x! 1 a implies that there exists some y satisfying f y! " f x!(1, so f
 
g y!% "

f y!#1 " f x!, and hence x ) g y! 2 b. Conversely, if b 3 c ) x then c " g y! for some y * N,
which in turn follows f x! " f

 
g y!% " f y! # 1 2 a # 1, and hence f x! 1 a.  

Claim 2 implies that there exists exactly one class contained in &1, . . . , a ( 1' (that is, the
class +ng,), as well as exactly one class contained in &1, . . . , b(1' (the class +nf ,). Assume for a
moment that a 3 b; then +ng, is contained in &1, . . . , b( 1' as well, hence it coincides with +ng,.
So, we get that

f x! " a /0 g x! " b /0 x ) nf ) ng. (1)

Claim 3. a " b.

Proof. By Claim 2, we have +a, 4 +nf ,, so +a, should contain some element a! 2 b by Claim 2
again. If a 4 a!, then +a, contains two elements 2 a which is impossible by Claim 1. Therefore,
a " a! 2 b. Similarly, b 2 a.  

Now we are ready to prove the problem statement. First, we establish the following

Claim 4. For every integer d 2 0, fd"1 nf! " gd"1 nf ! " a # d.

Proof. Induction on d. For d " 0, the statement follows from (1) and Claim 3. Next, for d 1 1
from the induction hypothesis we have fd"1 nf! " f

 
fd nf!% " f

 
gd nf !% " f nf !#d " a#d.

The equality gd"1 nf! " a # d is analogous.  
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Finally, for each x  N, we have f!x" # a $ d for some d % 0, so f!x" # f
 
gd!nf "! and

hence x & gd!nf ". It follows that g!x" # g
 
gd!nf"! # gd 1!nf " # a $ d # f!x" by Claim 4.

Solution 2. We start with the same observations, introducing the relation & and proving
Claim 1 from the previous solution.

Note that f!a" ' a since otherwise we have f!a" # a and hence g!a" # g
 
f!a"! # g!a" $ 1,

which is false.

Claim 2!. a # b.

Proof. We can assume that a ( b. Since f!a" % a $ 1, there exists some x  N such that
f!a" # f!x" $ 1, which is equivalent to f!a" # f

 
g!x"! and a & g!x". Since g!x" % b % a, by

Claim 1 we have a # g!x" % b, which together with a ( b proves the Claim.  
Now, almost the same method allows to find the values f!a" and g!a".

Claim 3!. f!a" # g!a" # a $ 1.

Proof. Assume the contrary; then f!a" % a $ 2, hence there exist some x, y  N such that
f!x" # f!a" ) 2 and f!y" # g!x" (as g!x" % a # b). Now we get f!a" # f!x" $ 2 # f

 
g2!x"!,

so a & g2!x" % a, and by Claim 1 we get a # g2!x" # g
 
f!y"! # 1 $ g!y" % 1 $ a; this is

impossible. The equality g!a" # a $ 1 is similar.

Now, we are prepared for the proof of the problem statement. First, we prove it for n % a.

Claim 4!. For each integer x % a, we have f!x" # g!x" # x $ 1.

Proof. Induction on x. The base case x # a is provided by Claim 3!, while the induction
step follows from f!x $ 1" # f

 
g!x"! # f!x" $ 1 # !x $ 1" $ 1 and the similar computation

for g!x $ 1".
Finally, for an arbitrary n  N we have g!n" % a, so by Claim 4! we have f!n" $ 1 #

f
 
g!n"! # g!n" $ 1, hence f!n" # g!n".

Comment. It is not hard now to describe all the functions f : N N satisfying the property f!f!n"" #
f!n" $ 1. For each such function, there exists n0 % N such that f!n" # n$ 1 for all n & n0, while for
each n ' n0, f!n" is an arbitrary number greater than of equal to n0 (these numbers may be different
for different n ' n0).



17

A7. Let a1, . . . , ar be positive real numbers. For n  r, we inductively define

an ! max
1 k n!1

"ak # an!k$. (1)

Prove that there exist positive integers ℓ % r and N such that an ! an!ℓ # aℓ for all n & N .

(Iran)

Solution 1. First, from the problem conditions we have that each an (n  r) can be expressed
as an ! aj1 # aj2 with j1, j2 ' n, j1 # j2 ! n. If, say, j1  r then we can proceed in the same
way with aj1 , and so on. Finally, we represent an in a form

an ! ai1 # ( ( ( # aik , (2)

1 % ij % r, i1 # ( ( ( # ik ! n. (3)

Moreover, if ai1 and ai2 are the numbers in (2) obtained on the last step, then i1 # i2  r.
Hence we can adjust (3) as

1 % ij % r, i1 # ( ( ( # ik ! n, i1 # i2  r. (4)

On the other hand, suppose that the indices i1, . . . , ik satisfy the conditions (4). Then,
denoting sj ! i1 # ( ( ( # ij , from (1) we have

an ! ask
& ask 1

# aik & ask 2
# aik 1

# aik & ( ( ( & ai1 # ( ( ( # aik .

Summarizing these observations we get the following

Claim. For every n  r, we have

an ! max)ai1 # ( ( ( # aik : the collection "i1, . . . , ik$ satisfies (4)*.  
Now we denote

s ! max
1 i r

ai

i

and fix some index ℓ % r such that s ! aℓ

ℓ
.

Consider some n & r2ℓ#2r and choose an expansion of an in the form (2), (4). Then we have
n ! i1#( ( (#ik % rk, so k & n+r & rℓ#2. Suppose that none of the numbers i3, . . . , ik equals ℓ.
Then by the pigeonhole principle there is an index 1 % j % r which appears among i3, . . . , ik
at least ℓ times, and surely j , ℓ. Let us delete these ℓ occurrences of j from "i1, . . . , ik$, and
add j occurrences of ℓ instead, obtaining a sequence "i1, i2, i"3, . . . , i"k!$ also satisfying (4). By
Claim, we have

ai1 # ( ( ( # aik ! an & ai1 # ai2 # ai!
3
# ( ( ( # ai!

k! ,
or, after removing the coinciding terms, ℓaj & jaℓ, so

aℓ

ℓ
% aj

j
. By the definition of ℓ, this

means that ℓaj ! jaℓ, hence

an ! ai1 # ai2 # ai!
3
# ( ( ( # ai!

k! .
Thus, for every n & r2ℓ # 2r we have found a representation of the form (2), (4) with ij ! ℓ

for some j & 3. Rearranging the indices we may assume that ik ! ℓ.

Finally, observe that in this representation, the indices "i1, . . . , ik!1$ satisfy the condi-
tions (4) with n replaced by n - ℓ. Thus, from the Claim we get

an!ℓ # aℓ & "ai1 # ( ( ( # aik 1
$ # aℓ ! an,

which by (1) implies
an ! an!ℓ # aℓ for each n & r2ℓ # 2r,

as desired.
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Solution 2. As in the previous solution, we involve the expansion (2), (3), and we fix some
index 1  ℓ  r such that

aℓ

ℓ
! s ! max

1 i r

ai

i
.

Now, we introduce the sequence "bn# as bn ! an $ sn; then bℓ ! 0.
We prove by induction on n that bn  0, and "bn# satisfies the same recurrence relation

as "an#. The base cases n  r follow from the definition of s. Now, for n % r from the
induction hypothesis we have

bn ! max
1 k n!1

"ak & an!k# $ ns ! max
1 k n!1

"bk & bn!k & ns# $ ns ! max
1 k n!1

"bk & bn!k#  0,

as required.

Now, if bk ! 0 for all 1  k  r, then bn ! 0 for all n, hence an ! sn, and the statement is
trivial. Otherwise, define

M ! max
1 i r

'bi', ε ! min('bi' : 1  i  r, bi ) 0*.
Then for n % r we obtain

bn ! max
1 k n!1

"bk & bn!k# + bℓ & bn!ℓ ! bn!ℓ,

so
0 + bn + bn!ℓ + bn!2ℓ + , , , + $M.

Thus, in view of the expansion (2), (3) applied to the sequence "bn#, we get that each bn is
contained in a set

T ! (bi1 & bi2 & , , , & bik : i1, . . . , ik  r* - .$M, 0/
We claim that this set is finite. Actually, for any x 0 T , let x ! bi1 & , , , & bik (i1, . . . , ik  r).

Then among bij ’s there are at most
M

ε
nonzero terms (otherwise x ) M

ε
, "$ε# ) $M). Thus

x can be expressed in the same way with k  M

ε
, and there is only a finite number of such

sums.

Finally, for every t ! 1, 2, . . . , ℓ we get that the sequence

br"t, br"t"ℓ, br"t"2ℓ, . . .

is non-decreasing and attains the finite number of values; therefore it is constant from some
index. Thus, the sequence "bn# is periodic with period ℓ from some index N , which means that

bn ! bn!ℓ ! bn!ℓ & bℓ for all n % N & ℓ,

and hence

an ! bn & ns ! "bn!ℓ & "n$ ℓ#s# & "bℓ & ℓs# ! an!ℓ & aℓ for all n % N & ℓ,

as desired.
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A8. Given six positive numbers a, b, c, d, e, f such that a  b  c  d  e  f . Let a!c!e " S

and b! d! f " T . Prove that

2ST # 3$S ! T %!S$bd! bf ! df% ! T $ac! ae! ce%". (1)

(South Korea)

Solution 1. We define also σ " ac! ce! ae, τ " bd! bf ! df . The idea of the solution is to
interpret (1) as a natural inequality on the roots of an appropriate polynomial.

Actually, consider the polynomial

P $x% " $b! d! f%$x& a%$x& c%$x& e% ! $a! c! e%$x& b%$x& d%$x& f%" T $x3 & Sx2 ! σx& ace% ! S$x3 & Tx2 ! τx& bdf%. (2)

Surely, P is cubic with leading coefficient S ! T # 0. Moreover, we have

P $a% " S$a& b%$a& d%$a& f%  0, P $c% " S$c& b%$c & d%$c& f% # 0,

P $e% " S$e& b%$e& d%$e& f%  0, P $f% " T $f & a%$f & c%$f & e% # 0.

Hence, each of the intervals $a, c%, $c, e%, $e, f% contains at least one root of P $x%. Since there
are at most three roots at all, we obtain that there is exactly one root in each interval (denote
them by α ' $a, c%, β ' $c, e%, γ ' $e, f%). Moreover, the polynomial P can be factorized as

P $x% " $T ! S%$x& α%$x& β%$x& γ%. (3)

Equating the coefficients in the two representations (2) and (3) of P $x% provides
α ! β ! γ " 2TS

T ! S
, αβ ! αγ ! βγ " Sτ ! Tσ

T ! S
.

Now, since the numbers α, β, γ are distinct, we have

0  $α& β%2 ! $α & γ%2 ! $β & γ%2 " 2$α! β ! γ%2 & 6$αβ ! αγ ! βγ%,
which implies

4S2T 2$T ! S%2 " $α! β ! γ%2 # 3$αβ ! αγ ! βγ% " 3$Sτ ! Tσ%
T ! S

,

or
4S2T 2 # 3$T ! S%$Tσ ! Sτ%,

which is exactly what we need.

Comment 1. In fact, one can locate the roots of P  x! more narrowly: they should lie in the intervals a, b!,  c, d!,  e, f!.
Surely, if we change all inequality signs in the problem statement to non-strict ones, the (non-strict)

inequality will also hold by continuity. One can also find when the equality is achieved. This happens
in that case when P  x! is a perfect cube, which immediately implies that b " c " d " e " α " β " γ!,
together with the additional condition that P   b! " 0. Algebraically,

6 T # S!b $ 4TS " 0 %& 3b a # 4b # f! " 2 a # 2b! 2b # f!%& f " b 4b $ a!
2a # b

" b

 
1 # 3 b $ a!

2a # b

! ' b.

This means that for every pair of numbers a, b such that 0 ( a ( b, there exists f ' b such that the
point  a, b, b, b, b, f! is a point of equality.
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Solution 2. Let

U  1

2

 !e" a#2 $ !c" a#2 $ !e" c#2!  S2 " 3!ac$ ae$ ce#
and

V  1

2

 !f " b#2 $ !f " d#2 $ !d" b#2!  T 2 " 3!bd$ bf $ df#.
Then!L.H.S.#2 " !R.H.S.#2  !2ST #2 " !S $ T # S % 3!bd$ bf $ df# $ T % 3!ac$ ae$ ce#!   4S2T 2 " !S $ T # S!T 2 " V # $ T !S2 " U#!  !S $ T #!SV $ TU# " ST !T " S#2,
and the statement is equivalent with!S $ T #!SV $ TU# & ST !T " S#2. (4)

By the Cauchy-Schwarz inequality,!S $ T #!TU $ SV # '  (
S % TU $(T % SV

!2  ST
 (

U $(V
!2

. (5)

Estimate the quantities
(

U and
(

V by the QM–AM inequality with the positive terms !e"c#2
and !d" b#2 being omitted:(

U $(V &!e" a#2 $ !c" a#2
2

$!f " b#2 $ !f " d#2
2& !e" a# $ !c" a#

2
$ !f " b# $ !f " d#

2
 #

f " d

2
" b

2

$$ %e

2
$ c

2
" a

& !T " S# $ 3

2
!e" d# $ 3

2
!c " b# & T " S. (6)

The estimates (5) and (6) prove (4) and hence the statement.

Solution 3. We keep using the notations σ and τ from Solution 1. Moreover, let s  c $ e.
Note that !c" b#!c " d# $ !e" f#!e" d# $ !e" f#!c" b# ) 0,

since each summand is negative. This rewrites as!bd$ bf $ df# " !ac $ ce$ ae# ) !c$ e#!b$ d$ f " a" c" e#, or
τ " σ ) s!T " S#. (7)

Then we have

Sτ $ Tσ  S!τ " σ# $ !S $ T #σ ) Ss!T " S# $ !S $ T #!ce$ as#* Ss!T " S# $ !S $ T ##s2

4
$ !S " s#s$  s

#
2ST " 3

4
!S $ T #s$ .

Using this inequality together with the AM–GM inequality we get
3

4
!S $ T #!Sτ $ Tσ# )'

3

4
!S $ T #s#2ST " 3

4
!S $ T #s$* 3

4
!S $ T #s$ 2ST " 3

4
!S $ T #s

2
 ST.

Hence,

2ST &(
3!S $ T # S!bd$ bf $ df# $ T !ac$ ae$ ce#!.
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Comment 2. The expression (7) can be found by considering the sum of the roots of the quadratic
polynomial q x! "  x # b! x # d! x # f! #  x # a! x # c! x # e!.
Solution 4. We introduce the expressions σ and τ as in the previous solutions. The idea of
the solution is to change the values of variables a, . . . , f keeping the left-hand side unchanged
and increasing the right-hand side; it will lead to a simpler inequality which can be proved in
a direct way.

Namely, we change the variables (i) keeping the (non-strict) inequalities a  b  c  d  
e  f ; (ii) keeping the values of sums S and T unchanged; and finally (iii) increasing the
values of σ and τ . Then the left-hand side of (1) remains unchanged, while the right-hand
side increases. Hence, the inequality (1) (and even a non-strict version of (1)) for the changed
values would imply the same (strict) inequality for the original values.

First, we find the sufficient conditions for (ii) and (iii) to be satisfied.

Lemma. Let x, y, z ! 0; denote U"x, y, z# $ x% y % z, υ"x, y, z# $ xy % xz % yz. Suppose that
x % y $ x % y but &x' y& ( &x ' y &; then we have U"x , y , z# $ U"x, y, z# and υ"x , y , z# (
υ"x, y, z# with equality achieved only when &x' y& $ &x ' y &.
Proof. The first equality is obvious. For the second, we have

υ"x , y , z# $ z"x % y # % x y $ z"x % y # % "x % y #2 ' "x ' y #2
4( z"x % y# % "x% y#2 ' "x' y#2

4
$ υ"x, y, z#,

with the equality achieved only for "x ' y #2 $ "x ' y#2 )* &x ' y & $ &x ' y&, as desired. 
Now, we apply Lemma several times making the following changes. For each change, we

denote the new values by the same letters to avoid cumbersome notations.

1. Let k $ d' c

2
. Replace "b, c, d, e# by "b% k, c% k, d' k, e' k#. After the change we have

a + b + c $ d + e + f , the values of S, T remain unchanged, but σ, τ strictly increase by
Lemma.

2. Let ℓ $ e' d

2
. Replace "c, d, e, f# by "c% ℓ, d% ℓ, e' ℓ, f ' ℓ#. After the change we have

a + b + c $ d $ e + f , the values of S, T remain unchanged, but σ, τ strictly increase by the
Lemma.

3. Finally, letm $ c' b

3
. Replace "a, b, c, d, e, f# by "a%2m, b%2m, c'm, d'm, e'm, f'm#.

After the change, we have a + b $ c $ d $ e + f and S, T are unchanged. To check (iii),
we observe that our change can be considered as a composition of two changes: "a, b, c, d# ,"a%m, b%m, c'm, d'm# and "a, b, e, f# , "a%m, b%m, e'm, f 'm#. It is easy to see that
each of these two consecutive changes satisfy the conditions of the Lemma, hence the values
of σ and τ increase.

Finally, we come to the situation when a + b $ c $ d $ e + f , and we need to prove the
inequality

2"a% 2b#"2b% f# ( 3"a% 4b% f#!"a% 2b#"b2 % 2bf# % "2b% f#"2ab% b2#"$ 3b"a% 4b% f# - !"a% 2b#"b% 2f# % "2b% f#"2a% b#". (8)

Now, observe that

2 - 2"a% 2b#"2b% f# $ 3b"a% 4b% f# % !"a% 2b#"b% 2f# % "2a% b#"2b% f#".
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Hence  4! rewrites as
3b a " 4b " f! "   a " 2b! b " 2f! "  2a " b! 2b " f!!# 2

"
3b a " 4b " f! $   a " 2b! b " 2f! "  2b " f! 2a " b!!,

which is simply the AM–GM inequality.

Comment 3. Here, we also can find all the cases of equality. Actually, it is easy to see that if
some two numbers among b, c, d, e are distinct then one can use Lemma to increase the right-hand side
of (1). Further, if b  c  d  e, then we need equality in !4"; this means that we apply AM–GM to
equal numbers, that is,

3b!a# 4b# f"  !a# 2b"!b# 2f" # !2a# b"!2b # f",
which leads to the same equality as in Comment 1.



Combinatorics

C1. In a concert, 20 singers will perform. For each singer, there is a (possibly empty) set of
other singers such that he wishes to perform later than all the singers from that set. Can it
happen that there are exactly 2010 orders of the singers such that all their wishes are satisfied?

(Austria)

Answer. Yes, such an example exists.

Solution. We say that an order of singers is good if it satisfied all their wishes. Next, we
say that a number N is realizable by k singers (or k-realizable) if for some set of wishes of
these singers there are exactly N good orders. Thus, we have to prove that a number 2010 is
20-realizable.

We start with the following simple

Lemma. Suppose that numbers n1, n2 are realizable by respectively k1 and k2 singers. Then
the number n1n2 is  k1 ! k2"-realizable.
Proof. Let the singers A1, . . . , Ak1

(with some wishes among them) realize n1, and the singers B1,
. . . , Bk2

(with some wishes among them) realize n2. Add to each singer Bi the wish to perform
later than all the singers Aj . Then, each good order of the obtained set of singers has the form Ai1 , . . . , Aik1

, Bj1, . . . , Bjk2
", where  Ai1 , . . . , Aik1

" is a good order for Ai’s and  Bj1, . . . , Bjk2
"

is a good order for Bj ’s. Conversely, each order of this form is obviously good. Hence, the
number of good orders is n1n2.  

In view of Lemma, we show how to construct sets of singers containing 4, 3 and 13 singers
and realizing the numbers 5, 6 and 67, respectively. Thus the number 2010 # 6 $ 5 $ 67 will be
realizable by 4 ! 3 ! 13 # 20 singers. These companies of singers are shown in Figs. 1–3; the
wishes are denoted by arrows, and the number of good orders for each Figure stands below in
the brackets.

a b

c d

(5)

Fig. 1

(3)

Fig. 2

a1

a2

a3

a4

a5

a6

a7

a8

a9

a10

a11

x

y

(67)

Fig. 3

For Fig. 1, there are exactly 5 good orders  a, b, c, d",  a, b, d, c",  b, a, c, d",  b, a, d, c", b, d, a, c". For Fig. 2, each of 6 orders is good since there are no wishes.
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Finally, for Fig. 3, the order of a1, . . . , a11 is fixed; in this line, singer x can stand before
each of ai (i  9), and singer y can stand after each of aj (j ! 5), thus resulting in 9 " 7 # 63
cases. Further, the positions of x and y in this line determine the whole order uniquely unless
both of them come between the same pair $ai, ai 1% (thus 5  i  8); in the latter cases, there
are two orders instead of 1 due to the order of x and y. Hence, the total number of good orders
is 63& 4 # 67, as desired.

Comment. The number 20 in the problem statement is not sharp and is put there to respect the
original formulation. So, if necessary, the difficulty level of this problem may be adjusted by replac-
ing 20 by a smaller number. Here we present some improvements of the example leading to a smaller
number of singers.

Surely, each example with  20 singers can be filled with some “super-stars” who should perform
at the very end in a fixed order. Hence each of these improvements provides a different solution for
the problem. Moreover, the large variety of ideas standing behind these examples allows to suggest
that there are many other examples.

1. Instead of building the examples realizing 5 and 6, it is more economic to make an example
realizing 30; it may seem even simpler. Two possible examples consisting of 5 and 6 singers are shown
in Fig. 4; hence the number 20 can be decreased to 19 or 18.

For Fig. 4a, the order of a1, . . . , a4 is fixed, there are 5 ways to add x into this order, and there
are 6 ways to add y into the resulting order of a1, . . . , a4, x. Hence there are 5 ! 6 " 30 good orders.

On Fig. 4b, for 5 singers a, b1, b2, c1, c2 there are 5! " 120 orders at all. Obviously, exactly one half
of them satisfies the wish b1 � b2, and exactly one half of these orders satisfies another wish c1 � c2;
hence, there are exactly 5!$4 " 30 good orders.

a4

a3

a2

a1

x

y

(30)

b2

b1

c2

c1

a

(30)

a)

b)

b1
b2 b3

b4 b5

a6

a7

a8

a9

a10

a11

x

y

(2010)

b1 b2

b3 b4

a5

a6

a7

a8

c9 c10

c11

x

y

(2010)

Fig. 4 Fig. 5 Fig. 6

2. One can merge the examples for 30 and 67 shown in Figs. 4b and 3 in a smarter way, obtaining
a set of 13 singers representing 2010. This example is shown in Fig. 5; an arrow from/to group%b1, . . . , b5& means that there exists such arrow from each member of this group.

Here, as in Fig. 4b, one can see that there are exactly 30 orders of b1, . . . , b5, a6, . . . , a11 satisfying
all their wishes among themselves. Moreover, one can prove in the same way as for Fig. 3 that each
of these orders can be complemented by x and y in exactly 67 ways, hence obtaining 30 ! 67 " 2010
good orders at all.

Analogously, one can merge the examples in Figs. 1–3 to represent 2010 by 13 singers as is shown
in Fig. 6.



25

b3

b2

b1

b6

b5

b4

a4

a3

a2

a1

(67)

a6

a5

a4

a3

a2

a1

b4b3

b2

b1

(2010)

Fig. 7 Fig. 8

3. Finally, we will present two other improvements; the proofs are left to the reader. The graph in
Fig. 7 shows how 10 singers can represent 67. Moreover, even a company of 10 singers representing 2010
can be found; this company is shown in Fig. 8.
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C2. On some planet, there are 2N countries (N  4). Each country has a flag N units wide
and one unit high composed of N fields of size 1! 1, each field being either yellow or blue. No
two countries have the same flag.

We say that a set of N flags is diverse if these flags can be arranged into an N!N square so
that all N fields on its main diagonal will have the same color. Determine the smallest positive
integer M such that among any M distinct flags, there exist N flags forming a diverse set.

(Croatia)

Answer. M " 2N 2 # 1.

Solution. When speaking about the diagonal of a square, we will always mean the main
diagonal.

Let MN be the smallest positive integer satisfying the problem condition. First, we show
that MN $ 2N 2. Consider the collection of all 2N 2 flags having yellow first squares and blue
second ones. Obviously, both colors appear on the diagonal of each N ! N square formed by
these flags.

We are left to show that MN % 2N 2# 1, thus obtaining the desired answer. We start with
establishing this statement for N " 4.

Suppose that we have 5 flags of length 4. We decompose each flag into two parts of 2 squares
each; thereby, we denote each flag as LR, where the 2! 1 flags L, R & S " 'BB,BY,YB,YY(
are its left and right parts, respectively. First, we make two easy observations on the flags 2!1
which can be checked manually.

(i) For each A & S, there exists only one 2 ! 1 flag C & S (possibly C " A) such that A

and C cannot form a 2 ! 2 square with monochrome diagonal (for part BB, that is YY, and
for BY that is YB).

(ii) Let A1, A2, A3 & S be three distinct elements; then two of them can form a 2! 2 square
with yellow diagonal, and two of them can form a 2! 2 square with blue diagonal (for all parts
but BB, a pair (BY, YB) fits for both statements, while for all parts but BY, these pairs are
(YB, YY) and (BB, YB)).

Now, let ℓ and r be the numbers of distinct left and right parts of our 5 flags, respectively.
The total number of flags is 5 % rℓ, hence one of the factors (say, r) should be at least 3. On
the other hand, ℓ, r % 4, so there are two flags with coinciding right part; let them be L1R1

and L2R1 (L1 ) L2).
Next, since r  3, there exist some flags L3R3 and L4R4 such that R1, R3, R4 are distinct.

Let L!R! be the remaining flag. By (i), one of the pairs *L!, L1+ and *L!, L2+ can form a
2! 2 square with monochrome diagonal; we can assume that L!, L2 form a square with a blue
diagonal. Finally, the right parts of two of the flags L1R1, L3R3, L4R4 can also form a 2 ! 2
square with a blue diagonal by (ii). Putting these 2 ! 2 squares on the diagonal of a 4 ! 4
square, we find a desired arrangement of four flags.

We are ready to prove the problem statement by induction on N ; actually, above we have
proved the base case N " 4. For the induction step, assume that N $ 4, consider any 2N 2# 1
flags of length N , and arrange them into a large flag of size *2N 2# 1+ !N . This flag contains
a non-monochrome column since the flags are distinct; we may assume that this column is the

first one. By the pigeonhole principle, this column contains at least

 
2N 2 # 1

2

! " 2N 3 # 1

squares of one color (say, blue). We call the flags with a blue first square good.
Consider all the good flags and remove the first square from each of them. We obtain at

least 2N 3 # 1  MN 1 flags of length N , 1; by the induction hypothesis, N , 1 of them
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can form a square Q with the monochrome diagonal. Now, returning the removed squares, we
obtain a rectangle  N ! 1" # N , and our aim is to supplement it on the top by one more flag.

If Q has a yellow diagonal, then we can take each flag with a yellow first square (it exists
by a choice of the first column; moreover, it is not used in Q). Conversely, if the diagonal of Q

is blue then we can take any of the $ 2N 3 % 1! N ! 1" & 0 remaining good flags. So, in both
cases we get a desired N # N square.

Solution 2. We present a different proof of the estimate MN ' 2N 2 % 1. We do not use the
induction, involving Hall’s lemma on matchings instead.

Consider arbitrary 2N 2 % 1 distinct flags and arrange them into a large  2N 2 % 1" # N

flag. Construct two bipartite graphs Gy (  V ) V !, Ey" and Gb (  V ) V !, Eb" with the
common set of vertices as follows. Let V and V ! be the set of columns and the set of flags
under consideration, respectively. Next, let the edge  c, f" appear in Ey if the intersection of
column c and flag f is yellow, and  c, f" * Eb otherwise. Then we have to prove exactly that
one of the graphs Gy and Gb contains a matching with all the vertices of V involved.

Assume that these matchings do not exist. By Hall’s lemma, it means that there exist
two sets of columns Sy, Sb + V such that ,Ey Sy", ' ,Sy, ! 1 and ,Eb Sb", ' ,Sb, ! 1 (in the
left-hand sides, Ey Sy" and Eb Sb" denote respectively the sets of all vertices connected to Sy

and Sb in the corresponding graphs). Our aim is to prove that this is impossible. Note that
Sy, Sb - V since N ' 2N 2 % 1.

First, suppose that Sy . Sb - ∅, so there exists some c * Sy . Sb. Note that each
flag is connected to c either in Gy or in Gb, hence Ey Sy" ) Eb Sb" ( V !. Hence we have
2N 2 % 1 ( ,V !, ' ,Ey Sy", % ,Eb Sb", ' ,Sy, % ,Sb, ! 2 ' 2N ! 4; this is impossible for N $ 4.

So, we have Sy . Sb ( ∅. Let y ( ,Sy,, b ( ,Sb,. From the construction of our graph,
we have that all the flags in the set V " ( V !/ Ey Sy" ) Eb Sb"! have blue squares in the
columns of Sy and yellow squares in the columns of Sb. Hence the only undetermined positions
in these flags are the remaining N !y ! b ones, so 2N y b $ ,V ", $ ,V !,! ,Ey Sy",! ,Eb Sb", $
2N 2 % 1 !  y ! 1" !  b ! 1", or, denoting c ( y % b, 2N c % c & 2N 2 % 2. This is impossible
since N $ c $ 2.
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C3. 2500 chess kings have to be placed on a 100 100 chessboard so that
(i) no king can capture any other one (i.e. no two kings are placed in two squares sharing

a common vertex);
(ii) each row and each column contains exactly 25 kings.
Find the number of such arrangements. (Two arrangements differing by rotation or sym-

metry are supposed to be different.)

(Russia)

Answer. There are two such arrangements.

Solution. Suppose that we have an arrangement satisfying the problem conditions. Divide the
board into 2 2 pieces; we call these pieces blocks. Each block can contain not more than one
king (otherwise these two kings would attack each other); hence, by the pigeonhole principle
each block must contain exactly one king.

Now assign to each block a letter T or B if a king is placed in its top or bottom half,
respectively. Similarly, assign to each block a letter L or R if a king stands in its left or right
half. So we define T-blocks, B-blocks, L-blocks, and R-blocks. We also combine the letters; we call
a block a TL-block if it is simultaneously T-block and L-block. Similarly we define TR-blocks,
BL-blocks, and BR-blocks. The arrangement of blocks determines uniquely the arrangement of
kings; so in the rest of the solution we consider the 50 50 system of blocks (see Fig. 1). We
identify the blocks by their coordinate pairs; the pair !i, j", where 1 # i, j # 50, refers to the
jth block in the ith row (or the ith block in the jth column). The upper-left block is !1, 1".

The system of blocks has the following properties..
(i ) If !i, j" is a B-block then !i$ 1, j" is a B-block: otherwise the kings in these two blocks

can take each other. Similarly: if !i, j" is a T-block then !i % 1, j" is a T-block; if !i, j" is an
L-block then !i, j % 1" is an L-block; if !i, j" is an R-block then !i, j $ 1" is an R-block.

(ii ) Each column contains exactly 25 L-blocks and 25 R-blocks, and each row contains
exactly 25 T-blocks and 25 B-blocks. In particular, the total number of L-blocks (or R-blocks,
or T-blocks, or B-blocks) is equal to 25 & 50 ' 1250.

Consider any B-block of the form !1, j". By (i ), all blocks in the jth column are B-blocks;
so we call such a column B-column. By (ii ), we have 25 B-blocks in the first row, so we obtain
25 B-columns. These 25 B-columns contain 1250 B-blocks, hence all blocks in the remaining
columns are T-blocks, and we obtain 25 T-columns. Similarly, there are exactly 25 L-rows and
exactly 25 R-rows.

Now consider an arbitrary pair of a T-column and a neighboring B-column (columns with
numbers j and j $ 1).

         BL

TL

TL1

1

BL

BR

BL

2

2

TR

TR

TL

3

3  i

i+1

j j+1

L

T B

Fig. 1 Fig. 2

Case 1. Suppose that the jth column is a T-column, and the !j $ 1"th column is a B-
column. Consider some index i such that the ith row is an L-row; then !i, j $ 1" is a BL-block.
Therefore, !i$ 1, j" cannot be a TR-block (see Fig. 2), hence !i$ 1, j" is a TL-block, thus the



29 i ! 1"th row is an L-row. Now, choosing the ith row to be the topmost L-row, we successively
obtain that all rows from the ith to the 50th are L-rows. Since we have exactly 25 L-rows, it
follows that the rows from the 1st to the 25th are R-rows, and the rows from the 26th to the
50th are L-rows.

Now consider the neighboring R-row and L-row (that are the rows with numbers 25 and
26). Replacing in the previous reasoning rows by columns and vice versa, the columns from the
1st to the 25th are T-columns, and the columns from the 26th to the 50th are B-columns. So
we have a unique arrangement of blocks that leads to the arrangement of kings satisfying the
condition of the problem (see Fig. 3).

BR

BLTL

TR

BR

BLTL

TR

BR

BLTL

TR

BR

BLTL

TR      
  
      

  
      

  
      

  
 

Fig. 3 Fig. 4

Case 2. Suppose that the jth column is a B-column, and the  j!1"th column is a T-column.
Repeating the arguments from Case 1, we obtain that the rows from the 1st to the 25th are
L-rows (and all other rows are R-rows), the columns from the 1st to the 25th are B-columns
(and all other columns are T-columns), so we find exactly one more arrangement of kings (see
Fig. 4).
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C4. Six stacks S1, . . . , S6 of coins are standing in a row. In the beginning every stack contains
a single coin. There are two types of allowed moves:

Move 1 : If stack Sk with 1  k  5 contains at least one coin, you may remove one coin
from Sk and add two coins to Sk 1.

Move 2 : If stack Sk with 1  k  4 contains at least one coin, then you may remove
one coin from Sk and exchange stacks Sk 1 and Sk 2.

Decide whether it is possible to achieve by a sequence of such moves that the first five stacks
are empty, whereas the sixth stack S6 contains exactly 2010

20102010

coins.

C4 . Same as Problem C4, but the constant 201020102010

is replaced by 20102010.

(Netherlands)

Answer. Yes (in both variants of the problem). There exists such a sequence of moves.

Solution. Denote by !a1, a2, . . . , an" # !a!1, a!2, . . . , a!n" the following: if some consecutive stacks
contain a1, . . . , an coins, then it is possible to perform several allowed moves such that the stacks
contain a!1, . . . , a!n coins respectively, whereas the contents of the other stacks remain unchanged.

Let A $ 20102010 or A $ 201020102010

, respectively. Our goal is to show that!1, 1, 1, 1, 1, 1" # !0, 0, 0, 0, 0, A".
First we prove two auxiliary observations.

Lemma 1. !a, 0, 0" # !0, 2a, 0" for every a % 1.

Proof. We prove by induction that !a, 0, 0" # !a & k, 2k, 0" for every 1  k  a. For k $ 1,
apply Move 1 to the first stack:!a, 0, 0" # !a& 1, 2, 0" $ !a& 1, 21, 0".

Now assume that k ' a and the statement holds for some k ' a. Starting from !a&k, 2k, 0",
apply Move 1 to the middle stack 2k times, until it becomes empty. Then apply Move 2 to the
first stack:!a& k, 2k, 0" # !a& k, 2k & 1, 2" # ( ( ( # !a& k, 0, 2k 1" # !a& k & 1, 2k 1, 0".
Hence, !a, 0, 0" # !a& k, 2k, 0" # !a & k & 1, 2k 1, 0".  
Lemma 2. For every positive integer n, let Pn $ 22..

.2 !!"!!#
n

(e.g. P3 $ 222 $ 16). Then!a, 0, 0, 0" # !0, Pa, 0, 0" for every a % 1.

Proof. Similarly to Lemma 1, we prove that !a, 0, 0, 0" # !a& k, Pk, 0, 0" for every 1  k  a.
For k $ 1, apply Move 1 to the first stack:!a, 0, 0, 0" # !a& 1, 2, 0, 0" $ !a& 1, P1, 0, 0".
Now assume that the lemma holds for some k ' a. Starting from !a & k, Pk, 0, 0", apply

Lemma 1, then apply Move 1 to the first stack:!a& k, Pk, 0, 0" # !a & k, 0, 2Pk, 0" $ !a& k, 0, Pk 1, 0" # !a& k & 1, Pk 1, 0, 0".
Therefore, !a, 0, 0, 0" # !a& k, Pk, 0, 0" # !a& k & 1, Pk 1, 0, 0".  
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Now we prove the statement of the problem.
First apply Move 1 to stack 5, then apply Move 2 to stacks S4, S3, S2 and S1 in this order.

Then apply Lemma 2 twice: 1, 1, 1, 1, 1, 1! "  1, 1, 1, 1, 0, 3! "  1, 1, 1, 0, 3, 0! "  1, 1, 0, 3, 0, 0! "  1, 0, 3, 0, 0, 0! ""  0, 3, 0, 0, 0, 0! "  0, 0, P3, 0, 0, 0! #  0, 0, 16, 0, 0, 0! "  0, 0, 0, P16, 0, 0!.
We already have more than A coins in stack S4, since

A $ 201020102010 %  211!20102010 # 211 20102010 % 220102011 % 2!211"2011 # 2211 2011 % 222
15 % P16.

To decrease the number of coins in stack S4, apply Move 2 to this stack repeatedly until its
size decreases to A&4. (In every step, we remove a coin from S4 and exchange the empty stacks
S5 and S6.)  0, 0, 0, P16, 0, 0! "  0, 0, 0, P16 ' 1, 0, 0! "  0, 0, 0, P16 ' 2, 0, 0! "" ( ( ( "  0, 0, 0, A&4, 0, 0!.

Finally, apply Move 1 repeatedly to empty stacks S4 and S5: 0, 0, 0, A&4, 0, 0! " ( ( ( "  0, 0, 0, 0, A&2, 0! " ( ( ( "  0, 0, 0, 0, 0, A!.
Comment 1. Starting with only 4 stack, it is not hard to check manually that we can achieve at
most 28 coins in the last position. However, around 5 and 6 stacks the maximal number of coins
explodes. With 5 stacks it is possible to achieve more than 2214

coins. With 6 stacks the maximum is
greater than PP214

.

It is not hard to show that the numbers 20102010 and 201020102010

in the problem can be replaced
by any nonnegative integer up to PP

214
.

Comment 2. The simpler variant C4# of the problem can be solved without Lemma 2: 1, 1, 1, 1, 1, 1! "  0, 3, 1, 1, 1, 1! "  0, 1, 5, 1, 1, 1! "  0, 1, 1, 9, 1, 1! ""  0, 1, 1, 1, 17, 1! "  0, 1, 1, 1, 0, 35! "  0, 1, 1, 0, 35, 0! "  0, 1, 0, 35, 0, 0! ""  0, 0, 35, 0, 0, 0! "  0, 0, 1, 234 , 0, 0! "  0, 0, 1, 0, 2234

, 0! "  0, 0, 0, 2234

, 0, 0!"  0, 0, 0, 2234 # 1, 0, 0! " . . . "  0, 0, 0, A$4, 0, 0! "  0, 0, 0, 0, A$2, 0! "  0, 0, 0, 0, 0, A!.
For this reason, the PSC suggests to consider the problem C4 as well. Problem C4 requires more
invention and technical care. On the other hand, the problem statement in C4# hides the fact that the
resulting amount of coins can be such incredibly huge and leaves this discovery to the students.
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C5. n  4 players participated in a tennis tournament. Any two players have played exactly
one game, and there was no tie game. We call a company of four players bad if one player
was defeated by the other three players, and each of these three players won a game and lost
another game among themselves. Suppose that there is no bad company in this tournament.
Let wi and ℓi be respectively the number of wins and losses of the ith player. Prove that

n 
i 1

!wi " ℓi#3  0. (1)

(South Korea)

Solution. For any tournament T satisfying the problem condition, denote by S!T # sum under
consideration, namely

S!T # $ n 
i 1

!wi " ℓi#3.
First, we show that the statement holds if a tournament T has only 4 players. Actually, let

A $ !a1, a2, a3, a4# be the number of wins of the players; we may assume that a1  a2  a3  a4.
We have a1 % a2 % a3 % a4 $ !42" $ 6, hence a4 & 1. If a4 $ 0, then we cannot have
a1 $ a2 $ a3 $ 2, otherwise the company of all players is bad. Hence we should have
A $ !3, 2, 1, 0#, and S!T # $ 33 % 13 % !"1#3 % !"3#3 $ 0. On the other hand, if a4 $ 1, then
only two possibilities, A $ !3, 1, 1, 1# and A $ !2, 2, 1, 1# can take place. In the former case we
have S!T # $ 33 % 3 ' !"2#3 ( 0, while in the latter one S!T # $ 13 % 13 % !"1#3 % !"1#3 $ 0, as
desired.

Now we turn to the general problem. Consider a tournament T with no bad companies and
enumerate the players by the numbers from 1 to n. For every 4 players i1, i2, i3, i4 consider a
“sub-tournament” Ti1i2i3i4 consisting of only these players and the games which they performed
with each other. By the abovementioned, we have S!Ti1i2i3i4#  0. Our aim is to prove that

S!T # $  
i1,i2,i3,i4

S!Ti1i2i3i4#, (2)

where the sum is taken over all 4-tuples of distinct numbers from the set )1, . . . , n*. This way
the problem statement will be established.

We interpret the number !wi " ℓi#3 as following. For i + j, let εij $ 1 if the ith player wins
against the jth one, and εij $ "1 otherwise. Then!wi " ℓi#3 $ # 

j!i

εij

$3 $  
j1,j2,j3!i

εij1εij2εij3.

Hence,
S!T # $  

i"#j1,j2,j3$ εij1εij2εij3.

To simplify this expression, consider all the terms in this sum where two indices are equal.
If, for instance, j1 $ j2, then the term contains ε2

ij1
$ 1, so we can replace this term by εij3.

Make such replacements for each such term; obviously, after this change each term of the form
εij3 will appear P !T # times, hence

S!T # $  %#i,j1,j2,j3$% 4

εij1εij2εij3 % P !T # 
i!j

εij $ S1!T # % P !T #S2!T #.
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We show that S2 T ! " 0 and hence S T ! " S1 T ! for each tournament. Actually, note that
εij " #εji, and the whole sum can be split into such pairs. Since the sum in each pair is 0, so
is S2 T !.

Thus the desired equality (2) rewrites as

S1 T ! "  
i1,i2,i3,i4

S1 Ti1i2i3i4!. (3)

Now, if all the numbers j1, j2, j3 are distinct, then the set $i, j1, j2, j3% is contained in exactly
one 4-tuple, hence the term εij1εij2εij3 appears in the right-hand part of (3) exactly once, as
well as in the left-hand part. Clearly, there are no other terms in both parts, so the equality is
established.

Solution 2. Similarly to the first solution, we call the subsets of players as companies, and
the k-element subsets will be called as k-companies .

In any company of the players, call a player the local champion of the company if he defeated
all other members of the company. Similarly, if a player lost all his games against the others
in the company then call him the local loser of the company . Obviously every company has
at most one local champion and at most one local loser. By the condition of the problem,
whenever a 4-company has a local loser, then this company has a local champion as well.

Suppose that k is some positive integer, and let us count all cases when a player is the local
champion of some k-company. The ith player won against wi other player. To be the local
champion of a k-company, he must be a member of the company, and the other k # 1 members
must be chosen from those whom he defeated. Therefore, the ith player is the local champion

of

!
wi

k # 1

"
k-companies. Hence, the total number of local champions of all k-companies is

n 
i 1

!
wi

k # 1

"
.

Similarly, the total number of local losers of the k-companies is
n 

i 1

!
ℓi

k # 1

"
.

Now apply this for k " 2, 3 and 4.

Since every game has a winner and a loser, we have
n 

i 1

wi " n 
i 1

ℓi " !n

2

"
, and hence

n 
i 1

#
wi # ℓi

$ " 0. (4)

In every 3-company, either the players defeated one another in a cycle or the company has
both a local champion and a local loser. Therefore, the total number of local champions and

local losers in the 3-companies is the same,
n 

i 1

!
wi

2

" " n 
i 1

!
ℓi

2

"
. So we have

n 
i 1

%!
wi

2

" # !ℓi

2

"& " 0. (5)

In every 4-company, by the problem’s condition, the number of local losers is less than or
equal to the number of local champions. Then the same holds for the total numbers of local
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champions and local losers in all 4-companies, so
n 

i 1

!
wi

3

"  n 
i 1

!
ℓi

3

"
. Hence,

n 
i 1

#!
wi

3

" ! !ℓi

3

"$  0. (6)

Now we establish the problem statement (1) as a linear combination of (4), (5) and (6). It
is easy check that"x! y#3 $ 24

#!
x

3

"!!y

3

"$% 24

#!
x

2

"!!y

2

"$! %3"x% y#2 ! 4
&"x! y#.

Apply this identity to x $ w1 and y $ ℓi. Since every player played n ! 1 games, we have
wi % ℓi $ n! 1, and thus"wi ! ℓi#3 $ 24

#!
wi

3

"!!ℓi

3

"$% 24

#!
wi

2

"!!ℓi

2

"$! %3"n! 1#2 ! 4
&'

wi ! ℓi

(
.

Then

n 
i 1

"wi ! ℓi#3 $ 24
n 

i 1

#!
wi

3

"!!ℓi

3

"$)*********+*********,!0

%24 n 
i 1

#!
wi

2

"!!ℓi

2

"$)*********+*********,
0

!%3"n! 1#2 ! 4
& n 

i 1

'
wi!ℓi

()*****+*****,
0

 0.
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C6. Given a positive integer k and other two integers b  w  1. There are two strings of
pearls, a string of b black pearls and a string of w white pearls. The length of a string is the
number of pearls on it.

One cuts these strings in some steps by the following rules. In each step:

(i) The strings are ordered by their lengths in a non-increasing order. If there are some
strings of equal lengths, then the white ones precede the black ones. Then k first ones (if they
consist of more than one pearl) are chosen; if there are less than k strings longer than 1, then
one chooses all of them.

(ii) Next, one cuts each chosen string into two parts differing in length by at most one.

(For instance, if there are strings of 5, 4, 4, 2 black pearls, strings of 8, 4, 3 white pearls and
k ! 4, then the strings of 8 white, 5 black, 4 white and 4 black pearls are cut into the parts"4, 4#, "3, 2#, "2, 2# and "2, 2#, respectively.)

The process stops immediately after the step when a first isolated white pearl appears.
Prove that at this stage, there will still exist a string of at least two black pearls.

(Canada)

Solution 1. Denote the situation after the ith step by Ai; hence A0 is the initial situation, and
Ai 1 $ Ai is the ith step. We call a string containing m pearls an m-string; it is an m-w-string
or a m-b-string if it is white or black, respectively.

We continue the process until every string consists of a single pearl. We will focus on three
moments of the process: (a) the first stage As when the first 1-string (no matter black or
white) appears; (b) the first stage At where the total number of strings is greater than k (if
such moment does not appear then we put t ! %); and (c) the first stage Af when all black
pearls are isolated. It is sufficient to prove that in Af 1 (or earlier), a 1-w-string appears.

We start with some easy properties of the situations under consideration. Obviously, we
have s & f . Moreover, all b-strings from Af 1 become single pearls in the fth step, hence all
of them are 1- or 2-b-strings.

Next, observe that in each step Ai $ Ai!1 with i & t ' 1, all " 1#-strings were cut since
there are not more than k strings at all; if, in addition, i ( s, then there were no 1-string, so
all the strings were cut in this step.

Now, let Bi and bi be the lengths of the longest and the shortest b-strings in Ai, and
let Wi and wi be the same for w-strings. We show by induction on i & min)s, t* that (i) the
situation Ai contains exactly 2i black and 2i white strings, (ii) Bi + Wi, and (iii) bi + wi.
The base case i ! 0 is obvious. For the induction step, if i & min)s, t* then in the ith step,
each string is cut, thus the claim (i) follows from the induction hypothesis; next, we have
Bi !  Bi 1,2! +  Wi 1,2! ! Wi and bi ! "bi 1,2# + "wi 1,2# ! wi, thus establishing (ii)
and (iii).

For the numbers s, t, f , two cases are possible.

Case 1. Suppose that s & t or f & t - 1 (and hence s & t - 1); in particular, this is true
when t ! %. Then in As 1 we have Bs 1 + Ws 1, bs 1 + ws 1  1 as s ' 1 & min)s, t*.
Now, if s ! f , then in As 1, there is no 1-w-string as well as no " 2#-b-string. That is,
2 ! Bs 1 + Ws 1 + bs 1 + ws 1  1, hence all these numbers equal 2. This means that
in As 1, all strings contain 2 pearls, and there are 2s 1 black and 2s 1 white strings, which
means b ! 2 . 2s 1 ! w. This contradicts the problem conditions.

Hence we have s & f ' 1 and thus s & t. Therefore, in the sth step each string is cut
into two parts. Now, if a 1-b-string appears in this step, then from ws 1 & bs 1 we see that a
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1-w-string appears as well; so, in each case in the sth step a 1-w-string appears, while not all
black pearls become single, as desired.

Case 2. Now assume that t  1 ! s and t  2 ! f . Then in At we have exactly 2
t white

and 2t black strings, all being larger than 1, and 2t 1 " k # 2t (the latter holds since 2t is the
total number of strings in At!1). Now, in the $t 1%st step, exactly k strings are cut, not more
than 2t of them being black; so the number of w-strings in At 1 is at least 2

t  $k & 2t% ' k.
Since the number of w-strings does not decrease in our process, in Af!1 we have at least k

white strings as well.
Finally, in Af!1, all b-strings are not larger than 2, and at least one 2-b-string is cut in

the fth step. Therefore, at most k & 1 white strings are cut in this step, hence there exists a
w-string W which is not cut in the fth step. On the other hand, since a 2-b-string is cut, all$#2%-w-strings should also be cut in the fth step; hence W should be a single pearl. This is
exactly what we needed.

Comment. In this solution, we used the condition b  w only to avoid the case b ! w ! 2t. Hence,
if a number b ! w is not a power of 2, then the problem statement is also valid.

Solution 2. We use the same notations as introduced in the first paragraph of the previous
solution. We claim that at every stage, there exist a u-b-string and a v-w-string such that
either

(i) u " v # 1, or
(ii) 2 ! u ! v ( 2u, and there also exist k & 1 of $"v)2%-strings other than considered

above.

First, we notice that this statement implies the problem statement. Actually, in both
cases (i) and (ii) we have u " 1, so at each stage there exists a $#2%-b-string, and for the last
stage it is exactly what we need.

Now, we prove the claim by induction on the number of the stage. Obviously, for A0 the
condition (i) holds since b " w. Further, we suppose that the statement holds for Ai, and prove
it for Ai 1. Two cases are possible.

Case 1. Assume that in Ai, there are a u-b-string and a v-w-string with u " v. We can
assume that v is the length of the shortest w-string in Ai; since we are not at the final stage,
we have v # 2. Now, in the $i 1%st step, two subcases may occur.

Subcase 1a. Suppose that either no u-b-string is cut, or both some u-b-string and some
v-w-string are cut. Then in Ai 1, we have either a u-b-string and a $!v%-w-string (and (i) is
valid), or we have a  u)2!-b-string and a "v)2#-w-string. In the latter case, from u " v we get u)2! " "v)2#, and (i) is valid again.

Subcase 1b. Now, some u-b-string is cut, and no v-w-string is cut (and hence all the strings
which are cut are longer than v). If u" '  u)2! " v, then the condition (i) is satisfied since we
have a u"-b-string and a v-w-string in Ai 1. Otherwise, notice that the inequality u " v # 2
implies u" # 2. Furthermore, besides a fixed u-b-string, other k & 1 of $#v  1%-strings should
be cut in the $i  1%st step, hence providing at least k & 1 of $# $v  1%)2!%-strings, and $v  1%)2! " v)2. So, we can put v" ' v, and we have u" ! v ( u ! 2u", so the condition (ii)
holds for Ai 1.

Case 2. Conversely, assume that in Ai there exist a u-b-string, a v-w-string (2 ! u ! v ( 2u)
and a set S of k & 1 other strings larger than v)2 (and hence larger than 1). In the $i  1%st
step, three subcases may occur.

Subcase 2a. Suppose that some u-b-string is not cut, and some v-w-string is cut. The latter
one results in a "v)2#-w-string, we have v" ' "v)2# ( u, and the condition (i) is valid.
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Subcase 2b. Next, suppose that no v-w-string is cut (and therefore no u-b-string is cut as
u  v). Then all k strings which are cut have the length ! v, so each one results in a "!v#2$-
string. Hence in Ai 1, there exist k % k& 1 of "!v#2$-strings other than the considered u- and
v-strings, and the condition (ii) is satisfied.

Subcase 2c. In the remaining case, all u-b-strings are cut. This means that all "%u$-strings
are cut as well, hence our v-w-string is cut. Therefore in Ai 1 there exists a  u#2!-b-string
together with a "v#2#-w-string. Now, if u! '  u#2! ! "v#2# ' v! then the condition (i) is
fulfilled. Otherwise, we have u!  v! ( u  2u!. In this case, we show that u! % 2. If, to the
contrary, u! ' 1 (and hence u ' 2), then all black and white "%2$-strings should be cut in the"i) 1$st step, and among these strings there are at least a u-b-string, a v-w-string, and k & 1
strings in S (k ) 1 strings altogether). This is impossible.

Hence, we get 2  u!  v! ( 2u!. To reach (ii), it remains to check that in Ai 1, there exists
a set S ! of k& 1 other strings larger than v!#2. These will be exactly the strings obtained from
the elements of S. Namely, each s * S was either cut in the "i)1$st step, or not. In the former
case, let us include into S ! the largest of the strings obtained from s; otherwise we include s

itself into S !. All k & 1 strings in S ! are greater than v#2 % v!, as desired.
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C7. Let P1, . . . , Ps be arithmetic progressions of integers, the following conditions being
satisfied:

(i) each integer belongs to at least one of them;
(ii) each progression contains a number which does not belong to other progressions.
Denote by n the least common multiple of steps of these progressions; let n  pα1

1 . . . pαk

k be
its prime factorization. Prove that

s ! 1" k 
i 1

αi#pi $ 1%.
(Germany)

Solution 1. First, we prove the key lemma, and then we show how to apply it to finish the
solution.

Let n1, . . . , nk be positive integers. By an n1 & n2 & ' ' ' & nk grid we mean the set N  (#a1, . . . , ak% : ai ) Z, 0 * ai * ni $ 1+; the elements of N will be referred to as points. In this
grid, we define a subgrid as a subset of the form

L  (#b1, . . . , bk% ) N : bi1  xi1 , . . . , bit  xit+, (1)

where I  (i1, . . . , it+ is an arbitrary nonempty set of indices, and xij ) ,0, nij $ 1- (1 * j * t)
are fixed integer numbers. Further, we say that a subgrid (1) is orthogonal to the ith coordinate
axis if i ) I, and that it is parallel to the ith coordinate axis otherwise.

Lemma. Assume that the grid N is covered by subgrids L1, L2, . . . , Ls (this means N  !s

i 1 Li)
so that

(ii!) each subgrid contains a point which is not covered by other subgrids;
(iii) for each coordinate axis, there exists a subgrid Li orthogonal to this axis.
Then

s ! 1" k 
i 1

#ni $ 1%.
Proof. Assume to the contrary that s * "i#ni $ 1%  s!. Our aim is to find a point that is not
covered by L1, . . . , Ls.

The idea of the proof is the following. Imagine that we expand each subgrid to some maximal
subgrid so that for the ith axis, there will be at most ni $ 1 maximal subgrids orthogonal to
this axis. Then the desired point can be found easily: its ith coordinate should be that not
covered by the maximal subgrids orthogonal to the ith axis. Surely, the conditions for existence
of such expansion are provided by Hall’s lemma on matchings. So, we will follow this direction,
although we will apply Hall’s lemma to some subgraph instead of the whole graph.

Construct a bipartite graph G  #V . V !, E% as follows. Let V  (L1, . . . , Ls+, and let
V !  (vij : 1 * i * s, 1 * j * ni$ 1+ be some set of s! elements. Further, let the edge #Lm, vij%
appear iff Lm is orthogonal to the ith axis.

For each subset W / V , denote

f#W %  (v ) V ! : #L, v% ) E for some L ) W +.
Notice that f#V %  V ! by (iii).

Now, consider the set W / V containing the maximal number of elements such that 0W 0 10f#W %0; if there is no such set then we set W  ∅. DenoteW !  f#W %, U  V 2W , U !  V !2W !.
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By our assumption and the Lemma condition,  f!V " #  V   $  V  , hence W % V and U % ∅.
Permuting the coordinates, we can assume that U  # &vij : 1 ' i ' ℓ(, W  # &vij : ℓ)1 ' i ' k(.

Consider the induced subgraph G of G on the vertices U * U  . We claim that for every
X + U , we get  f!X" , U   $  X (so G satisfies the conditions of Hall’s lemma). Actually, we
have  W  $  f!W " , so if  X -  f!X" , U   for some X + U , then we have W * X #  W  )  X -  f!W " )  f!X" , U   #  f!W " * !f!X" , U  " #  f!W * X" .
This contradicts the maximality of  W  .

Thus, applying Hall’s lemma, we can assign to each L . U some vertex vij . U  so that to
distinct elements of U , distinct vertices of U  are assigned. In this situation, we say that L . U

corresponds to the ith axis, and write g!L" # i. Since there are ni / 1 vertices of the form vij ,
we get that for each 1 ' i ' ℓ, not more than ni / 1 subgrids correspond to the ith axis.

Finally, we are ready to present the desired point. Since W % V , there exists a point
b # !b1, b2, . . . , bk" . N0!*L!W L". On the other hand, for every 1 ' i ' ℓ, consider any subgrid
L . U with g!L" # i. This means exactly that L is orthogonal to the ith axis, and hence all
its elements have the same ith coordinate cL. Since there are at most ni / 1 such subgrids,
there exists a number 0 ' ai ' ni / 1 which is not contained in a set &cL : g!L" # i(. Choose
such number for every 1 ' i ' ℓ. Now we claim that point a # !a1, . . . , aℓ, bℓ"1, . . . , bk" is not
covered, hence contradicting the Lemma condition.

Surely, point a cannot lie in some L . U , since all the points in L have g!L"th coordinate
cL % ag#L$. On the other hand, suppose that a . L for some L . W ; recall that b 1 L. But the
points a and b differ only at first ℓ coordinates, so L should be orthogonal to at least one of
the first ℓ axes, and hence our graph contains some edge !L, vij" for i ' ℓ. It contradicts the
definition of W  . The Lemma is proved.  

Now we turn to the problem. Let dj be the step of the progression Pj . Note that since
n # l.c.m.!d1, . . . , ds", for each 1 ' i ' k there exists an index j!i" such that pαi

i

  dj#i$. We
assume that n - 1; otherwise the problem statement is trivial.

For each 0 ' m ' n / 1 and 1 ' i ' k, let mi be the residue of m modulo pαi

i , and let
mi # riαi

. . . ri1 be the base pi representation of mi (possibly, with some leading zeroes). Now,
we put into correspondence to m the sequence r!m" # !r11, . . . , r1α1

, r21, . . . , rkαk
". Hence r!m"

lies in a p1 2 3 3 3 2 p1!""""""#""""""$
α1 times

2 3 3 3 2 pk 2 3 3 3 2 pk!""""""#""""""$
αk times

grid N .

Surely, if r!m" # r!m " then pαi

i

  mi / m 
i, which follows pαi

i

  m / m for all 1 ' i ' k;
consequently, n

  m / m . So, when m runs over the set &0, . . . , n / 1(, the sequences r!m" do
not repeat; since  N  # n, this means that r is a bijection between &0, . . . , n / 1( and N . Now
we will show that for each 1 ' i ' s, the set Li # &r!m" : m . Pi( is a subgrid, and that for
each axis there exists a subgrid orthogonal to this axis. Obviously, these subgrids cover N , and
the condition (ii ) follows directly from (ii). Hence the Lemma provides exactly the estimate
we need.

Consider some 1 ' j ' s and let dj # p
γ1

1 . . . p
γk

k . Consider some q . Pj and let r!q" #!r11, . . . , rkαk
". Then for an arbitrary q , setting r!q " # !r 

11, . . . , r
 
kαk

" we have
q . Pj 45 p

γi

i

  q / q for each 1 ' i ' k 45 ri,t # r 
i,t for all t ' γi.

Hence Lj # &!r 
11, . . . , r

 
kαk

" . N : ri,t # r 
i,t for all t ' γi( which means that Lj is a subgrid

containing r!q". Moreover, in Lj#i$, all the coordinates corresponding to pi are fixed, so it is
orthogonal to all of their axes, as desired.
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Comment 1. The estimate in the problem is sharp for every n. One of the possible examples is the
following one. For each 1  i  k, 0  j  αi ! 1, 1  k  p! 1, let

Pi,j,k " kp
j
i # p

j 1
i Z,

and add the progression P0 " nZ. One can easily check that this set satisfies all the problem conditions.
There also exist other examples.

On the other hand, the estimate can be adjusted in the following sense. For every 1  i  k, let
0 " αi0, αi1, . . . , αihi

be all the numbers of the form ordpi
$dj% in an increasing order (we delete the

repeating occurences of a number, and add a number 0 " αi0 if it does not occur). Then, repeating
the arguments from the solution one can obtain that

s & 1# k 
i!1

hi 
j!1

$pαj"αj 1  1!.
Note that pα  1 " α#p  1!, and the equality is achieved only for α $ 1. Hence, for reaching the
minimal number of the progressions, one should have αi,j $ j for all i, j. In other words, for each
1 % j % αi, there should be an index t such that ordpi

#dt! $ j.

Solution 2. We start with introducing some notation. For positive integer r, we denote r! " #1, 2, . . . , r$. Next, we say that a set of progressions P " #P1, . . . , Ps$ cover Z if each
integer belongs to some of them; we say that this covering is minimal if no proper subset of P
covers Z. Obviously, each covering contains a minimal subcovering.

Next, for a minimal covering #P1, . . . , Ps$ and for every 1 % i % s, let di be the step of
progression Pi, and hi be some number which is contained in Pi but in none of the other
progressions. We assume that n & 1, otherwise the problem is trivial. This implies di & 1,
otherwise the progression Pi covers all the numbers, and n " 1.

We will prove a more general statement, namely the following

Claim. Assume that the progressions P1, . . . , Ps and number n " pα1

1 . . . pαk

k & 1 are chosen as
in the problem statement. Moreover, choose some nonempty set of indices I " #i1, . . . , it$ '  k!
and some positive integer βi % αi for every i ( I. Consider the set of indices

T "  
j : 1 % j % s, and p

αi βi!1
i

!! dj for some i ( I
"

.

Then )T ) * 1+#
i"I βi,pi - 1.. (2)

Observe that the Claim for I "  k! and βi " αi implies the problem statement, since the
left-hand side in (2) is not greater than s. Hence, it suffices to prove the Claim.

1. First, we prove the Claim assuming that all dj’s are prime numbers. If for some 1 % i % k

we have at least pi progressions with the step pi, then they do not intersect and hence cover all
the integers; it means that there are no other progressions, and n " pi; the Claim is trivial in
this case.

Now assume that for every 1 % i % k, there are not more than pi - 1 progressions with
step pi; each such progression covers the numbers with a fixed residue modulo pi, therefore
there exists a residue qi mod pi which is not touched by these progressions. By the Chinese
Remainder Theorem, there exists a number q such that q / qi ,mod pi. for all 1 % i % k; this
number cannot be covered by any progression with step pi, hence it is not covered at all. A
contradiction.
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2. Now, we assume that the general Claim is not valid, and hence we consider a counterex-
ample  P1, . . . , Ps! for the Claim; we can choose it to be minimal in the following sense:" the number n is minimal possible among all the counterexamples;" the sum  i di is minimal possible among all the counterexamples having the chosen value
of n.

As was mentioned above, not all numbers di are primes; hence we can assume that d1 is
composite, say p1

!! d1 and d 
1 # d1

p1
$ 1. Consider a progression P  

1 having the step d 
1, and

containing P1. We will focus on two coverings constructed as follows.
(i) Surely, the progressions P  

1, P2, . . . , Ps cover Z, though this covering in not necessarily
minimal. So, choose some minimal subcovering P  in it; surely P  

1 % P  since h1 is not covered
by P2, . . . , Ps, so we may assume that P

 #  P  
1, P2, . . . , Ps ! for some s & s. Furthermore, the

period of the covering P  can appear to be less than n; so we denote this period by

n # pα1!σ1

1 . . . pαk!σk

k # l.c.m.
"
d 

1, d2, . . . , ds #.
Observe that for each Pj ' P  , we have hj % P  

1, otherwise hj would not be covered by P.
(ii) On the other hand, each nonempty set of the form Ri # Pi ( P  

1 (1 & i & s) is also a
progression with a step ri # l.c.m.)di, d

 
1*, and such sets cover P  

1. Scaling these progressions
with the ratio 1+d 

1, we obtain the progressions Qi with steps qi # ri+d 
1 which cover Z. Now we

choose a minimal subcovering Q of this covering; again we should have Q1 % Q by the reasons
of h1. Now, denote the period of Q by

n" # l.c.m. qi : Qi % Q! # l.c.m. ri : Qi % Q!
d 

1

# p
γ1

1 . . . p
γk

k

d 
1

.

Note that if hj % P  
1, then the image of hj under the scaling can be covered by Qj only; so, in

this case we have Qj % Q.
Our aim is to find the desired number of progressions in coverings P and Q. First, we have

n , n , and the sum of the steps in P  is less than that in P; hence the Claim is valid for P  .
We apply it to the set of indices I  #  i % I : βi $ σi! and the exponents β  

i # βi - σi; hence
the set under consideration is

T  # $j : 1 & j & s , and p
#αi!σi$!β 

i%1

i # p
αi!βi%1
i

!! dj for some i % I  % . T ( /s 0,
and we obtain that1T ( /s 01 , 1T  1 , 12&

i&I  )βi - σi*)pi - 1* # 12&
i&I

)βi - σi*%)pi - 1*,
where )x*% # max x, 0!; the latter equality holds as for i ' I  we have βi & σi.

Observe that x # )x - y*% 2min x, y! for all x, y. So, if we find at least

G #&
i&I

min βi, σi!)pi - 1*
indices in T (  s 2 1, . . . , s!, then we would have1T 1 # 1T (/s 0121T ( s 21, . . . , s!1 , 12&

i&I

")βi-σi*%2min βi, σi!#)pi-1* # 12&
i&I

βi)pi-1*,
thus leading to a contradiction with the choice of P. We will find those indices among the
indices of progressions in Q.



42

3. Now denote I  !i " I : σi # 0$ and consider some i " I ; then pαi

i    n!. On the
other hand, there exists an index j%i& such that pαi

i

  dj"i#; this means that dj"i#    n! and hence
Pj"i# cannot appear in P !, so j%i& # s!. Moreover, we have observed before that in this case
hj"i# " P !

1, hence Qj"i# " Q. This means that qj"i#   n , therefore γi  αi for each i " I (recall
here that qi  ri'd!1 and hence dj"i#   rj"i#   d!1n ).

Let d!1  pτ1
1 . . . pτk

k . Then n  p
γ1$τ1
1 . . . p

γi$τi

k . Now, if i " I , then for every β the condition

p
"γi$τi#$β%1

i

  qj is equivalent to p
αi$β%1
i

  rj.
Note that n ( n'd!1 ) n, hence we can apply the Claim to the covering Q. We perform

this with the set of indices I and the exponents β 
i  min!βi, σi$ # 0. So, the set under

consideration is

T   !
j : Qj " Q, and p

"γi$τi#$min&βi,σi'%1

i

  qj for some i " I " !
j : Qj " Q, and p

αi$min&βi,σi'%1

i

  rj for some i " I " ,

and we obtain *T  * + 1 ,G. Finally, we claim that T  - T . #!1$ / !s! , 1, . . . , s$$; then we
will obtain *T . !s! , 1, . . . , s$* + G, which is exactly what we need.

To prove this, consider any j " T  . Observe first that αi 0min!βi, σi$ , 1 # αi 0 σi + τi,

hence from p
αi$min&βi,σi'%1

i

  rj  l.c.m.%d!1, dj& we have p
αi$min&βi,σi'%1

i

  dj, which means that
j " T . Next, the exponent of pi in dj is greater than that in n!, which means that Pj 1 P !. This
may appear only if j  1 or j # s!, as desired. This completes the proof.
Comment 2. A grid analogue of the Claim is also valid. It reads as following.

Claim. Assume that the grid N is covered by subgrids L1, L2, . . . , Ls so that
(ii!) each subgrid contains a point which is not covered by other subgrids;
(iii) for each coordinate axis, there exists a subgrid Li orthogonal to this axis.
Choose some set of indices I  !i1, . . . , it" # $k%, and consider the set of indices

T  !j : 1 & j & s, and Lj is orthogonal to the ith axis for some i ' I" .
Then (T ( ) 1* 

i(I

+ni , 1-.
This Claim may be proved almost in the same way as in Solution 1.



43



Geometry

G1. Let ABC be an acute triangle with D, E, F the feet of the altitudes lying on BC, CA, AB

respectively. One of the intersection points of the line EF and the circumcircle is P . The
lines BP and DF meet at point Q. Prove that AP  AQ.

(United Kingdom)

Solution 1. The line EF intersects the circumcircle at two points. Depending on the choice
of P , there are two different cases to consider.

Case 1 : The point P lies on the ray EF (see Fig. 1).
Let  CAB  α,  ABC  β and  BCA  γ. The quadrilaterals BCEF and CAFD are

cyclic due to the right angles at D, E and F . So, BDF  180 ! FDC   CAF  α, AFE  180 ! EFB   BCE  γ, DFB  180 ! AFD   DCA  γ.

Since P lies on the arc AB of the circumcircle,  PBA "  BCA  γ. Hence, we have PBD # BDF   PBA # ABD # BDF " γ # β # α  180 ,
and the point Q must lie on the extensions of BP and DF beyond the points P and F ,
respectively.

From the cyclic quadrilateral APBC we get QPA  180 ! APB   BCA  γ   DFB   QFA.

Hence, the quadrilateral AQPF is cyclic. Then  AQP  180 ! PFA   AFE  γ.
We obtained that  AQP   QPA  γ, so the triangle AQP is isosceles, AP  AQ.

γ
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Q
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E

γ
α γ

γ

α

γ

γγ

β

D

P

F

B

A

CD

E
F

γ

γ

γ

γ
γ

P

Q

Fig. 1 Fig. 2
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Case 2 : The point P lies on the ray FE (see Fig. 2). In this case the point Q lies inside
the segment FD.

Similarly to the first case, we have QPA   BCA  γ   DFB  180 ! AFQ.

Hence, the quadrilateral AFQP is cyclic.
Then  AQP   AFP   AFE  γ   QPA. The triangle AQP is isosceles again, AQP   QPA and thus AP  AQ.

Comment. Using signed angles, the two possible configurations can be handled simultaneously, with-
out investigating the possible locations of P and Q.

Solution 2. For arbitrary points X, Y on the circumcircle, denote by  XY the central angle
of the arc XY .

Let P and P ! be the two points where the line EF meets the circumcircle; let P lie on
the arc AB and let P ! lie on the arc CA. Let BP and BP ! meet the line DF and Q and Q!,
respectively (see Fig. 3). We will prove that AP  AP !  AQ  AQ!.

B

A

Q

CD

E

γ

γ
γ

γ
P ′

P
F

Q′

Fig. 3

Like in the first solution, we have  AFE   BFP   DFB   BCA  γ from the
cyclic quadrilaterals BCEF and CAFD.

By PB " P !A  2 AFP !  2γ  2 BCA   AP " PB, we have AP   P !A,  PBA   ABP ! and AP  AP !. #1$
Due to AP   P !A, the lines BP and BQ! are symmetrical about line AB.
Similarly, by  BFP   Q!FB, the lines FP and FQ! are symmetrical about AB. It

follows that also the points P and P ! are symmetrical to Q! and Q, respectively. Therefore,

AP  AQ! and AP !  AQ. #2$
The relations (1) and (2) together prove AP  AP !  AQ  AQ!.
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G2. Point P lies inside triangle ABC. Lines AP , BP , CP meet the circumcircle of ABC

again at points K, L, M , respectively. The tangent to the circumcircle at C meets line AB

at S. Prove that SC  SP if and only if MK  ML.

(Poland)

Solution 1. We assume that CA ! CB, so point S lies on the ray AB.

From the similar triangles △PKM " △PCA and △PLM " △PCB we get
PM

KM
 PA

CA

and
LM

PM
 CB

PB
. Multiplying these two equalities, we get

LM

KM
 CB

CA
# PA

PB
.

Hence, the relation MK  ML is equivalent to
CB

CA
 PB

PA
.

Denote by E the foot of the bisector of angle B in triangle ABC. Recall that the locus of

points X for which
XA

XB
 CA

CB
is the Apollonius circle Ω with the center Q on the line AB,

and this circle passes through C and E. Hence, we have MK  ML if and only if P lies on Ω,
that is QP  QC.

A B

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

S

K

L

M

PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP

E

Ω

Fig. 1

Now we prove that S  Q, thus establishing the problem statement. We have  CES   CAE $ ACE   BCS $ ECB   ECS, so SC  SE. Hence, the point S lies on AB

as well as on the perpendicular bisector of CE and therefore coincides with Q.

Solution 2. As in the previous solution, we assume that S lies on the ray AB.

1. Let P be an arbitrary point inside both the circumcircle ω of the triangle ABC and the
angle ASC, the points K, L, M defined as in the problem. We claim that SP  SC implies
MK  ML.

Let E and F be the points of intersection of the line SP with ω, point E lying on the
segment SP (see Fig. 2).
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We have SP 2  SC2  SA ! SB, so
SP

SB
 SA

SP
, and hence △PSA " △BSP . Then BPS   SAP . Since 2 BPS   BE # !LF and 2 SAP   BE # EK we have!LF   EK. (1)

On the other hand, from  SPC   SCP we have EC # MF   EC # EM , or MF   EM. (2)

From (1) and (2) we getǱMFL   MF # !FL   ME # EK  ǱMEK and hence MK  ML.
The claim is proved.

2. We are left to prove the converse. So, assume that MK  ML, and introduce the
points E and F as above. We have SC2  SE ! SF ; hence, there exists a point P  lying on the
segment EF such that SP   SC (see Fig. 3).
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Assume that P  P  . Let the lines AP  , BP  , CP  meet ω again at points K  , L , M  
respectively. Now, if P  lies on the segment PF then by the first part of the solution we haveǱM  FL ! ǱM  EK  . On the other hand, we haveǱMFL "ǱM  FL ! ǱM  EK  "ǱMEK, thereforeǱMFL "ǱMEK which contradicts MK !ML.

Similarly, if point P  lies on the segment EP then we getǱMFL #ǱMEK which is impossible.
Therefore, the points P and P  coincide and hence SP ! SP  ! SC.

Solution 3. We present a different proof of the converse direction, that is, MK  ML !
SP  SC. As in the previous solutions we assume that CA " CB, and the line SP meets ω

at E and F .

From ML  MK we getǱMEK  ǱMFL. Now we claim that !ME  !MF and !EK  "FL.
To the contrary, suppose first that !ME " !MF ; then!EK  ǱMEK#!ME $ǱMFL#!MF  "FL. Now, the inequality !ME " !MF implies 2 SCM  !EC %!ME "!EC %!MF  2 SPC

and hence SP " SC. On the other hand, the inequality !EK $ "FL implies 2 SPK  !EK %!AF $ "FL%!AF  2 ABL, hence SPA  180 # SPK " 180 # ABL   SBP.
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P
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A′

ω

Fig. 4

Consider the point A! on the ray SA for which  SPA!   SBP ; in our case, this point lies
on the segment SA (see Fig. 4). Then△SBP & △SPA! and SP 2  SB 'SA! $ SB 'SA  SC2.
Therefore, SP $ SC which contradicts SP " SC.

Similarly, one can prove that the inequality !ME $ !MF is also impossible. So, we get!ME  !MF and therefore 2 SCM  !EC % !ME  !EC % !MF  2 SPC, which implies
SC  SP .
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G3. Let A1A2 . . . An be a convex polygon. Point P inside this polygon is chosen so that its
projections P1, . . . , Pn onto lines A1A2, . . . , AnA1 respectively lie on the sides of the polygon.
Prove that for arbitrary points X1, . . . , Xn on sides A1A2, . . . , AnA1 respectively,

max

 
X1X2

P1P2

, . . . ,
XnX1

PnP1

!  1.

(Armenia)

Solution 1. Denote Pn 1 ! P1, Xn 1 ! X1, An 1 ! A1.

Lemma. Let point Q lies inside A1A2 . . . An. Then it is contained in at least one of the circum-
circles of triangles X1A2X2, . . . , XnA1X1.

Proof. If Q lies in one of the triangles X1A2X2, . . . , XnA1X1, the claim is obvious. Otherwise
Q lies inside the polygon X1X2 . . .Xn (see Fig. 1). Then we have" X1A2X2 # X1QX2$ # % % % # " XnA1X1 # XnQX1$! " X1A1X2 # % % % # XnA1X1$ # " X1QX2 # % % % # XnQX1$ ! "n & 2$π # 2π ! nπ,

hence there exists an index i such that  XiAi 1Xi 1 #  XiQXi 1  πn
n
! π. Since the

quadrilateral QXiAi 1Xi 1 is convex, this means exactly that Q is contained the circumcircle
of △XiAi 1Xi 1, as desired. !

Now we turn to the solution. Applying lemma, we get that P lies inside the circumcircle of
triangle XiAi 1Xi 1 for some i. Consider the circumcircles ω and Ω of triangles PiAi 1Pi 1 and
XiAi 1Xi 1 respectively (see Fig. 2); let r and R be their radii. Then we get 2r ! Ai 1P ' 2R
(since P lies inside Ω), hence

PiPi 1 ! 2r sin PiAi 1Pi 1 ' 2R sin XiAi 1Xi 1 ! XiXi 1,

QED.

Q
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Pi+1

Xi
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ω

Ω

Fig. 1 Fig. 2
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Solution 2. As in Solution 1, we assume that all indices of points are considered modulo n.
We will prove a bit stronger inequality, namely

max

 
X1X2

P1P2

cosα1, . . . ,
XnX1

PnP1

cosαn

!  1,

where αi (1 ! i ! n) is the angle between lines XiXi 1 and PiPi 1. We denote βi "  AiPiPi!1

and γi "  Ai 1PiPi 1 for all 1 ! i ! n.
Suppose that for some 1 ! i ! n, point Xi lies on the segment AiPi, while point Xi 1 lies on

the segment Pi 1Ai 2. Then the projection of the segment XiXi 1 onto the line PiPi 1 contains
segment PiPi 1, since γi and βi 1 are acute angles (see Fig. 3). Therefore, XiXi 1 cosαi  
PiPi 1, and in this case the statement is proved.

So, the only case left is when point Xi lies on segment PiAi 1 for all 1 ! i ! n (the case
when each Xi lies on segment AiPi is completely analogous).

Now, assume to the contrary that the inequality

XiXi 1 cosαi # PiPi 1 (1)

holds for every 1 ! i ! n. Let Yi and Y "
i 1 be the projections of Xi and Xi 1 onto PiPi 1. Then

inequality (1) means exactly that YiY
"
i 1 # PiPi 1, or PiYi $ Pi 1Y

"
i 1 (again since γi and βi 1

are acute; see Fig. 4). Hence, we have

XiPi cos γi $ Xi 1Pi 1 cosβi 1, 1 ! i ! n.

Multiplying these inequalities, we get

cos γ1 cos γ2 % % % cos γn $ cosβ1 cosβ2 % % % cosβn. (2)

On the other hand, the sines theorem applied to triangle PPiPi 1 provides

PPi

PPi 1

" sin
"

π
2
& βi 1

#
sin
"

π
2
& γi

# " cosβi 1

cos γi

.

Multiplying these equalities we get

1 " cos β2

cos γ1

% cos β3

cos γ2

% % % cosβ1

cos γn

which contradicts (2).
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P
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G4. Let I be the incenter of a triangle ABC and Γ be its circumcircle. Let the line AI

intersect Γ at a point D  A. Let F and E be points on side BC and arc BDC respectively
such that  BAF !  CAE " 1

2
 BAC. Finally, let G be the midpoint of the segment IF .

Prove that the lines DG and EI intersect on Γ.

(Hong Kong)

Solution 1. Let X be the second point of intersection of line EI with Γ, and L be the foot
of the bisector of angle BAC. Let G and T be the points of intersection of segment DX with
lines IF and AF , respectively. We are to prove that G ! G , or IG ! G F . By the Menelaus
theorem applied to triangle AIF and line DX, it means that we need the relation

1 ! G F
IG ! TF

AT
# AD

ID
, or

TF

AT
! ID

AD
.

Let the line AF intersect Γ at point K  A (see Fig. 1); since  BAK !  CAE we have BK ! CE, hence KE ‖ BC. Notice that  IAT !  DAK !  EAD !  EXD !  IXT , so
the points I, A, X, T are concyclic. Hence we have  ITA !  IXA !  EXA !  EKA, so

IT ‖ KE ‖ BC. Therefore we obtain
TF

AT
! IL

AI
.

Since CI is the bisector of  ACL, we get
IL

AI
! CL

AC
. Furthermore,  DCL !  DCB ! DAB !  CAD ! 1

2
 BAC, hence the triangles DCL and DAC are similar; therefore we get

CL

AC
! DC

AD
. Finally, it is known that the midpoint D of arc BC is equidistant from points I,

B, C, hence
DC

AD
! ID

AD
.

Summarizing all these equalities, we get

TF

AT
! IL

AI
! CL

AC
! DC

AD
! ID

AD
,

as desired.
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Comment. The equality
AI

IL
 AD

DI
is known and can be obtained in many different ways. For

instance, one can consider the inversion with center D and radius DC  DI. This inversion takesǱBAC to the segment BC, so point A goes to L. Hence
IL

DI
 AI

AD
, which is the desired equality.

Solution 2. As in the previous solution, we introduce the points X, T and K and note that
it suffice to prove the equality

TF

AT
 DI

AD
!" TF # AT

AT
 DI # AD

AD
!" AT

AD
 AF

DI # AD
.

Since  FAD   EAI and  TDA   XDA   XEA   IEA, we get that the trian-

gles ATD and AIE are similar, therefore
AT

AD
 AI

AE
.

Next, we also use the relation DB  DC  DI. Let J be the point on the extension
of segment AD over point D such that DJ  DI  DC (see Fig. 2). Then  DJC   JCD  1

2
$π % JDC&  1

2
 ADC  1

2
 ABC   ABI. Moreover,  BAI   JAC, hence

triangles ABI and AJC are similar, so
AB

AJ
 AI

AC
, or AB 'AC  AJ 'AI  $DI #AD& ' AI.

On the other hand, we get  ABF   ABC   AEC and  BAF   CAE, so trian-

gles ABF and AEC are also similar, which implies
AF

AC
 AB

AE
, or AB ' AC  AF ' AE.

Summarizing we get$DI # AD& ' AI  AB ' AC  AF ' AE " AI

AE
 AF

AD #DI
" AT

AD
 AF

AD #DI
,

as desired.

Comment. In fact, point J is an excenter of triangle ABC.
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G5. Let ABCDE be a convex pentagon such that BC ‖ AE, AB  BC!AE, and  ABC   CDE. Let M be the midpoint of CE, and let O be the circumcenter of triangle BCD. Given
that  DMO  90 , prove that 2 BDA   CDE.

(Ukraine)

Solution 1. Choose point T on ray AE such that AT  AB; then from AE ‖ BC we have CBT   ATB   ABT , so BT is the bisector of  ABC. On the other hand, we have
ET  AT " AE  AB " AE  BC, hence quadrilateral BCTE is a parallelogram, and the
midpoint M of its diagonal CE is also the midpoint of the other diagonal BT .

Next, let point K be symmetrical to D with respect to M . Then OM is the perpendicular
bisector of segment DK, and hence OD  OK, which means that point K lies on the cir-
cumcircle of triangle BCD. Hence we have  BDC   BKC. On the other hand, the angles
BKC and TDE are symmetrical with respect to M , so  TDE   BKC   BDC.

Therefore,  BDT   BDE ! EDT   BDE ! BDC   CDE   ABC  180 " BAT . This means that the points A, B, D, T are concyclic, and hence  ADB   ATB  
1

2
 ABC  1

2
 CDE, as desired.
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B C

D

E T
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2ϕ− β − γ

2ϕ
− α−

β

2ϕ−
α− β − γ

α
+

β

A

B C

D

E

Solution 2. Let CBD  α,  BDC  β,  ADE  γ, and  ABC   CDE  2ϕ. Then
we have  ADB  2ϕ! β ! γ,  BCD  180 ! α ! β,  AED  360 ! BCD ! CDE  
180 ! 2ϕ" α " β, and finally  DAE  180 ! ADE ! AED  2ϕ! α ! β ! γ.

B C

D

E

MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

O

B C

DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD

E
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NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
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Let N be the midpoint of CD; then  DNO  90   DMO, hence points M , N lie on
the circle with diameter OD. Now, if points O and M lie on the same side of CD, we have DMN   DON  1

2
 DOC  α; in the other case, we have  DMN  180 ! DON  α;
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so, in both cases  DMN  α (see Figures). Next, since MN is a midline in triangle CDE,
we have  MDE   DMN  α and  NDM  2ϕ! α.

Now we apply the sine rule to the triangles ABD, ADE (twice), BCD and MND obtaining

AB

AD
 sin"2ϕ! β ! γ#

sin"2ϕ! α# ,
AE

AD
 sin γ

sin"2ϕ! α ! β# , DE

AD
 sin"2ϕ! α ! β ! γ#

sin"2ϕ! α ! β# ,

BC

CD
 sin β

sinα
,

CD

DE
 CD$2

DE$2  ND

NM
 sinα

sin"2ϕ! α# ,
which implies

BC

AD
 BC

CD
% CD

DE
% DE

AD
 sin β % sin"2ϕ! α ! β ! γ#
sin"2ϕ! α# % sin"2ϕ! α ! β# .

Hence, the condition AB  AE &BC, or equivalently
AB

AD
 AE &BC

AD
, after multiplying

by the common denominator rewrites as

sin"2ϕ! α ! β# % sin"2ϕ! β ! γ#  sin γ % sin"2ϕ! α# & sin β % sin"2ϕ! α ! β ! γ#'( cos"γ ! α# ! cos"4ϕ! 2β ! α ! γ#  cos"2ϕ! α ! 2β ! γ# ! cos"2ϕ& γ ! α#'( cos"γ ! α# & cos"2ϕ& γ ! α#  cos"2ϕ! α ! 2β ! γ# & cos"4ϕ! 2β ! α ! γ#'( cosϕ % cos"ϕ& γ ! α#  cosϕ % cos"3ϕ! 2β ! α ! γ#'( cosϕ %  cos"ϕ& γ ! α# ! cos"3ϕ! 2β ! α ! γ#!  0'( cosϕ % sin"2ϕ! β ! α# % sin"ϕ! β ! γ#  0.

Since 2ϕ!β!α  180 ! AED ) 180 and ϕ  1

2
 ABC ) 90 , it follows that ϕ  β&γ,

hence  BDA  2ϕ! β ! γ  ϕ  1
2
 CDE, as desired.
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G6. The vertices X, Y , Z of an equilateral triangle XY Z lie respectively on the sides BC,
CA, AB of an acute-angled triangle ABC. Prove that the incenter of triangle ABC lies inside
triangle XY Z.

G6 . The vertices X, Y , Z of an equilateral triangle XY Z lie respectively on the sides
BC, CA, AB of a triangle ABC. Prove that if the incenter of triangle ABC lies outside
triangle XY Z, then one of the angles of triangle ABC is greater than 120 .

(Bulgaria)

Solution 1 for G6. We will prove a stronger fact; namely, we will show that the incenter I of
triangle ABC lies inside the incircle of triangle XY Z (and hence surely inside triangle XY Z

itself). We denote by d U, V W ! the distance between point U and line V W .
Denote by O the incenter of △XY Z and by r, r! and R! the inradii of triangles ABC, XY Z

and the circumradius of XY Z, respectively. Then we have R! " 2r!, and the desired inequality
is OI # r!. We assume that O $ I; otherwise the claim is trivial.

Let the incircle of △ABC touch its sides BC, AC, AB at points A1, B1, C1 respectively.
The lines IA1, IB1, IC1 cut the plane into 6 acute angles, each one containing one of the
points A1, B1, C1 on its border. We may assume that O lies in an angle defined by lines IA1,
IC1 and containing point C1 (see Fig. 1). Let A! and C ! be the projections of O onto lines IA1

and IC1, respectively.
Since OX " R!, we have d O, BC! # R!. Since OA! ‖ BC, it follows that d A!, BC! "

A!I % r # R!, or A!I # R! & r. On the other hand, the incircle of △XY Z lies inside △ABC,
hence d O, AB! ' r!, and analogously we get d O, AB! " C !C1 " r& IC ! ' r!, or IC ! # r & r!.

A

B

C

A1

B1

C1

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
O

C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′

A′

X

Y

Z

A′

C ′

O I

Fig. 1 Fig. 2

Finally, the quadrilateral IA!OC ! is circumscribed due to the right angles at A! and C !
(see Fig. 2). On its circumcircle, we haveǱA!OC ! " 2 A!IC ! ( 180 " !OC !I, hence 180 '"IC ! ) "A!O. This means that IC ! ) A!O. Finally, we have OI # IA! % A!O ( IA! % IC ! # R! & r! %  r & r!! " R! & r! " r!, as desired.
Solution 2 for G6. Assume the contrary. Then the incenter I should lie in one of trian-
gles AY Z, BXZ, CXY — assume that it lies in △AY Z. Let the incircle ω of △ABC touch
sides BC, AC at point A1, B1 respectively. Without loss of generality, assume that point A1

lies on segment CX. In this case we will show that  C ) 90 thus leading to a contradiction.
Note that ω intersects each of the segments XY and Y Z at two points; let U , U ! and V ,

V ! be the points of intersection of ω with XY and Y Z, respectively (UY ) U !Y , V Y ) V !Y ;
see Figs. 3 and 4). Note that 60 "  XY Z " 1

2
 "UV &!U !V !! # 1

2
"UV , hence "UV ' 120 .
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On the other hand, since I lies in △AY Z, we getǱV UV   180!, henceǱUA1U  !ǱUA1V   
180! "!UV ! 60!.

Now, two cases are possible due to the order of points Y , B1 on segment AC.

A

BC A1

B1

C1

X

Y

Z
V

UUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU

V ′V ′V ′V ′V ′V ′V ′V ′V ′V ′V ′V ′V ′V ′V ′V ′V ′V ′V ′V ′V ′V ′V ′V ′V ′V ′V ′V ′V ′V ′V ′V ′V ′V ′V ′V ′V ′V ′V ′V ′V ′V ′V ′V ′V ′V ′V ′V ′V ′V ′V ′V ′V ′V ′V ′V ′V ′V ′V ′V ′V ′V ′V ′V ′V ′

U ′U ′U ′U ′U ′U ′U ′U ′U ′U ′U ′U ′U ′U ′U ′U ′U ′U ′U ′U ′U ′U ′U ′U ′U ′U ′U ′U ′U ′U ′U ′U ′U ′U ′U ′U ′U ′U ′U ′U ′U ′U ′U ′U ′U ′U ′U ′U ′U ′U ′U ′U ′U ′U ′U ′U ′U ′U ′U ′U ′U ′U ′U ′U ′U ′
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Fig. 3 Fig. 4

Case 1. Let point Y lie on the segment AB1 (see Fig. 3). Then we have  Y XC #
1

2

"#A1U  "#A1U
$ ! 1

2
ǱUA1U   30!; analogously, we get  XY C ! 1

2
ǱUA1U   30!. Therefore, Y CX # 180! " Y XC " XY C $ 120!, as desired.

Case 2. Now let point Y lie on the segment CB1 (see Fig. 4). Analogously, we obtain Y XC  30!. Next,  IY X $  ZY X # 60!, but  IY X   IY B1, since Y B1 is a tangent
and Y X is a secant line to circle ω from point Y . Hence, we get 120!   IY B1 %  IY X # B1Y X #  Y XC % Y CX  30! % Y CX, hence  Y CX $ 120! " 30! # 90!, as desired.
Comment. In the same way, one can prove a more general

Claim. Let the vertices X, Y , Z of a triangle XY Z lie respectively on the sides BC, CA, AB of a
triangle ABC. Suppose that the incenter of triangle ABC lies outside triangle XY Z, and α is the
least angle of △XY Z. Then one of the angles of triangle ABC is greater than 3α 90!.
Solution for G6 . Assume the contrary. As in Solution 2, we assume that the incenter I of
△ABC lies in △AY Z, and the tangency point A1 of ω and BC lies on segment CX. Surely, Y ZA ! 180! "  Y ZX # 120!, hence points I and Y lie on one side of the perpendicular
bisector to XY ; therefore IX $ IY . Moreover, ω intersects segment XY at two points, and
therefore the projection M of I onto XY lies on the segment XY . In this case, we will prove
that  C $ 120!.

Let Y K, Y L be two tangents from point Y to ω (points K and A1 lie on one side of XY ;
if Y lies on ω, we say K # L # Y ); one of the points K and L is in fact a tangency point B1

of ω and AC. From symmetry, we have  Y IK #  Y IL. On the other hand, since IX $ IY ,
we get XM  XY which implies  A1XY   KY X.

Next, we have  MIY # 90!" IY X  90!" ZY X # 30!. Since IA1 & A1X, IM & XY ,
IK & Y K we get  MIA1 #  A1XY   KY X #  MIK. Finally, we get A1IK   A1IL # ' A1IM % MIK( % ' KIY % Y IL( 2 MIK % 2 KIY # 2 MIY  60!.
Hence,  A1IB1  60!, and therefore  ACB # 180! " A1IB1 $ 120!, as desired.
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AB
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X

Y

Z

I
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X Y
M

K(= B1)

L(= B1)

I

A1

Fig. 5 Fig. 6

Comment 1. The estimate claimed in G6 is sharp. Actually, if  BAC  120!, one can consider an
equilateral triangle XY Z with Z ! A, Y " AC, X " BC (such triangle exists since  ACB # 60!). It
intersects with the angle bisector of  BAC only at point A, hence it does not contain I.

Comment 2. As in the previous solution, there is a generalization for an arbitrary triangle XY Z,
but here we need some additional condition. The statement reads as follows.

Claim. Let the vertices X, Y , Z of a triangle XY Z lie respectively on the sides BC, CA, AB of a
triangle ABC. Suppose that the incenter of triangle ABC lies outside triangle XY Z, α is the least
angle of △XY Z, and all sides of triangle XY Z are greater than 2r cot α, where r is the inradius
of △ABC. Then one of the angles of triangle ABC is greater than 2α.

The additional condition is needed to verify that XM  Y M since it cannot be shown in the
original way. Actually, we have  MY I  α, IM # r, hence Y M # r cot α. Now, if we have
XY ! XM $ Y M  2r cot α, then surely XM  Y M .

On the other hand, this additional condition follows easily from the conditions of the original
problem. Actually, if I " △AY Z, then the diameter of ω parallel to Y Z is contained in △AY Z and
is thus shorter than Y Z. Hence Y Z  2r  2r cot 60!.
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G7. Three circular arcs γ1, γ2, and γ3 connect the points A and C. These arcs lie in the same
half-plane defined by line AC in such a way that arc γ2 lies between the arcs γ1 and γ3. Point
B lies on the segment AC. Let h1, h2, and h3 be three rays starting at B, lying in the same
half-plane, h2 being between h1 and h3. For i, j  1, 2, 3, denote by Vij the point of intersection
of hi and γj (see the Figure below).

Denote byǱVijVkj
ǱVkℓViℓ the curved quadrilateral, whose sides are the segments VijViℓ, VkjVkℓ

and arcs VijVkj and ViℓVkℓ. We say that this quadrilateral is circumscribed if there exists a circle
touching these two segments and two arcs.

Prove that if the curved quadrilateralsǱV11V21
ǱV22V12,ǱV12V22

ǱV23V13,ǱV21V31
ǱV32V22 are circum-

scribed, then the curved quadrilateralǱV22V32
ǱV33V23 is circumscribed, too.

A C

h3
h2

h1

V13
V33

V12

V11

V32

B

V22

γ3

V23

γ2

γ1

V21 V31

Fig. 1

(Hungary)

Solution. Denote by Oi and Ri the center and the radius of γi, respectively. Denote also by H

the half-plane defined by AC which contains the whole configuration. For every point P in
the half-plane H , denote by d!P " the distance between P and line AC. Furthermore, for any
r # 0, denote by Ω!P, r" the circle with center P and radius r.

Lemma 1. For every 1 $ i % j $ 3, consider those circles Ω!P, r" in the half-plane H which
are tangent to hi and hj .

(a) The locus of the centers of these circles is the angle bisector βij between hi and hj .
(b) There is a constant uij such that r  uij & d!P " for all such circles.

Proof. Part (a) is obvious. To prove part (b), notice that the circles which are tangent to hi

and hj are homothetic with the common homothety center B (see Fig. 2). Then part (b) also
becomes trivial.  
Lemma 2. For every 1 $ i % j $ 3, consider those circles Ω!P, r" in the half-plane H which
are externally tangent to γi and internally tangent to γj.

(a) The locus of the centers of these circles is an ellipse arc εij with end-points A and C.
(b) There is a constant vij such that r  vij & d!P " for all such circles.

Proof. (a) Notice that the circle Ω!P, r" is externally tangent to γi and internally tangent to γj

if and only if OiP  Ri ' r and Oj  Rj ( r. Therefore, for each such circle we have

OiP 'OjP  OiA'OjA  OiC 'OjC  Ri 'Rj .

Such points lie on an ellipse with foci Oi and Oj; the diameter of this ellipse is Ri 'Rj , and it
passes through the points A and C. Let εij be that arc AC of the ellipse which runs inside the
half plane H (see Fig. 3.)

This ellipse arc lies between the arcs γi and γj. Therefore, if some point P lies on εij,
then OiP # Ri and OjP % Rj . Now, we choose r  OiP ( Ri  Rj ( OjP # 0; then the



61

d(P )

d(P ′)
r

r′

B

P

P ′

hi

hj

βij r

r

Ri

Rj

Oi

Oj

P

A C

~ρ~ρ~ρ~ρ~ρ~ρ~ρ~ρ~ρ~ρ~ρ~ρ~ρ~ρ~ρ~ρ~ρ~ρ~ρ~ρ~ρ~ρ~ρ~ρ~ρ~ρ~ρ~ρ~ρ~ρ~ρ~ρ~ρ~ρ~ρ~ρ~ρ~ρ~ρ~ρ~ρ~ρ~ρ~ρ~ρ~ρ~ρ~ρ~ρ~ρ~ρ~ρ~ρ~ρ~ρ~ρ~ρ~ρ~ρ~ρ~ρ~ρ~ρ~ρ~ρ

~ρi

~ρj

~v

γi

γj

εij

Ω(P, r)

Fig. 2 Fig. 3

circle Ω P, r! touches γi externally and touches γj internally, so P belongs to the locus under
investigation.

(b) Let ~ρ " #$
AP , ~ρi " ##$

AOi, and ~ρj " ##$
AOj; let dij " OiOj, and let ~v be a unit vector

orthogonal to AC and directed toward H . Then we have %~ρi% " Ri, %~ρj% " Rj, %##$OiP % "%~ρ & ~ρi% " Ri ' r, %##$OjP % " %~ρ & ~ρj% " Rj & r, hence ~ρ & ~ρi!2 &  ~ρ & ~ρj!2 "  Ri ' r!2 &  Rj & r!2, ~ρ 2
i & ~ρ 2

j ! ' 2~ρ (  ~ρj & ~ρi! "  R2
i & R2

j ! ' 2r Ri ' Rj!,
dij ( d P ! " dij~v ( ~ρ "  ~ρj & ~ρi! ( ~ρ " r Ri ' Rj!.

Therefore,

r " dij

Ri ' Rj

( d P !,
and the value vij " dij

Ri ' Rj

does not depend on P .  
Lemma 3. The curved quadrilateral Qij " ǱVi,jVi 1,j

ǱVi 1,j 1Vi,j 1 is circumscribed if and only
if ui,i 1 " vj,j 1.

Proof. First suppose that the curved quadrilateral Qij is circumscribed and Ω P, r! is its in-
scribed circle. By Lemma 1 and Lemma 2 we have r " ui,i 1 ( d P ! and r " vj,j 1 ( d P ! as
well. Hence, ui,i 1 " vj,j 1.

To prove the opposite direction, suppose ui,i 1 " vj,j 1. Let P be the intersection of the
angle bisector βi,i 1 and the ellipse arc εj,j 1. Choose r " ui,i 1 ( d P ! " vj,j 1 ( d P !. Then
the circle Ω P, r! is tangent to the half lines hi and hi 1 by Lemma 1, and it is tangent to the
arcs γj and γj 1 by Lemma 2. Hence, the curved quadrilateral Qij is circumscribed.  

By Lemma 3, the statement of the problem can be reformulated to an obvious fact: If the
equalities u12 " v12, u12 " v23, and u23 " v12 hold, then u23 " v23 holds as well.
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Comment 1. Lemma 2(b) (together with the easy Lemma 1(b)) is the key tool in this solution.
If one finds this fact, then the solution can be finished in many ways. That is, one can find a circle
touching three of h2, h3, γ2, and γ3, and then prove that it is tangent to the fourth one in either
synthetic or analytical way. Both approaches can be successful.

Here we present some discussion about this key Lemma.

1. In the solution above we chose an analytic proof for Lemma 2(b) because we expect that most
students will use coordinates or vectors to examine the locus of the centers, and these approaches are
less case-sensitive.

Here we outline a synthetic proof. We consider only the case when P does not lie in the line OiOj .
The other case can be obtained as a limit case, or computed in a direct way.

Let S be the internal homothety center between the circles of γi and γj, lying on OiOj ; this point
does not depend on P . Let U and V be the points of tangency of circle σ  Ω!P, r" with γi and γj,
respectively (then r  PU  PV ); in other words, points U and V are the intersection points of
rays OiP , OjP with arcs γi, γj respectively (see Fig. 4).

Due to the theorem on three homothety centers (or just to the Menelaus theorem applied to
triangle OiOjP ), the points U , V and S are collinear. Let T be the intersection point of line AC and
the common tangent to σ and γi at U ; then T is the radical center of σ, γi and γj, hence TV is the
common tangent to σ and γj.

Let Q be the projection of P onto the line AC. By the right angles, the points U , V and Q lie on
the circle with diameter PT . From this fact and the equality PU  PV we get  UQP   UV P   V UP   SUOi. Since OiS ‖ PQ, we have  SOiU   QPU . Hence, the triangles SOiU and UPQ

are similar and thus
r

d!P "  PU

PQ
 OiS

OiU
 OiS

Ri
; the last expression is constant since S is a constant

point. !

Oi

Oj

P

A CQT

V
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ℓ

Fig. 4 Fig. 5

2. Using some known facts about conics, the same statement can be proved in a very short way.
Denote by ℓ the directrix of ellipse of εij related to the focus Oj ; since εij is symmetrical about OiOj ,
we have ℓ ‖ AC. Recall that for each point P # εij , we have POj  ǫ $ dℓ!P ", where dℓ!P " is the
distance from P to ℓ, and ǫ is the eccentricity of εij (see Fig. 5).

Now we have

r  Rj % !Rj % r"  AOj % POj  ǫ
 
dℓ!A" % dℓ!P "!  ǫ

 
d!P " % d!A"!  ǫ $ d!P ",

and ǫ does not depend on P . !
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Comment 2. One can find a spatial interpretations of the problem and the solution.
For every point  x, y! and radius r " 0, represent the circle Ω

  x, y!, r! by the point  x, y, r!
in space. This point is the apex of the cone with base circle Ω

  x, y!, r! and height r. According to
Lemma 1, the circles which are tangent to hi and hj correspond to the points of a half line β 

ij , starting
at B.

Now we translate Lemma 2. Take some 1 # i $ j # 3, and consider those circles which are
internally tangent to γj. It is easy to see that the locus of the points which represent these circles is
a subset of a cone, containing γj. Similarly, the circles which are externally tangent to γi correspond
to the points on the extension of another cone, which has its apex on the opposite side of the base
plane Π. (See Fig. 6; for this illustration, the z-coordinates were multiplied by 2.)

The two cones are symmetric to each other (they have the same aperture, and their axes are
parallel). As is well-known, it follows that the common points of the two cones are co-planar. So the
intersection of the two cones is a a conic section — which is an ellipse, according to Lemma 2(a). The
points which represent the circles touching γi and γj is an ellipse arc ε 

ij with end-points A and C.

γi

ε′ij

γj

β′12 β′23

ε′12

ε′23

Π

Σ

Fig. 6 Fig. 7

Thus, the curved quadrilateral Qij is circumscribed if and only if β 
i,i!1 and ε 

j,j!1 intersect, i.e. if
they are coplanar. If three of the four curved quadrilaterals are circumscribed, it means that ε 

12, ε 
23,

β 
12 and β 

23 lie in the same plane Σ, and the fourth intersection comes to existence, too (see Fig. 7).

A connection between mathematics and real life:
the Palace of Creativity “Shabyt” (“Inspiration”) in Astana



Number Theory

N1. Find the least positive integer n for which there exists a set  s1, s2, . . . , sn! consisting of
n distinct positive integers such that 

1" 1

s1

! 
1" 1

s2

!
. . .

 
1" 1

sn

! # 51

2010
.

N1 . Same as Problem N1, but the constant
51

2010
is replaced by

42

2010
.

(Canada)

Answer for Problem N1. n # 39.

Solution for Problem N1. Suppose that for some n there exist the desired numbers; we

may assume that s1 $ s2 $ % % % $ sn. Surely s1 & 1 since otherwise 1 " 1

s1

# 0. So we have

2 ' s1 ' s2 " 1 ' % % % ' sn " (n " 1), hence si * i + 1 for each i # 1, . . . , n. Therefore

51

2010
#  

1" 1

s1

! 
1" 1

s2

!
. . .

 
1" 1

sn

!*  
1" 1

2

! 
1" 1

3

!
. . .

 
1" 1

n + 1

! # 1

2
% 2
3
% % % n

n + 1
# 1

n + 1
,

which implies

n + 1 * 2010

51
# 670

17
& 39,

so n * 39.
Now we are left to show that n # 39 fits. Consider the set  2, 3, . . . , 33, 35, 36, . . . , 40, 67!

which contains exactly 39 numbers. We have

1

2
% 2
3
% % % 32

33
% 34
35

% % % 39
40

% 66
67

# 1

33
% 34
40

% 66
67

# 17

670
# 51

2010
, (1)

hence for n # 39 there exists a desired example.

Comment. One can show that the example  1! is unique.

Answer for Problem N1 . n # 48.

Solution for Problem N1 . Suppose that for some n there exist the desired numbers. In
the same way we obtain that si * i + 1. Moreover, since the denominator of the fraction
42

2010
# 7

335
is divisible by 67, some of si’s should be divisible by 67, so sn * si * 67. This

means that
42

2010
* 1

2
% 2
3
% % % n " 1

n
%  1" 1

67

! # 66

67n
,
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which implies

n  2010 ! 66
42 ! 67 " 330

7
# 47,

so n  48.
Now we are left to show that n " 48 fits. Consider the set $2, 3, . . . , 33, 36, 37, . . . , 50, 67%

which contains exactly 48 numbers. We have

1

2
! 2
3
! ! ! 32

33
! 35
36
! ! ! 49

50
! 66
67
" 1

33
! 35
50
! 66
67
" 7

335
" 42

2010
,

hence for n " 48 there exists a desired example.

Comment 1. In this version of the problem, the estimate needs one more step, hence it is a bit
harder. On the other hand, the example in this version is not unique. Another example is

1

2
 2

3
   46

47
 66

67
 329

330
! 1

67
 66

330
 329

47
! 7

67  5
! 42

2010
.

Comment 2. N1 was the Proposer’s formulation of the problem. We propose N1 according to the
number of current IMO.
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N2. Find all pairs  m, n! of nonnegative integers for which
m2 " 2 # 3n $ m

 
2n 1 % 1

!
. (1)

(Australia)

Answer.  6, 3!,  9, 3!,  9, 5!,  54, 5!.
Solution. For fixed values of n, the equation (1) is a simple quadratic equation in m. For
n & 5 the solutions are listed in the following table.

case equation discriminant integer roots
n $ 0 m2 % m " 2 $ 0 %7 none
n $ 1 m2 % 3m " 6 $ 0 %15 none
n $ 2 m2 % 7m " 18 $ 0 %23 none
n $ 3 m2 % 15m " 54 $ 0 9 m $ 6 and m $ 9
n $ 4 m2 % 31m " 162 $ 0 313 none
n $ 5 m2 % 63m " 486 $ 0 2025 $ 452 m $ 9 and m $ 54

We prove that there is no solution for n ' 6.

Suppose that  m, n! satisfies (1) and n ' 6. Since m
"" 2 # 3n $ m

 
2n 1 % 1

! % m2, we have
m $ 3p with some 0 & p & n or m $ 2 # 3q with some 0 & q & n.

In the first case, let q $ n % p; then

2n 1 % 1 $ m " 2 # 3n

m
$ 3p " 2 # 3q.

In the second case let p $ n % q. Then

2n 1 % 1 $ m " 2 # 3n

m
$ 2 # 3q " 3p.

Hence, in both cases we need to find the nonnegative integer solutions of

3p " 2 # 3q $ 2n 1 % 1, p " q $ n. (2)

Next, we prove bounds for p, q. From (2) we get

3p ( 2n 1 $ 8
n 1

3 ( 9
n 1

3 $ 3
2!n 1"

3

and
2 # 3q ( 2n 1 $ 2 # 8n

3 ( 2 # 9n
3 $ 2 # 3 2n

3 ( 2 # 3 2!n 1"
3 ,

so p, q ( 2!n 1"
3

. Combining these inequalities with p " q $ n, we obtain

n % 2

3
( p, q ( 2 n " 1!

3
. (3)

Now let h $ min p, q!. By (3) we have h ) n#2

3
; in particular, we have h ) 1. On the

left-hand side of (2), both terms are divisible by 3h, therefore 9
"" 3h

"" 2n 1 % 1. It is easy check
that ord9 2! $ 6, so 9

"" 2n 1 % 1 if and only if 6
"" n" 1. Therefore, n" 1 $ 6r for some positive

integer r, and we can write

2n 1 % 1 $ 43r % 1 $  42r " 4r " 1! 2r % 1! 2r " 1!. (4)
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Notice that the factor 42r  4r  1 ! "4r # 1$2  3 % 4r is divisible by 3, but it is never
divisible by 9. The other two factors in (4), 2r # 1 and 2r  1 are coprime: both are odd and
their difference is 2. Since the whole product is divisible by 3h, we have either 3h 1

  2r # 1 or
3h 1

  2r  1. In any case, we have 3h 1 & 2r  1. Then

3h 1 & 2r  1 & 3r ! 3
n 1

6 ,

n 2

3
 1 ! h  1 " n # 1

6
,

n ! 11.

But this is impossible since we assumed n $ 6, and we proved 6
  n # 1.
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N3. Find the smallest number n such that there exist polynomials f1, f2, . . . , fn with rational
coefficients satisfying

x2  7 ! f1"x#2  f2"x#2  $ $ $  fn"x#2.
(Poland)

Answer. The smallest n is 5.

Solution 1. The equality x2  7 ! x2  22  12  12  12 shows that n % 5. It remains to
show that x2 7 is not a sum of four (or less) squares of polynomials with rational coefficients.

Suppose by way of contradiction that x2  7 ! f1"x#2  f2"x#2  f3"x#2  f4"x#2, where the
coefficients of polynomials f1, f2, f3 and f4 are rational (some of these polynomials may be
zero).

Clearly, the degrees of f1, f2, f3 and f4 are at most 1. Thus fi"x# ! aix bi for i ! 1, 2, 3, 4
and some rationals a1, b1, a2, b2, a3, b3, a4, b4. It follows that x2  7 !  4

i 1"aix  bi#2 and
hence

4!
i 1

a2
i ! 1,

4!
i 1

aibi ! 0,
4!

i 1

b2
i ! 7. (1)

Let pi ! ai  bi and qi ! ai & bi for i ! 1, 2, 3, 4. Then

4!
i 1

p2
i ! 4!

i 1

a2
i  2

4!
i 1

aibi  4!
i 1

b2
i ! 8,

4!
i 1

q2
i ! 4!

i 1

a2
i & 2

4!
i 1

aibi  4!
i 1

b2
i ! 8

and
4!

i 1

piqi ! 4!
i 1

a2
i & 4!

i 1

b2
i ! &6,

which means that there exist a solution in integers x1, y1, x2, y2, x3, y3, x4, y4 and m ' 0 of
the system of equations

(i)
4!

i 1

x2
i ! 8m2, (ii)

4!
i 1

y2
i ! 8m2, (iii)

4!
i 1

xiyi ! &6m2.

We will show that such a solution does not exist.
Assume the contrary and consider a solution with minimal m. Note that if an integer x is

odd then x2 ( 1 "mod 8#. Otherwise (i.e., if x is even) we have x2 ( 0 "mod 8# or x2 ( 4"mod 8#. Hence, by (i), we get that x1, x2, x3 and x4 are even. Similarly, by (ii), we get that
y1, y2, y3 and y4 are even. Thus the LHS of (iii) is divisible by 4 and m is also even. It follows
that "x1

2
, y1

2
, x2

2
, y2

2
, x3

2
, y3

2
, x4

2
, y4

2
, m

2
# is a solution of the system of equations (i), (ii) and (iii),

which contradicts the minimality of m.

Solution 2. We prove that n % 4 is impossible. Define the numbers ai, bi for i ! 1, 2, 3, 4 as
in the previous solution.

By Euler’s identity we have"a2
1  a2

2  a2
3  a2

4#"b2
1  b2

2  b2
3  b2

4# !"a1b1  a2b2  a3b3  a4b4#2  "a1b2 & a2b1  a3b4 & a4b3#2 "a1b3 & a3b1  a4b2 & a2b4#2  "a1b4 & a4b1  a2b3 & a3b2#2.
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So, using the relations (1) from the Solution 1 we get that

7   m1

m

!2 !  m2

m

!2 !  m3

m

!2

, (2)

where

m1

m
 a1b2 " a2b1 ! a3b4 " a4b3,

m2

m
 a1b3 " a3b1 ! a4b2 " a2b4,

m3

m
 a1b4 " a4b1 ! a2b3 " a3b2

and m1, m2, m3 # Z, m # N.
Let m be a minimum positive integer number for which (2) holds. Then

8m2  m2
1 !m2

2 !m2
3 !m2.

As in the previous solution, we get thatm1, m2, m3, m are all even numbers. Then
"

m1

2
, m2

2
, m3

2
, m

2

#
is also a solution of (2) which contradicts the minimality of m. So, we have n $ 5. The example
with n  5 is already shown in Solution 1.
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N4. Let a, b be integers, and let P  x! " ax3 # bx. For any positive integer n we say that the
pair  a, b! is n-good if n

  P  m! $ P  k! implies n
  m $ k for all integers m, k. We say that a, b! is very good if  a, b! is n-good for infinitely many positive integers n.

(a) Find a pair  a, b! which is 51-good, but not very good.
(b) Show that all 2010-good pairs are very good.

(Turkey)

Solution. (a) We show that the pair  1,$512! is good but not very good. Let P  x! " x3$512x.
Since P  51! " P  0!, the pair  1,$512! is not n-good for any positive integer that does not
divide 51. Therefore,  1,$512! is not very good.

On the other hand, if P  m! % P  k!  mod 51!, then m3 % k3  mod 51!. By Fermat’s
theorem, from this we obtain

m % m3 % k3 % k  mod 3! and m % m33 % k33 % k  mod 17!.
Hence we have m % k  mod 51!. Therefore  1,$512! is 51-good.

(b) We will show that if a pair  a, b! is 2010-good then  a, b! is 67i-good for all positive
integer i.

Claim 1. If  a, b! is 2010-good then  a, b! is 67-good.
Proof. Assume that P  m! " P  k!  mod 67!. Since 67 and 30 are coprime, there exist integers
m and k such that k % k  mod 67!, k % 0  mod 30!, and m % m  mod 67!, m % 0 mod 30!. Then we have P  m ! % P  0! % P  k !  mod 30! and P  m ! % P  m! % P  k! % P  k ! mod 67!, hence P  m ! % P  k !  mod 2010!. This implies m % k  mod 2010! as  a, b! is
2010-good. It follows that m % m % k % k  mod 67!. Therefore,  a, b! is 67-good.  
Claim 2. If  a, b! is 67-good then 67   a.

Proof. Suppose that 67 !   a. Consider the sets &at2  mod 67! : 0 ' t ' 33( and &$3as2 $ b

mod 67 : 0 ' s ' 33(. Since a ) 0  mod 67!, each of these sets has 34 elements. Hence they
have at least one element in common. If at2 % $3as2 $ b  mod 67! then for m " t*s, k " +2s
we have

P  m! $ P  k! " a m3 $ k3! # b m $ k! "  m $ k!!a m2 # mk # k2! # b
""  t * 3s! at2 # 3as2 # b! % 0  mod 67!.

Since  a, b! is 67-good, we must have m % k  mod 67! in both cases, that is, t % 3s  mod 67!
and t % $3s  mod 67!. This means t % s % 0  mod 67! and b % $3as2 $ at2 % 0  mod 67!.
But then 67

  P  7!$P  2! " 67 ,5a#5b and 67 !   7$2, contradicting that  a, b! is 67-good.  
Claim 3. If  a, b! is 2010-good then  a, b! is 67i-good all i - 1.

Proof. By Claim 2, we have 67
  a. If 67

  b, then P  x! % P  0!  mod 67! for all x, contradicting
that  a, b! is 67-good. Hence, 67 !   b.

Suppose that 67i
  P  m! $ P  k! "  m $ k!!a m2 # mk # k2! # b

"
. Since 67

  a and 67 !   b,
the second factor a m2 # mk # k2!# b is coprime to 67 and hence 67i

  m$ k. Therefore,  a, b!
is 67i-good.  
Comment 1. In the proof of Claim 2, the following reasoning can also be used. Since 3 is not
a quadratic residue modulo 67, either au2  !b "mod 67# or 3av2  !b "mod 67# has a solution.
The settings "m,k# $ "u, 0# in the first case and "m,k# $ "v,!2v# in the second case lead to b  0"mod 67#.
Comment 2. The pair "67, 30# is n-good if and only if n $ d % 67i, where d

  30 and i & 0. It shows
that in part (b), one should deal with the large powers of 67 to reach the solution. The key property
of number 67 is that it has the form 3k' 1, so there exists a nontrivial cubic root of unity modulo 67.
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N5. Let N be the set of all positive integers. Find all functions f : N  N such that the
number

 
f!m" # n

! 
m# f!n"! is a square for all m, n $ N.

(U.S.A.)

Answer. All functions of the form f!n" % n # c, where c $ N& '0(.
Solution. First, it is clear that all functions of the form f!n" % n# c with a constant nonneg-
ative integer c satisfy the problem conditions since

 
f!m" # n

! 
f!n" #m

! % !n#m# c"2 is a
square.

We are left to prove that there are no other functions. We start with the following

Lemma. Suppose that p
"" f!k")f!ℓ" for some prime p and positive integers k, ℓ. Then p

"" k)ℓ.

Proof. Suppose first that p2
"" f!k" ) f!ℓ", so f!ℓ" % f!k" # p2a for some integer a. Take some

positive integer D * max'f!k", f!ℓ"( which is not divisible by p and set n % pD ) f!k". Then
the positive numbers n # f!k" % pD and n # f!ℓ" % pD #  

f!ℓ" ) f!k"! % p!D # pa" are
both divisible by p but not by p2. Now, applying the problem conditions, we get that both the
numbers

 
f!k" # n

! 
f!n" # k

!
and

 
f!ℓ" # n

! 
f!n" # ℓ

!
are squares divisible by p (and thus

by p2); this means that the multipliers f!n" # k and f!n" # ℓ are also divisible by p, therefore
p
""  f!n" # k

!)  
f!n" # ℓ

! % k ) ℓ as well.
On the other hand, if f!k" ) f!ℓ" is divisible by p but not by p2, then choose the same

number D and set n % p3D) f!k". Then the positive numbers f!k"#n % p3D and f!ℓ"#n %
p3D #  

f!ℓ" ) f!k"! are respectively divisible by p3 (but not by p4) and by p (but not by p2).
Hence in analogous way we obtain that the numbers f!n" # k and f!n" # ℓ are divisible by p,
therefore p

""  f!n" # k
!)  

f!n" # ℓ
! % k ) ℓ.  

We turn to the problem. First, suppose that f!k" % f!ℓ" for some k, ℓ $ N. Then by Lemma
we have that k ) ℓ is divisible by every prime number, so k ) ℓ % 0, or k % ℓ. Therefore, the
function f is injective.

Next, consider the numbers f!k" and f!k # 1". Since the number !k # 1" ) k % 1 has no
prime divisors, by Lemma the same holds for f!k # 1" ) f!k"; thus +f!k # 1" ) f!k"+ % 1.

Now, let f!2") f!1" % q, +q+ % 1. Then we prove by induction that f!n" % f!1"# q!n) 1".
The base for n % 1, 2 holds by the definition of q. For the step, if n * 1 we have f!n# 1" %
f!n",q % f!1"#q!n)1",q. Since f!n" - f!n)2" % f!1"#q!n)2", we get f!n" % f!1"#qn,
as desired.

Finally, we have f!n" % f!1"#q!n)1". Then q cannot be )1 since otherwise for n . f!1"#1
we have f!n" / 0 which is impossible. Hence q % 1 and f!n" % !f!1" ) 1" # n for each n $ N,
and f!1" ) 1 . 0, as desired.



72

N6. The rows and columns of a 2n 2n table are numbered from 0 to 2n! 1. The cells of the
table have been colored with the following property being satisfied: for each 0 " i, j " 2n ! 1,
the jth cell in the ith row and the #i $ j%th cell in the jth row have the same color. (The
indices of the cells in a row are considered modulo 2n.)

Prove that the maximal possible number of colors is 2n.

(Iran)

Solution. Throughout the solution we denote the cells of the table by coordinate pairs; #i, j%
refers to the jth cell in the ith row.

Consider the directed graph, whose vertices are the cells of the board, and the edges are
the arrows #i, j% & #j, i$ j% for all 0 " i, j " 2n ! 1. From each vertex #i, j%, exactly one edge
passes (to #j, i $ j mod 2n%); conversely, to each cell #j, k% exactly one edge is directed (from
the cell #k ! j mod 2n, j%%. Hence, the graph splits into cycles.

Now, in any coloring considered, the vertices of each cycle should have the same color by
the problem condition. On the other hand, if each cycle has its own color, the obtained coloring
obviously satisfies the problem conditions. Thus, the maximal possible number of colors is the
same as the number of cycles, and we have to prove that this number is 2n.

Next, consider any cycle #i1, j1%, #i2, j2%, . . . ; we will describe it in other terms. Define a
sequence #a0, a1, . . . % by the relations a0 ' i1, a1 ' j1, an 1 ' an $ an!1 for all n ( 1 (we
say that such a sequence is a Fibonacci-type sequence). Then an obvious induction shows
that ik ) ak!1 #mod 2n%, jk ) ak #mod 2n%. Hence we need to investigate the behavior of
Fibonacci-type sequences modulo 2n.

Denote by F0, F1, . . . the Fibonacci numbers defined by F0 ' 0, F1 ' 1, and Fn 2 '
Fn 1 $ Fn for n ( 0. We also set F!1 ' 1 according to the recurrence relation.

For every positive integer m, denote by ν#m% the exponent of 2 in the prime factorization
of m, i.e. for which 2ν"m#   m but 2ν"m# 1    m.

Lemma 1. For every Fibonacci-type sequence a0, a1, a2, . . . , and every k ( 0, we have ak '
Fk!1a0 $ Fka1.

Proof. Apply induction on k. The base cases k ' 0, 1 are trivial. For the step, from the
induction hypothesis we get

ak 1 ' ak $ ak!1 ' #Fk!1a0 $ Fka1% $ #Fk!2a0 $ Fk!1a1% ' Fka0 $ Fk 1a1. !
Lemma 2. For every m ( 3,

(a) we have ν#F3$2m 2% ' m;
(b) d ' 3 * 2m!2 is the least positive index for which 2m

  Fd;
(c) F3$2m 2 1 ) 1$ 2m!1 #mod 2m%.

Proof. Apply induction on m. In the base case m ' 3 we have ν#F3$2m 2% ' F6 ' 8, so
ν#F3$2m 2% ' ν#8% ' 3, the preceding Fibonacci-numbers are not divisible by 8, and indeed
F3$2m 2 1 ' F7 ' 13 ) 1$ 4 #mod 8%.

Now suppose that m + 3 and let k ' 3 * 2m!3. By applying Lemma 1 to the Fibonacci-type
sequence Fk, Fk 1, . . . we get

F2k ' Fk!1Fk $ FkFk 1 ' #Fk 1 ! Fk%Fk $ Fk 1Fk ' 2Fk 1Fk ! F 2
k ,

F2k 1 ' Fk * Fk $ Fk 1 * Fk 1 ' F 2
k $ F 2

k 1.

By the induction hypothesis, ν#Fk% ' m ! 1, and Fk 1 is odd. Therefore we get ν#F 2
k % '

2#m! 1% + #m ! 1% $ 1 ' ν#2FkFk 1%, which implies ν#F2k% ' m, establishing statement (a).



73

Moreover, since Fk 1  1! 2m!2 ! a2m!1 for some integer a, we get

F2k 1  F 2
k ! F 2

k 1 " 0! #1! 2m!2 ! a2m!1$2 " 1! 2m!1 #mod 2m$,
as desired in statement (c).

We are left to prove that 2m    Fℓ for ℓ % 2k. Assume the contrary. Since 2m!1
  Fℓ, from

the induction hypothesis it follows that ℓ & k. But then we have Fℓ  Fk!1Fℓ!k ! FkFℓ!k 1,
where the second summand is divisible by 2m!1 but the first one is not (since Fk!1 is odd and
ℓ' k % k). Hence the sum is not divisible even by 2m!1. A contradiction. !

Now, for every pair of integers #a, b$ ( #0, 0$, let µ#a, b$  min)ν#a$, ν#b$*. By an obvious in-
duction, for every Fibonacci-type sequence A  #a0, a1, . . . $ we have µ#a0, a1$  µ#a1, a2$  . . .;
denote this common value by µ#A$. Also denote by pn#A$ the period of this sequence modulo
2n, that is, the least p & 0 such that ak p " ak #mod 2n$ for all k + 0.

Lemma 3. Let A  #a0, a1, . . . $ be a Fibonacci-type sequence such that µ#A$  k % n. Then
pn#A$  3 , 2n!1!k.

Proof. First, we note that the sequence #a0, a1, . . . $ has period p modulo 2n if and only if the
sequence #a0-2k, a1-2k, . . . $ has period p modulo 2n!k. Hence, passing to this sequence we can
assume that k  0.

We prove the statement by induction on n. It is easy to see that for n  1, 2 the claim
is true; actually, each Fibonacci-type sequence A with µ#A$  0 behaves as 0, 1, 1, 0, 1, 1, . . .
modulo 2, and as 0, 1, 1, 2, 3, 1, 0, 1, 1, 2, 3, 1, . . . modulo 4 (all pairs of residues from which at
least one is odd appear as a pair of consecutive terms in this sequence).

Now suppose that n + 3 and consider an arbitrary Fibonacci-type sequence A  #a0, a1, . . . $
with µ#A$  0. Obviously we should have pn!1#A$   pn#A$, or, using the induction hypothesis,
s  3 , 2n!2

  pn#A$. Next, we may suppose that a0 is even; hence a1 is odd, and a0  2b0,
a1  2b1 ! 1 for some integers b0, b1.

Consider the Fibonacci-type sequence B  #b0, b1, . . . $ starting with #b0, b1$. Since a0  
2b0 ! F0, a1  2b1 ! F1, by an easy induction we get ak  2bk ! Fk for all k + 0. By
the induction hypothesis, we have pn!1#B$   s, hence the sequence #2b0, 2b1, . . . $ is s-periodic
modulo 2n. On the other hand, by Lemma 2 we have Fs 1 " 1 ! 2n!1 #mod 2n$, F2s " 0#mod 2n$, F2s 1 " 1 #mod 2n$, hence

as 1  2bs 1 ! Fs 1 " 2b1 ! 1! 2n!1 . 2b1 ! 1  a1 #mod 2n$,
a2s  2b2s ! F2s " 2b0 ! 0  a0 #mod 2n$,

a2s 1  2b2s 1 ! F2s 1 " 2b1 ! 1  a1 #mod 2n$.
The first line means that A is not s-periodic, while the other two provide that a2s " a0,
a2s 1 " a1 and hence a2s t " at for all t + 0. Hence s

  pn#A$   2s and pn#A$ ( s, which means
that pn#A$  2s, as desired. !

Finally, Lemma 3 provides a straightforward method of counting the number of cycles.
Actually, take any number 0 / k / n' 1 and consider all the cells #i, j$ with µ#i, j$  k. The
total number of such cells is 22"n!k#'22"n!k!1#  3 ,22n!2k!2. On the other hand, they are split
into cycles, and by Lemma 3 the length of each cycle is 3 , 2n!1!k. Hence the number of cycles

consisting of these cells is exactly
3 , 22n!2k!2

3 , 2n!1!k
 2n!k!1. Finally, there is only one cell #0, 0$

which is not mentioned in the previous computation, and it forms a separate cycle. So the total
number of cycles is

1! n!1!
k$0

2n!1!k  1! #1! 2! 4! , , , ! 2n!1$  2n.
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Comment. We outline a different proof for the essential part of Lemma 3. That is, we assume that
k  0 and show that in this case the period of !ai"modulo 2n coincides with the period of the Fibonacci
numbers modulo 2n; then the proof can be finished by the arguments from Lemma 2..

Note that p is a (not necessarily minimal) period of the sequence !ai" modulo 2n if and only if we
have a0 # ap !mod 2n", a1 # ap 1 !mod 2n", that is,

a0 # ap # Fp!1a0 $ Fpa1  Fp!a1 % a0" $ Fp 1a0 !mod 2n",
a1 # ap 1  Fpa0 $ Fp 1a1 !mod 2n". (1)

Now, If p is a period of !Fi" then we have Fp # F0  0 !mod 2n" and Fp 1 # F1  1 !mod 2n", which
by (1) implies that p is a period of !ai" as well.

Conversely, suppose that p is a period of !ai". Combining the relations of (1) we get

0  a1 & a0 % a0 & a1 # a1

 
Fp!a1 % a0" $ Fp 1a0

!% a0!Fpa0 $ Fp 1a1" Fp!a2
1 % a1a0 % a2

0" !mod 2n",
a2

1 % a1a0 % a2
0  !a1 % a0"a1 % a0 & a0 # !a1 % a0"!Fpa0 $ Fp 1a1" % a0

 
Fp!a1 % a0" $ Fp 1a0

! Fp 1!a2
1 % a1a0 % a2

0" !mod 2n".
Since at least one of the numbers a0, a1 is odd, the number a2

1%a1a0%a2
0 is odd as well. Therefore the

previous relations are equivalent with Fp # 0 !mod 2n" and Fp 1 # 1 !mod 2n", which means exactly
that p is a period of !F0, F1, . . . " modulo 2n.

So, the sets of periods of !ai" and !Fi" coincide, and hence the minimal periods coincide as well.
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Algebra Problem shortlist 52nd IMO 2011

Algebra
A1

A1

For any set A = {a1, a2, a3, a4} of four distinct positive integers with sum sA = a1 +a2 +a3 +a4,

let pA denote the number of pairs (i, j) with 1 ≤ i < j ≤ 4 for which ai +aj divides sA. Among

all sets of four distinct positive integers, determine those sets A for which pA is maximal.

A2

A2

Determine all sequences (x1, x2, . . . , x2011) of positive integers such that for every positive inte-

ger n there is an integer a with

xn
1 + 2xn

2 + · · ·+ 2011xn
2011 = an+1 + 1.

A3

A3

Determine all pairs (f, g) of functions from the set of real numbers to itself that satisfy

g(f(x + y)) = f(x) + (2x + y)g(y)

for all real numbers x and y.

A4

A4

Determine all pairs (f, g) of functions from the set of positive integers to itself that satisfy

f g(n)+1(n) + gf(n)(n) = f(n + 1)− g(n + 1) + 1

for every positive integer n. Here, fk(n) means f(f(. . . f
︸ ︷︷ ︸

k

(n) . . .)).

A5

A5

Prove that for every positive integer n, the set {2, 3, 4, . . . , 3n + 1} can be partitioned into

n triples in such a way that the numbers from each triple are the lengths of the sides of some

obtuse triangle.

4



52nd IMO 2011 Problem shortlist Algebra

A6

A6

Let f be a function from the set of real numbers to itself that satisfies

f(x + y) ≤ yf(x) + f(f(x))

for all real numbers x and y. Prove that f(x) = 0 for all x ≤ 0.

A7

A7

Let a, b, and c be positive real numbers satisfying min(a+b, b+c, c+a) >
√

2 and a2+b2+c2 = 3.

Prove that

a

(b + c− a)2
+

b

(c + a− b)2
+

c

(a + b− c)2
≥ 3

(abc)2
.

5



Combinatorics Problem shortlist 52nd IMO 2011

Combinatorics
C1

C1

Let n > 0 be an integer. We are given a balance and n weights of weight 20, 21, . . . , 2n−1. In a

sequence of n moves we place all weights on the balance. In the first move we choose a weight

and put it on the left pan. In each of the following moves we choose one of the remaining

weights and we add it either to the left or to the right pan. Compute the number of ways in

which we can perform these n moves in such a way that the right pan is never heavier than the

left pan.

C2

C2

Suppose that 1000 students are standing in a circle. Prove that there exists an integer k with

100 ≤ k ≤ 300 such that in this circle there exists a contiguous group of 2k students, for which

the first half contains the same number of girls as the second half.

C3

C3

Let S be a finite set of at least two points in the plane. Assume that no three points of S are

collinear. By a windmill we mean a process as follows. Start with a line ℓ going through a

point P ∈ S. Rotate ℓ clockwise around the pivot P until the line contains another point Q

of S. The point Q now takes over as the new pivot. This process continues indefinitely, with

the pivot always being a point from S.

Show that for a suitable P ∈ S and a suitable starting line ℓ containing P , the resulting

windmill will visit each point of S as a pivot infinitely often.

C4

C4

Determine the greatest positive integer k that satisfies the following property: The set of positive

integers can be partitioned into k subsets A1, A2, . . . , Ak such that for all integers n ≥ 15 and

all i ∈ {1, 2, . . . , k} there exist two distinct elements of Ai whose sum is n.

6
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C5

C5

Let m be a positive integer and consider a checkerboard consisting of m by m unit squares.

At the midpoints of some of these unit squares there is an ant. At time 0, each ant starts

moving with speed 1 parallel to some edge of the checkerboard. When two ants moving in

opposite directions meet, they both turn 90◦ clockwise and continue moving with speed 1.

When more than two ants meet, or when two ants moving in perpendicular directions meet,

the ants continue moving in the same direction as before they met. When an ant reaches one

of the edges of the checkerboard, it falls off and will not re-appear.

Considering all possible starting positions, determine the latest possible moment at which the

last ant falls off the checkerboard or prove that such a moment does not necessarily exist.

C6

C6

Let n be a positive integer and let W = . . . x−1x0x1x2 . . . be an infinite periodic word consisting

of the letters a and b. Suppose that the minimal period N of W is greater than 2n.

A finite nonempty word U is said to appear in W if there exist indices k ≤ ℓ such that

U = xkxk+1 . . . xℓ. A finite word U is called ubiquitous if the four words Ua, Ub, aU , and bU

all appear in W . Prove that there are at least n ubiquitous finite nonempty words.

C7

C7

On a square table of 2011 by 2011 cells we place a finite number of napkins that each cover

a square of 52 by 52 cells. In each cell we write the number of napkins covering it, and we

record the maximal number k of cells that all contain the same nonzero number. Considering

all possible napkin configurations, what is the largest value of k?

7
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Geometry
G1

G1

Let ABC be an acute triangle. Let ω be a circle whose center L lies on the side BC. Suppose

that ω is tangent to AB at B′ and to AC at C ′. Suppose also that the circumcenter O of the

triangle ABC lies on the shorter arc B′C ′ of ω. Prove that the circumcircle of ABC and ω

meet at two points.

G2

G2

Let A1A2A3A4 be a non-cyclic quadrilateral. Let O1 and r1 be the circumcenter and the

circumradius of the triangle A2A3A4. Define O2, O3, O4 and r2, r3, r4 in a similar way. Prove

that
1

O1A2
1 − r2

1

+
1

O2A2
2 − r2

2

+
1

O3A2
3 − r2

3

+
1

O4A2
4 − r2

4

= 0.

G3

G3

Let ABCD be a convex quadrilateral whose sides AD and BC are not parallel. Suppose that the

circles with diameters AB and CD meet at points E and F inside the quadrilateral. Let ωE be

the circle through the feet of the perpendiculars from E to the lines AB, BC, and CD. Let ωF

be the circle through the feet of the perpendiculars from F to the lines CD, DA, and AB.

Prove that the midpoint of the segment EF lies on the line through the two intersection points

of ωE and ωF .

G4

G4

Let ABC be an acute triangle with circumcircle Ω. Let B0 be the midpoint of AC and let C0

be the midpoint of AB. Let D be the foot of the altitude from A, and let G be the centroid

of the triangle ABC. Let ω be a circle through B0 and C0 that is tangent to the circle Ω at a

point X 6= A. Prove that the points D, G, and X are collinear.

G5

G5

Let ABC be a triangle with incenter I and circumcircle ω. Let D and E be the second

intersection points of ω with the lines AI and BI, respectively. The chord DE meets AC at a

point F , and BC at a point G. Let P be the intersection point of the line through F parallel to

AD and the line through G parallel to BE. Suppose that the tangents to ω at A and at B meet

at a point K. Prove that the three lines AE, BD, and KP are either parallel or concurrent.

8
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G6

G6

Let ABC be a triangle with AB = AC, and let D be the midpoint of AC. The angle bisector

of ∠BAC intersects the circle through D, B, and C in a point E inside the triangle ABC.

The line BD intersects the circle through A, E, and B in two points B and F . The lines AF

and BE meet at a point I, and the lines CI and BD meet at a point K. Show that I is the

incenter of triangle KAB.

G7

G7

Let ABCDEF be a convex hexagon all of whose sides are tangent to a circle ω with center O.

Suppose that the circumcircle of triangle ACE is concentric with ω. Let J be the foot of the

perpendicular from B to CD. Suppose that the perpendicular from B to DF intersects the

line EO at a point K. Let L be the foot of the perpendicular from K to DE. Prove that

DJ = DL.

G8

G8

Let ABC be an acute triangle with circumcircle ω. Let t be a tangent line to ω. Let ta, tb,

and tc be the lines obtained by reflecting t in the lines BC, CA, and AB, respectively. Show

that the circumcircle of the triangle determined by the lines ta, tb, and tc is tangent to the

circle ω.

9
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Number Theory
N1

N1

For any integer d > 0, let f(d) be the smallest positive integer that has exactly d positive

divisors (so for example we have f(1) = 1, f(5) = 16, and f(6) = 12). Prove that for every

integer k ≥ 0 the number f(2k) divides f(2k+1).

N2

N2

Consider a polynomial P (x) = (x + d1)(x + d2) · . . . · (x + d9), where d1, d2, . . . , d9 are nine

distinct integers. Prove that there exists an integer N such that for all integers x ≥ N the

number P (x) is divisible by a prime number greater than 20.

N3

N3

Let n ≥ 1 be an odd integer. Determine all functions f from the set of integers to itself such

that for all integers x and y the difference f(x)− f(y) divides xn − yn.

N4

N4

For each positive integer k, let t(k) be the largest odd divisor of k. Determine all positive

integers a for which there exists a positive integer n such that all the differences

t(n + a)− t(n), t(n + a + 1)− t(n + 1), . . . , t(n + 2a− 1)− t(n + a− 1)

are divisible by 4.

N5

N5

Let f be a function from the set of integers to the set of positive integers. Suppose that for

any two integers m and n, the difference f(m)− f(n) is divisible by f(m− n). Prove that for

all integers m, n with f(m) ≤ f(n) the number f(n) is divisible by f(m).

N6

N6

Let P (x) and Q(x) be two polynomials with integer coefficients such that no nonconstant

polynomial with rational coefficients divides both P (x) and Q(x). Suppose that for every

positive integer n the integers P (n) and Q(n) are positive, and 2Q(n) − 1 divides 3P (n) − 1.

Prove that Q(x) is a constant polynomial.

10
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N7

N7

Let p be an odd prime number. For every integer a, define the number

Sa =
a

1
+

a2

2
+ · · ·+ ap−1

p− 1
.

Let m and n be integers such that

S3 + S4 − 3S2 =
m

n
.

Prove that p divides m.

N8

N8

Let k be a positive integer and set n = 2k + 1. Prove that n is a prime number if and only if

the following holds: there is a permutation a1, . . . , an−1 of the numbers 1, 2, . . . , n − 1 and a

sequence of integers g1, g2, . . . , gn−1 such that n divides gai

i −ai+1 for every i ∈ {1, 2, . . . , n−1},
where we set an = a1.

11
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A1

For any set A = {a1, a2, a3, a4} of four distinct positive integers with sum sA = a1 +a2 +a3 +a4,

let pA denote the number of pairs (i, j) with 1 ≤ i < j ≤ 4 for which ai +aj divides sA. Among

all sets of four distinct positive integers, determine those sets A for which pA is maximal.

Answer. The sets A for which pA is maximal are the sets the form {d, 5d, 7d, 11d} and

{d, 11d, 19d, 29d}, where d is any positive integer. For all these sets pA is 4.

Solution. Firstly, we will prove that the maximum value of pA is at most 4. Without loss

of generality, we may assume that a1 < a2 < a3 < a4. We observe that for each pair of

indices (i, j) with 1 ≤ i < j ≤ 4, the sum ai + aj divides sA if and only if ai + aj divides

sA − (ai + aj) = ak + al, where k and l are the other two indices. Since there are 6 distinct

pairs, we have to prove that at least two of them do not satisfy the previous condition. We

claim that two such pairs are (a2, a4) and (a3, a4). Indeed, note that a2 + a4 > a1 + a3 and

a3 + a4 > a1 + a2. Hence a2 + a4 and a3 + a4 do not divide sA. This proves pA ≤ 4.

Now suppose pA = 4. By the previous argument we have

a1 + a4

∣
∣ a2 + a3 and a2 + a3

∣
∣ a1 + a4,

a1 + a2

∣
∣ a3 + a4 and a3 + a4 6

∣
∣ a1 + a2,

a1 + a3

∣
∣ a2 + a4 and a2 + a4 6

∣
∣ a1 + a3.

Hence, there exist positive integers m and n with m > n ≥ 2 such that







a1 + a4 = a2 + a3

m(a1 + a2) = a3 + a4

n(a1 + a3) = a2 + a4.

Adding up the first equation and the third one, we get n(a1 + a3) = 2a2 + a3 − a1. If n ≥ 3,

then n(a1 + a3) > 3a3 > 2a2 + a3 > 2a2 + a3 − a1. This is a contradiction. Therefore n = 2. If

we multiply by 2 the sum of the first equation and the third one, we obtain

6a1 + 2a3 = 4a2,

while the sum of the first one and the second one is

(m + 1)a1 + (m− 1)a2 = 2a3.

Adding up the last two equations we get

(m + 7)a1 = (5−m)a2.

12
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It follows that 5 −m ≥ 1, because the left-hand side of the last equation and a2 are positive.

Since we have m > n = 2, the integer m can be equal only to either 3 or 4. Substituting

(3, 2) and (4, 2) for (m, n) and solving the previous system of equations, we find the families of

solutions {d, 5d, 7d, 11d} and {d, 11d, 19d, 29d}, where d is any positive integer.

13
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A2

Determine all sequences (x1, x2, . . . , x2011) of positive integers such that for every positive inte-

ger n there is an integer a with

xn
1 + 2xn

2 + · · ·+ 2011xn
2011 = an+1 + 1.

Answer. The only sequence that satisfies the condition is

(x1, . . . , x2011) = (1, k, . . . , k) with k = 2 + 3 + · · ·+ 2011 = 2023065.

Solution. Throughout this solution, the set of positive integers will be denoted by Z+.

Put k = 2 + 3 + · · ·+ 2011 = 2023065. We have

1n + 2kn + · · · 2011kn = 1 + k · kn = kn+1 + 1

for all n, so (1, k, . . . , k) is a valid sequence. We shall prove that it is the only one.

Let a valid sequence (x1, . . . , x2011) be given. For each n ∈ Z+ we have some yn ∈ Z+ with

xn
1 + 2xn

2 + · · ·+ 2011xn
2011 = yn+1

n + 1.

Note that xn
1 + 2xn

2 + · · · + 2011xn
2011 < (x1 + 2x2 + · · · + 2011x2011)

n+1, which implies that

the sequence (yn) is bounded. In particular, there is some y ∈ Z+ with yn = y for infinitely

many n.

Let m be the maximum of all the xi. Grouping terms with equal xi together, the sum xn
1 +

2xn
2 + · · ·+ 2011xn

2011 can be written as

xn
1 + 2xn

2 + · · ·+ xn
2011 = ammn + am−1(m− 1)n + · · ·+ a1

with ai ≥ 0 for all i and a1 + · · · + am = 1 + 2 + · · · + 2011. So there exist arbitrarily large

values of n, for which

ammn + · · ·+ a1 − 1− y · yn = 0. (1)

The following lemma will help us to determine the ai and y:

Lemma. Let integers b1, . . . , bN be given and assume that there are arbitrarily large positive

integers n with b1 + b22
n + · · ·+ bNNn = 0. Then bi = 0 for all i.

Proof. Suppose that not all bi are zero. We may assume without loss of generality that bN 6= 0.

14
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Dividing through by Nn gives

|bN | =
∣
∣
∣
∣
bN−1

(
N − 1

N

)n

+ · · ·+ b1

(
1

N

)n∣
∣
∣
∣
≤ (|bN−1|+ · · ·+ |b1|)

(
N − 1

N

)n

.

The expression
(

N−1
N

)n
can be made arbitrarily small for n large enough, contradicting the

assumption that bN be non-zero. �

We obviously have y > 1. Applying the lemma to (1) we see that am = y = m, a1 = 1,

and all the other ai are zero. This implies (x1, . . . , x2011) = (1, m, . . . , m). But we also have

1 + m = a1 + · · ·+ am = 1 + · · ·+ 2011 = 1 + k so m = k, which is what we wanted to show.

15
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A3

Determine all pairs (f, g) of functions from the set of real numbers to itself that satisfy

g(f(x + y)) = f(x) + (2x + y)g(y)

for all real numbers x and y.

Answer. Either both f and g vanish identically, or there exists a real number C such that

f(x) = x2 + C and g(x) = x for all real numbers x.

Solution. Clearly all these pairs of functions satisfy the functional equation in question, so it

suffices to verify that there cannot be any further ones. Substituting −2x for y in the given

functional equation we obtain

g(f(−x)) = f(x). (1)

Using this equation for −x− y in place of x we obtain

f(−x− y) = g(f(x + y)) = f(x) + (2x + y)g(y). (2)

Now for any two real numbers a and b, setting x = −b and y = a + b we get

f(−a) = f(−b) + (a− b)g(a + b).

If c denotes another arbitrary real number we have similarly

f(−b) = f(−c) + (b− c)g(b + c)

as well as

f(−c) = f(−a) + (c− a)g(c + a).

Adding all these equations up, we obtain

(
(a + c)− (b + c)

)
g(a + b) +

(
(a + b)− (a + c)

)
g(b + c) +

(
(b + c)− (a + b)

)
g(a + c) = 0.

Now given any three real numbers x, y, and z one may determine three reals a, b, and c such

that x = b + c, y = c + a, and z = a + b, so that we get

(y − x)g(z) + (z − y)g(x) + (x− z)g(y) = 0.

This implies that the three points (x, g(x)), (y, g(y)), and (z, g(z)) from the graph of g are

collinear. Hence that graph is a line, i.e., g is either a constant or a linear function.

16
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Let us write g(x) = Ax + B, where A and B are two real numbers. Substituting (0,−y) for

(x, y) in (2) and denoting C = f(0), we have f(y) = Ay2 − By + C. Now, comparing the

coefficients of x2 in (1) we see that A2 = A, so A = 0 or A = 1.

If A = 0, then (1) becomes B = −Bx + C and thus B = C = 0, which provides the first of the

two solutions mentioned above.

Now suppose A = 1. Then (1) becomes x2 − Bx + C + B = x2 − Bx + C, so B = 0. Thus,

g(x) = x and f(x) = x2 + C, which is the second solution from above.

Comment. Another way to show that g(x) is either a constant or a linear function is the following.

If we interchange x and y in the given functional equation and subtract this new equation from the

given one, we obtain

f(x)− f(y) = (2y + x)g(x)− (2x + y)g(y).

Substituting (x, 0), (1, x), and (0, 1) for (x, y), we get

f(x)− f(0) = xg(x)− 2xg(0),

f(1)− f(x) = (2x + 1)g(1) − (x + 2)g(x),

f(0)− f(1) = 2g(0) − g(1).

Taking the sum of these three equations and dividing by 2, we obtain

g(x) = x
(
g(1) − g(0)

)
+ g(0).

This proves that g(x) is either a constant of a linear function.

17
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A4

Determine all pairs (f, g) of functions from the set of positive integers to itself that satisfy

f g(n)+1(n) + gf(n)(n) = f(n + 1)− g(n + 1) + 1

for every positive integer n. Here, fk(n) means f(f(. . . f
︸ ︷︷ ︸

k

(n) . . .)).

Answer. The only pair (f, g) of functions that satisfies the equation is given by f(n) = n and

g(n) = 1 for all n.

Solution. The given relation implies

f
(
f g(n)(n)

)
< f(n + 1) for all n, (1)

which will turn out to be sufficient to determine f .

Let y1 < y2 < . . . be all the values attained by f (this sequence might be either finite or

infinite). We will prove that for every positive n the function f attains at least n values, and

we have (i)n: f(x) = yn if and only if x = n, and (ii)n: yn = n. The proof will follow the

scheme

(i)1, (ii)1, (i)2, (ii)2, . . . , (i)n, (ii)n, . . . (2)

To start, consider any x such that f(x) = y1. If x > 1, then (1) reads f
(
f g(x−1)(x− 1)

)
< y1,

contradicting the minimality of y1. So we have that f(x) = y1 is equivalent to x = 1, establish-

ing (i)1.

Next, assume that for some n statement (i)n is established, as well as all the previous statements

in (2). Note that these statements imply that for all k ≥ 1 and a < n we have fk(x) = a if

and only if x = a.

Now, each value yi with 1 ≤ i ≤ n is attained at the unique integer i, so yn+1 exists. Choose

an arbitrary x such that f(x) = yn+1; we necessarily have x > n. Substituting x − 1 into (1)

we have f
(
f g(x−1)(x− 1)

)
< yn+1, which implies

f g(x−1)(x− 1) ∈ {1, . . . , n} (3)

Set b = f g(x−1)(x − 1). If b < n then we would have x − 1 = b which contradicts x > n. So

b = n, and hence yn = n, which proves (ii)n. Next, from (i)n we now get f(k) = n ⇐⇒ k = n,

so removing all the iterations of f in (3) we obtain x− 1 = b = n, which proves (i)n+1.

So, all the statements in (2) are valid and hence f(n) = n for all n. The given relation between

f and g now reads n + gn(n) = n + 1 − g(n + 1) + 1 or gn(n) + g(n + 1) = 2, from which it
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immediately follows that we have g(n) = 1 for all n.

Comment. Several variations of the above solution are possible. For instance, one may first prove by

induction that the smallest n values of f are exactly f(1) < · · · < f(n) and proceed as follows. We

certainly have f(n) ≥ n for all n. If there is an n with f(n) > n, then f(x) > x for all x ≥ n. From

this we conclude f g(n)+1(n) > f g(n)(n) > · · · > f(n). But we also have f g(n)+1 < f(n + 1). Having

squeezed in a function value between f(n) and f(n + 1), we arrive at a contradiction.

In any case, the inequality (1) plays an essential rôle.
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A5

Prove that for every positive integer n, the set {2, 3, 4, . . . , 3n + 1} can be partitioned into

n triples in such a way that the numbers from each triple are the lengths of the sides of some

obtuse triangle.

Solution. Throughout the solution, we denote by [a, b] the set {a, a + 1, . . . , b}. We say that

{a, b, c} is an obtuse triple if a, b, c are the sides of some obtuse triangle.

We prove by induction on n that there exists a partition of [2, 3n + 1] into n obtuse triples Ai

(2 ≤ i ≤ n + 1) having the form Ai = {i, ai, bi}. For the base case n = 1, one can simply set

A2 = {2, 3, 4}. For the induction step, we need the following simple lemma.

Lemma. Suppose that the numbers a < b < c form an obtuse triple, and let x be any positive

number. Then the triple {a, b + x, c + x} is also obtuse.

Proof. The numbers a < b + x < c + x are the sides of a triangle because (c + x) − (b + x) =

c−b < a. This triangle is obtuse since (c+x)2−(b+x)2 = (c−b)(c+b+2x) > (c−b)(c+b) > a2.

�

Now we turn to the induction step. Let n > 1 and put t = ⌊n/2⌋ < n. By the induction

hypothesis, there exists a partition of the set [2, 3t + 1] into t obtuse triples A′i = {i, a′i, b′i}
(i ∈ [2, t + 1]). For the same values of i, define Ai = {i, a′i + (n − t), b′i + (n − t)}. The

constructed triples are obviously disjoint, and they are obtuse by the lemma. Moreover, we

have
t+1⋃

i=2

Ai = [2, t + 1] ∪ [n + 2, n + 2t + 1].

Next, for each i ∈ [t+2, n+1], define Ai = {i, n+ t+ i, 2n+ i}. All these sets are disjoint, and

n+1⋃

i=t+2

Ai = [t + 2, n + 1] ∪ [n + 2t + 2, 2n + t + 1] ∪ [2n + t + 2, 3n + 1],

so
n+1⋃

i=2

Ai = [2, 3n + 1].

Thus, we are left to prove that the triple Ai is obtuse for each i ∈ [t + 2, n + 1].

Since (2n + i)− (n + t + i) = n− t < t + 2 ≤ i, the elements of Ai are the sides of a triangle.

Next, we have

(2n + i)2− (n + t + i)2 = (n− t)(3n + t + 2i) ≥ n

2
· (3n + 3(t + 1) + 1) >

n

2
· 9n

2
≥ (n + 1)2 ≥ i2,

so this triangle is obtuse. The proof is completed.
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A6

Let f be a function from the set of real numbers to itself that satisfies

f(x + y) ≤ yf(x) + f(f(x)) (1)

for all real numbers x and y. Prove that f(x) = 0 for all x ≤ 0.

Solution 1. Substituting y = t− x, we rewrite (1) as

f(t) ≤ tf(x)− xf(x) + f(f(x)). (2)

Consider now some real numbers a, b and use (2) with t = f(a), x = b as well as with t = f(b),

x = a. We get

f(f(a))− f(f(b)) ≤ f(a)f(b)− bf(b),

f(f(b))− f(f(a)) ≤ f(a)f(b)− af(a).

Adding these two inequalities yields

2f(a)f(b) ≥ af(a) + bf(b).

Now, substitute b = 2f(a) to obtain 2f(a)f(b) ≥ af(a) + 2f(a)f(b), or af(a) ≤ 0. So, we get

f(a) ≥ 0 for all a < 0. (3)

Now suppose f(x) > 0 for some real number x. From (2) we immediately get that for every

t <
xf(x)− f(f(x))

f(x)
we have f(t) < 0. This contradicts (3); therefore

f(x) ≤ 0 for all real x, (4)

and by (3) again we get f(x) = 0 for all x < 0.

We are left to find f(0). Setting t = x < 0 in (2) we get

0 ≤ 0− 0 + f(0),

so f(0) ≥ 0. Combining this with (4) we obtain f(0) = 0.

Solution 2. We will also use the condition of the problem in form (2). For clarity we divide

the argument into four steps.
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Step 1. We begin by proving that f attains nonpositive values only. Assume that there

exist some real number z with f(z) > 0. Substituting x = z into (2) and setting A = f(z),

B = −zf(z) − f(f(z)) we get f(t) ≤ At + B for all real t. Hence, if for any positive real

number t we substitute x = −t, y = t into (1), we get

f(0) ≤ tf(−t) + f(f(−t)) ≤ t(−At + B) + Af(−t) + B

≤ −t(At− B) + A(−At + B) + B = −At2 − (A2 − B)t + (A + 1)B.

But surely this cannot be true if we take t to be large enough. This contradiction proves that

we have indeed f(x) ≤ 0 for all real numbers x. Note that for this reason (1) entails

f(x + y) ≤ yf(x) (5)

for all real numbers x and y.

Step 2. We proceed by proving that f has at least one zero. If f(0) = 0, we are done.

Otherwise, in view of Step 1 we get f(0) < 0. Observe that (5) tells us now f(y) ≤ yf(0) for all

real numbers y. Thus we can specify a positive real number a that is so large that f(a)2 > −f(0).

Put b = f(a) and substitute x = b and y = −b into (5); we learn −b2 < f(0) ≤ −bf(b), i.e.

b < f(b). Now we apply (2) to x = b and t = f(b), which yields

f(f(b)) ≤
(
f(b)− b

)
f(b) + f(f(b)),

i.e. f(b) ≥ 0. So in view of Step 1, b is a zero of f .

Step 3. Next we show that if f(a) = 0 and b < a, then f(b) = 0 as well. To see this, we just

substitute x = b and y = a− b into (5), thus getting f(b) ≥ 0, which suffices by Step 1.

Step 4. By Step 3, the solution of the problem is reduced to showing f(0) = 0. Pick any

zero r of f and substitute x = r and y = −1 into (1). Because of f(r) = f(r−1) = 0 this gives

f(0) ≥ 0 and hence f(0) = 0 by Step 1 again.

Comment 1. Both of these solutions also show f(x) ≤ 0 for all real numbers x. As one can see

from Solution 1, this task gets much easier if one already knows that f takes nonnegative values for

sufficiently small arguments. Another way of arriving at this statement, suggested by the proposer, is

as follows:

Put a = f(0) and substitute x = 0 into (1). This gives f(y) ≤ ay + f(a) for all real numbers y. Thus

if for any real number x we plug y = a− x into (1), we obtain

f(a) ≤ (a− x)f(x) + f(f(x)) ≤ (a− x)f(x) + af(x) + f(a)

and hence 0 ≤ (2a− x)f(x). In particular, if x < 2a, then f(x) ≥ 0.

Having reached this point, one may proceed almost exactly as in the first solution to deduce f(x) ≤ 0

for all x. Afterwards the problem can be solved in a few lines as shown in steps 3 and 4 of the second
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solution.

Comment 2. The original problem also contained the question whether a nonzero function satisfying

the problem condition exists. Here we present a family of such functions.

Notice first that if g : (0,∞) −→ [0,∞) denotes any function such that

g(x + y) ≥ yg(x) (6)

for all positive real numbers x and y, then the function f given by

f(x) =







−g(x) if x > 0

0 if x ≤ 0
(7)

automatically satisfies (1). Indeed, we have f(x) ≤ 0 and hence also f(f(x)) = 0 for all real numbers x.

So (1) reduces to (5); moreover, this inequality is nontrivial only if x and y are positive. In this last

case it is provided by (6).

Now it is not hard to come up with a nonzero function g obeying (6). E.g. g(z) = Cez (where C is

a positive constant) fits since the inequality ey > y holds for all (positive) real numbers y. One may

also consider the function g(z) = ez − 1; in this case, we even have that f is continuous.
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A7

Let a, b, and c be positive real numbers satisfying min(a+b, b+c, c+a) >
√

2 and a2+b2+c2 = 3.

Prove that

a

(b + c− a)2
+

b

(c + a− b)2
+

c

(a + b− c)2
≥ 3

(abc)2
. (1)

Throughout both solutions, we denote the sums of the form f(a, b, c) + f(b, c, a) + f(c, a, b)

by
∑

f(a, b, c).

Solution 1. The condition b + c >
√

2 implies b2 + c2 > 1, so a2 = 3 − (b2 + c2) < 2, i.e.

a <
√

2 < b + c. Hence we have b + c − a > 0, and also c + a − b > 0 and a + b − c > 0 for

similar reasons.

We will use the variant of Hölder’s inequality

xp+1
1

yp
1

+
xp+1

1

yp
1

+ . . . +
xp+1

n

yp
n
≥ (x1 + x2 + . . . + xn)p+1

(y1 + y2 + . . . + yn)p
,

which holds for all positive real numbers p, x1, x2, . . . , xn, y1, y2, . . . , yn. Applying it to the

left-hand side of (1) with p = 2 and n = 3, we get

∑ a

(b + c− a)2
=

∑ (a2)3

a5(b + c− a)2
≥ (a2 + b2 + c2)3

(∑
a5/2(b + c− a)

)2 =
27

(∑
a5/2(b + c− a)

)2 . (2)

To estimate the denominator of the right-hand part, we use an instance of Schur’s inequality,

namely
∑

a3/2(a− b)(a− c) ≥ 0,

which can be rewritten as

∑

a5/2(b + c− a) ≤ abc(
√

a +
√

b +
√

c).

Moreover, by the inequality between the arithmetic mean and the fourth power mean we also

have (√
a +

√
b +

√
c

3

)4

≤ a2 + b2 + c2

3
= 1,

i.e.,
√

a +
√

b +
√

c ≤ 3. Hence, (2) yields

∑ a

(b + c− a)2
≥ 27

(

abc(
√

a +
√

b +
√

c)
)2 ≥

3

a2b2c2
,

thus solving the problem.
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Comment. In this solution, one may also start from the following version of Hölder’s inequality

(
n∑

i=1

a3
i

)(
n∑

i=1

b3
i

)(
n∑

i=1

c3
i

)

≥
(

n∑

i=1

aibici

)3

applied as
∑ a

(b + c− a)2
·
∑

a3(b + c− a) ·
∑

a2(b + c− a) ≥ 27.

After doing that, one only needs the slightly better known instances

∑

a3(b + c− a) ≤ (a + b + c)abc and
∑

a2(b + c− a) ≤ 3abc

of Schur’s Inequality.

Solution 2. As in Solution 1, we mention that all the numbers b + c− a, a + c− b, a + b− c

are positive. We will use only this restriction and the condition

a5 + b5 + c5 ≥ 3, (3)

which is weaker than the given one. Due to the symmetry we may assume that a ≥ b ≥ c.

In view of (3), it suffices to prove the inequality

∑ a3b2c2

(b + c− a)2
≥
∑

a5,

or, moving all the terms into the left-hand part,

∑ a3

(b + c− a)2

(
(bc)2 − (a(b + c− a))2) ≥ 0. (4)

Note that the signs of the expressions (yz)2−(x(y + z − x))2 and yz−x(y+z−x) = (x−y)(x−z)

are the same for every positive x, y, z satisfying the triangle inequality. So the terms in (4)

corresponding to a and c are nonnegative, and hence it is sufficient to prove that the sum of

the terms corresponding to a and b is nonnegative. Equivalently, we need the relation

a3

(b + c− a)2
(a− b)(a− c)(bc + a(b + c− a)) ≥ b3

(a + c− b)2
(a− b)(b− c)(ac + b(a + c− b)).

Obviously, we have

a3 ≥ b3 ≥ 0, 0 < b + c− a ≤ a + c− b, and a− c ≥ b− c ≥ 0,

hence it suffices to prove that

ab + ac + bc− a2

b + c− a
≥ ab + ac + bc− b2

c + a− b
.
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Since all the denominators are positive, it is equivalent to

(c + a− b)(ab + ac + bc− a2)− (ab + ac + bc− b2)(b + c− a) ≥ 0,

or

(a− b)(2ab− a2 − b2 + ac + bc) ≥ 0.

Since a ≥ b, the last inequality follows from

c(a + b) > (a− b)2

which holds since c > a− b ≥ 0 and a + b > a− b ≥ 0.
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C1

Let n > 0 be an integer. We are given a balance and n weights of weight 20, 21, . . . , 2n−1. In a

sequence of n moves we place all weights on the balance. In the first move we choose a weight

and put it on the left pan. In each of the following moves we choose one of the remaining

weights and we add it either to the left or to the right pan. Compute the number of ways in

which we can perform these n moves in such a way that the right pan is never heavier than the

left pan.

Answer. The number f(n) of ways of placing the n weights is equal to the product of all odd

positive integers less than or equal to 2n− 1, i.e. f(n) = (2n− 1)!! = 1 · 3 · 5 · . . . · (2n− 1).

Solution 1. Assume n ≥ 2. We claim

f(n) = (2n− 1)f(n− 1). (1)

Firstly, note that after the first move the left pan is always at least 1 heavier than the right

one. Hence, any valid way of placing the n weights on the scale gives rise, by not considering

weight 1, to a valid way of placing the weights 2, 22, . . . , 2n−1.

If we divide the weight of each weight by 2, the answer does not change. So these n−1 weights

can be placed on the scale in f(n − 1) valid ways. Now we look at weight 1. If it is put on

the scale in the first move, then it has to be placed on the left side, otherwise it can be placed

either on the left or on the right side, because after the first move the difference between the

weights on the left pan and the weights on the right pan is at least 2. Hence, there are exactly

2n− 1 different ways of inserting weight 1 in each of the f(n− 1) valid sequences for the n− 1

weights in order to get a valid sequence for the n weights. This proves the claim.

Since f(1) = 1, by induction we obtain for all positive integers n

f(n) = (2n− 1)!! = 1 · 3 · 5 · . . . · (2n− 1).

Comment 1. The word “compute” in the statement of the problem is probably too vague. An

alternative but more artificial question might ask for the smallest n for which the number of valid

ways is divisible by 2011. In this case the answer would be 1006.

Comment 2. It is useful to remark that the answer is the same for any set of weights where each weight

is heavier than the sum of the lighter ones. Indeed, in such cases the given condition is equivalent to

asking that during the process the heaviest weight on the balance is always on the left pan.

Comment 3. Instead of considering the lightest weight, one may also consider the last weight put on

the balance. If this weight is 2n−1 then it should be put on the left pan. Otherwise it may be put on
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any pan; the inequality would not be violated since at this moment the heaviest weight is already put

onto the left pan. In view of the previous comment, in each of these 2n− 1 cases the number of ways

to place the previous weights is exactly f(n− 1), which yields (1).

Solution 2. We present a different way of obtaining (1). Set f(0) = 1. Firstly, we find a

recurrent formula for f(n).

Assume n ≥ 1. Suppose that weight 2n−1 is placed on the balance in the i-th move with

1 ≤ i ≤ n. This weight has to be put on the left pan. For the previous moves we have
(

n−1
i−1

)

choices of the weights and from Comment 2 there are f(i − 1) valid ways of placing them on

the balance. For later moves there is no restriction on the way in which the weights are to be

put on the pans. Therefore, all (n− i)!2n−i ways are possible. This gives

f(n) =

n∑

i=1

(
n− 1

i− 1

)

f(i− 1)(n− i)!2n−i =

n∑

i=1

(n− 1)!f(i− 1)2n−i

(i− 1)!
. (2)

Now we are ready to prove (1). Using n− 1 instead of n in (2) we get

f(n− 1) =

n−1∑

i=1

(n− 2)!f(i− 1)2n−1−i

(i− 1)!
.

Hence, again from (2) we get

f(n) = 2(n− 1)
n−1∑

i=1

(n− 2)!f(i− 1)2n−1−i

(i− 1)!
+ f(n− 1)

= (2n− 2)f(n− 1) + f(n− 1) = (2n− 1)f(n− 1),

QED.

Comment. There exist different ways of obtaining the formula (2). Here we show one of them.

Suppose that in the first move we use weight 2n−i+1. Then the lighter n − i weights may be put

on the balance at any moment and on either pan. This gives 2n−i · (n − 1)!/(i − 1)! choices for the

moves (moments and choices of pan) with the lighter weights. The remaining i− 1 moves give a valid

sequence for the i − 1 heavier weights and this is the only requirement for these moves, so there are

f(i− 1) such sequences. Summing over all i = 1, 2, . . . , n we again come to (2).
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C2

Suppose that 1000 students are standing in a circle. Prove that there exists an integer k with

100 ≤ k ≤ 300 such that in this circle there exists a contiguous group of 2k students, for which

the first half contains the same number of girls as the second half.

Solution. Number the students consecutively from 1 to 1000. Let ai = 1 if the ith student

is a girl, and ai = 0 otherwise. We expand this notion for all integers i by setting ai+1000 =

ai−1000 = ai. Next, let

Sk(i) = ai + ai+1 + · · ·+ ai+k−1.

Now the statement of the problem can be reformulated as follows:

There exist an integer k with 100 ≤ k ≤ 300 and an index i such that Sk(i) = Sk(i + k).

Assume now that this statement is false. Choose an index i such that S100(i) attains the maximal

possible value. In particular, we have S100(i−100)−S100(i) < 0 and S100(i)− S100(i + 100) > 0,

for if we had an equality, then the statement would hold. This means that the function S(j)−
S(j + 100) changes sign somewhere on the segment [i − 100, i], so there exists some index j ∈
[i− 100, i− 1] such that

S100(j) ≤ S100(j + 100)− 1, but S100(j + 1) ≥ S100(j + 101) + 1. (1)

Subtracting the first inequality from the second one, we get aj+100−aj ≥ aj+200−aj+100 +2, so

aj = 0, aj+100 = 1, aj+200 = 0.

Substituting this into the inequalities of (1), we also obtain S99(j+1) ≤ S99(j+101) ≤ S99(j+1),

which implies

S99(j + 1) = S99(j + 101). (2)

Now let k and ℓ be the least positive integers such that aj−k = 1 and aj+200+ℓ = 1. By

symmetry, we may assume that k ≥ ℓ. If k ≥ 200 then we have aj = aj−1 = · · · = aj−199 = 0,

so S100(j−199) = S100(j−99) = 0, which contradicts the initial assumption. Hence ℓ ≤ k ≤ 199.

Finally, we have

S100+ℓ(j − ℓ + 1) = (aj−ℓ+1 + · · ·+ aj) + S99(j + 1) + aj+100 = S99(j + 1) + 1,

S100+ℓ(j + 101) = S99(j + 101) + (aj+200 + · · ·+ aj+200+ℓ−1) + aj+200+ℓ = S99(j + 101) + 1.

Comparing with (2) we get S100+ℓ(j − ℓ + 1) = S100+ℓ(j + 101) and 100 + ℓ ≤ 299, which again

contradicts our assumption.

Comment. It may be seen from the solution that the number 300 from the problem statement can be
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replaced by 299. Here we consider some improvements of this result. Namely, we investigate which

interval can be put instead of [100, 300] in order to keep the problem statement valid.

First of all, the two examples

1, 1, . . . , 1
︸ ︷︷ ︸

167

, 0, 0, . . . , 0
︸ ︷︷ ︸

167

, 1, 1, . . . , 1
︸ ︷︷ ︸

167

, 0, 0, . . . , 0
︸ ︷︷ ︸

167

, 1, 1, . . . , 1
︸ ︷︷ ︸

167

, 0, 0, . . . , 0
︸ ︷︷ ︸

165

and

1, 1, . . . , 1
︸ ︷︷ ︸

249

, 0, 0, . . . , 0
︸ ︷︷ ︸

251

, 1, 1, . . . , 1
︸ ︷︷ ︸

249

, 0, 0, . . . , 0
︸ ︷︷ ︸

251

show that the interval can be changed neither to [84, 248] nor to [126, 374].

On the other hand, we claim that this interval can be changed to [125, 250]. Note that this statement

is invariant under replacing all 1’s by 0’s and vice versa. Assume, to the contrary, that there is no

admissible k ∈ [125, 250]. The arguments from the solution easily yield the following lemma.

Lemma. Under our assumption, suppose that for some indices i < j we have S125(i) ≤ S125(i + 125)

but S125(j) ≥ S125(j+125). Then there exists some t ∈ [i, j−1] such that at = at−1 = · · · = at−125 = 0

and at+250 = at+251 = · · · = at+375 = 0. �

Let us call a segment [i, j] of indices a crowd, if (a) ai = ai+1 = · · · = aj , but ai−1 6= ai 6= aj+1, and (b)

j − i ≥ 125. Now, using the lemma, one can get in the same way as in the solution that there exists

some crowd. Take all the crowds in the circle, and enumerate them in cyclic order as A1, . . . , Ad. We

also assume always that As+d = As−d = As.

Consider one of the crowds, say A1. We have A1 = [i, i + t] with 125 ≤ t ≤ 248 (if t ≥ 249, then

ai = ai+1 = · · · = ai+249 and therefore S125(i) = S125(i + 125), which contradicts our assumption).

We may assume that ai = 1. Then we have S125(i + t − 249) ≤ 125 = S125(i + t − 124) and

S125(i) = 125 ≥ S125(i + 125), so by the lemma there exists some index j ∈ [i + t − 249, i − 1] such

that the segments [j − 125, j] and [j + 250, j + 375] are contained in some crowds.

Let us fix such j and denote the segment [j + 1, j + 249] by B1. Clearly, A1 ⊆ B1. Moreover, B1

cannot contain any crowd other than A1 since |B1| = 249 < 2 · 126. Hence it is clear that j ∈ Ad and

j + 250 ∈ A2. In particular, this means that the genders of Ad and A2 are different from that of A1.

Performing this procedure for every crowd As, we find segments Bs = [js + 1, js + 249] such that

|Bs| = 249, As ⊆ Bs, and js ∈ As−1, js + 250 ∈ As+1. So, Bs covers the whole segment between As−1

and As+1, hence the sets B1, . . . , Bd cover some 1000 consecutive indices. This implies 249d ≥ 1000,

and d ≥ 5. Moreover, the gender of Ai is alternating, so d is even; therefore d ≥ 6.

Consider now three segments A1 = [i1, i
′
1], B2 = [j2 + 1, j2 + 249], A3 = [i3, i

′
3]. By construction, we

have [j2 − 125, j2] ⊆ A1 and [j2 + 250, j2 + 375] ⊆ A3, whence i1 ≤ j2 − 125, i′3 ≥ j2 + 375. Therefore

i′3 − i1 ≥ 500. Analogously, if A4 = [i4, i
′
4], A6 = [i6, i

′
6] then i′6 − i4 ≥ 500. But from d ≥ 6 we get

i1 < i′3 < i4 < i′6 < i1 + 1000, so 1000 > (i′3 − i1) + (i′6 − i4) ≥ 500 + 500. This final contradiction

shows that our claim holds.

One may even show that the interval in the statement of the problem may be replaced by [125, 249]

(both these numbers cannot be improved due to the examples above). But a proof of this fact is a bit

messy, and we do not present it here.

30



52nd IMO 2011 Combinatorics – solutions C3

C3

Let S be a finite set of at least two points in the plane. Assume that no three points of S are

collinear. By a windmill we mean a process as follows. Start with a line ℓ going through a

point P ∈ S. Rotate ℓ clockwise around the pivot P until the line contains another point Q

of S. The point Q now takes over as the new pivot. This process continues indefinitely, with

the pivot always being a point from S.

Show that for a suitable P ∈ S and a suitable starting line ℓ containing P , the resulting

windmill will visit each point of S as a pivot infinitely often.

Solution. Give the rotating line an orientation and distinguish its sides as the oranje side and

the blue side. Notice that whenever the pivot changes from some point T to another point U ,

after the change, T is on the same side as U was before. Therefore, the number of elements

of S on the oranje side and the number of those on the blue side remain the same throughout

the whole process (except for those moments when the line contains two points).

T

U

T

U U

T

First consider the case that |S| = 2n + 1 is odd. We claim that through any point T ∈ S,

there is a line that has n points on each side. To see this, choose an oriented line through T

containing no other point of S and suppose that it has n + r points on its oranje side. If

r = 0 then we have established the claim, so we may assume that r 6= 0. As the line rotates

through 180◦ around T , the number of points of S on its oranje side changes by 1 whenever

the line passes through a point; after 180◦, the number of points on the oranje side is n − r.

Therefore there is an intermediate stage at which the oranje side, and thus also the blue side,

contains n points.

Now select the point P arbitrarily, and choose a line through P that has n points of S on each

side to be the initial state of the windmill. We will show that during a rotation over 180◦,

the line of the windmill visits each point of S as a pivot. To see this, select any point T of S
and select a line ℓ through T that separates S into equal halves. The point T is the unique

point of S through which a line in this direction can separate the points of S into equal halves

(parallel translation would disturb the balance). Therefore, when the windmill line is parallel

to ℓ, it must be ℓ itself, and so pass through T .

Next suppose that |S| = 2n. Similarly to the odd case, for every T ∈ S there is an oriented
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line through T with n − 1 points on its oranje side and n points on its blue side. Select such

an oriented line through an arbitrary P to be the initial state of the windmill.

We will now show that during a rotation over 360◦, the line of the windmill visits each point

of S as a pivot. To see this, select any point T of S and an oriented line ℓ through T that

separates S into two subsets with n − 1 points on its oranje and n points on its blue side.

Again, parallel translation would change the numbers of points on the two sides, so when the

windmill line is parallel to ℓ with the same orientation, the windmill line must pass through T .

Comment. One may shorten this solution in the following way.

Suppose that |S| = 2n + 1. Consider any line ℓ that separates S into equal halves; this line is unique

given its direction and contains some point T ∈ S. Consider the windmill starting from this line. When

the line has made a rotation of 180◦, it returns to the same location but the oranje side becomes blue

and vice versa. So, for each point there should have been a moment when it appeared as pivot, as this

is the only way for a point to pass from on side to the other.

Now suppose that |S| = 2n. Consider a line having n − 1 and n points on the two sides; it contains

some point T . Consider the windmill starting from this line. After having made a rotation of 180◦,

the windmill line contains some different point R, and each point different from T and R has changed

the color of its side. So, the windmill should have passed through all the points.

32



52nd IMO 2011 Combinatorics – solutions C4

C4

Determine the greatest positive integer k that satisfies the following property: The set of positive

integers can be partitioned into k subsets A1, A2, . . . , Ak such that for all integers n ≥ 15 and

all i ∈ {1, 2, . . . , k} there exist two distinct elements of Ai whose sum is n.

Answer. The greatest such number k is 3.

Solution 1. There are various examples showing that k = 3 does indeed have the property

under consideration. E.g. one can take

A1 = {1, 2, 3} ∪ {3m | m ≥ 4},
A2 = {4, 5, 6} ∪ {3m− 1 | m ≥ 4},
A3 = {7, 8, 9} ∪ {3m− 2 | m ≥ 4}.

To check that this partition fits, we notice first that the sums of two distinct elements of Ai

obviously represent all numbers n ≥ 1 + 12 = 13 for i = 1, all numbers n ≥ 4 + 11 = 15 for

i = 2, and all numbers n ≥ 7 + 10 = 17 for i = 3. So, we are left to find representations of the

numbers 15 and 16 as sums of two distinct elements of A3. These are 15 = 7+8 and 16 = 7+9.

Let us now suppose that for some k ≥ 4 there exist sets A1, A2, . . . , Ak satisfying the given

property. Obviously, the sets A1, A2, A3, A4 ∪ · · · ∪ Ak also satisfy the same property, so one

may assume k = 4.

Put Bi = Ai ∩ {1, 2, . . . , 23} for i = 1, 2, 3, 4. Now for any index i each of the ten numbers

15, 16, . . . , 24 can be written as sum of two distinct elements of Bi. Therefore this set needs

to contain at least five elements. As we also have |B1| + |B2| + |B3| + |B4| = 23, there has to

be some index j for which |Bj| = 5. Let Bj = {x1, x2, x3, x4, x5}. Finally, now the sums of

two distinct elements of Aj representing the numbers 15, 16, . . . , 24 should be exactly all the

pairwise sums of the elements of Bj . Calculating the sum of these numbers in two different

ways, we reach

4(x1 + x2 + x3 + x4 + x5) = 15 + 16 + . . . + 24 = 195.

Thus the number 195 should be divisible by 4, which is false. This contradiction completes our

solution.

Comment. There are several variation of the proof that k should not exceed 3. E.g., one may consider

the sets Ci = Ai ∩ {1, 2, . . . , 19} for i = 1, 2, 3, 4. As in the previous solution one can show that for

some index j one has |Cj| = 4, and the six pairwise sums of the elements of Cj should represent all

numbers 15, 16, . . . , 20. Let Cj = {y1, y2, y3, y4} with y1 < y2 < y3 < y4. It is not hard to deduce
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Cj = {7, 8, 9, 11}, so in particular we have 1 6∈ Cj . Hence it is impossible to represent 21 as sum of

two distinct elements of Aj , which completes our argument.

Solution 2. Again we only prove that k ≤ 3. Assume that A1, A2, . . . , Ak is a partition

satisfying the given property. We construct a graph G on the set V = {1, 2, . . . , 18} of vertices

as follows. For each i ∈ {1, 2, . . . , k} and each d ∈ {15, 16, 17, 19} we choose one pair of distinct

elements a, b ∈ Ai with a+ b = d, and we draw an edge in the ith color connecting a with b. By

hypothesis, G has exactly 4 edges of each color.

Claim. The graph G contains at most one circuit.

Proof. Note that all the connected components of G are monochromatic and hence contain at

most four edges. Thus also all circuits of G are monochromatic and have length at most four.

Moreover, each component contains at most one circuit since otherwise it should contain at

least five edges.

Suppose that there is a 4-cycle in G, say with vertices a, b, c, and d in order. Then {a + b, b +

c, c+d, d+a} = {15, 16, 17, 19}. Taking sums we get 2(a+ b+ c+d) = 15+16+17+19 which

is impossible for parity reasons. Thus all circuits of G are triangles.

Now if the vertices a, b, and c form such a triangle, then by a similar reasoning the set {a+b, b+

c, c + a} coincides with either {15, 16, 17}, or {15, 16, 19}, or {16, 17, 19}, or {15, 17, 19}. The

last of these alternatives can be excluded for parity reasons again, whilst in the first three cases

the set {a, b, c} appears to be either {7, 8, 9}, or {6, 9, 10}, or {7, 9, 10}, respectively. Thus, a

component containing a circuit should contain 9 as a vertex. Therefore there is at most one

such component and hence at most one circuit. �

By now we know that G is a graph with 4k edges, at least k components and at most one

circuit. Consequently, G must have at least 4k +k−1 vertices. Thus 5k−1 ≤ 18, and k ≤ 3.
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C5

Let m be a positive integer and consider a checkerboard consisting of m by m unit squares.

At the midpoints of some of these unit squares there is an ant. At time 0, each ant starts

moving with speed 1 parallel to some edge of the checkerboard. When two ants moving in

opposite directions meet, they both turn 90◦ clockwise and continue moving with speed 1.

When more than two ants meet, or when two ants moving in perpendicular directions meet,

the ants continue moving in the same direction as before they met. When an ant reaches one

of the edges of the checkerboard, it falls off and will not re-appear.

Considering all possible starting positions, determine the latest possible moment at which the

last ant falls off the checkerboard or prove that such a moment does not necessarily exist.

Antswer. The latest possible moment for the last ant to fall off is 3m
2
− 1.

Solution. For m = 1 the answer is clearly correct, so assume m > 1. In the sequel, the word

collision will be used to denote meeting of exactly two ants, moving in opposite directions.

If at the beginning we place an ant on the southwest corner square facing east and an ant on

the southeast corner square facing west, then they will meet in the middle of the bottom row

at time m−1
2

. After the collision, the ant that moves to the north will stay on the board for

another m− 1
2

time units and thus we have established an example in which the last ant falls

off at time m−1
2

+ m − 1
2

= 3m
2
− 1. So, we are left to prove that this is the latest possible

moment.

Consider any collision of two ants a and a′. Let us change the rule for this collision, and enforce

these two ants to turn anticlockwise. Then the succeeding behavior of all the ants does not

change; the only difference is that a and a′ swap their positions. These arguments may be

applied to any collision separately, so we may assume that at any collision, either both ants

rotate clockwise or both of them rotate anticlockwise by our own choice.

For instance, we may assume that there are only two types of ants, depending on their initial

direction: NE-ants, which move only north or east, and SW-ants, moving only south and west.

Then we immediately obtain that all ants will have fallen off the board after 2m − 1 time

units. However, we can get a better bound by considering the last moment at which a given

ant collides with another ant.

Choose a coordinate system such that the corners of the checkerboard are (0, 0), (m, 0), (m, m)

and (0, m). At time t, there will be no NE-ants in the region {(x, y) : x + y < t + 1} and no

SW-ants in the region {(x, y) : x + y > 2m − t − 1}. So if two ants collide at (x, y) at time t,

we have

t + 1 ≤ x + y ≤ 2m− t− 1. (1)
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Analogously, we may change the rules so that each ant would move either alternatingly north

and west, or alternatingly south and east. By doing so, we find that apart from (1) we also

have |x− y| ≤ m− t− 1 for each collision at point (x, y) and time t.

To visualize this, put

B(t) =
{
(x, y) ∈ [0, m]2 : t + 1 ≤ x + y ≤ 2m− t− 1 and |x− y| ≤ m− t− 1

}
.

An ant can thus only collide with another ant at time t if it happens to be in the region B(t).

The following figure displays B(t) for t = 1
2

and t = 7
2

in the case m = 6:

Now suppose that an NE-ant has its last collision at time t and that it does so at the point (x, y)

(if the ant does not collide at all, it will fall off the board within m− 1
2

< 3m
2
−1 time units, so this

case can be ignored). Then we have (x, y) ∈ B(t) and thus x+y ≥ t+1 and x−y ≥ −(m−t−1).

So we get

x ≥ (t + 1)− (m− t− 1)

2
= t + 1− m

2
.

By symmetry we also have y ≥ t+1− m
2
, and hence min{x, y} ≥ t+1− m

2
. After this collision,

the ant will move directly to an edge, which will take at most m−min{x, y} units of time. In

sum, the total amount of time the ant stays on the board is at most

t + (m−min{x, y}) ≤ t + m−
(

t + 1− m

2

)

=
3m

2
− 1.

By symmetry, the same bound holds for SW-ants as well.
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C6

Let n be a positive integer and let W = . . . x−1x0x1x2 . . . be an infinite periodic word consisting

of the letters a and b. Suppose that the minimal period N of W is greater than 2n.

A finite nonempty word U is said to appear in W if there exist indices k ≤ ℓ such that

U = xkxk+1 . . . xℓ. A finite word U is called ubiquitous if the four words Ua, Ub, aU , and bU

all appear in W . Prove that there are at least n ubiquitous finite nonempty words.

Solution. Throughout the solution, all the words are nonempty. For any word R of length m,

we call the number of indices i ∈ {1, 2, . . . , N} for which R coincides with the subword

xi+1xi+2 . . . xi+m of W the multiplicity of R and denote it by µ(R). Thus a word R appears

in W if and only if µ(R) > 0. Since each occurrence of a word in W is both succeeded by either

the letter a or the letter b and similarly preceded by one of those two letters, we have

µ(R) = µ(Ra) + µ(Rb) = µ(aR) + µ(bR) (1)

for all words R.

We claim that the condition that N is in fact the minimal period of W guarantees that each

word of length N has multiplicity 1 or 0 depending on whether it appears or not. Indeed, if

the words xi+1xi+2 . . . xi+N and xj+1 . . . xj+N are equal for some 1 ≤ i < j ≤ N , then we have

xi+a = xj+a for every integer a, and hence j − i is also a period.

Moreover, since N > 2n, at least one of the two words a and b has a multiplicity that is strictly

larger than 2n−1.

For each k = 0, 1, . . . , n − 1, let Uk be a subword of W whose multiplicity is strictly larger

than 2k and whose length is maximal subject to this property. Note that such a word exists in

view of the two observations made in the two previous paragraphs.

Fix some index k ∈ {0, 1, . . . , n− 1}. Since the word Ukb is longer than Uk, its multiplicity can

be at most 2k, so in particular µ(Ukb) < µ(Uk). Therefore, the word Uka has to appear by (1).

For a similar reason, the words Ukb, aUk, and bUk have to appear as well. Hence, the word Uk

is ubiquitous. Moreover, if the multiplicity of Uk were strictly greater than 2k+1, then by (1)

at least one of the two words Uka and Ukb would have multiplicity greater than 2k and would

thus violate the maximality condition imposed on Uk.

So we have µ(U0) ≤ 2 < µ(U1) ≤ 4 < . . . ≤ 2n−1 < µ(Un−1), which implies in particular that

the words U0, U1, . . . , Un−1 have to be distinct. As they have been proved to be ubiquitous as

well, the problem is solved.

Comment 1. There is an easy construction for obtaining ubiquitous words from appearing words

whose multiplicity is at least two. Starting with any such word U we may simply extend one of its

occurrences in W forwards and backwards as long as its multiplicity remains fixed, thus arriving at a
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word that one might call the ubiquitous prolongation p(U) of U .

There are several variants of the argument in the second half of the solution using the concept of pro-

longation. For instance, one may just take all ubiquitous words U1, U2, . . . , Uℓ ordered by increasing

multiplicity and then prove for i ∈ {1, 2, . . . , ℓ} that µ(Ui) ≤ 2i. Indeed, assume that i is a mini-

mal counterexample to this statement; then by the arguments similar to those presented above, the

ubiquitous prolongation of one of the words Uia, Uib, aUi or bUi violates the definition of Ui.

Now the multiplicity of one of the two letters a and b is strictly greater than 2n−1, so passing to

ubiquitous prolongations once more we obtain 2n−1 < µ(Uℓ) ≤ 2ℓ, which entails ℓ ≥ n, as needed.

Comment 2. The bound n for the number of ubiquitous subwords in the problem statement is not

optimal, but it is close to an optimal one in the following sense. There is a universal constant C > 0

such that for each positive integer n there exists an infinite periodic word W whose minimal period is

greater than 2n but for which there exist fewer than Cn ubiquitous words.
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C7

On a square table of 2011 by 2011 cells we place a finite number of napkins that each cover

a square of 52 by 52 cells. In each cell we write the number of napkins covering it, and we

record the maximal number k of cells that all contain the same nonzero number. Considering

all possible napkin configurations, what is the largest value of k?

Answer. 20112 −
(
(522 − 352) · 39− 172

)
= 4044121− 57392 = 3986729.

Solution 1. Let m = 39, then 2011 = 52m − 17. We begin with an example showing that

there can exist 3986729 cells carrying the same positive number.

To describe it, we number the columns from the left to the right and the rows from the bottom

to the top by 1, 2, . . . , 2011. We will denote each napkin by the coordinates of its lower-

left cell. There are four kinds of napkins: first, we take all napkins (52i + 36, 52j + 1) with

0 ≤ j ≤ i ≤ m − 2; second, we use all napkins (52i + 1, 52j + 36) with 0 ≤ i ≤ j ≤ m − 2;

third, we use all napkins (52i + 36, 52i + 36) with 0 ≤ i ≤ m− 2; and finally the napkin (1, 1).

Different groups of napkins are shown by different types of hatchings in the picture.

Now except for those squares that carry two or more different hatchings, all squares have the

number 1 written into them. The number of these exceptional cells is easily computed to be

(522 − 352)m− 172 = 57392.

We are left to prove that 3986729 is an upper bound for the number of cells containing the same

number. Consider any configuration of napkins and any positive integer M . Suppose there are

g cells with a number different from M . Then it suffices to show g ≥ 57392. Throughout the

solution, a line will mean either a row or a column.

Consider any line ℓ. Let a1, . . . , a52m−17 be the numbers written into its consecutive cells.

For i = 1, 2, . . . , 52, let si =
∑

t≡i (mod 52) at. Note that s1, . . . , s35 have m terms each, while

s36, . . . , s52 have m−1 terms each. Every napkin intersecting ℓ contributes exactly 1 to each si;
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hence the number s of all those napkins satisfies s1 = · · · = s52 = s. Call the line ℓ rich if

s > (m− 1)M and poor otherwise.

Suppose now that ℓ is rich. Then in each of the sums s36, . . . , s52 there exists a term greater

than M ; consider all these terms and call the corresponding cells the rich bad cells for this line.

So, each rich line contains at least 17 cells that are bad for this line.

If, on the other hand, ℓ is poor, then certainly s < mM so in each of the sums s1, . . . , s35 there

exists a term less than M ; consider all these terms and call the corresponding cells the poor

bad cells for this line. So, each poor line contains at least 35 cells that are bad for this line.

Let us call all indices congruent to 1, 2, . . . , or 35 modulo 52 small, and all other indices,

i.e. those congruent to 36, 37, . . . , or 52 modulo 52, big. Recall that we have numbered the

columns from the left to the right and the rows from the bottom to the top using the numbers

1, 2, . . . , 52m − 17; we say that a line is big or small depending on whether its index is big or

small. By definition, all rich bad cells for the rows belong to the big columns, while the poor

ones belong to the small columns, and vice versa.

In each line, we put a strawberry on each cell that is bad for this line. In addition, for each

small rich line we put an extra strawberry on each of its (rich) bad cells. A cell gets the

strawberries from its row and its column independently.

Notice now that a cell with a strawberry on it contains a number different from M . If this cell

gets a strawberry by the extra rule, then it contains a number greater than M . Moreover, it

is either in a small row and in a big column, or vice versa. Suppose that it is in a small row,

then it is not bad for its column. So it has not more than two strawberries in this case. On

the other hand, if the extra rule is not applied to some cell, then it also has not more than two

strawberries. So, the total number N of strawberries is at most 2g.

We shall now estimate N in a different way. For each of the 2 · 35m small lines, we have

introduced at least 34 strawberries if it is rich and at least 35 strawberries if it is poor, so at

least 34 strawberries in any case. Similarly, for each of the 2 · 17(m − 1) big lines, we put at

least min(17, 35) = 17 strawberries. Summing over all lines we obtain

2g ≥ N ≥ 2(35m · 34 + 17(m− 1) · 17) = 2(1479m− 289) = 2 · 57392,

as desired.

Comment. The same reasoning applies also if we replace 52 by R and 2011 by Rm−H, where m, R,

and H are integers with m,R ≥ 1 and 0 ≤ H ≤ 1
3R. More detailed information is provided after the

next solution.

Solution 2. We present a different proof of the estimate which is the hard part of the problem.

Let S = 35, H = 17, m = 39; so the table size is 2011 = Sm+H(m−1), and the napkin size is

52 = S + H . Fix any positive integer M and call a cell vicious if it contains a number distinct
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from M . We will prove that there are at least H2(m− 1) + 2SHm vicious cells.

Firstly, we introduce some terminology. As in the previous solution, we number rows and

columns and we use the same notions of small and big indices and lines; so, an index is small if

it is congruent to one of the numbers 1, 2, . . . , S modulo (S +H). The numbers 1, 2, . . . , S +H

will be known as residues. For two residues i and j, we say that a cell is of type (i, j) if the

index of its row is congruent to i and the index of its column to j modulo (S +H). The number

of vicious cells of this type is denoted by vij .

Let s, s′ be two variables ranging over small residues and let h, h′ be two variables ranging over

big residues. A cell is said to be of class A, B, C, or D if its type is of shape (s, s′), (s, h), (h, s),

or (h, h′), respectively. The numbers of vicious cells belonging to these classes are denoted in

this order by a, b, c, and d. Observe that each cell belongs to exactly one class.

Claim 1. We have

m ≤ a

S2
+

b + c

2SH
. (1)

Proof. Consider an arbitrary small row r. Denote the numbers of vicious cells on r belonging

to the classes A and B by α and β, respectively. As in the previous solution, we obtain that

α ≥ S or β ≥ H . So in each case we have α
S

+ β
H
≥ 1.

Performing this argument separately for each small row and adding up all the obtained inequal-

ities, we get a
S

+ b
H
≥ mS. Interchanging rows and columns we similarly get a

S
+ c

H
≥ mS.

Summing these inequalities and dividing by 2S we get what we have claimed. �

Claim 2. Fix two small residue s, s′ and two big residues h, h′. Then 2m−1 ≤ vss′+vsh′+vhh′.

Proof. Each napkin covers exactly one cell of type (s, s′). Removing all napkins covering a

vicious cell of this type, we get another collection of napkins, which covers each cell of type

(s, s′) either 0 or M times depending on whether the cell is vicious or not. Hence (m2− vss′)M

napkins are left and throughout the proof of Claim 2 we will consider only these remaining

napkins. Now, using a red pen, write in each cell the number of napkins covering it. Notice

that a cell containing a red number greater than M is surely vicious.

We call two cells neighbors if they can be simultaneously covered by some napkin. So, each cell

of type (h, h′) has not more than four neighbors of type (s, s′), while each cell of type (s, h′) has

not more than two neighbors of each of the types (s, s′) and (h, h′). Therefore, each red number

at a cell of type (h, h′) does not exceed 4M , while each red number at a cell of type (s, h′) does

not exceed 2M .

Let x, y, and z be the numbers of cells of type (h, h′) whose red number belongs to (M, 2M ],

(2M, 3M ], and (3M, 4M ], respectively. All these cells are vicious, hence x + y + z ≤ vhh′. The

red numbers appearing in cells of type (h, h′) clearly sum up to (m2 − vss′)M . Bounding each

of these numbers by a multiple of M we get

(m2 − vss′)M ≤
(
(m− 1)2 − (x + y + z)

)
M + 2xM + 3yM + 4zM,
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i.e.

2m− 1 ≤ vss′ + x + 2y + 3z ≤ vss′ + vhh′ + y + 2z.

So, to prove the claim it suffices to prove that y + 2z ≤ vsh′.

For a cell δ of type (h, h′) and a cell β of type (s, h′) we say that δ forces β if there are more

than M napkins covering both of them. Since each red number in a cell of type (s, h′) does not

exceed 2M , it cannot be forced by more than one cell.

On the other hand, if a red number in a (h, h′)-cell belongs to (2M, 3M ], then it forces at

least one of its neighbors of type (s, h′) (since the sum of red numbers in their cells is greater

than 2M). Analogously, an (h, h′)-cell with the red number in (3M, 4M ] forces both its neigh-

bors of type (s, h′), since their red numbers do not exceed 2M . Therefore there are at least

y + 2z forced cells and clearly all of them are vicious, as desired. �

Claim 3. We have

2m− 1 ≤ a

S2
+

b + c

2SH
+

d

H2
. (2)

Proof. Averaging the previous result over all S2H2 possibilities for the quadruple (s, s′, h, h′),

we get 2m − 1 ≤ a
S2 + b

SH
+ d

H2 . Due to the symmetry between rows and columns, the same

estimate holds with b replaced by c. Averaging these two inequalities we arrive at our claim.

�

Now let us multiply (2) by H2, multiply (1) by (2SH −H2) and add them; we get

H2(2m−1)+(2SH−H2)m ≤ a·H
2 + 2SH −H2

S2
+(b+c)

H2 + 2SH −H2

2SH
+d = a·2H

S
+b+c+d.

The left-hand side is exactly H2(m − 1) + 2SHm, while the right-hand side does not exceed

a + b + c + d since 2H ≤ S. Hence we come to the desired inequality.

Comment 1. Claim 2 is the key difference between the two solutions, because it allows to get rid of

the notions of rich and poor cells. However, one may prove it by the “strawberry method” as well.

It suffices to put a strawberry on each cell which is bad for an s-row, and a strawberry on each cell

which is bad for an h′-column. Then each cell would contain not more than one strawberry.

Comment 2. Both solutions above work if the residue of the table size T modulo the napkin size R

is at least 2
3R, or equivalently if T = Sm + H(m− 1) and R = S + H for some positive integers S, H,

m such that S ≥ 2H. Here we discuss all other possible combinations.

Case 1. If 2H ≥ S ≥ H/2, then the sharp bound for the number of vicious cells is mS2 + (m− 1)H2;

it can be obtained by the same methods as in any of the solutions. To obtain an example showing

that the bound is sharp, one may simply remove the napkins of the third kind from the example in

Solution 1 (with an obvious change in the numbers).

Case 2. If 2S ≤ H, the situation is more difficult. If (S + H)2 > 2H2, then the answer and the

example are the same as in the previous case; otherwise the answer is (2m− 1)S2 + 2SH(m− 1), and

the example is provided simply by (m− 1)2 nonintersecting napkins.
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Now we sketch the proof of both estimates for Case 2. We introduce a more appropriate notation

based on that from Solution 2. Denote by a− and a+ the number of cells of class A that contain the

number which is strictly less than M and strictly greater than M , respectively. The numbers b±, c±,

and d± are defined in a similar way. One may notice that the proofs of Claim 1 and Claims 2, 3 lead

in fact to the inequalities

m− 1 ≤ b− + c−
2SH

+
d+

H2
and 2m− 1 ≤ a

S2
+

b+ + c+

2SH
+

d+

H2

(to obtain the first one, one needs to look at the big lines instead of the small ones). Combining these

inequalities, one may obtain the desired estimates.

These estimates can also be proved in some different ways, e.g. without distinguishing rich and poor

cells.
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G1

Let ABC be an acute triangle. Let ω be a circle whose center L lies on the side BC. Suppose

that ω is tangent to AB at B′ and to AC at C ′. Suppose also that the circumcenter O of the

triangle ABC lies on the shorter arc B′C ′ of ω. Prove that the circumcircle of ABC and ω

meet at two points.

Solution. The point B′, being the perpendicular foot of L, is an interior point of side AB.

Analogously, C ′ lies in the interior of AC. The point O is located inside the triangle AB′C ′,

hence ∠COB < ∠C ′OB′.

A

B

B ′

C

C ′

L

O

O ′

α

ω

Let α = ∠CAB. The angles ∠CAB and ∠C ′OB′ are inscribed into the two circles with

centers O and L, respectively, so ∠COB = 2∠CAB = 2α and 2∠C ′OB′ = 360◦ − ∠C ′LB′.

From the kite AB′LC ′ we have ∠C ′LB′ = 180◦ − ∠C ′AB′ = 180◦ − α. Combining these, we

get

2α = ∠COB < ∠C ′OB′ =
360◦ −∠C ′LB′

2
=

360◦ − (180◦ − α)

2
= 90◦ +

α

2
,

so

α < 60◦.

Let O′ be the reflection of O in the line BC. In the quadrilateral ABO′C we have

∠CO′B + ∠CAB = ∠COB + ∠CAB = 2α + α < 180◦,

so the point O′ is outside the circle ABC. Hence, O and O′ are two points of ω such that one

of them lies inside the circumcircle, while the other one is located outside. Therefore, the two

circles intersect.
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Comment. There are different ways of reducing the statement of the problem to the case α < 60◦.

E.g., since the point O lies in the interior of the isosceles triangle AB′C ′, we have OA < AB′. So,

if AB′ ≤ 2LB′ then OA < 2LO, which means that ω intersects the circumcircle of ABC. Hence the

only interesting case is AB′ > 2LB′, and this condition implies ∠CAB = 2∠B′AL < 2 · 30◦ = 60◦.
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G2

Let A1A2A3A4 be a non-cyclic quadrilateral. Let O1 and r1 be the circumcenter and the

circumradius of the triangle A2A3A4. Define O2, O3, O4 and r2, r3, r4 in a similar way. Prove

that
1

O1A
2
1 − r2

1

+
1

O2A
2
2 − r2

2

+
1

O3A
2
3 − r2

3

+
1

O4A
2
4 − r2

4

= 0.

Solution 1. Let M be the point of intersection of the diagonals A1A3 and A2A4. On each

diagonal choose a direction and let x, y, z, and w be the signed distances from M to the

points A1, A2, A3, and A4, respectively.

Let ω1 be the circumcircle of the triangle A2A3A4 and let B1 be the second intersection point

of ω1 and A1A3 (thus, B1 = A3 if and only if A1A3 is tangent to ω1). Since the expression

O1A
2
1 − r2

1 is the power of the point A1 with respect to ω1, we get

O1A
2
1 − r2

1 = A1B1 · A1A3.

On the other hand, from the equality MB1 · MA3 = MA2 · MA4 we obtain MB1 = yw/z.

Hence, we have

O1A
2
1 − r2

1 =
(yw

z
− x
)

(z − x) =
z − x

z
(yw − xz).

Substituting the analogous expressions into the sought sum we get

4∑

i=1

1

OiA
2
i − r2

i

=
1

yw − xz

(
z

z − x
− w

w − y
+

x

x− z
− y

y − w

)

= 0,

as desired.

Comment. One might reformulate the problem by assuming that the quadrilateral A1A2A3A4 is

convex. This should not really change the difficulty, but proofs that distinguish several cases may

become shorter.

Solution 2. Introduce a Cartesian coordinate system in the plane. Every circle has an equation

of the form p(x, y) = x2 + y2 + l(x, y) = 0, where l(x, y) is a polynomial of degree at most 1.

For any point A = (xA, yA) we have p(xA, yA) = d2 − r2, where d is the distance from A to the

center of the circle and r is the radius of the circle.

For each i in {1, 2, 3, 4} let pi(x, y) = x2 + y2 + li(x, y) = 0 be the equation of the circle with

center Oi and radius ri and let di be the distance from Ai to Oi. Consider the equation

4∑

i=1

pi(x, y)

d2
i − r2

i

= 1. (1)
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Since the coordinates of the points A1, A2, A3, and A4 satisfy (1) but these four points do not

lie on a circle or on an line, equation (1) defines neither a circle, nor a line. Hence, the equation

is an identity and the coefficient of the quadratic term x2 + y2 also has to be zero, i.e.

4∑

i=1

1

d2
i − r2

i

= 0.

Comment. Using the determinant form of the equation of the circle through three given points, the

same solution can be formulated as follows.

For i = 1, 2, 3, 4 let (ui, vi) be the coordinates of Ai and define

∆ =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

u2
1 + v2

1 u1 v1 1

u2
2 + v2

2 u2 v2 1

u2
3 + v2

3 u3 v3 1

u2
4 + v2

4 u4 v4 1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

and ∆i =

∣
∣
∣
∣
∣
∣
∣

ui+1 vi+1 1

ui+2 vi+2 1

ui+3 vi+3 1

∣
∣
∣
∣
∣
∣
∣

,

where i + 1, i + 2, and i + 3 have to be read modulo 4 as integers in the set {1, 2, 3, 4}.

Expanding

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

u1 v1 1 1

u2 v2 1 1

u3 v3 1 1

u4 v4 1 1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= 0 along the third column, we get ∆1 −∆2 + ∆3 −∆4 = 0.

The circle through Ai+1, Ai+2, and Ai+3 is given by the equation

1

∆i

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

x2 + y2 x y 1

u2
i+1 + v2

i+1 ui+1 vi+1 1

u2
i+2 + v2

i+2 ui+2 vi+2 1

u2
i+3 + v2

i+3 ui+3 vi+3 1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= 0. (2)

On the left-hand side, the coefficient of x2 + y2 is equal to 1. Substituting (ui, vi) for (x, y) in (2) we

obtain the power of point Ai with respect to the circle through Ai+1, Ai+2, and Ai+3:

d2
i − r2

i =
1

∆i

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

u2
i + v2

i ui vi 1

u2
i+1 + v2

i+1 ui+1 vi+1 1

u2
i+2 + v2

i+2 ui+2 vi+2 1

u2
i+3 + v2

i+3 ui+3 vi+3 1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= (−1)i+1 ∆

∆i
.

Thus, we have
4∑

i=1

1

d2
i − r2

i

=
∆1 −∆2 + ∆3 −∆4

∆
= 0.
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G3

Let ABCD be a convex quadrilateral whose sides AD and BC are not parallel. Suppose that the

circles with diameters AB and CD meet at points E and F inside the quadrilateral. Let ωE be

the circle through the feet of the perpendiculars from E to the lines AB, BC, and CD. Let ωF

be the circle through the feet of the perpendiculars from F to the lines CD, DA, and AB.

Prove that the midpoint of the segment EF lies on the line through the two intersection points

of ωE and ωF .

Solution. Denote by P , Q, R, and S the projections of E on the lines DA, AB, BC, and

CD respectively. The points P and Q lie on the circle with diameter AE, so ∠QPE = ∠QAE;

analogously, ∠QRE = ∠QBE. So ∠QPE + ∠QRE = ∠QAE + ∠QBE = 90◦. By similar

reasons, we have ∠SPE + ∠SRE = 90◦, hence we get ∠QPS + ∠QRS = 90◦ + 90◦ = 180◦,

and the quadrilateral PQRS is inscribed in ωE. Analogously, all four projections of F onto the

sides of ABCD lie on ωF .

Denote by K the meeting point of the lines AD and BC. Due to the arguments above, there

is no loss of generality in assuming that A lies on segment DK. Suppose that ∠CKD ≥ 90◦;

then the circle with diameter CD covers the whole quadrilateral ABCD, so the points E, F

cannot lie inside this quadrilateral. Hence our assumption is wrong. Therefore, the lines EP

and BC intersect at some point P ′, while the lines ER and AD intersect at some point R′.

B

A D

C

E

F

K M

M ′

N

N ′P

P ′

Q

R

R ′

S

ωE

Figure 1

We claim that the points P ′ and R′ also belong to ωE. Since the points R, E, Q, B are

concyclic, ∠QRK = ∠QEB = 90◦−∠QBE = ∠QAE = ∠QPE. So ∠QRK = ∠QPP ′, which

means that the point P ′ lies on ωE . Analogously, R′ also lies on ωE.

In the same manner, denote by M and N the projections of F on the lines AD and BC
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respectively, and let M ′ = FM ∩BC, N ′ = FN ∩AD. By the same arguments, we obtain that

the points M ′ and N ′ belong to ωF .

E

F

K M

M ′

N

N ′P

P ′

R

R ′

U

V

g

ωE

ωF

Figure 2

Now we concentrate on Figure 2, where all unnecessary details are removed. Let U = NN ′ ∩
PP ′, V = MM ′ ∩ RR′. Due to the right angles at N and P , the points N , N ′, P , P ′ are

concyclic, so UN · UN ′ = UP · UP ′ which means that U belongs to the radical axis g of the

circles ωE and ωF . Analogously, V also belongs to g.

Finally, since EUFV is a parallelogram, the radical axis UV of ωE and ωF bisects EF .
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G4

Let ABC be an acute triangle with circumcircle Ω. Let B0 be the midpoint of AC and let C0

be the midpoint of AB. Let D be the foot of the altitude from A, and let G be the centroid

of the triangle ABC. Let ω be a circle through B0 and C0 that is tangent to the circle Ω at a

point X 6= A. Prove that the points D, G, and X are collinear.

Solution 1. If AB = AC, then the statement is trivial. So without loss of generality we may

assume AB < AC. Denote the tangents to Ω at points A and X by a and x, respectively.

Let Ω1 be the circumcircle of triangle AB0C0. The circles Ω and Ω1 are homothetic with center

A, so they are tangent at A, and a is their radical axis. Now, the lines a, x, and B0C0 are the

three radical axes of the circles Ω, Ω1, and ω. Since a 6 ‖B0C0, these three lines are concurrent

at some point W .

The points A and D are symmetric with respect to the line B0C0; hence WX = WA = WD.

This means that W is the center of the circumcircle γ of triangle ADX. Moreover, we have

∠WAO = ∠WXO = 90◦, where O denotes the center of Ω. Hence ∠AWX + ∠AOX = 180◦.

A

A0B

B0

C

C0

D

G

O

T

W

X

a

x

γ

Ω

ω

Ω
1

Denote by T the second intersection point of Ω and the line DX. Note that O belongs to Ω1.

Using the circles γ and Ω, we find ∠DAT = ∠ADX−∠ATD = 1
2
(360◦−∠AWX)− 1

2
∠AOX =

180◦ − 1
2
(∠AWX + ∠AOX) = 90◦. So, AD ⊥ AT , and hence AT ‖ BC. Thus, ATCB is an

isosceles trapezoid inscribed in Ω.

Denote by A0 the midpoint of BC, and consider the image of ATCB under the homothety h

with center G and factor −1
2
. We have h(A) = A0, h(B) = B0, and h(C) = C0. From the
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symmetry about B0C0, we have ∠TCB = ∠CBA = ∠B0C0A = ∠DC0B0. Using AT ‖ DA0,

we conclude h(T ) = D. Hence the points D, G, and T are collinear, and X lies on the same

line.

Solution 2. We define the points A0, O, and W as in the previous solution and we concentrate

on the case AB < AC. Let Q be the perpendicular projection of A0 on B0C0.

Since ∠WAO = ∠WQO = ∠OXW = 90◦, the five points A, W , X, O, and Q lie on a

common circle. Furthermore, the reflections with respect to B0C0 and OW map A to D

and X, respectively. For these reasons, we have

∠WQD = ∠AQW = ∠AXW = ∠WAX = ∠WQX.

Thus the three points Q, D, and X lie on a common line, say ℓ.

A

A0B

B0

C

C0

D

G

J

O

QW

X

a

x

To complete the argument, we note that the homothety centered at G sending the triangle ABC

to the triangle A0B0C0 maps the altitude AD to the altitude A0Q. Therefore it maps D to Q,

so the points D, G, and Q are collinear. Hence G lies on ℓ as well.

Comment. There are various other ways to prove the collinearity of Q, D, and X obtained in the

middle part of Solution 2. Introduce for instance the point J where the lines AW and BC intersect.

Then the four points A, D, X, and J lie at the same distance from W , so the quadrilateral ADXJ is

cyclic. In combination with the fact that AWXQ is cyclic as well, this implies

∠JDX = ∠JAX = ∠WAX = ∠WQX.

Since BC ‖ WQ, it follows that Q, D, and X are indeed collinear.
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G5

Let ABC be a triangle with incenter I and circumcircle ω. Let D and E be the second

intersection points of ω with the lines AI and BI, respectively. The chord DE meets AC at a

point F , and BC at a point G. Let P be the intersection point of the line through F parallel to

AD and the line through G parallel to BE. Suppose that the tangents to ω at A and at B meet

at a point K. Prove that the three lines AE, BD, and KP are either parallel or concurrent.

Solution 1. Since

∠IAF = ∠DAC = ∠BAD = ∠BED = ∠IEF

the quadrilateral AIFE is cyclic. Denote its circumcircle by ω1. Similarly, the quadrilat-

eral BDGI is cyclic; denote its circumcircle by ω2.

The line AE is the radical axis of ω and ω1, and the line BD is the radical axis of ω and ω2.

Let t be the radical axis of ω1 and ω2. These three lines meet at the radical center of the three

circles, or they are parallel to each other. We will show that t is in fact the line PK.

Let L be the second intersection point of ω1 and ω2, so t = IL. (If the two circles are tangent

to each other then L = I and t is the common tangent.)

A

B C

D

E

F

G

IK ′=K
L

P ′=P

t

ω

ω
1

ω
2

Let the line t meet the circumcircles of the triangles ABL and FGL at K ′ 6= L and P ′ 6= L,

respectively. Using oriented angles we have

∠(AB, BK ′) = ∠(AL, LK ′) = ∠(AL, LI) = ∠(AE, EI) = ∠(AE, EB) = ∠(AB, BK),
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so BK ′ ‖ BK. Similarly we have AK ′ ‖ AK, and therefore K ′ = K. Next, we have

∠(P ′F, FG) = ∠(P ′L, LG) = ∠(IL, LG) = ∠(ID, DG) = ∠(AD, DE) = ∠(PF, FG),

hence P ′F ‖ PF and similarly P ′G ‖ PG. Therefore P ′ = P . This means that t passes through

K and P , which finishes the proof.

Solution 2. Let M be the intersection point of the tangents to ω at D and E, and let the

lines AE and BD meet at T ; if AE and BD are parallel, then let T be their common ideal

point. It is well-known that the points K and M lie on the line TI (as a consequence of

Pascal’s theorem, applied to the inscribed degenerate hexagons AADBBE and ADDBEE).

The lines AD and BE are the angle bisectors of the angles ∠CAB and ∠ABC, respectively, so

D and E are the midpoints of the arcs BC and CA of the circle ω, respectively. Hence, DM

is parallel to BC and EM is parallel to AC.

Apply Pascal’s theorem to the degenerate hexagon CADDEB. By the theorem, the points

CA∩DE = F , AD ∩EB = I and the common ideal point of lines DM and BC are collinear,

therefore FI is parallel to BC and DM . Analogously, the line GI is parallel to AC and EM .

A

B C

D

E

F

G

H

I
K

M

P

T

ω

Now consider the homothety with scale factor −FG
ED

which takes E to G and D to F . Since the

triangles EDM and GFI have parallel sides, the homothety takes M to I. Similarly, since the

triangles DEI and FGP have parallel sides, the homothety takes I to P . Hence, the points

M , I, P and the homothety center H must lie on the same line. Therefore, the point P also

lies on the line TKIM .

Comment. One may prove that IF ‖ BC and IG ‖ AC in a more elementary way. Since ∠ADE =

∠EDC and ∠DEB = ∠CED, the points I and C are symmetric about DE. Moreover, since the

arcs AE and EC are equal and the arcs CD and DB are equal, we have ∠CFG = ∠FGC, so the

triangle CFG is isosceles. Hence, the quadrilateral IFCG is a rhombus.
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G6

Let ABC be a triangle with AB = AC, and let D be the midpoint of AC. The angle bisector

of ∠BAC intersects the circle through D, B, and C in a point E inside the triangle ABC.

The line BD intersects the circle through A, E, and B in two points B and F . The lines AF

and BE meet at a point I, and the lines CI and BD meet at a point K. Show that I is the

incenter of triangle KAB.

Solution 1. Let D′ be the midpoint of the segment AB, and let M be the midpoint of BC.

By symmetry at line AM , the point D′ has to lie on the circle BCD. Since the arcs D′E

and ED of that circle are equal, we have ∠ABI = ∠D′BE = ∠EBD = IBK, so I lies on

the angle bisector of ∠ABK. For this reason it suffices to prove in the sequel that the ray AI

bisects the angle ∠BAK.

From

∠DFA = 180◦ − ∠BFA = 180◦ − ∠BEA = ∠MEB =
1

2
∠CEB =

1

2
∠CDB

we derive ∠DFA = ∠DAF so the triangle AFD is isosceles with AD = DF .

A

B C

DD ′

E

F

I

K

M

ω
1

ω
2

Applying Menelaus’s theorem to the triangle ADF with respect to the line CIK, and applying

the angle bisector theorem to the triangle ABF , we infer

1 =
AC

CD
· DK

KF
· FI

IA
= 2 · DK

KF
· BF

AB
= 2 · DK

KF
· BF

2 · AD
=

DK

KF
· BF

AD

and therefore
BD

AD
=

BF + FD

AD
=

BF

AD
+ 1 =

KF

DK
+ 1 =

DF

DK
=

AD

DK
.
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It follows that the triangles ADK and BDA are similar, hence ∠DAK = ∠ABD. Then

∠IAB = ∠AFD − ∠ABD = ∠DAF −∠DAK = ∠KAI

shows that the point K is indeed lying on the angle bisector of ∠BAK.

Solution 2. It can be shown in the same way as in the first solution that I lies on the angle

bisector of ∠ABK. Here we restrict ourselves to proving that KI bisects ∠AKB.

A

B C

D

E

F

I

K

O1

O3ω
1

ω
2

ω
3

Denote the circumcircle of triangle BCD and its center by ω1 and by O1, respectively. Since

the quadrilateral ABFE is cyclic, we have ∠DFE = ∠BAE = ∠DAE. By the same reason,

we have ∠EAF = ∠EBF = ∠ABE = ∠AFE. Therefore ∠DAF = ∠DFA, and hence

DF = DA = DC. So triangle AFC is inscribed in a circle ω2 with center D.

Denote the circumcircle of triangle ABD by ω3, and let its center be O3. Since the arcs BE

and EC of circle ω1 are equal, and the triangles ADE and FDE are congruent, we have

∠AO1B = 2∠BDE = ∠BDA, so O1 lies on ω3. Hence ∠O3O1D = ∠O3DO1.

The line BD is the radical axis of ω1 and ω3. Point C belongs to the radical axis of ω1 and ω2,

and I also belongs to it since AI ·IF = BI ·IE. Hence K = BD∩CI is the radical center of ω1,

ω2, and ω3, and AK is the radical axis of ω2 and ω3. Now, the radical axes AK, BK and IK are

perpendicular to the central lines O3D, O3O1 and O1D, respectively. By ∠O3O1D = ∠O3DO1,

we get that KI is the angle bisector of ∠AKB.

Solution 3. Again, let M be the midpoint of BC. As in the previous solutions, we can deduce

∠ABI = ∠IBK. We show that the point I lies on the angle bisector of ∠KAB.

Let G be the intersection point of the circles AFC and BCD, different from C. The lines
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CG, AF , and BE are the radical axes of the three circles AGFC, CDB, and ABFE, so

I = AF ∩ BE is the radical center of the three circles and CG also passes through I.

A

B

B ′

C

D

E

F

G

I
K

M

The angle between line DE and the tangent to the circle BCD at E is equal to ∠EBD =

∠EAF = ∠ABE = ∠AFE. As the tangent at E is perpendicular to AM , the line DE is

perpendicular to AF . The triangle AFE is isosceles, so DE is the perpendicular bisector

of AF and thus AD = DF . Hence, the point D is the center of the circle AFC, and this circle

passes through M as well since ∠AMC = 90◦.

Let B′ be the reflection of B in the point D, so ABCB′ is a parallelogram. Since DC = DG

we have ∠GCD = ∠DBC = ∠KB′A. Hence, the quadrilateral AKCB′ is cyclic and thus

∠CAK = ∠CB′K = ∠ABD = 2∠MAI. Then

∠IAB = ∠MAB −∠MAI =
1

2
∠CAB − 1

2
∠CAK =

1

2
∠KAB

and therefore AI is the angle bisector of ∠KAB.
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G7

Let ABCDEF be a convex hexagon all of whose sides are tangent to a circle ω with center O.

Suppose that the circumcircle of triangle ACE is concentric with ω. Let J be the foot of the

perpendicular from B to CD. Suppose that the perpendicular from B to DF intersects the

line EO at a point K. Let L be the foot of the perpendicular from K to DE. Prove that

DJ = DL.

Solution 1. Since ω and the circumcircle of triangle ACE are concentric, the tangents from A,

C, and E to ω have equal lengths; that means that AB = BC, CD = DE, and EF = FA.

Moreover, we have ∠BCD = ∠DEF = ∠FAB.

A

B

B ′

B ′′

C

D

E

F
J

K ′

L′

M

O

Pω

Consider the rotation around point D mapping C to E; let B′ and L′ be the images of the

points B and J , respectively, under this rotation. Then one has DJ = DL′ and B′L′ ⊥ DE;

moreover, the triangles B′ED and BCD are congruent. Since ∠DEO < 90◦, the lines EO

and B′L′ intersect at some point K ′. We intend to prove that K ′B ⊥ DF ; this would imply

K = K ′, therefore L = L′, which proves the problem statement.

Analogously, consider the rotation around F mapping A to E; let B′′ be the image of B under

this rotation. Then the triangles FAB and FEB′′ are congruent. We have EB′′ = AB = BC =

EB′ and ∠FEB′′ = ∠FAB = ∠BCD = ∠DEB′, so the points B′ and B′′ are symmetrical

with respect to the angle bisector EO of ∠DEF . So, from K ′B′ ⊥ DE we get K ′B′′ ⊥ EF .

From these two relations we obtain

K ′D2 −K ′E2 = B′D2 − B′E2 and K ′E2 −K ′F 2 = B′′E2 − B′′F 2.

Adding these equalities and taking into account that B′E = B′′E we obtain

K ′D2 −K ′F 2 = B′D2 − B′′F 2 = BD2 − BF 2,
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which means exactly that K ′B ⊥ DF .

Comment. There are several variations of this solution. For instance, let us consider the intersection

point M of the lines BJ and OC. Define the point K ′ as the reflection of M in the line DO. Then

one has

DK ′2 −DB2 = DM2 −DB2 = CM2 − CB2.

Next, consider the rotation around O which maps CM to EK ′. Let P be the image of B under this

rotation; so P lies on ED. Then EF ⊥ K ′P , so

CM2 − CB2 = EK ′2 − EP 2 = FK ′2 − FP 2 = FK ′2 − FB2,

since the triangles FEP and FAB are congruent.

Solution 2. Let us denote the points of tangency of AB, BC, CD, DE, EF , and FA to ω

by R, S, T , U , V , and W , respectively. As in the previous solution, we mention that AR =

AW = CS = CT = EU = EV .

The reflection in the line BO maps R to S, therefore A to C and thus also W to T . Hence, both

lines RS and WT are perpendicular to OB, therefore they are parallel. On the other hand,

the lines UV and WT are not parallel, since otherwise the hexagon ABCDEF is symmetric

with respect to the line BO and the lines defining the point K coincide, which contradicts the

conditions of the problem. Therefore we can consider the intersection point Z of UV and WT .

A

B

C

D

E

F
J

K

L

O

R

S

T U

V

W

Z

ω

Next, we recall a well-known fact that the points D, F , Z are collinear. Actually, D is the pole

of the line UT , F is the pole of V W , and Z = TW ∩ UV ; so all these points belong to the

polar line of TU ∩ V W .
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Now, we put O into the origin, and identify each point (say X) with the vector
−−→
OX. So, from

now on all the products of points refer to the scalar products of the corresponding vectors.

Since OK ⊥ UZ and OB ⊥ TZ, we have K · (Z − U) = 0 = B · (Z − T ). Next, the

condition BK ⊥ DZ can be written as K · (D−Z) = B · (D−Z). Adding these two equalities

we get

K · (D − U) = B · (D − T ).

By symmetry, we have D · (D−U) = D · (D−T ). Subtracting this from the previous equation,

we obtain (K −D) · (D − U) = (B −D) · (D − T ) and rewrite it in vector form as

−−→
DK · −−→UD =

−−→
DB · −→TD.

Finally, projecting the vectors
−−→
DK and

−−→
DB onto the lines UD and TD respectively, we can

rewrite this equality in terms of segment lengths as DL · UD = DJ · TD, thus DL = DJ .

Comment. The collinearity of Z, F , and D may be shown in various more elementary ways. For in-

stance, applying the sine theorem to the triangles DTZ and DUZ, one gets
sin ∠DZT

sin ∠DZU
=

sin ∠DTZ

sin ∠DUZ
;

analogously,
sin ∠FZW

sin∠FZV
=

sin ∠FWZ

sin ∠FV Z
. The right-hand sides are equal, hence so are the left-hand

sides, which implies the collinearity of the points D, F , and Z.

There also exist purely synthetic proofs of this fact. E.g., let Q be the point of intersection of the

circumcircles of the triangles ZTV and ZWU different from Z. Then QZ is the bisector of ∠V QW

since ∠V QZ = ∠V TZ = ∠V UW = ∠ZQW . Moreover, all these angles are equal to 1
2∠V OW ,

so ∠V QW = ∠V OW , hence the quadrilateral V WOQ is cyclic. On the other hand, the points O,

V , W lie on the circle with diameter OF due to the right angles; so Q also belongs to this circle.

Since FV = FW , QF is also the bisector of ∠V QW , so F lies on QZ. Analogously, D lies on the

same line.
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G8

Let ABC be an acute triangle with circumcircle ω. Let t be a tangent line to ω. Let ta, tb,

and tc be the lines obtained by reflecting t in the lines BC, CA, and AB, respectively. Show

that the circumcircle of the triangle determined by the lines ta, tb, and tc is tangent to the

circle ω.

To avoid a large case distinction, we will use the notion of oriented angles. Namely, for two

lines ℓ and m, we denote by ∠(ℓ, m) the angle by which one may rotate ℓ anticlockwise to

obtain a line parallel to m. Thus, all oriented angles are considered modulo 180◦.

A

A′

A′′

B

B ′

B ′′

C
C ′=S

C ′′

D

E

F

I

K

X

T

ta

tb

tc

t

ω

Solution 1. Denote by T the point of tangency of t and ω. Let A′ = tb ∩ tc, B′ = ta ∩ tc,

C ′ = ta ∩ tb. Introduce the point A′′ on ω such that TA = AA′′ (A′′ 6= T unless TA is a

diameter). Define the points B′′ and C ′′ in a similar way.

Since the points C and B are the midpoints of arcs TC ′′ and TB′′, respectively, we have

∠(t, B′′C ′′) = ∠(t, TC ′′) + ∠(TC ′′, B′′C ′′) = 2∠(t, TC) + 2∠(TC ′′, BC ′′)

= 2
(
∠(t, TC) + ∠(TC, BC)

)
= 2∠(t, BC) = ∠(t, ta).

It follows that ta and B′′C ′′ are parallel. Similarly, tb ‖ A′′C ′′ and tc ‖ A′′B′′. Thus, either the

triangles A′B′C ′ and A′′B′′C ′′ are homothetic, or they are translates of each other. Now we

will prove that they are in fact homothetic, and that the center K of the homothety belongs
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to ω. It would then follow that their circumcircles are also homothetic with respect to K and

are therefore tangent at this point, as desired.

We need the two following claims.

Claim 1. The point of intersection X of the lines B′′C and BC ′′ lies on ta.

Proof. Actually, the points X and T are symmetric about the line BC, since the lines CT

and CB′′ are symmetric about this line, as are the lines BT and BC ′′. �

Claim 2. The point of intersection I of the lines BB′ and CC ′ lies on the circle ω.

Proof. We consider the case that t is not parallel to the sides of ABC; the other cases may be

regarded as limit cases. Let D = t ∩ BC, E = t ∩ AC, and F = t ∩ AB.

Due to symmetry, the line DB is one of the angle bisectors of the lines B′D and FD; analogously,

the line FB is one of the angle bisectors of the lines B′F and DF . So B is either the incenter

or one of the excenters of the triangle B′DF . In any case we have ∠(BD, DF )+∠(DF, FB)+

∠(B′B, B′D) = 90◦, so

∠(B′B, B′C ′) = ∠(B′B, B′D) = 90◦ − ∠(BC, DF )−∠(DF, BA) = 90◦ −∠(BC, AB).

Analogously, we get ∠(C ′C, B′C ′) = 90◦ − ∠(BC, AC). Hence,

∠(BI, CI) = ∠(B′B, B′C ′) + ∠(B′C ′, C ′C) = ∠(BC, AC)− ∠(BC, AB) = ∠(AB, AC),

which means exactly that the points A, B, I, C are concyclic. �

Now we can complete the proof. Let K be the second intersection point of B′B′′ and ω.

Applying Pascal’s theorem to hexagon KB′′CIBC ′′ we get that the points B′ = KB′′ ∩ IB

and X = B′′C ∩ BC ′′ are collinear with the intersection point S of CI and C ′′K. So S =

CI ∩ B′X = C ′, and the points C ′, C ′′, K are collinear. Thus K is the intersection point

of B′B′′ and C ′C ′′ which implies that K is the center of the homothety mapping A′B′C ′

to A′′B′′C ′′, and it belongs to ω.

Solution 2. Define the points T , A′, B′, and C ′ in the same way as in the previous solution.

Let X, Y , and Z be the symmetric images of T about the lines BC, CA, and AB, respectively.

Note that the projections of T on these lines form a Simson line of T with respect to ABC,

therefore the points X, Y , Z are also collinear. Moreover, we have X ∈ B′C ′, Y ∈ C ′A′,

Z ∈ A′B′.

Denote α = ∠(t, TC) = ∠(BT, BC). Using the symmetry in the lines AC and BC, we get

∠(BC, BX) = ∠(BT, BC) = α and ∠(XC, XC ′) = ∠(t, TC) = ∠(Y C, Y C ′) = α.

Since ∠(XC, XC ′) = ∠(Y C, Y C ′), the points X, Y , C, C ′ lie on some circle ωc. Define the

circles ωa and ωb analogously. Let ω′ be the circumcircle of triangle A′B′C ′.
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Now, applying Miquel’s theorem to the four lines A′B′, A′C ′, B′C ′, and XY , we obtain that

the circles ω′, ωa, ωb, ωc intersect at some point K. We will show that K lies on ω, and that

the tangent lines to ω and ω′ at this point coincide; this implies the problem statement.

Due to symmetry, we have XB = TB = ZB, so the point B is the midpoint of one of the

arcs XZ of circle ωb. Therefore ∠(KB, KX) = ∠(XZ, XB). Analogously, ∠(KX, KC) =

∠(XC, XY ). Adding these equalities and using the symmetry in the line BC we get

∠(KB, KC) = ∠(XZ, XB) + ∠(XC, XZ) = ∠(XC, XB) = ∠(TB, TC).

Therefore, K lies on ω.

Next, let k be the tangent line to ω at K. We have

∠(k, KC ′) = ∠(k, KC) + ∠(KC, KC ′) = ∠(KB, BC) + ∠(XC, XC ′)

=
(
∠(KB, BX)−∠(BC, BX)

)
+ α = ∠(KB′, B′X)− α + α = ∠(KB′, B′C ′),

which means exactly that k is tangent to ω′.

A

A′

B

B ′

C

C ′

K

X

Y

Z

T

k

ta
tb

tc

t

ω ω′

ωb

ωc

Comment. There exist various solutions combining the ideas from the two solutions presented above.

For instance, one may define the point X as the reflection of T with respect to the line BC, and

then introduce the point K as the second intersection point of the circumcircles of BB′X and CC ′X.

Using the fact that BB′ and CC ′ are the bisectors of ∠(A′B′, B′C ′) and ∠(A′C ′, B′C ′) one can show

successively that K ∈ ω, K ∈ ω′, and that the tangents to ω and ω′ at K coincide.
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N1

For any integer d > 0, let f(d) be the smallest positive integer that has exactly d positive

divisors (so for example we have f(1) = 1, f(5) = 16, and f(6) = 12). Prove that for every

integer k ≥ 0 the number f(2k) divides f(2k+1).

Solution 1. For any positive integer n, let d(n) be the number of positive divisors of n. Let

n =
∏

p pa(p) be the prime factorization of n where p ranges over the prime numbers, the integers

a(p) are nonnegative and all but finitely many a(p) are zero. Then we have d(n) =
∏

p(a(p)+1).

Thus, d(n) is a power of 2 if and only if for every prime p there is a nonnegative integer b(p)

with a(p) = 2b(p) − 1 = 1 + 2 + 22 + · · ·+ 2b(p)−1. We then have

n =
∏

p

b(p)−1
∏

i=0

p2i

, and d(n) = 2k with k =
∑

p

b(p).

Let S be the set of all numbers of the form p2r

with p prime and r a nonnegative integer. Then

we deduce that d(n) is a power of 2 if and only if n is the product of the elements of some finite

subset T of S that satisfies the following condition: for all t ∈ T and s ∈ S with s
∣
∣ t we have

s ∈ T . Moreover, if d(n) = 2k then the corresponding set T has k elements.

Note that the set Tk consisting of the smallest k elements from S obviously satisfies the condition

above. Thus, given k, the smallest n with d(n) = 2k is the product of the elements of Tk. This n

is f(2k). Since obviously Tk ⊂ Tk+1, it follows that f(2k)
∣
∣ f(2k+1).

Solution 2. This is an alternative to the second part of the Solution 1. Suppose k is a

nonnegative integer. From the first part of Solution 1 we see that f(2k) =
∏

p pa(p) with

a(p) = 2b(p) − 1 and
∑

p b(p) = k. We now claim that for any two distinct primes p, q with

b(q) > 0 we have

m = p2b(p)

> q2b(q)−1

= ℓ. (1)

To see this, note first that ℓ divides f(2k). With the first part of Solution 1 one can see that

the integer n = f(2k)m/ℓ also satisfies d(n) = 2k. By the definition of f(2k) this implies that

n ≥ f(2k) so m ≥ ℓ. Since p 6= q the inequality (1) follows.

Let the prime factorization of f(2k+1) be given by f(2k+1) =
∏

p pr(p) with r(p) = 2s(p) − 1.

Since we have
∑

p s(p) = k + 1 > k =
∑

p b(p) there is a prime p with s(p) > b(p). For any

prime q 6= p with b(q) > 0 we apply inequality (1) twice and get

q2s(q)

> p2s(p)−1 ≥ p2b(p)

> q2b(q)−1

,

which implies s(q) ≥ b(q). It follows that s(q) ≥ b(q) for all primes q, so f(2k)
∣
∣ f(2k+1).
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N2

Consider a polynomial P (x) = (x + d1)(x + d2) · . . . · (x + d9), where d1, d2, . . . , d9 are nine

distinct integers. Prove that there exists an integer N such that for all integers x ≥ N the

number P (x) is divisible by a prime number greater than 20.

Solution 1. Note that the statement of the problem is invariant under translations of x; hence

without loss of generality we may suppose that the numbers d1, d2, . . . , d9 are positive.

The key observation is that there are only eight primes below 20, while P (x) involves more

than eight factors.

We shall prove that N = d8 satisfies the desired property, where d = max{d1, d2, . . . , d9}.
Suppose for the sake of contradiction that there is some integer x ≥ N such that P (x) is

composed of primes below 20 only. Then for every index i ∈ {1, 2, . . . , 9} the number x + di

can be expressed as product of powers of the first 8 primes.

Since x + di > x ≥ d8 there is some prime power fi > d that divides x + di. Invoking the

pigeonhole principle we see that there are two distinct indices i and j such that fi and fj are

powers of the same prime number. For reasons of symmetry, we may suppose that fi ≤ fj .

Now both of the numbers x + di and x + dj are divisible by fi and hence so is their difference

di − dj. But as

0 < |di − dj| ≤ max(di, dj) ≤ d < fi,

this is impossible. Thereby the problem is solved.

Solution 2. Observe that for each index i ∈ {1, 2, . . . , 9} the product

Di =
∏

1≤j≤9,j 6=i

|di − dj |

is positive. We claim that N = max{D1− d1, D2− d2, . . . , D9 − d9}+ 1 satisfies the statement

of the problem. Suppose there exists an integer x ≥ N such that all primes dividing P (x) are

smaller than 20. For each index i we reduce the fraction (x + di)/Di to lowest terms. Since

x + di > Di the numerator of the fraction we thereby get cannot be 1, and hence it has to be

divisible by some prime number pi < 20.

By the pigeonhole principle, there are a prime number p and two distinct indices i and j such

that pi = pj = p. Let pαi and pαj be the greatest powers of p dividing x + di and x + dj,

respectively. Due to symmetry we may suppose αi ≤ αj. But now pαi divides di−dj and hence

also Di, which means that all occurrences of p in the numerator of the fraction (x + di)/Di

cancel out, contrary to the choice of p = pi. This contradiction proves our claim.
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Solution 3. Given a nonzero integer N as well as a prime number p we write vp(N) for the

exponent with which p occurs in the prime factorization of |N |.

Evidently, if the statement of the problem were not true, then there would exist an infinite

sequence (xn) of positive integers tending to infinity such that for each n ∈ Z+ the integer

P (xn) is not divisible by any prime number > 20. Observe that the numbers −d1,−d2, . . . ,−d9

do not appear in this sequence.

Now clearly there exists a prime p1 < 20 for which the sequence vp1(xn + d1) is not bounded;

thinning out the sequence (xn) if necessary we may even suppose that

vp1(xn + d1) −→∞.

Repeating this argument eight more times we may similarly choose primes p2, . . . , p9 < 20 and

suppose that our sequence (xn) has been thinned out to such an extent that vpi
(xn +di) −→ ∞

holds for i = 2, . . . , 9 as well. In view of the pigeonhole principle, there are distinct indices i

and j as well as a prime p < 20 such that pi = pj = p. Setting k = vp(di− dj) there now has to

be some n for which both vp(xn + di) and vp(xn + dj) are greater than k. But now the numbers

xn + di and xn + dj are divisible by pk+1 whilst their difference di− dj is not – a contradiction.

Comment. This problem is supposed to be a relatively easy one, so one might consider adding the

hypothesis that the numbers d1, d2, . . . , d9 be positive. Then certain merely technical issues are not

going to arise while the main ideas required to solve the problems remain the same.
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N3

Let n ≥ 1 be an odd integer. Determine all functions f from the set of integers to itself such

that for all integers x and y the difference f(x)− f(y) divides xn − yn.

Answer. All functions f of the form f(x) = εxd + c, where ε is in {1,−1}, the integer d is a

positive divisor of n, and c is an integer.

Solution. Obviously, all functions in the answer satisfy the condition of the problem. We will

show that there are no other functions satisfying that condition.

Let f be a function satisfying the given condition. For each integer n, the function g defined

by g(x) = f(x) + n also satisfies the same condition. Therefore, by subtracting f(0) from f(x)

we may assume that f(0) = 0.

For any prime p, the condition on f with (x, y) = (p, 0) states that f(p) divides pn. Since the

set of primes is infinite, there exist integers d and ε with 0 ≤ d ≤ n and ε ∈ {1,−1} such that

for infinitely many primes p we have f(p) = εpd. Denote the set of these primes by P . Since a

function g satisfies the given condition if and only if −g satisfies the same condition, we may

suppose ε = 1.

The case d = 0 is easily ruled out, because 0 does not divide any nonzero integer. Suppose

d ≥ 1 and write n as md + r, where m and r are integers such that m ≥ 1 and 0 ≤ r ≤ d− 1.

Let x be an arbitrary integer. For each prime p in P , the difference f(p)−f(x) divides pn−xn.

Using the equality f(p) = pd, we get

pn − xn = pr(pd)m − xn ≡ prf(x)m − xn ≡ 0 (mod pd − f(x))

Since we have r < d, for large enough primes p ∈ P we obtain

|prf(x)m − xn| < pd − f(x).

Hence prf(x)m − xn has to be zero. This implies r = 0 and xn = (xd)m = f(x)m. Since m is

odd, we obtain f(x) = xd.

Comment. If n is an even positive integer, then the functions f of the form

f(x) =







xd + c for some integers,

−xd + c for the rest of integers,

where d is a positive divisor of n/2 and c is an integer, also satisfy the condition of the problem.

Together with the functions in the answer, they are all functions that satisfy the condition when n is

even.
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N4

For each positive integer k, let t(k) be the largest odd divisor of k. Determine all positive

integers a for which there exists a positive integer n such that all the differences

t(n + a)− t(n), t(n + a + 1)− t(n + 1), . . . , t(n + 2a− 1)− t(n + a− 1)

are divisible by 4.

Answer. a = 1, 3, or 5.

Solution. A pair (a, n) satisfying the condition of the problem will be called a winning pair.

It is straightforward to check that the pairs (1, 1), (3, 1), and (5, 4) are winning pairs.

Now suppose that a is a positive integer not equal to 1, 3, and 5. We will show that there are

no winning pairs (a, n) by distinguishing three cases.

Case 1: a is even. In this case we have a = 2αd for some positive integer α and some odd d. Since

a ≥ 2α, for each positive integer n there exists an i ∈ {0, 1, . . . , a− 1} such that n + i = 2α−1e,

where e is some odd integer. Then we have t(n + i) = t(2α−1e) = e and

t(n + a + i) = t(2αd + 2α−1e) = 2d + e ≡ e + 2 (mod 4).

So we get t(n + i)− t(n + a + i) ≡ 2 (mod 4), and (a, n) is not a winning pair.

Case 2: a is odd and a > 8. For each positive integer n, there exists an i ∈ {0, 1, . . . , a − 5}
such that n + i = 2d for some odd d. We get

t(n + i) = d 6≡ d + 2 = t(n + i + 4) (mod 4)

and

t(n + a + i) = n + a + i ≡ n + a + i + 4 = t(n + a + i + 4) (mod 4).

Therefore, the integers t(n+a+ i)− t(n+ i) and t(n + a + i + 4)− t(n + i + 4) cannot be both

divisible by 4, and therefore there are no winning pairs in this case.

Case 3: a = 7. For each positive integer n, there exists an i ∈ {0, 1, . . . , 6} such that n + i is

either of the form 8k + 3 or of the form 8k + 6, where k is a nonnegative integer. But we have

t(8k + 3) ≡ 3 6≡ 1 ≡ 4k + 5 = t(8k + 3 + 7) (mod 4)

and

t(8k + 6) = 4k + 3 ≡ 3 6≡ 1 ≡ t(8k + 6 + 7) (mod 4).

Hence, there are no winning pairs of the form (7, n).
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N5

Let f be a function from the set of integers to the set of positive integers. Suppose that for

any two integers m and n, the difference f(m)− f(n) is divisible by f(m− n). Prove that for

all integers m, n with f(m) ≤ f(n) the number f(n) is divisible by f(m).

Solution 1. Suppose that x and y are two integers with f(x) < f(y). We will show that

f(x)
∣
∣ f(y). By taking m = x and n = y we see that

f(x− y)
∣
∣ |f(x)− f(y)| = f(y)− f(x) > 0,

so f(x− y) ≤ f(y)− f(x) < f(y). Hence the number d = f(x)− f(x− y) satisfies

−f(y) < −f(x− y) < d < f(x) < f(y).

Taking m = x and n = x − y we see that f(y)
∣
∣ d, so we deduce d = 0, or in other words

f(x) = f(x − y). Taking m = x and n = y we see that f(x) = f(x − y)
∣
∣ f(x) − f(y), which

implies f(x)
∣
∣ f(y).

Solution 2. We split the solution into a sequence of claims; in each claim, the letters m and n

denote arbitrary integers.

Claim 1. f(n)
∣
∣ f(mn).

Proof. Since trivially f(n)
∣
∣ f(1 · n) and f(n)

∣
∣ f((k + 1)n) − f(kn) for all integers k, this is

easily seen by using induction on m in both directions. �

Claim 2. f(n)
∣
∣ f(0) and f(n) = f(−n).

Proof. The first part follows by plugging m = 0 into Claim 1. Using Claim 1 twice with

m = −1, we get f(n)
∣
∣ f(−n)

∣
∣ f(n), from which the second part follows. �

From Claim 1, we get f(1)
∣
∣ f(n) for all integers n, so f(1) is the minimal value attained by f .

Next, from Claim 2, the function f can attain only a finite number of values since all these

values divide f(0).

Now we prove the statement of the problem by induction on the number Nf of values attained

by f . In the base case Nf ≤ 2, we either have f(0) 6= f(1), in which case these two numbers

are the only values attained by f and the statement is clear, or we have f(0) = f(1), in which

case we have f(1)
∣
∣ f(n)

∣
∣ f(0) for all integers n, so f is constant and the statement is obvious

again.

For the induction step, assume that Nf ≥ 3, and let a be the least positive integer with

f(a) > f(1). Note that such a number exists due to the symmetry of f obtained in Claim 2.
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Claim 3. f(n) 6= f(1) if and only if a
∣
∣ n.

Proof. Since f(1) = · · · = f(a− 1) < f(a), the claim follows from the fact that

f(n) = f(1) ⇐⇒ f(n + a) = f(1).

So it suffices to prove this fact.

Assume that f(n) = f(1). Then f(n + a)
∣
∣ f(a) − f(−n) = f(a) − f(n) > 0, so f(n + a) ≤

f(a) − f(n) < f(a); in particular the difference f(n + a) − f(n) is stricly smaller than f(a).

Furthermore, this difference is divisible by f(a) and nonnegative since f(n) = f(1) is the

least value attained by f . So we have f(n + a) − f(n) = 0, as desired. For the converse

direction we only need to remark that f(n + a) = f(1) entails f(−n − a) = f(1), and hence

f(n) = f(−n) = f(1) by the forward implication. �

We return to the induction step. So let us take two arbitrary integers m and n with f(m) ≤ f(n).

If a 6
∣
∣ m, then we have f(m) = f(1)

∣
∣ f(n). On the other hand, suppose that a

∣
∣ m; then by

Claim 3 a
∣
∣ n as well. Now define the function g(x) = f(ax). Clearly, g satisfies the condi-

tions of the problem, but Ng < Nf − 1, since g does not attain f(1). Hence, by the induction

hypothesis, f(m) = g(m/a)
∣
∣ g(n/a) = f(n), as desired.

Comment. After the fact that f attains a finite number of values has been established, there are

several ways of finishing the solution. For instance, let f(0) = b1 > b2 > · · · > bk be all these values.

One may show (essentially in the same way as in Claim 3) that the set Si = {n : f(n) ≥ bi} consists

exactly of all numbers divisible by some integer ai ≥ 0. One obviously has ai

∣
∣ ai−1, which implies

f(ai)
∣
∣ f(ai−1) by Claim 1. So, bk

∣
∣ bk−1

∣
∣ · · ·

∣
∣ b1, thus proving the problem statement.

Moreover, now it is easy to describe all functions satisfying the conditions of the problem. Namely, all

these functions can be constructed as follows. Consider a sequence of nonnegative integers a1, a2, . . . , ak

and another sequence of positive integers b1, b2, . . . , bk such that |ak| = 1, ai 6= aj and bi 6= bj for all

1 ≤ i < j ≤ k, and ai

∣
∣ ai−1 and bi

∣
∣ bi−1 for all i = 2, . . . , k. Then one may introduce the function

f(n) = bi(n), where i(n) = min{i : ai

∣
∣ n}.

These are all the functions which satisfy the conditions of the problem.
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N6

Let P (x) and Q(x) be two polynomials with integer coefficients such that no nonconstant

polynomial with rational coefficients divides both P (x) and Q(x). Suppose that for every

positive integer n the integers P (n) and Q(n) are positive, and 2Q(n) − 1 divides 3P (n) − 1.

Prove that Q(x) is a constant polynomial.

Solution. First we show that there exists an integer d such that for all positive integers n we

have gcd
(
P (n), Q(n)

)
≤ d.

Since P (x) and Q(x) are coprime (over the polynomials with rational coefficients), Euclid’s al-

gorithm provides some polynomials R0(x), S0(x) with rational coefficients such that P (x)R0(x)−
Q(x)S0(x) = 1. Multiplying by a suitable positive integer d, we obtain polynomials R(x) =

d · R0(x) and S(x) = d · S0(x) with integer coefficients for which P (x)R(x) − Q(x)S(x) = d.

Then we have gcd
(
P (n), Q(n)

)
≤ d for any integer n.

To prove the problem statement, suppose that Q(x) is not constant. Then the sequence Q(n)

is not bounded and we can choose a positive integer m for which

M = 2Q(m) − 1 ≥ 3max{P (1),P (2),...,P (d)}. (1)

Since M = 2Q(n) − 1
∣
∣ 3P (n) − 1, we have 2, 3 6

∣
∣M . Let a and b be the multiplicative orders

of 2 and 3 modulo M , respectively. Obviously, a = Q(m) since the lower powers of 2 do not

reach M . Since M divides 3P (m)−1, we have b
∣
∣P (m). Then gcd(a, b) ≤ gcd

(
P (m), Q(m)

)
≤ d.

Since the expression ax − by attains all integer values divisible by gcd(a, b) when x and y

run over all nonnegative integer values, there exist some nonnegative integers x, y such that

1 ≤ m + ax− by ≤ d.

By Q(m + ax) ≡ Q(m) (mod a) we have

2Q(m+ax) ≡ 2Q(m) ≡ 1 (mod M)

and therefore

M
∣
∣ 2Q(m+ax) − 1

∣
∣ 3P (m+ax) − 1.

Then, by P (m + ax− by) ≡ P (m + ax) (mod b) we have

3P (m+ax−by) ≡ 3P (m+ax) ≡ 1 (mod M).

Since P (m + ax − by) > 0 this implies M ≤ 3P (m+ax−by) − 1. But P (m + ax − by) is listed

among P (1), P (2), . . . , P (d), so

M < 3P (m+ax−by) ≤ 3max{P (1),P (2),...,P (d)}
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which contradicts (1).

Comment. We present another variant of the solution above.

Denote the degree of P by k and its leading coefficient by p. Consider any positive integer n and let

a = Q(n). Again, denote by b the multiplicative order of 3 modulo 2a − 1. Since 2a − 1
∣
∣ 3P (n)− 1, we

have b
∣
∣ P (n). Moreover, since 2Q(n+at) − 1

∣
∣ 3P (n+at) − 1 and a = Q(n)

∣
∣ Q(n + at) for each positive

integer t, we have 2a − 1
∣
∣ 3P (n+at) − 1, hence b

∣
∣ P (n + at) as well.

Therefore, b divides gcd{P (n + at) : t ≥ 0}; hence it also divides the number

k∑

i=0

(−1)k−i

(
k

i

)

P (n + ai) = p · k! · ak.

Finally, we get b
∣
∣gcd

(

P (n), k! ·p ·Q(n)k
)

, which is bounded by the same arguments as in the beginning

of the solution. So 3b − 1 is bounded, and hence 2Q(n) − 1 is bounded as well.
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N7

Let p be an odd prime number. For every integer a, define the number

Sa =
a

1
+

a2

2
+ · · ·+ ap−1

p− 1
.

Let m and n be integers such that

S3 + S4 − 3S2 =
m

n
.

Prove that p divides m.

Solution 1. For rational numbers p1/q1 and p2/q2 with the denominators q1, q2 not divisible

by p, we write p1/q1 ≡ p2/q2 (mod p) if the numerator p1q2−p2q1 of their difference is divisible

by p.

We start with finding an explicit formula for the residue of Sa modulo p. Note first that for

every k = 1, . . . , p− 1 the number
(

p
k

)
is divisible by p, and

1

p

(
p

k

)

=
(p− 1)(p− 2) · · · (p− k + 1)

k!
≡ (−1) · (−2) · · · (−k + 1)

k!
=

(−1)k−1

k
(mod p)

Therefore, we have

Sa = −
p−1
∑

k=1

(−a)k(−1)k−1

k
≡ −

p−1
∑

k=1

(−a)k · 1
p

(
p

k

)

(mod p).

The number on the right-hand side is integer. Using the binomial formula we express it as

−
p−1
∑

k=1

(−a)k · 1

p

(
p

k

)

= −1

p

(

−1− (−a)p +

p
∑

k=0

(−a)k

(
p

k

))

=
(a− 1)p − ap + 1

p

since p is odd. So, we have

Sa ≡
(a− 1)p − ap + 1

p
(mod p).

Finally, using the obtained formula we get

S3 + S4 − 3S2 ≡
(2p − 3p + 1) + (3p − 4p + 1)− 3(1p − 2p + 1)

p

=
4 · 2p − 4p − 4

p
= −(2p − 2)2

p
(mod p).

By Fermat’s theorem, p
∣
∣ 2p − 2, so p2

∣
∣ (2p − 2)2 and hence S3 + S4 − 3S2 ≡ 0 (mod p).
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Solution 2. One may solve the problem without finding an explicit formula for Sa. It is

enough to find the following property.

Lemma. For every integer a, we have Sa+1 ≡ S−a (mod p).

Proof. We expand Sa+1 using the binomial formula as

Sa+1 =

p−1
∑

k=1

1

k

k∑

j=0

(
k

j

)

aj =

p−1
∑

k=1

(

1

k
+

k∑

j=1

aj · 1

k

(
k

j

))

=

p−1
∑

k=1

1

k
+

p−1
∑

j=1

aj

p−1
∑

k=j

1

k

(
k

j

)

ak.

Note that 1
k

+ 1
p−k

= p
k(p−k)

≡ 0 (mod p) for all 1 ≤ k ≤ p − 1; hence the first sum vanishes

modulo p. For the second sum, we use the relation 1
k

(
k
j

)
= 1

j

(
k−1
j−1

)
to obtain

Sa+1 ≡
p−1
∑

j=1

aj

j

p−1
∑

k=1

(
k − 1

j − 1

)

(mod p).

Finally, from the relation

p−1
∑

k=1

(
k − 1

j − 1

)

=

(
p− 1

j

)

=
(p− 1)(p− 2) . . . (p− j)

j!
≡ (−1)j (mod p)

we obtain

Sa+1 ≡
p−1
∑

j=1

aj(−1)j

j!
= S−a. �

Now we turn to the problem. Using the lemma we get

S3 − 3S2 ≡ S−2 − 3S2 =
∑

1≤k≤p−1
k is even

−2 · 2k

k
+

∑

1≤k≤p−1
k is odd

−4 · 2k

k
(mod p). (1)

The first sum in (1) expands as

(p−1)/2
∑

ℓ=1

−2 · 22ℓ

2ℓ
= −

(p−1)/2
∑

ℓ=1

4ℓ

ℓ
.

Next, using Fermat’s theorem, we expand the second sum in (1) as

−
(p−1)/2
∑

ℓ=1

22ℓ+1

2ℓ− 1
≡ −

(p−1)/2
∑

ℓ=1

2p+2ℓ

p + 2ℓ− 1
= −

p−1
∑

m=(p+1)/2

2 · 4m

2m
= −

p−1
∑

m=(p+1)/2

4m

m
(mod p)

(here we set m = ℓ + p−1
2

). Hence,

S3 − 3S2 ≡ −
(p−1)/2
∑

ℓ=1

4ℓ

ℓ
−

p−1
∑

m=(p+1)/2

4m

m
= −S4 (mod p).
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Let k be a positive integer and set n = 2k + 1. Prove that n is a prime number if and only if

the following holds: there is a permutation a1, . . . , an−1 of the numbers 1, 2, . . . , n − 1 and a

sequence of integers g1, g2, . . . , gn−1 such that n divides gai

i −ai+1 for every i ∈ {1, 2, . . . , n−1},
where we set an = a1.

Solution. Let N = {1, 2, . . . , n − 1}. For a, b ∈ N , we say that b follows a if there exists an

integer g such that b ≡ ga (mod n) and denote this property as a → b. This way we have a

directed graph with N as set of vertices. If a1, . . . , an−1 is a permutation of 1, 2, . . . , n− 1 such

that a1 → a2 → . . .→ an−1 → a1 then this is a Hamiltonian cycle in the graph.

Step I. First consider the case when n is composite. Let n = pα1
1 . . . pαs

s be its prime factoriza-

tion. All primes pi are odd.

Suppose that αi > 1 for some i. For all integers a, g with a ≥ 2, we have ga 6≡ pi (mod p2
i ),

because ga is either divisible by p2
i or it is not divisible by pi. It follows that in any Hamiltonian

cycle pi comes immediately after 1. The same argument shows that 2pi also should come

immediately after 1, which is impossible. Hence, there is no Hamiltonian cycle in the graph.

Now suppose that n is square-free. We have n = p1p2 . . . ps > 9 and s ≥ 2. Assume that there

exists a Hamiltonian cycle. There are n−1
2

even numbers in this cycle, and each number which

follows one of them should be a quadratic residue modulo n. So, there should be at least n−1
2

nonzero quadratic residues modulo n. On the other hand, for each pi there exist exactly pi+1
2

quadratic residues modulo pi; by the Chinese Remainder Theorem, the number of quadratic

residues modulo n is exactly p1+1
2
· p2+1

2
· . . . · ps+1

2
, including 0. Then we have a contradiction

by
p1 + 1

2
· p2 + 1

2
· . . . · ps + 1

2
≤ 2p1

3
· 2p2

3
· . . . · 2ps

3
=

(
2

3

)s

n ≤ 4n

9
<

n− 1

2
.

This proves the “if”-part of the problem.

Step II. Now suppose that n is prime. For any a ∈ N , denote by ν2(a) the exponent of 2 in

the prime factorization of a, and let µ(a) = max{t ∈ [0, k] | 2t → a}.

Lemma. For any a, b ∈ N , we have a→ b if and only if ν2(a) ≤ µ(b).

Proof. Let ℓ = ν2(a) and m = µ(b).

Suppose ℓ ≤ m. Since b follows 2m, there exists some g0 such that b ≡ g2m

0 (mod n). By

gcd(a, n − 1) = 2ℓ there exist some integers p and q such that pa − q(n − 1) = 2ℓ. Choosing

g = g2m−ℓp
0 we have ga = g2m−ℓpa

0 = g
2m+2m−ℓq(n−1)
0 ≡ g2m

0 ≡ b (mod n) by Fermat’s theorem.

Hence, a → b.

To prove the reverse statement, suppose that a → b, so b ≡ ga (mod n) with some g. Then

b ≡ (ga/2ℓ

)2ℓ

, and therefore 2ℓ → b. By the definition of µ(b), we have µ(b) ≥ ℓ. The lemma is
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proved. �

Now for every i with 0 ≤ i ≤ k, let

Ai = {a ∈ N | ν2(a) = i},
Bi = {a ∈ N | µ(a) = i},

and Ci = {a ∈ N | µ(a) ≥ i} = Bi ∪ Bi+1 ∪ . . . ∪Bk.

We claim that |Ai| = |Bi| for all 0 ≤ i ≤ k. Obviously we have |Ai| = 2k−i−1 for all i =

0, . . . , k − 1, and |Ak| = 1. Now we determine |Ci|. We have |C0| = n − 1 and by Fermat’s

theorem we also have Ck = {1}, so |Ck| = 1. Next, notice that Ci+1 = {x2 mod n | x ∈ Ci}.
For every a ∈ N , the relation x2 ≡ a (mod n) has at most two solutions in N . Therefore we

have 2|Ci+1| ≤ |Ci|, with the equality achieved only if for every y ∈ Ci+1, there exist distinct

elements x, x′ ∈ Ci such that x2 ≡ x′2 ≡ y (mod n) (this implies x + x′ = n). Now, since

2k|Ck| = |C0|, we obtain that this equality should be achieved in each step. Hence |Ci| = 2k−i

for 0 ≤ i ≤ k, and therefore |Bi| = 2k−i−1 for 0 ≤ i ≤ k − 1 and |Bk| = 1.

From the previous arguments we can see that for each z ∈ Ci (0 ≤ i < k) the equation x2 ≡ z2

(mod n) has two solutions in Ci, so we have n − z ∈ Ci. Hence, for each i = 0, 1, . . . , k − 1,

exactly half of the elements of Ci are odd. The same statement is valid for Bi = Ci \ Ci+1

for 0 ≤ i ≤ k − 2. In particular, each such Bi contains an odd number. Note that Bk = {1}
also contains an odd number, and Bk−1 = {2k} since Ck−1 consists of the two square roots of 1

modulo n.

Step III. Now we construct a Hamiltonian cycle in the graph. First, for each i with 0 ≤ i ≤ k,

connect the elements of Ai to the elements of Bi by means of an arbitrary bijection. After

performing this for every i, we obtain a subgraph with all vertices having in-degree 1 and out-

degree 1, so the subgraph is a disjoint union of cycles. If there is a unique cycle, we are done.

Otherwise, we modify the subgraph in such a way that the previous property is preserved and

the number of cycles decreases; after a finite number of steps we arrive at a single cycle.

For every cycle C, let λ(C) = minc∈C ν2(c). Consider a cycle C for which λ(C) is maximal. If

λ(C) = 0, then for any other cycle C ′ we have λ(C ′) = 0. Take two arbitrary vertices a ∈ C

and a′ ∈ C ′ such that ν2(a) = ν2(a
′) = 0; let their direct successors be b and b′, respectively.

Then we can unify C and C ′ to a single cycle by replacing the edges a → b and a′ → b′ by

a → b′ and a′ → b.

Now suppose that λ = λ(C) ≥ 1; let a ∈ C ∩ Aλ. If there exists some a′ ∈ Aλ \ C, then a′ lies

in another cycle C ′ and we can merge the two cycles in exactly the same way as above. So, the

only remaining case is Aλ ⊂ C. Since the edges from Aλ lead to Bλ, we get also Bλ ⊂ C. If

λ 6= k−1 then Bλ contains an odd number; this contradicts the assumption λ(C) > 0. Finally,

if λ = k − 1, then C contains 2k−1 which is the only element of Ak−1. Since Bk−1 = {2k} = Ak

and Bk = {1}, the cycle C contains the path 2k−1 → 2k → 1 and it contains an odd number

again. This completes the proof of the “only if”-part of the problem.

75



N8 Number Theory – solutions 52nd IMO 2011

Comment 1. The lemma and the fact |Ai| = |Bi| together show that for every edge a → b of the

Hamiltonian cycle, ν2(a) = µ(b) must hold. After this observation, the Hamiltonian cycle can be built

in many ways. For instance, it is possible to select edges from Ai to Bi for i = k, k − 1, . . . , 1 in such

a way that they form disjoint paths; at the end all these paths will have odd endpoints. In the final

step, the paths can be closed to form a unique cycle.

Comment 2. Step II is an easy consequence of some basic facts about the multiplicative group modulo

the prime n = 2k + 1. The Lemma follows by noting that this group has order 2k, so the a-th powers

are exactly the 2ν2(a)-th powers. Using the existence of a primitive root g modulo n one sees that the

map from {1, 2, . . . , n−1} to itself that sends a to ga mod n is a bijection that sends Ai to Bi for each

i ∈ {0, . . . , k}.
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4

Algebra

A1. Find all the functions f : Z→ Z such that

f(a)2 + f(b)2 + f(c)2 = 2f(a)f(b) + 2f(b)f(c) + 2f(c)f(a)

for all integers a, b, c satisfying a+ b+ c = 0.

A2. Let Z and Q be the sets of integers and rationals respectively.

a) Does there exist a partition of Z into three non-empty subsets A,B,C such that the sets
A +B, B + C, C + A are disjoint?

b) Does there exist a partition of Q into three non-empty subsets A,B,C such that the sets
A +B, B + C, C + A are disjoint?

Here X + Y denotes the set {x+ y | x ∈ X, y ∈ Y }, for X, Y ⊆ Z and X, Y ⊆ Q.

A3. Let a2, . . . , an be n − 1 positive real numbers, where n ≥ 3, such that a2a3 · · ·an = 1.
Prove that

(1 + a2)
2(1 + a3)

3 · · · (1 + an)
n > nn.

A4. Let f and g be two nonzero polynomials with integer coefficients and deg f > deg g.
Suppose that for infinitely many primes p the polynomial pf + g has a rational root. Prove
that f has a rational root.

A5. Find all functions f : R→ R that satisfy the conditions

f(1 + xy)− f(x+ y) = f(x)f(y) for all x, y ∈ R

and f(−1) 6= 0.

A6. Let f : N → N be a function, and let fm be f applied m times. Suppose that for
every n ∈ N there exists a k ∈ N such that f 2k(n) = n + k, and let kn be the smallest such k.
Prove that the sequence k1, k2, . . . is unbounded.

A7. We say that a function f : Rk → R is a metapolynomial if, for some positive integers m
and n, it can be represented in the form

f(x1, . . . , xk) = max
i=1,...,m

min
j=1,...,n

Pi,j(x1, . . . , xk)

where Pi,j are multivariate polynomials. Prove that the product of two metapolynomials is also
a metapolynomial.
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Combinatorics

C1. Several positive integers are written in a row. Iteratively, Alice chooses two adjacent
numbers x and y such that x > y and x is to the left of y, and replaces the pair (x, y) by either
(y + 1, x) or (x− 1, x). Prove that she can perform only finitely many such iterations.

C2. Let n ≥ 1 be an integer. What is the maximum number of disjoint pairs of elements of the
set {1, 2, . . . , n} such that the sums of the different pairs are different integers not exceeding n?

C3. In a 999× 999 square table some cells are white and the remaining ones are red. Let T
be the number of triples (C1, C2, C3) of cells, the first two in the same row and the last two in
the same column, with C1 and C3 white and C2 red. Find the maximum value T can attain.

C4. Players A and B play a game with N ≥ 2012 coins and 2012 boxes arranged around a
circle. Initially A distributes the coins among the boxes so that there is at least 1 coin in each
box. Then the two of them make moves in the order B,A,B,A, . . . by the following rules:

• On every move of his B passes 1 coin from every box to an adjacent box.

• On every move of hers A chooses several coins that were not involved in B’s previous
move and are in different boxes. She passes every chosen coin to an adjacent box.

Player A’s goal is to ensure at least 1 coin in each box after every move of hers, regardless of
how B plays and how many moves are made. Find the least N that enables her to succeed.

C5. The columns and the rows of a 3n× 3n square board are numbered 1, 2, . . . , 3n. Every
square (x, y) with 1 ≤ x, y ≤ 3n is colored asparagus, byzantium or citrine according as the
modulo 3 remainder of x+ y is 0, 1 or 2 respectively. One token colored asparagus, byzantium
or citrine is placed on each square, so that there are 3n2 tokens of each color.

Suppose that one can permute the tokens so that each token is moved to a distance of
at most d from its original position, each asparagus token replaces a byzantium token, each
byzantium token replaces a citrine token, and each citrine token replaces an asparagus token.
Prove that it is possible to permute the tokens so that each token is moved to a distance of at
most d+ 2 from its original position, and each square contains a token with the same color as
the square.

C6. Let k and n be fixed positive integers. In the liar’s guessing game, Amy chooses integers
x and N with 1 ≤ x ≤ N . She tells Ben what N is, but not what x is. Ben may then repeatedly
ask Amy whether x ∈ S for arbitrary sets S of integers. Amy will always answer with yes or no,
but she might lie. The only restriction is that she can lie at most k times in a row. After he
has asked as many questions as he wants, Ben must specify a set of at most n positive integers.
If x is in this set he wins; otherwise, he loses. Prove that:

a) If n ≥ 2k then Ben can always win.

b) For sufficiently large k there exist n ≥ 1.99k such that Ben cannot guarantee a win.

C7. There are given 2500 points on a circle labeled 1, 2, . . . , 2500 in some order. Prove that
one can choose 100 pairwise disjoint chords joining some of these points so that the 100 sums
of the pairs of numbers at the endpoints of the chosen chords are equal.
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Geometry

G1. In the triangle ABC the point J is the center of the excircle opposite to A. This excircle
is tangent to the side BC at M , and to the lines AB and AC at K and L respectively. The
lines LM and BJ meet at F , and the lines KM and CJ meet at G. Let S be the point of
intersection of the lines AF and BC, and let T be the point of intersection of the lines AG
and BC. Prove that M is the midpoint of ST .

G2. Let ABCD be a cyclic quadrilateral whose diagonals AC and BD meet at E. The
extensions of the sides AD and BC beyond A and B meet at F . Let G be the point such that
ECGD is a parallelogram, and let H be the image of E under reflection in AD. Prove that
D, H , F , G are concyclic.

G3. In an acute triangle ABC the points D, E and F are the feet of the altitudes through A,
B and C respectively. The incenters of the triangles AEF and BDF are I1 and I2 respectively;
the circumcenters of the triangles ACI1 and BCI2 are O1 and O2 respectively. Prove that I1I2
and O1O2 are parallel.

G4. Let ABC be a triangle with AB 6= AC and circumcenter O. The bisector of ∠BAC
intersects BC at D. Let E be the reflection of D with respect to the midpoint of BC. The lines
through D and E perpendicular to BC intersect the lines AO and AD at X and Y respectively.
Prove that the quadrilateral BXCY is cyclic.

G5. Let ABC be a triangle with ∠BCA = 90◦, and let C0 be the foot of the altitude
from C. Choose a point X in the interior of the segment CC0, and let K,L be the points on
the segments AX,BX for which BK = BC and AL = AC respectively. Denote by M the
intersection of AL and BK. Show that MK = ML.

G6. Let ABC be a triangle with circumcenter O and incenter I. The points D, E and F on
the sides BC, CA and AB respectively are such that BD + BF = CA and CD + CE = AB.
The circumcircles of the triangles BFD and CDE intersect at P 6= D. Prove that OP = OI.

G7. Let ABCD be a convex quadrilateral with non-parallel sides BC and AD. Assume
that there is a point E on the side BC such that the quadrilaterals ABED and AECD are
circumscribed. Prove that there is a point F on the side AD such that the quadrilaterals
ABCF and BCDF are circumscribed if and only if AB is parallel to CD.

G8. Let ABC be a triangle with circumcircle ω and ℓ a line without common points with ω.
Denote by P the foot of the perpendicular from the center of ω to ℓ. The side-lines BC,CA,AB
intersect ℓ at the points X, Y, Z different from P . Prove that the circumcircles of the triangles
AXP,BY P and CZP have a common point different from P or are mutually tangent at P .
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Number Theory

N1. Call admissible a set A of integers that has the following property:

If x, y ∈ A (possibly x = y) then x2 + kxy + y2 ∈ A for every integer k.

Determine all pairsm,n of nonzero integers such that the only admissible set containing bothm
and n is the set of all integers.

N2. Find all triples (x, y, z) of positive integers such that x ≤ y ≤ z and

x3(y3 + z3) = 2012(xyz + 2).

N3. Determine all integers m ≥ 2 such that every n with m
3
≤ n ≤ m

2
divides the binomial

coefficient
(

n
m−2n

)
.

N4. An integer a is called friendly if the equation (m2 + n)(n2 + m) = a(m − n)3 has a
solution over the positive integers.

a) Prove that there are at least 500 friendly integers in the set {1, 2, . . . , 2012}.

b) Decide whether a = 2 is friendly.

N5. For a nonnegative integer n define rad(n) = 1 if n = 0 or n = 1, and rad(n) = p1p2 · · · pk
where p1 < p2 < · · · < pk are all prime factors of n. Find all polynomials f(x) with nonnegative
integer coefficients such that rad(f(n)) divides rad(f(nrad(n))) for every nonnegative integer n.

N6. Let x and y be positive integers. If x2n − 1 is divisible by 2ny + 1 for every positive
integer n, prove that x = 1.

N7. Find all n ∈ N for which there exist nonnegative integers a1, a2, . . . , an such that

1

2a1
+

1

2a2
+ · · ·+

1

2an
=

1

3a1
+

2

3a2
+ · · ·+

n

3an
= 1.

N8. Prove that for every prime p > 100 and every integer r there exist two integers a and b
such that p divides a2 + b5 − r.
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Algebra

A1. Find all the functions f : Z→ Z such that

f(a)2 + f(b)2 + f(c)2 = 2f(a)f(b) + 2f(b)f(c) + 2f(c)f(a)

for all integers a, b, c satisfying a+ b+ c = 0.

Solution. The substitution a = b = c = 0 gives 3f(0)2 = 6f(0)2, hence

f(0) = 0. (1)

The substitution b = −a and c = 0 gives ((f(a)− f(−a))2 = 0. Hence f is an even function:

f(a) = f(−a) for all a ∈ Z. (2)

Now set b = a and c = −2a to obtain 2f(a)2 + f(2a)2 = 2f(a)2 + 4f(a)f(2a). Hence

f(2a) = 0 or f(2a) = 4f(a) for all a ∈ Z. (3)

If f(r) = 0 for some r ≥ 1 then the substitution b = r and c = −a−r gives (f(a+r)−f(a))2 = 0.
So f is periodic with period r, i. e.

f(a+ r) = f(a) for all a ∈ Z.

In particular, if f(1) = 0 then f is constant, thus f(a) = 0 for all a ∈ Z. This function clearly
satisfies the functional equation. For the rest of the analysis, we assume f(1) = k 6= 0.

By (3) we have f(2) = 0 or f(2) = 4k. If f(2) = 0 then f is periodic of period 2, thus
f(even) = 0 and f(odd) = k. This function is a solution for every k. We postpone the
verification; for the sequel assume f(2) = 4k 6= 0.

By (3) again, we have f(4) = 0 or f(4) = 16k. In the first case f is periodic of period 4, and
f(3) = f(−1) = f(1) = k, so we have f(4n) = 0, f(4n+1) = f(4n+3) = k, and f(4n+2) = 4k
for all n ∈ Z. This function is a solution too, which we justify later. For the rest of the analysis,
we assume f(4) = 16k 6= 0.

We show now that f(3) = 9k. In order to do so, we need two substitutions:

a = 1, b = 2, c = −3 =⇒ f(3)2 − 10kf(3) + 9k2 = 0 =⇒ f(3) ∈ {k, 9k},

a = 1, b = 3, c = −4 =⇒ f(3)2 − 34kf(3) + 225k2 = 0 =⇒ f(3) ∈ {9k, 25k}.

Therefore f(3) = 9k, as claimed. Now we prove inductively that the only remaining function is
f(x) = kx2, x ∈ Z. We proved this for x = 0, 1, 2, 3, 4. Assume that n ≥ 4 and that f(x) = kx2

holds for all integers x ∈ [0, n]. Then the substitutions a = n, b = 1, c = −n−1 and a = n−1,
b = 2, c = −n− 1 lead respectively to

f(n+ 1) ∈ {k(n+ 1)2, k(n− 1)2} and f(n+ 1) ∈ {k(n+ 1)2, k(n− 3)2}.

Since k(n − 1)2 6= k(n − 3)2 for n 6= 2, the only possibility is f(n + 1) = k(n + 1)2. This
completes the induction, so f(x) = kx2 for all x ≥ 0. The same expression is valid for negative
values of x since f is even. To verify that f(x) = kx2 is actually a solution, we need to check
the identity a4 + b4 + (a + b)4 = 2a2b2 + 2a2(a + b)2 + 2b2(a + b)2, which follows directly by
expanding both sides.
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Therefore the only possible solutions of the functional equation are the constant function
f1(x) = 0 and the following functions:

f2(x) = kx2 f3(x) =

{
0 x even
k x odd

f4(x) =





0 x ≡ 0 (mod 4)
k x ≡ 1 (mod 2)
4k x ≡ 2 (mod 4)

for any non-zero integer k. The verification that they are indeed solutions was done for the
first two. For f3 note that if a + b + c = 0 then either a, b, c are all even, in which case
f(a) = f(b) = f(c) = 0, or one of them is even and the other two are odd, so both sides of
the equation equal 2k2. For f4 we use similar parity considerations and the symmetry of the
equation, which reduces the verification to the triples (0, k, k), (4k, k, k), (0, 0, 0), (0, 4k, 4k).
They all satisfy the equation.

Comment. We used several times the same fact: For any a, b ∈ Z the functional equation is a
quadratic equation in f(a+ b) whose coefficients depend on f(a) and f(b):

f(a+ b)2 − 2(f(a) + f(b))f(a+ b) + (f(a)− f(b))2 = 0.

Its discriminant is 16f(a)f(b). Since this value has to be non-negative for any a, b ∈ Z, we conclude
that either f or −f is always non-negative. Also, if f is a solution of the functional equation, then
−f is also a solution. Therefore we can assume f(x) ≥ 0 for all x ∈ Z. Now, the two solutions of the
quadratic equation are

f(a+ b) ∈

{(√
f(a) +

√
f(b)

)2
,
(√

f(a)−
√

f(b)
)2

}
for all a, b ∈ Z.

The computation of f(3) from f(1), f(2) and f(4) that we did above follows immediately by setting
(a, b) = (1, 2) and (a, b) = (1,−4). The inductive step, where f(n+ 1) is derived from f(n), f(n− 1),
f(2) and f(1), follows immediately using (a, b) = (n, 1) and (a, b) = (n− 1, 2).
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A2. Let Z and Q be the sets of integers and rationals respectively.

a) Does there exist a partition of Z into three non-empty subsets A,B,C such that the sets
A +B, B + C, C + A are disjoint?

b) Does there exist a partition of Q into three non-empty subsets A,B,C such that the sets
A +B, B + C, C + A are disjoint?

Here X + Y denotes the set {x+ y | x ∈ X, y ∈ Y }, for X, Y ⊆ Z and X, Y ⊆ Q.

Solution 1. a) The residue classes modulo 3 yield such a partition:

A = {3k | k ∈ Z}, B = {3k + 1 | k ∈ Z}, C = {3k + 2 | k ∈ Z}.

b) The answer is no. Suppose that Q can be partitioned into non-empty subsets A,B,C as
stated. Note that for all a ∈ A, b ∈ B, c ∈ C one has

a+ b− c ∈ C, b+ c− a ∈ A, c+ a− b ∈ B. (1)

Indeed a+b−c /∈ A as (A+B)∩(A+C) = ∅, and similarly a+b−c /∈ B, hence a+b−c ∈ C. The
other two relations follow by symmetry. Hence A+B ⊂ C+C, B+C ⊂ A+A, C+A ⊂ B+B.

The opposite inclusions also hold. Let a, a′ ∈ A and b ∈ B, c ∈ C be arbitrary. By (1)
a′ + c− b ∈ B, and since a ∈ A, c ∈ C, we use (1) again to obtain

a+ a′ − b = a+ (a′ + c− b)− c ∈ C.

So A+ A ⊂ B + C and likewise B +B ⊂ C + A, C + C ⊂ A+B. In summary

B + C = A + A, C + A = B +B, A +B = C + C.

Furthermore suppose that 0 ∈ A without loss of generality. Then B = {0} + B ⊂ A + B
and C = {0}+C ⊂ A+C. So, since B+C is disjoint with A+B and A+C, it is also disjoint
with B and C. Hence B + C is contained in Z \ (B ∪ C) = A. Because B + C = A + A, we
obtain A+ A ⊂ A. On the other hand A = {0}+ A ⊂ A+ A, implying A = A+ A = B + C.

Therefore A+B+C = A+A+A = A, and now B+B = C +A and C +C = A+B yield
B+B+B = A+B+C = A, C+C+C = A+B+C = A. In particular if r ∈ Q = A∪B ∪C
is arbitrary then 3r ∈ A.

However such a conclusion is impossible. Take any b ∈ B (B 6= ∅) and let r = b/3 ∈ Q.
Then b = 3r ∈ A which is a contradiction.

Solution 2. We prove that the example for Z from the first solution is unique, and then use
this fact to solve part b).

Let Z = A∪B ∪C be a partition of Z with A,B,C 6= ∅ and A+B, B +C, C +A disjoint.
We need the relations (1) which clearly hold for Z. Fix two consecutive integers from different
sets, say b ∈ B and c = b+1 ∈ C. For every a ∈ A we have, in view of (1), a−1 = a+b−c ∈ C
and a+ 1 = a+ c− b ∈ B. So every a ∈ A is preceded by a number from C and followed by a
number from B.

In particular there are pairs of the form c, c+ 1 with c ∈ C, c+ 1 ∈ A. For such a pair and
any b ∈ B analogous reasoning shows that each b ∈ B is preceded by a number from A and
followed by a number from C. There are also pairs b, b−1 with b ∈ B, b−1 ∈ A. We use them
in a similar way to prove that each c ∈ C is preceded by a number from B and followed by a
number from A.

By putting the observations together we infer that A,B,C are the three congruence classes
modulo 3. Observe that all multiples of 3 are in the set of the partition that contains 0.
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Now we turn to part b). Suppose that there is a partition of Q with the given properties.
Choose three rationals ri = pi/qi from the three sets A,B,C, i = 1, 2, 3, and set N = 3q1q2q3.

Let S ⊂ Q be the set of fractions with denominators N (irreducible or not). It is obtained
through multiplication of every integer by the constant 1/N , hence closed under sums and
differences. Moreover, if we identify each k ∈ Z with k/N ∈ S then S is essentially the set Z
with respect to addition. The numbers ri belong to S because

r1 =
3p1q2q3

N
, r2 =

3p2q3q1
N

, r3 =
3p3q1q2

N
.

The partition Q = A∪B ∪C of Q induces a partition S = A′ ∪B′ ∪C ′ of S, with A′ = A∩ S,
B′ = B ∩ S, C ′ = C ∩ S. Clearly A′ + B′, B′ + C ′, C ′ + A′ are disjoint, so this partition has
the properties we consider.

By the uniqueness of the example for Z the sets A′, B′, C ′ are the congruence classes mod-
ulo 3, multiplied by 1/N . Also all multiples of 3/N are in the same set, A′, B′ or C ′. This holds
for r1, r2, r3 in particular as they are all multiples of 3/N . However r1, r2, r3 are in different sets
A′, B′, C ′ since they were chosen from different sets A,B,C. The contradiction ends the proof.

Comment. The uniqueness of the example for Z can also be deduced from the argument in the first
solution.
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A3. Let a2, . . . , an be n − 1 positive real numbers, where n ≥ 3, such that a2a3 · · ·an = 1.
Prove that

(1 + a2)
2(1 + a3)

3 · · · (1 + an)
n > nn.

Solution. The substitution a2 =
x2

x1

, a3 =
x3

x2

, . . . , an =
x1

xn−1

transforms the original problem

into the inequality

(x1 + x2)
2(x2 + x3)

3 · · · (xn−1 + x1)
n > nnx2

1x
3
2 · · ·x

n
n−1 (∗)

for all x1, . . . , xn−1 > 0. To prove this, we use the AM-GM inequality for each factor of the
left-hand side as follows:

(x1 + x2)
2 ≥ 22x1x2

(x2 + x3)
3 =

(
2
(
x2

2

)
+ x3

)3
≥ 33

(
x2

2

)2
x3

(x3 + x4)
4 =

(
3
(
x3

3

)
+ x4

)4
≥ 44

(
x3

3

)3
x4

...
...

...

(xn−1 + x1)
n =

(
(n− 1)

(
xn−1

n−1

)
+ x1

)n
≥ nn

(
xn−1

n−1

)n−1
x1.

Multiplying these inequalities together gives (*), with inequality sign ≥ instead of >. However
for the equality to occur it is necessary that x1 = x2, x2 = 2x3, . . . , xn−1 = (n− 1)x1, implying
x1 = (n− 1)!x1. This is impossible since x1 > 0 and n ≥ 3. Therefore the inequality is strict.

Comment. One can avoid the substitution ai = xi/xi−1. Apply the weighted AM-GM inequality to
each factor (1 + ak)

k, with the same weights like above, to obtain

(1 + ak)
k =

(
(k − 1)

1

k − 1
+ ak

)k

≥
kk

(k − 1)k−1
ak.

Multiplying all these inequalities together gives

(1 + a2)
2(1 + a3)

3 · · · (1 + an)
n ≥ nna2a3 · · · an = nn.

The same argument as in the proof above shows that the equality cannot be attained.
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A4. Let f and g be two nonzero polynomials with integer coefficients and deg f > deg g.
Suppose that for infinitely many primes p the polynomial pf + g has a rational root. Prove
that f has a rational root.

Solution 1. Since deg f > deg g, we have |g(x)/f(x)| < 1 for sufficiently large x; more
precisely, there is a real number R such that |g(x)/f(x)| < 1 for all x with |x| > R. Then for
all such x and all primes p we have

∣∣pf(x) + g(x)
∣∣ ≥

∣∣f(x)
∣∣
(
p−

|g(x)|

|f(x)|

)
> 0.

Hence all real roots of the polynomials pf + g lie in the interval [−R,R].

Let f(x) = anx
n + an−1x

n−1 + · · · + a0 and g(x) = bmx
m + bm−1x

m−1 + · · · + b0 where
n > m, an 6= 0 and bm 6= 0. Upon replacing f(x) and g(x) by an−1n f(x/an) and an−1n g(x/an)
respectively, we reduce the problem to the case an = 1. In other words one can assume that f
is monic. Then the leading coefficient of pf + g is p, and if r = u/v is a rational root of pf + g
with (u, v) = 1 and v > 0, then either v = 1 or v = p.

First consider the case when v = 1 infinitely many times. If v = 1 then |u| ≤ R, so there
are only finitely many possibilities for the integer u. Therefore there exist distinct primes p
and q for which we have the same value of u. Then the polynomials pf + g and qf + g share
this root, implying f(u) = g(u) = 0. So in this case f and g have an integer root in common.

Now suppose that v = p infinitely many times. By comparing the exponent of p in the
denominators of pf(u/p) and g(u/p) we get m = n − 1 and pf(u/p) + g(u/p) = 0 reduces to
an equation of the form

(
un + an−1pu

n−1 + . . .+ a0p
n
)
+

(
bn−1u

n−1 + bn−2pu
n−2 + . . .+ b0p

n−1
)
= 0.

The equation above implies that un + bn−1u
n−1 is divisible by p and hence, since (u, p) = 1,

we have u + bn−1 = pk with some integer k. On the other hand all roots of pf + g lie in the
interval [−R,R], so that

|pk − bn−1|

p
=
|u|

p
< R,

|k| < R +
|bn−1|

p
< R + |bn−1|.

Therefore the integer k can attain only finitely many values. Hence there exists an integer k
such that the number pk−bn−1

p
= k − bn−1

p
is a root of pf + g for infinitely many primes p. For

these primes we have

f

(
k − bn−1

1

p

)
+

1

p
g

(
k − bn−1

1

p

)
= 0.

So the equation

f (k − bn−1x) + xg (k − bn−1x) = 0 (1)

has infinitely many solutions of the form x = 1/p. Since the left-hand side is a polynomial, this
implies that (1) is a polynomial identity, so it holds for all real x. In particular, by substituting
x = 0 in (1) we get f(k) = 0. Thus the integer k is a root of f .

In summary the monic polynomial f obtained after the initial reduction always has an
integer root. Therefore the original polynomial f has a rational root.
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Solution 2. Analogously to the first solution, there exists a real number R such that the
complex roots of all polynomials of the form pf + g lie in the disk |z| ≤ R.

For each prime p such that pf + g has a rational root, by Gauss’ lemma pf + g is the
product of two integer polynomials, one with degree 1 and the other with degree deg f − 1.
Since p is a prime, the leading coefficient of one of these factors divides the leading coefficient
of f . Denote that factor by hp.

By narrowing the set of the primes used we can assume that all polynomials hp have the
same degree and the same leading coefficient. Their complex roots lie in the disk |z| ≤ R, hence
Vieta’s formulae imply that all coefficients of all polynomials hp form a bounded set. Since
these coefficients are integers, there are only finitely many possible polynomials hp. Hence there
is a polynomial h such that hp = h for infinitely many primes p.

Finally, if p and q are distinct primes with hp = hq = h then h divides (p − q)f . Since
deg h = 1 or deg h = deg f − 1, in both cases f has a rational root.

Comment. Clearly the polynomial h is a common factor of f and g. If degh = 1 then f and g share a
rational root. Otherwise degh = deg f − 1 forces deg g = deg f − 1 and g divides f over the rationals.

Solution 3. Like in the first solution, there is a real number R such that the real roots of all
polynomials of the form pf + g lie in the interval [−R,R].

Let p1 < p2 < · · · be an infinite sequence of primes so that for every index k the polynomial
pkf + g has a rational root rk. The sequence r1, r2, . . . is bounded, so it has a convergent
subsequence rk1 , rk2, . . .. Now replace the sequences (p1, p2, . . . ) and (r1, r2, . . . ) by (pk1, pk2, . . .)
and (rk1 , rk2, . . .); after this we can assume that the sequence r1, r2, . . . is convergent. Let
α = lim

k→∞
rk. We show that α is a rational root of f .

Over the interval [−R,R], the polynomial g is bounded, |g(x)| ≤ M with some fixed M .
Therefore

|f(rk)| =

∣∣∣∣f(rk)−
pkf(rk) + g(rk)

pk

∣∣∣∣ =
|g(rk)|

pk
≤

M

pk
→ 0,

and
f(α) = f

(
lim
k→∞

rk

)
= lim

k→∞
f(rk) = 0.

So α is a root of f indeed.

Now let uk, vk be relative prime integers for which rk = uk

vk
. Let a be the leading coefficient

of f , let b = f(0) and c = g(0) be the constant terms of f and g, respectively. The leading
coefficient of the polynomial pkf + g is pka, its constant term is pkb+ c. So vk divides pka and
uk divides pkb+ c. Let pkb+ c = ukek (if pkb+ c = uk = 0 then let ek = 1).

We prove that α is rational by using the following fact. Let (pn) and (qn) be sequences of

integers such that the sequence (pn/qn) converges. If (pn) or (qn) is bounded then lim(pn/qn) is
rational .

Case 1: There is an infinite subsequence (kn) of indices such that vkn divides a. Then (vkn)
is bounded, so α = limn→∞(ukn/vkn) is rational.

Case 2: There is an infinite subsequence (kn) of indices such that vkn does not divide a.
For such indices we have vkn = pkndkn where dkn is a divisor of a. Then

α = lim
n→∞

ukn

vkn
= lim

n→∞

pknb+ c

pkndknekn
= lim

n→∞

b

dknekn
+ lim

n→∞

c

pkndknekn
= lim

n→∞

b

dknekn
.

Because the numerator b in the last limit is bounded, α is rational.
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A5. Find all functions f : R→ R that satisfy the conditions

f(1 + xy)− f(x+ y) = f(x)f(y) for all x, y ∈ R

and f(−1) 6= 0.

Solution. The only solution is the function f(x) = x− 1, x ∈ R.
We set g(x) = f(x) + 1 and show that g(x) = x for all real x. The conditions take the form

g(1 + xy)− g(x+ y) =
(
g(x)− 1

)(
g(y)− 1

)
for all x, y ∈ R and g(−1) 6= 1. (1)

Denote C = g(−1)− 1 6= 0. Setting y = −1 in (1) gives

g(1− x)− g(x− 1) = C(g(x)− 1). (2)

Set x = 1 in (2) to obtain C(g(1)− 1) = 0. Hence g(1) = 1 as C 6= 0. Now plugging in x = 0
and x = 2 yields g(0) = 0 and g(2) = 2 respectively.

We pass on to the key observations

g(x) + g(2− x) = 2 for all x ∈ R, (3)

g(x+ 2)− g(x) = 2 for all x ∈ R. (4)

Replace x by 1 − x in (2), then change x to −x in the resulting equation. We obtain the
relations g(x)− g(−x) = C(g(1− x)− 1), g(−x)− g(x) = C(g(1 + x)− 1). Then adding them
up leads to C(g(1− x) + g(1 + x)− 2) = 0. Thus C 6= 0 implies (3).

Let u, v be such that u+ v = 1. Apply (1) to the pairs (u, v) and (2− u, 2− v):

g(1 + uv)− g(1) =
(
g(u)− 1

)(
g(v)− 1

)
, g(3 + uv)− g(3) =

(
g(2− u)− 1

)(
g(2− v)− 1

)
.

Observe that the last two equations have equal right-hand sides by (3). Hence u+v = 1 implies

g(uv + 3)− g(uv + 1) = g(3)− g(1).

Each x ≤ 5/4 is expressible in the form x = uv + 1 with u + v = 1 (the quadratic function
t2−t+(x−1) has real roots for x ≤ 5/4). Hence g(x+2)−g(x) = g(3)−g(1) whenever x ≤ 5/4.
Because g(x) = x holds for x = 0, 1, 2, setting x = 0 yields g(3) = 3. This proves (4) for x ≤ 5/4.
If x > 5/4 then −x < 5/4 and so g(2 − x) − g(−x) = 2 by the above. On the other hand (3)
gives g(x) = 2−g(2−x), g(x+2) = 2−g(−x), so that g(x+2)−g(x) = g(2−x)−g(−x) = 2.
Thus (4) is true for all x ∈ R.

Now replace x by −x in (3) to obtain g(−x) + g(2 + x) = 2. In view of (4) this leads to
g(x) + g(−x) = 0, i. e. g(−x) = −g(x) for all x. Taking this into account, we apply (1) to the
pairs (−x, y) and (x,−y):

g(1− xy)− g(−x+ y) =
(
g(x) + 1

)(
1− g(y)

)
, g(1− xy)− g(x− y) =

(
1− g(x)

)(
g(y) + 1

)
.

Adding up yields g(1 − xy) = 1 − g(x)g(y). Then g(1 + xy) = 1 + g(x)g(y) by (3). Now the
original equation (1) takes the form g(x+ y) = g(x) + g(y). Hence g is additive.

By additvity g(1 + xy) = g(1) + g(xy) = 1 + g(xy); since g(1 + xy) = 1 + g(x)g(y) was
shown above, we also have g(xy) = g(x)g(y) (g is multiplicative). In particular y = x gives
g(x2) = g(x)2 ≥ 0 for all x, meaning that g(x) ≥ 0 for x ≥ 0. Since g is additive and bounded
from below on [0,+∞), it is linear; more exactly g(x) = g(1)x = x for all x ∈ R.

In summary f(x) = x − 1, x ∈ R. It is straightforward that this function satisfies the
requirements.

Comment. There are functions that satisfy the given equation but vanish at −1, for instance the
constant function 0 and f(x) = x2 − 1, x ∈ R.
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A6. Let f : N → N be a function, and let fm be f applied m times. Suppose that for
every n ∈ N there exists a k ∈ N such that f 2k(n) = n + k, and let kn be the smallest such k.
Prove that the sequence k1, k2, . . . is unbounded.

Solution. We restrict attention to the set

S = {1, f(1), f 2(1), . . .}.

Observe that S is unbounded because for every number n in S there exists a k > 0 such
that f 2k(n) = n+ k is in S. Clearly f maps S into itself; moreover f is injective on S. Indeed
if f i(1) = f j(1) with i 6= j then the values fm(1) start repeating periodically from some point
on, and S would be finite.

Define g : S → S by g(n) = f 2kn(n) = n + kn. We prove that g is injective too. Suppose
that g(a) = g(b) with a < b. Then a + ka = f 2ka(a) = f 2kb(b) = b + kb implies ka > kb. So,
since f is injective on S, we obtain

f 2(ka−kb)(a) = b = a + (ka − kb).

However this contradicts the minimality of ka as 0 < ka − kb < ka.
Let T be the set of elements of S that are not of the form g(n) with n ∈ S. Note that 1 ∈ T

by g(n) > n for n ∈ S, so T is non-empty. For each t ∈ T denote Ct = {t, g(t), g2(t), . . .};
call Ct the chain starting at t. Observe that distinct chains are disjoint because g is injective.
Each n ∈ S\T has the form n = g(n′) with n′ < n, n′ ∈ S. Repeated applications of the same
observation show that n ∈ Ct for some t ∈ T , i. e. S is the disjoint union of the chains Ct.

If fn(1) is in the chain Ct starting at t = fnt(1) then n = nt + 2a1 + · · ·+ 2aj with

fn(1) = gj(fnt(1)) = f 2aj (f 2aj−1(· · · f 2a1(fnt(1)))) = fnt(1) + a1 + · · ·+ aj .

Hence

fn(1) = fnt(1) +
n− nt

2
= t+

n− nt

2
. (1)

Now we show that T is infinite. We argue by contradiction. Suppose that there are only
finitely many chains Ct1 , . . . , Ctr , starting at t1 < · · · < tr. Fix N . If fn(1) with 1 ≤ n ≤ N
is in Ct then fn(1) = t + n−nt

2
≤ tr +

N
2
by (1). But then the N + 1 distinct natural numbers

1, f(1), . . . , fN(1) are all less than tr +
N
2
and hence N + 1 ≤ tr +

N
2
. This is a contradiction if

N is sufficiently large, and hence T is infinite.
To complete the argument, choose any k in N and consider the k + 1 chains starting at the

first k + 1 numbers in T . Let t be the greatest one among these numbers. Then each of the
chains in question contains a number not exceeding t, and at least one of them does not contain
any number among t+1, . . . , t+k. So there is a number n in this chain such that g(n)−n > k,
i. e. kn > k. In conclusion k1, k2, . . . is unbounded.
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A7. We say that a function f : Rk → R is a metapolynomial if, for some positive integers m
and n, it can be represented in the form

f(x1, . . . , xk) = max
i=1,...,m

min
j=1,...,n

Pi,j(x1, . . . , xk)

where Pi,j are multivariate polynomials. Prove that the product of two metapolynomials is also
a metapolynomial.

Solution.We use the notation f(x) = f(x1, . . . , xk) for x = (x1, . . . , xk) and [m] = {1, 2, . . . , m}.
Observe that if a metapolynomial f(x) admits a representation like the one in the statement
for certain positive integers m and n, then they can be replaced by any m′ ≥ m and n′ ≥ n. For
instance, if we want to replace m by m+1 then it is enough to define Pm+1,j(x) = Pm,j(x) and
note that repeating elements of a set do not change its maximum nor its minimum. So one can
assume that any two metapolynomials are defined with the same m and n. We reserve letters
P and Q for polynomials, so every function called P, Pi,j, Q,Qi,j, . . . is a polynomial function.

We start with a lemma that is useful to change expressions of the form minmax fi,j to ones
of the form maxmin gi,j.

Lemma. Let {ai,j} be real numbers, for all i ∈ [m] and j ∈ [n]. Then

min
i∈[m]

max
j∈[n]

ai,j = max
j1,...,jm∈[n]

min
i∈[m]

ai,ji,

where the max in the right-hand side is over all vectors (j1, . . . , jm) with j1, . . . , jm ∈ [n].

Proof. We can assume for all i that ai,n = max{ai,1, . . . , ai,n} and am,n = min{a1,n, . . . , am,n}.
The left-hand side is = am,n and hence we need to prove the same for the right-hand side.
If (j1, j2, . . . , jm) = (n, n, . . . , n) then min{a1,j1, . . . , am,jm} = min{a1,n, . . . , am,n} = am,n which
implies that the right-hand side is ≥ am,n. It remains to prove the opposite inequality and
this is equivalent to min{a1,j1, . . . , am,jm} ≤ am,n for all possible (j1, j2, . . . , jm). This is true
because min{a1,j1, . . . , am,jm} ≤ am,jm ≤ am,n. �

We need to show that the familyM of metapolynomials is closed under multiplication, but
it turns out easier to prove more: that it is also closed under addition, maxima and minima.

First we prove the assertions about the maxima and the minima. If f1, . . . , fr are metapoly-
nomials, assume them defined with the same m and n. Then

f = max{f1, . . . , fr} = max{max
i∈[m]

min
j∈[n]

P 1
i,j, . . . ,max

i∈[m]
min
j∈[n]

P r
i,j} = max

s∈[r],i∈[m]
min
j∈[n]

P s
i,j.

It follows that f = max{f1, . . . , fr} is a metapolynomial. The same argument works for the
minima, but first we have to replace min max by max min, and this is done via the lemma.

Another property we need is that if f = maxminPi,j is a metapolynomial then so is −f .
Indeed, −f = min(−minPi,j) = minmaxPi,j.

To prove M is closed under addition let f = maxminPi,j and g = maxminQi,j. Then

f(x) + g(x) = max
i∈[m]

min
j∈[n]

Pi,j(x) + max
i∈[m]

min
j∈[n]

Qi,j(x)

= max
i1,i2∈[m]

(min
j∈[n]

Pi1,j(x) + min
j∈[n]

Qi2,j(x)) = max
i1,i2∈[m]

min
j1,j2∈[n]

(
Pi1,j1(x) +Qi2,j2(x)

)
,

and hence f(x) + g(x) is a metapolynomial.
We proved that M is closed under sums, maxima and minima, in particular any function

that can be expressed by sums, max, min, polynomials or even metapolynomials is in M.
We would like to proceed with multiplication along the same lines like with addition, but

there is an essential difference. In general the product of the maxima of two sets is not equal
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to the maximum of the product of the sets. We need to deal with the fact that a < b and c < d
do not imply ac < bd. However this is true for a, b, c, d ≥ 0.

In view of this we decompose each function f(x) into its positive part f+(x) = max{f(x), 0}
and its negative part f−(x) = max{0,−f(x)}. Note that f = f+ − f− and f+, f− ∈ M if
f ∈ M. The whole problem reduces to the claim that if f and g are metapolynomials with
f, g ≥ 0 then fg it is also a metapolynomial.

Assuming this claim, consider arbitrary f, g ∈M. We have

fg = (f+ − f−)(g+ − g−) = f+g+ − f+g− − f−g+ + f−g−,

and hence fg ∈ M. Indeed, M is closed under addition, also f+g+, f+g−, f−g+, f−g− ∈ M
because f+, f−, g+, g− ≥ 0.

It remains to prove the claim. In this case f, g ≥ 0, and one can try to repeat the argument
for the sum. More precisely, let f = maxminPij ≥ 0 and g = maxminQij ≥ 0. Then

fg = maxminPi,j ·maxminQi,j = maxminP+
i,j ·maxminQ+

i,j = maxminP+
i1,j1

·Q+
i2,j2

.

Hence it suffices to check that P+Q+ ∈M for any pair of polynomials P and Q. This reduces
to the identity

u+v+ = max{0,min{uv, u, v},min{uv, uv2, u2v},min{uv, u, u2v},min{uv, uv2, v}},

with u replaced by P (x) and v replaced by Q(x). The formula is proved by a case-by-case
analysis. If u ≤ 0 or v ≤ 0 then both sides equal 0. In case u, v ≥ 0, the right-hand side is
clearly ≤ uv. To prove the opposite inequality we use that uv equals

min{uv, u, v} if 0 ≤ u, v ≤ 1,
min{uv, uv2, u2v} if 1 ≤ u, v,
min{uv, u, u2v} if 0 ≤ v ≤ 1 ≤ u,
min{uv, uv2, v} if 0 ≤ u ≤ 1 ≤ v.

Comment. The case k = 1 is simpler and can be solved by proving that a function f : R → R is a
metapolynomial if and only if it is a piecewise polinomial (and continuos) function.

It is enough to prove that all such functions are metapolynomials, and this easily reduces to the
following case. Given a polynomial P (x) with P (0) = 0, the function f defined by f(x) = P (x) for
x ≥ 0 and 0 otherwise is a metapolynomial. For this last claim, it suffices to prove that (x+)n is a
metapolynomial, and this follows from the formula (x+)n = max{0,min{xn−1, xn},min{xn, xn+1}}.
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Combinatorics

C1. Several positive integers are written in a row. Iteratively, Alice chooses two adjacent
numbers x and y such that x > y and x is to the left of y, and replaces the pair (x, y) by either
(y + 1, x) or (x− 1, x). Prove that she can perform only finitely many such iterations.

Solution 1. Note first that the allowed operation does not change the maximum M of the
initial sequence. Let a1, a2, . . . , an be the numbers obtained at some point of the process.
Consider the sum

S = a1 + 2a2 + · · ·+ nan.

We claim that S increases by a positive integer amount with every operation. Let the operation
replace the pair (ai, ai+1) by a pair (c, ai), where ai > ai+1 and c = ai+1+1 or c = ai−1. Then the
new and the old value of S differ by d = (ic+(i+1)ai)−(iai+(i+1)ai+1) = ai−ai+1+i(c−ai+1).
The integer d is positive since ai − ai+1 ≥ 1 and c− ai+1 ≥ 0.

On the other hand S ≤ (1 + 2+ · · ·+ n)M as ai ≤M for all i = 1, . . . , n. Since S increases
by at least 1 at each step and never exceeds the constant (1 + 2+ · · ·+n)M , the process stops
after a finite number of iterations.

Solution 2. Like in the first solution note that the operations do not change the maximum M
of the initial sequence. Now consider the reverse lexicographical order for n-tuples of integers.
We say that (x1, . . . , xn) < (y1, . . . , yn) if xn < yn, or if xn = yn and xn−1 < yn−1, or if xn = yn,
xn−1 = yn−1 and xn−2 < yn−2, etc. Each iteration creates a sequence that is greater than
the previous one with respect to this order, and no sequence occurs twice during the process.
On the other hand there are finitely many possible sequences because their terms are always
positive integers not exceeding M . Hence the process cannot continue forever.

Solution 3. Let the current numbers be a1, a2, . . . , an. Define the score si of ai as the number
of aj ’s that are less than ai. Call the sequence s1, s2, . . . , sn the score sequence of a1, a2, . . . , an.

Let us say that a sequence x1, . . . , xn dominates a sequence y1, . . . , yn if the first index i
with xi 6= yi is such that xi < yi. We show that after each operation the new score sequence
dominates the old one. Score sequences do not repeat, and there are finitely many possibilities
for them, no more than (n− 1)n. Hence the process will terminate.

Consider an operation that replaces (x, y) by (a, x), with a = y + 1 or a = x− 1. Suppose
that x was originally at position i. For each j < i the score sj does not increase with the
change because y ≤ a and x ≤ x. If sj decreases for some j < i then the new score sequence
dominates the old one. Assume that sj stays the same for all j < i and consider si. Since x > y
and y ≤ a ≤ x, we see that si decreases by at least 1. This concludes the proof.

Comment. All three proofs work if x and y are not necessarily adjacent, and if the pair (x, y) is
replaced by any pair (a, x), with a an integer satisfying y ≤ a ≤ x. There is nothing special about
the “weights” 1, 2, . . . , n in the definition of S =

∑n
i=1 iai from the first solution. For any sequence

w1 < w2 < · · · < wn of positive integers, the sum
∑n

i=1 wiai increases by at least 1 with each operation.
Consider the same problem, but letting Alice replace the pair (x, y) by (a, x), where a is any positive

integer less than x. The same conclusion holds in this version, i. e. the process stops eventually. The
solution using the reverse lexicographical order works without any change. The first solution would
require a special set of weights like wi = M i for i = 1, . . . , n.

Comment. The first and the second solutions provide upper bounds for the number of possible
operations, respectively of order Mn2 and Mn where M is the maximum of the original sequence.
The upper bound (n− 1)n in the third solution does not depend on M .
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C2. Let n ≥ 1 be an integer. What is the maximum number of disjoint pairs of elements of the
set {1, 2, . . . , n} such that the sums of the different pairs are different integers not exceeding n?

Solution. Consider x such pairs in {1, 2, . . . , n}. The sum S of the 2x numbers in them is at
least 1+2+· · ·+2x since the pairs are disjoint. On the other hand S ≤ n+(n−1)+· · ·+(n−x+1)
because the sums of the pairs are different and do not exceed n. This gives the inequality

2x(2x+ 1)

2
≤ nx−

x(x− 1)

2
,

which leads to x ≤ 2n−1
5

. Hence there are at most
⌊
2n−1

5

⌋
pairs with the given properties.

We show a construction with exactly
⌊
2n−1
5

⌋
pairs. First consider the case n = 5k + 3 with

k ≥ 0, where
⌊
2n−1
5

⌋
= 2k + 1. The pairs are displayed in the following table.

Pairs
3k + 1 3k · · · 2k + 2 4k + 2 4k + 1 · · · 3k + 3 3k + 2

2 4 · · · 2k 1 3 · · · 2k − 1 2k + 1
Sums 3k + 3 3k + 4 · · · 4k + 2 4k + 3 4k + 4 · · · 5k + 2 5k + 3

The 2k+1 pairs involve all numbers from 1 to 4k+2; their sums are all numbers from 3k+3
to 5k + 3. The same construction works for n = 5k + 4 and n = 5k + 5 with k ≥ 0. In these
cases the required number

⌊
2n−1

5

⌋
of pairs equals 2k + 1 again, and the numbers in the table

do not exceed 5k + 3. In the case n = 5k + 2 with k ≥ 0 one needs only 2k pairs. They can
be obtained by ignoring the last column of the table (thus removing 5k + 3). Finally, 2k pairs
are also needed for the case n = 5k + 1 with k ≥ 0. Now it suffices to ignore the last column
of the table and then subtract 1 from each number in the first row.

Comment. The construction above is not unique. For instance, the following table shows another
set of 2k + 1 pairs for the cases n = 5k + 3, n = 5k + 4, and n = 5k + 5.

Pairs
1 2 · · · k k + 1 k + 2 · · · 2k + 1

4k + 1 4k − 1 · · · 2k + 3 4k + 2 4k · · · 2k + 2

Sums 4k + 2 4k + 1 · · · 3k + 3 5k + 3 5k + 2 · · · 4k + 3

The table for the case n = 5k + 2 would be the same, with the pair (k + 1, 4k + 2) removed. For the
case n = 5k + 1 remove the last column and subtract 2 from each number in the second row.
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C3. In a 999× 999 square table some cells are white and the remaining ones are red. Let T
be the number of triples (C1, C2, C3) of cells, the first two in the same row and the last two in
the same column, with C1 and C3 white and C2 red. Find the maximum value T can attain.

Solution. We prove that in an n× n square table there are at most 4n4

27
such triples.

Let row i and column j contain ai and bj white cells respectively, and let R be the set of
red cells. For every red cell (i, j) there are aibj admissible triples (C1, C2, C3) with C2 = (i, j),
therefore

T =
∑

(i,j)∈R

aibj .

We use the inequality 2ab ≤ a2 + b2 to obtain

T ≤
1

2

∑

(i,j)∈R

(a2i + b2j ) =
1

2

n∑

i=1

(n− ai)a
2
i +

1

2

n∑

j=1

(n− bj)b
2
j .

This is because there are n − ai red cells in row i and n − bj red cells in column j. Now we
maximize the right-hand side.

By the AM-GM inequality we have

(n− x)x2 =
1

2
(2n− 2x) · x · x ≤

1

2

(
2n

3

)3

=
4n3

27
,

with equality if and only if x = 2n
3
. By putting everything together, we get

T ≤
n

2

4n3

27
+

n

2

4n3

27
=

4n4

27
.

If n = 999 then any coloring of the square table with x = 2n
3
= 666 white cells in each row

and column attains the maximum as all inequalities in the previous argument become equalities.
For example color a cell (i, j) white if i− j ≡ 1, 2, . . . , 666 (mod 999), and red otherwise.

Therefore the maximum value T can attain is T = 4·9994

27
.

Comment. One can obtain a better preliminary estimate with the Cauchy-Schwarz inequality:

T =
∑

(i,j)∈R

aibj ≤


 ∑

(i,j)∈R

a2i




1

2

·


 ∑

(i,j)∈R

b2j




1

2

=

(

n
∑

i=1

(n− ai)a
2
i

)
1

2

·





n
∑

j=1

(n− bj)b
2
j





1

2

.

It can be used to reach the same conclusion.
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C4. Players A and B play a game with N ≥ 2012 coins and 2012 boxes arranged around a
circle. Initially A distributes the coins among the boxes so that there is at least 1 coin in each
box. Then the two of them make moves in the order B,A,B,A, . . . by the following rules:

• On every move of his B passes 1 coin from every box to an adjacent box.

• On every move of hers A chooses several coins that were not involved in B’s previous
move and are in different boxes. She passes every chosen coin to an adjacent box.

Player A’s goal is to ensure at least 1 coin in each box after every move of hers, regardless of
how B plays and how many moves are made. Find the least N that enables her to succeed.

Solution. We argue for a general n ≥ 7 instead of 2012 and prove that the required minimum N
is 2n− 2. For n = 2012 this gives Nmin = 4022.

a) If N = 2n − 2 player A can achieve her goal. Let her start the game with a regular

distribution: n− 2 boxes with 2 coins and 2 boxes with 1 coin. Call the boxes of the two kinds
red and white respectively. We claim that on her first move A can achieve a regular distribution
again, regardless of B’s first move M . She acts according as the following situation S occurs
after M or not: The initial distribution contains a red box R with 2 white neighbors, and R
receives no coins from them on move M .

Suppose that S does not occur. Exactly one of the coins c1 and c2 in a given red box X
is involved in M , say c1. If M passes c1 to the right neighbor of X , let A pass c2 to its left
neighbor, and vice versa. By doing so with all red boxes A performs a legal move M ′. Thus
M and M ′ combined move the 2 coins of every red box in opposite directions. Hence after M
and M ′ are complete each neighbor of a red box X contains exactly 1 coin that was initially
in X . So each box with a red neighbor is non-empty after M ′. If initially there is a box X
with 2 white neighbors (X is red and unique) then X receives a coin from at least one of them
on move M since S does not occur. Such a coin is not involved in M ′, so X is also non-empty
after M ′. Furthermore each box Y has given away its initial content after M and M ′. A red
neighbor of Y adds 1 coin to it; a white neighbor adds at most 1 coin because it is not involved
in M ′. Hence each box contains 1 or 2 coins after M ′. Because N = 2n−2, such a distribution
is regular.

Now let S occur after move M . Then A leaves untouched the exceptional red box R. With
all remaining red boxes she proceeds like in the previous case, thus making a legal move M ′′.
Box R receives no coins from its neighbors on either move, so there is 1 coin in it after M ′′.
Like above M and M ′′ combined pass exactly 1 coin from every red box different from R to
each of its neighbors. Every box except R has a red neighbor different from R, hence all boxes
are non-empty after M ′′. Next, each box Y except R loses its initial content after M and M ′′.
A red neighbor of Y adds at most 1 coin to it; a white neighbor also adds at most 1 coin as
it does not participate in M ′′. Thus each box has 1 or 2 coins after M ′′, and the obtained
distribution is regular.

Player A can apply the described strategy indefinitely, so N = 2n−2 enables her to succeed.

b) For N ≤ 2n − 3 player B can achieve an empty box after some move of A. Let α be a
set of ℓ consecutive boxes containing a total of N(α) coins. We call α an arc if ℓ ≤ n− 2 and
N(α) ≤ 2ℓ − 3. Note that ℓ ≥ 2 by the last condition. Moreover if both extremes of α are
non-empty boxes then N(α) ≥ 2, so that N(α) ≤ 2ℓ − 3 implies ℓ ≥ 3. Observe also that if
an extreme X of α has more than 1 coin then ignoring X yields a shorter arc. It follows that
every arc contains an arc whose extremes have at most 1 coin each.

Given a clockwise labeling 1, 2, . . . , n of the boxes, suppose that boxes 1, 2, . . . , ℓ form an
arc α, with ℓ ≤ n − 2 and N(α) ≤ 2ℓ − 3. Suppose also that all n ≥ 7 boxes are non-empty.
Then B can move so that an arc α′ with N(α′) < N(α) will appear after any response of A.
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One may assume exactly 1 coin in boxes 1 and ℓ by a previous remark. Let B pass 1 coin
in counterclockwise direction from box 1 and box n, and in clockwise direction from each
remaining box. This leaves N(α)−2 coins in the boxes of α. In addition, due to 3 ≤ ℓ ≤ n−2,
box ℓ has exactly 1 coin c, the one received from box ℓ− 1.

Let player A’s next move M pass k ≤ 2 coins to boxes 1, 2, . . . , ℓ from the remaining ones.
Only boxes 1 and ℓ can receive such coins, at most 1 each. If k < 2 then after move M boxes
1, 2, . . . , ℓ form an arc α′ with N(α′) < N(α). If k = 2 then M adds a coin to box ℓ. Also
M does not move coin c from ℓ because c is involved in the previous move of B. In summary
boxes 1, 2, . . . , ℓ contain N(α) coins like before, so they form an arc. However there are 2 coins
now in the extreme ℓ of the arc. Ignore ℓ to obtain a shorter arc α′ with N(α′) < N(α).

Consider any initial distribution without empty boxes. Since N ≤ 2n − 3, there are at
least 3 boxes in it with exactly 1 coin. It follows from n ≥ 7 that some 2 of them are the
extremes of an arc α. Hence B can make the move described above, which leads to an arc α′

with N(α′) < N(α) after A’s response. If all boxes in the new distribution are non-empty he
can repeat the same, and so on. Because N(α) cannot decrease indefinitely, an empty box will
occur after some move of A.
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C5. The columns and the rows of a 3n× 3n square board are numbered 1, 2, . . . , 3n. Every
square (x, y) with 1 ≤ x, y ≤ 3n is colored asparagus, byzantium or citrine according as the
modulo 3 remainder of x+ y is 0, 1 or 2 respectively. One token colored asparagus, byzantium
or citrine is placed on each square, so that there are 3n2 tokens of each color.

Suppose that one can permute the tokens so that each token is moved to a distance of
at most d from its original position, each asparagus token replaces a byzantium token, each
byzantium token replaces a citrine token, and each citrine token replaces an asparagus token.
Prove that it is possible to permute the tokens so that each token is moved to a distance of at
most d+ 2 from its original position, and each square contains a token with the same color as
the square.

Solution. Without loss of generality it suffices to prove that the A-tokens can be moved to
distinct A-squares in such a way that each A-token is moved to a distance at most d+ 2 from
its original place. This means we need a perfect matching between the 3n2 A-squares and the
3n2 A-tokens such that the distance in each pair of the matching is at most d+ 2.

To find the matching, we construct a bipartite graph. The A-squares will be the vertices in
one class of the graph; the vertices in the other class will be the A-tokens.

Split the board into 3 × 1 horizontal triminos; then each trimino contains exactly one A-
square. Take a permutation π of the tokens which moves A-tokens to B-tokens, B-tokens to
C-tokens, and C-tokens to A-tokens, in each case to a distance at most d. For each A-square S,
and for each A-token T , connect S and T by an edge if T , π(T ) or π−1(T ) is on the trimino
containing S. We allow multiple edges; it is even possible that the same square and the same
token are connected with three edges. Obviously the lengths of the edges in the graph do not
exceed d+ 2. By length of an edge we mean the distance between the A-square and the A-token
it connects.

Each A-token T is connected with the three A-squares whose triminos contain T , π(T )
and π−1(T ). Therefore in the graph all tokens are of degree 3. We show that the same is true
for the A-squares. Let S be an arbitrary A-square, and let T1, T2, T3 be the three tokens on
the trimino containing S. For i = 1, 2, 3, if Ti is an A-token, then S is connected with Ti; if Ti

is a B-token then S is connected with π−1(Ti); finally, if Ti is a C-token then S is connected
with π(Ti). Hence in the graph the A-squares also are of degree 3.

Since the A-squares are of degree 3, from every set S of A-squares exactly 3|S| edges start.
These edges end in at least |S| tokens because the A-tokens also are of degree 3. Hence every
set S of A-squares has at least |S| neighbors among the A-tokens.

Therefore, by Hall’s marriage theorem, the graph contains a perfect matching between
the two vertex classes. So there is a perfect matching between the A-squares and A-tokens
with edges no longer than d+2. It follows that the tokens can be permuted as specified in the
problem statement.

Comment 1. In the original problem proposal the board was infinite and there were only two colors.
Having n colors for some positive integer n was an option; we chose n = 3. Moreover, we changed
the board to a finite one to avoid dealing with infinite graphs (although Hall’s theorem works in the
infinite case as well).

With only two colors Hall’s theorem is not needed. In this case we split the board into 2 × 1
dominos, and in the resulting graph all vertices are of degree 2. The graph consists of disjoint cycles
with even length and infinite paths, so the existence of the matching is trivial.

Having more than three colors would make the problem statement more complicated, because we
need a matching between every two color classes of tokens. However, this would not mean a significant
increase in difficulty.
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Comment 2. According to Wikipedia, the color asparagus (hexadecimal code #87A96B) is a tone
of green that is named after the vegetable. Crayola created this color in 1993 as one of the 16 to
be named in the Name The Color Contest. Byzantium (#702963) is a dark tone of purple. Its first
recorded use as a color name in English was in 1926. Citrine (#E4D00A) is variously described as
yellow, greenish-yellow, brownish-yellow or orange. The first known use of citrine as a color name in
English was in the 14th century.
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C6. Let k and n be fixed positive integers. In the liar’s guessing game, Amy chooses integers
x and N with 1 ≤ x ≤ N . She tells Ben what N is, but not what x is. Ben may then repeatedly
ask Amy whether x ∈ S for arbitrary sets S of integers. Amy will always answer with yes or no,
but she might lie. The only restriction is that she can lie at most k times in a row. After he
has asked as many questions as he wants, Ben must specify a set of at most n positive integers.
If x is in this set he wins; otherwise, he loses. Prove that:

a) If n ≥ 2k then Ben can always win.

b) For sufficiently large k there exist n ≥ 1.99k such that Ben cannot guarantee a win.

Solution. Consider an answer A ∈ {yes, no} to a question of the kind “Is x in the set S?”
We say that A is inconsistent with a number i if A = yes and i 6∈ S, or if A = no and i ∈ S.
Observe that an answer inconsistent with the target number x is a lie.

a) Suppose that Ben has determined a set T of size m that contains x. This is true initially
with m = N and T = {1, 2, . . . , N}. For m > 2k we show how Ben can find a number y ∈ T
that is different from x. By performing this step repeatedly he can reduce T to be of size 2k ≤ n
and thus win.

Since only the size m > 2k of T is relevant, assume that T = {0, 1, . . . , 2k, . . . , m−1}. Ben
begins by asking repeatedly whether x is 2k. If Amy answers no k + 1 times in a row, one
of these answers is truthful, and so x 6= 2k. Otherwise Ben stops asking about 2k at the first
answer yes. He then asks, for each i = 1, . . . , k, if the binary representation of x has a 0 in
the ith digit. Regardless of what the k answers are, they are all inconsistent with a certain
number y ∈ {0, 1, . . . , 2k − 1}. The preceding answer yes about 2k is also inconsistent with y.
Hence y 6= x. Otherwise the last k + 1 answers are not truthful, which is impossible.

Either way, Ben finds a number in T that is different from x, and the claim is proven.
b) We prove that if 1 < λ < 2 and n =

⌊
(2− λ)λk+1

⌋
− 1 then Ben cannot guarantee a win.

To complete the proof, then it suffices to take λ such that 1.99 < λ < 2 and k large enough so
that

n =
⌊
(2− λ)λk+1

⌋
− 1 ≥ 1.99k.

Consider the following strategy for Amy. First she choosesN = n+1 and x ∈ {1, 2, . . . , n+1}
arbitrarily. After every answer of hers Amy determines, for each i = 1, 2, . . . , n + 1, the
number mi of consecutive answers she has given by that point that are inconsistent with i. To
decide on her next answer, she then uses the quantity

φ =
n+1∑

i=1

λmi.

No matter what Ben’s next question is, Amy chooses the answer which minimizes φ.
We claim that with this strategy φ will always stay less than λk+1. Consequently no expo-

nent mi in φ will ever exceed k, hence Amy will never give more than k consecutive answers
inconsistent with some i. In particular this applies to the target number x, so she will never lie
more than k times in a row. Thus, given the claim, Amy’s strategy is legal. Since the strategy
does not depend on x in any way, Ben can make no deductions about x, and therefore he cannot
guarantee a win.

It remains to show that φ < λk+1 at all times. Initially each mi is 0, so this condition holds
in the beginning due to 1 < λ < 2 and n =

⌊
(2− λ)λk+1

⌋
− 1. Suppose that φ < λk+1 at some

point, and Ben has just asked if x ∈ S for some set S. According as Amy answers yes or no,
the new value of φ becomes

φ1 =
∑

i∈S

1 +
∑

i/∈S

λmi+1 or φ2 =
∑

i∈S

λmi+1 +
∑

i/∈S

1.
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Since Amy chooses the option minimizing φ, the new φ will equal min(φ1, φ2). Now we have

min(φ1, φ2) ≤
1

2
(φ1 + φ2) =

1

2

(

∑

i∈S

(
1 + λmi+1

)
+

∑

i/∈S

(
λmi+1 + 1

)
)

=
1

2
(λφ+ n+ 1).

Because φ < λk+1, the assumptions λ < 2 and n =
⌊
(2− λ)λk+1

⌋
− 1 lead to

min(φ1, φ2) <
1

2
(λk+2 + (2− λ)λk+1) = λk+1.

The claim follows, which completes the solution.

Comment. Given a fixed k, let f(k) denote the minimum value of n for which Ben can guarantee a
victory. The problem asks for a proof that for large k

1.99k ≤ f(k) ≤ 2k.

A computer search shows that f(k) = 2, 3, 4, 7, 11, 17 for k = 1, 2, 3, 4, 5, 6.
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C7. There are given 2500 points on a circle labeled 1, 2, . . . , 2500 in some order. Prove that
one can choose 100 pairwise disjoint chords joining some of these points so that the 100 sums
of the pairs of numbers at the endpoints of the chosen chords are equal.

Solution. The proof is based on the following general fact.

Lemma. In a graph G each vertex v has degree dv. Then G contains an independent set S of
vertices such that |S| ≥ f(G) where

f(G) =
∑

v∈G

1

dv + 1
.

Proof. Induction on n = |G|. The base n = 1 is clear. For the inductive step choose a vertex v0
in G of minimum degree d. Delete v0 and all of its neighbors v1, . . . , vd and also all edges with
endpoints v0, v1, . . . , vd. This gives a new graph G′. By the inductive assumption G′ contains
an independent set S ′ of vertices such that |S ′| ≥ f(G′). Since no vertex in S ′ is a neighbor
of v0 in G, the set S = S ′ ∪ {v0} is independent in G.

Let d′v be the degree of a vertex v in G′. Clearly d′v ≤ dv for every such vertex v, and also
dvi ≥ d for all i = 0, 1, . . . , d by the minimal choice of v0. Therefore

f(G′) =
∑

v∈G′

1

d′v + 1
≥

∑

v∈G′

1

dv + 1
= f(G)−

d∑

i=0

1

dvi + 1
≥ f(G)−

d+ 1

d+ 1
= f(G)− 1.

Hence |S| = |S ′|+ 1 ≥ f(G′) + 1 ≥ f(G), and the induction is complete. �

We pass on to our problem. For clarity denote n = 2499 and draw all chords determined by
the given 2n points. Color each chord with one of the colors 3, 4, . . . , 4n − 1 according to the
sum of the numbers at its endpoints. Chords with a common endpoint have different colors.
For each color c consider the following graph Gc. Its vertices are the chords of color c, and two
chords are neighbors in Gc if they intersect. Let f(Gc) have the same meaning as in the lemma
for all graphs Gc.

Every chord ℓ divides the circle into two arcs, and one of them contains m(ℓ) ≤ n− 1 given
points. (In particular m(ℓ) = 0 if ℓ joins two consecutive points.) For each i = 0, 1, . . . , n− 2
there are 2n chords ℓ with m(ℓ) = i. Such a chord has degree at most i in the respective graph.
Indeed let A1, . . . , Ai be all points on either arc determined by a chord ℓ with m(ℓ) = i and
color c. Every Aj is an endpoint of at most 1 chord colored c, j = 1, . . . , i. Hence at most
i chords of color c intersect ℓ.

It follows that for each i = 0, 1, . . . , n − 2 the 2n chords ℓ with m(ℓ) = i contribute at
least 2n

i+1
to the sum

∑
c f(Gc). Summation over i = 0, 1, . . . , n− 2 gives

∑

c

f(Gc) ≥ 2n
n−1∑

i=1

1

i
.

Because there are 4n− 3 colors in all, averaging yields a color c such that

f(Gc) ≥
2n

4n− 3

n−1∑

i=1

1

i
>

1

2

n−1∑

i=1

1

i
.

By the lemma there are at least 1
2

∑n−1
i=1

1
i
pairwise disjoint chords of color c, i. e. with the same

sum c of the pairs of numbers at their endpoints. It remains to show that 1
2

∑n−1
i=1

1
i
≥ 100 for

n = 2499. Indeed we have
n−1∑

i=1

1

i
>

2400∑

i=1

1

i
= 1 +

400∑

k=1

2k∑

i=2k−1+1

1

i
> 1 +

400∑

k=1

2k−1

2k
= 201 > 200.

This completes the solution.
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Geometry

G1. In the triangle ABC the point J is the center of the excircle opposite to A. This excircle
is tangent to the side BC at M , and to the lines AB and AC at K and L respectively. The
lines LM and BJ meet at F , and the lines KM and CJ meet at G. Let S be the point of
intersection of the lines AF and BC, and let T be the point of intersection of the lines AG
and BC. Prove that M is the midpoint of ST .

Solution. Let α = ∠CAB, β = ∠ABC and γ = ∠BCA. The line AJ is the bisector of ∠CAB,
so ∠JAK = ∠JAL = α

2
. By ∠AKJ = ∠ALJ = 90◦ the points K and L lie on the circle ω

with diameter AJ .
The triangle KBM is isosceles as BK and BM are tangents to the excircle. Since BJ is the

bisector of ∠KBM , we have ∠MBJ = 90◦ − β
2
and ∠BMK = β

2
. Likewise ∠MCJ = 90◦ − γ

2

and ∠CML = γ
2
. Also ∠BMF = ∠CML, therefore

∠LFJ = ∠MBJ − ∠BMF =

(
90◦ −

β

2

)
−

γ

2
=

α

2
= ∠LAJ.

Hence F lies on the circle ω. (By the angle computation, F and A are on the same side of BC.)
Analogously, G also lies on ω. Since AJ is a diameter of ω, we obtain ∠AFJ = ∠AGJ = 90◦.

A

B C

GF

S T

K

M

L

ω

J

β γ

α
2

α
2

α
2

α
2

The lines AB and BC are symmetric with respect to the external bisector BF . Because
AF ⊥ BF and KM ⊥ BF , the segments SM and AK are symmetric with respect to BF ,
hence SM = AK. By symmetry TM = AL. Since AK and AL are equal as tangents to the
excircle, it follows that SM = TM , and the proof is complete.

Comment. After discovering the circle AFKJLG, there are many other ways to complete the solu-
tion. For instance, from the cyclic quadrilaterals JMFS and JMGT one can find∠TSJ = ∠STJ = α

2 .
Another possibility is to use the fact that the lines AS and GM are parallel (both are perpendicular
to the external angle bisector BJ), so MS

MT = AG
GT = 1.
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G2. Let ABCD be a cyclic quadrilateral whose diagonals AC and BD meet at E. The
extensions of the sides AD and BC beyond A and B meet at F . Let G be the point such that
ECGD is a parallelogram, and let H be the image of E under reflection in AD. Prove that
D, H , F , G are concyclic.

Solution. We show first that the triangles FDG and FBE are similar. Since ABCD is cyclic,
the triangles EAB and EDC are similar, as well as FAB and FCD. The parallelogram ECGD
yields GD = EC and ∠CDG = ∠DCE; also ∠DCE = ∠DCA = ∠DBA by inscribed angles.
Therefore

∠FDG = ∠FDC + ∠CDG = ∠FBA+ ∠ABD = ∠FBE,

GD

EB
=

CE

EB
=

CD

AB
=

FD

FB
.

It follows that FDG and FBE are similar, and so ∠FGD = ∠FEB.

A B

D

G

E

F

H

C

Since H is the reflection of E with respect to FD, we conclude that

∠FHD = ∠FED = 180◦ − ∠FEB = 180◦ − ∠FGD.

This proves that D, H , F , G are concyclic.

Comment. Points E and G are always in the half-plane determined by the line FD that contains
B and C, but H is always in the other half-plane. In particular, DHFG is cyclic if and only if
∠FHD + ∠FGD = 180◦.
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G3. In an acute triangle ABC the points D, E and F are the feet of the altitudes through A,
B and C respectively. The incenters of the triangles AEF and BDF are I1 and I2 respectively;
the circumcenters of the triangles ACI1 and BCI2 are O1 and O2 respectively. Prove that I1I2
and O1O2 are parallel.

Solution. Let ∠CAB = α, ∠ABC = β, ∠BCA = γ. We start by showing that A,B, I1
and I2 are concyclic. Since AI1 and BI2 bisect ∠CAB and ∠ABC, their extensions beyond I1
and I2 meet at the incenter I of the triangle. The points E and F are on the circle with
diameter BC, so ∠AEF = ∠ABC and ∠AFE = ∠ACB. Hence the triangles AEF and ABC
are similar with ratio of similitude AE

AB
= cosα. Because I1 and I are their incenters, we obtain

I1A = IA cosα and II1 = IA− I1A = 2IA sin2 α
2
. By symmetry II2 = 2IB sin2 β

2
. The law of

sines in the triangle ABI gives IA sin α
2
= IB sin β

2
. Hence

II1 · IA = 2
(
IA sin α

2

)2
= 2

(
IB sin β

2

)2
= II2 · IB.

Therefore A,B, I1 and I2 are concyclic, as claimed.

O2

O1

C

A F B

I2Q

I

E

D

I3

I1

In addition II1 · IA = II2 · IB implies that I has the same power with respect to the
circles (ACI1), (BCI2) and (ABI1I2). Then CI is the radical axis of (ACI1) and (BCI2); in
particular CI is perpendicular to the line of centers O1O2.

Now it suffices to prove that CI ⊥ I1I2. Let CI meet I1I2 at Q, then it is enough to check
that ∠II1Q+ ∠I1IQ = 90◦. Since ∠I1IQ is external for the triangle ACI, we have

∠II1Q+ ∠I1IQ = ∠II1Q+ (∠ACI + ∠CAI) = ∠II1I2 + ∠ACI + ∠CAI.

It remains to note that ∠II1I2 = β
2
from the cyclic quadrilateral ABI1I2, and ∠ACI = γ

2
,

∠CAI = α
2
. Therefore ∠II1Q + ∠I1IQ = α

2
+ β

2
+ γ

2
= 90◦, completing the proof.

Comment. It follows from the first part of the solution that the common point I3 6= C of the
circles (ACI1) and (BCI2) is the incenter of the triangle CDE.
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G4. Let ABC be a triangle with AB 6= AC and circumcenter O. The bisector of ∠BAC
intersects BC at D. Let E be the reflection of D with respect to the midpoint of BC. The lines
through D and E perpendicular to BC intersect the lines AO and AD at X and Y respectively.
Prove that the quadrilateral BXCY is cyclic.

Solution. The bisector of ∠BAC and the perpendicular bisector ofBC meet at P , the midpoint
of the minor arc B̂C (they are different lines as AB 6= AC). In particular OP is perpendicular
to BC and intersects it at M , the midpoint of BC.

Denote by Y ′ the reflexion of Y with respect to OP . Since ∠BY C = ∠BY ′C, it suffices to
prove that BXCY ′ is cyclic.

A

D

Y ′Y

B C

X

M

O

E

P

We have
∠XAP = ∠OPA = ∠EY P.

The first equality holds because OA = OP , and the second one because EY and OP are both
perpendicular to BC and hence parallel. But {Y, Y ′} and {E,D} are pairs of symmetric points
with respect to OP , it follows that ∠EY P = ∠DY ′P and hence

∠XAP = ∠DY ′P = ∠XY ′P.

The last equation implies that XAY ′P is cyclic. By the powers of D with respect to the
circles (XAY ′P ) and (ABPC) we obtain

XD ·DY ′ = AD ·DP = BD ·DC.

It follows that BXCY ′ is cyclic, as desired.
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G5. Let ABC be a triangle with ∠BCA = 90◦, and let C0 be the foot of the altitude
from C. Choose a point X in the interior of the segment CC0, and let K,L be the points on
the segments AX,BX for which BK = BC and AL = AC respectively. Denote by M the
intersection of AL and BK. Show that MK = ML.

Solution. Let C ′ be the reflection of C in the line AB, and let ω1 and ω2 be the circles
with centers A and B, passing through L and K respectively. Since AC ′ = AC = AL and
BC ′ = BC = BK, both ω1 and ω2 pass through C and C ′. By ∠BCA = 90◦, AC is tangent
to ω2 at C, and BC is tangent to ω1 at C. Let K1 6= K be the second intersection of AX and
ω2, and let L1 6= L be the second intersection of BX and ω1.

A

K
M

L1

K1

ω3

C

L

BC0

C ′

X

ω2
ω1

By the powers of X with respect to ω2 and ω1,

XK ·XK1 = XC ·XC ′ = XL ·XL1,

so the points K1, L, K, L1 lie on a circle ω3.
The power of A with respect to ω2 gives

AL2 = AC2 = AK · AK1,

indicating that AL is tangent to ω3 at L. Analogously, BK is tangent to ω3 at K. Hence MK
and ML are the two tangents from M to ω3 and therefore MK = ML.
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G6. Let ABC be a triangle with circumcenter O and incenter I. The points D, E and F on
the sides BC, CA and AB respectively are such that BD + BF = CA and CD + CE = AB.
The circumcircles of the triangles BFD and CDE intersect at P 6= D. Prove that OP = OI.

Solution. By Miquel’s theorem the circles (AEF ) = ωA, (BFD) = ωB and (CDE) = ωC

have a common point, for arbitrary points D, E and F on BC, CA and AB. So ωA passes
through the common point P 6= D of ωB and ωC .

Let ωA, ωB and ωC meet the bisectors AI, BI and CI at A 6= A′, B 6= B′ and C 6= C ′

respectively. The key observation is that A′, B′ and C ′ do not depend on the particular choice
of D, E and F , provided that BD + BF = CA, CD + CE = AB and AE + AF = BC hold
true (the last equality follows from the other two). For a proof we need the following fact.

Lemma. Given is an angle with vertex A and measure α. A circle ω through A intersects the
angle bisector at L and sides of the angle at X and Y . Then AX + AY = 2AL cos α

2
.

Proof. Note that L is the midpoint of arc X̂LY in ω and set XL = Y L = u, XY = v. By
Ptolemy’s theorem AX ·Y L+AY ·XL = AL ·XY , which rewrites as (AX +AY )u = AL · v.
Since ∠LXY = α

2
and ∠XLY = 180◦ − α, we have v = 2 cos α

2
u by the law of sines, and the

claim follows. �

X

L
u

u

v

A

Y

Apply the lemma to ∠BAC = α and the circle ω = ωA, which intersects AI at A′. This
gives 2AA′ cos α

2
= AE + AF = BC; by symmetry analogous relations hold for BB′ and CC ′.

It follows that A′, B′ and C ′ are independent of the choice of D, E and F , as stated.

We use the lemma two more times with ∠BAC = α. Let ω be the circle with diameter AI.
Then X and Y are the tangency points of the incircle of ABC with AB and AC, and hence
AX = AY = 1

2
(AB + AC − BC). So the lemma yields 2AI cos α

2
= AB + AC − BC. Next,

if ω is the circumcircle of ABC and AI intersects ω at M 6= A then {X, Y } = {B,C}, and so
2AM cos α

2
= AB + AC by the lemma. To summarize,

2AA′ cos α
2
= BC, 2AI cos α

2
= AB + AC − BC, 2AM cos α

2
= AB + AC. (*)

These equalities imply AA′ + AI = AM , hence the segments AM and IA′ have a common
midpoint. It follows that I and A′ are equidistant from the circumcenter O. By symmetry
OI = OA′ = OB′ = OC ′, so I, A′, B′, C ′ are on a circle centered at O.

To prove OP = OI, now it suffices to show that I, A′, B′, C ′ and P are concyclic. Clearly
one can assume P 6= I, A′, B′, C ′.

We use oriented angles to avoid heavy case distinction. The oriented angle between the lines l
and m is denoted by ∠(l, m). We have ∠(l, m) = −∠(m, l) and ∠(l, m) + ∠(m,n) = ∠(l, n)
for arbitrary lines l, m and n. Four distinct non-collinear points U, V,X, Y are concyclic if and
only if ∠(UX, V X) = ∠(UY, V Y ).
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M

C

B′

I
O

E

P

C ′

A

B

A′

ωA

D

F

ωB

ωC

Suppose for the moment that A′, B′, P, I are distinct and noncollinear; then it is enough to
check the equality ∠(A′P,B′P ) = ∠(A′I, B′I). Because A, F, P, A′ are on the circle ωA, we have
∠(A′P, FP ) = ∠(A′A, FA) = ∠(A′I, AB). Likewise ∠(B′P, FP ) = ∠(B′I, AB). Therefore

∠(A′P,B′P ) = ∠(A′P, FP ) + ∠(FP,B′P ) = ∠(A′I, AB)− ∠(B′I, AB) = ∠(A′I, B′I).

Here we assumed that P 6= F . If P = F then P 6= D,E and the conclusion follows similarly (use
∠(A′F,B′F ) = ∠(A′F,EF ) + ∠(EF,DF ) + ∠(DF,B′F ) and inscribed angles in ωA, ωB, ωC).

There is no loss of generality in assuming A′, B′, P, I distinct and noncollinear. If ABC
is an equilateral triangle then the equalities (*) imply that A′, B′, C ′, I, O and P coincide, so
OP = OI. Otherwise at most one of A′, B′, C ′ coincides with I. If say C ′ = I then OI ⊥ CI
by the previous reasoning. It follows that A′, B′ 6= I and hence A′ 6= B′. Finally A′, B′ and I
are noncollinear because I, A′, B′, C ′ are concyclic.

Comment. The proposer remarks that the locus γ of the points P is an arc of the circle (A′B′C ′I).
The reflection I ′ of I in O belongs to γ; it is obtained by choosing D, E and F to be the tangency
points of the three excircles with their respective sides. The rest of the circle (A′B′C ′I), except I,
can be included in γ by letting D, E and F vary on the extensions of the sides and assuming signed
lengths. For instance if B is between C and D then the length BD must be taken with a negative
sign. The incenter I corresponds to the limit case where D tends to infinity.
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G7. Let ABCD be a convex quadrilateral with non-parallel sides BC and AD. Assume
that there is a point E on the side BC such that the quadrilaterals ABED and AECD are
circumscribed. Prove that there is a point F on the side AD such that the quadrilaterals
ABCF and BCDF are circumscribed if and only if AB is parallel to CD.

Solution. Let ω1 and ω2 be the incircles and O1 and O2 the incenters of the quadrilater-
als ABED and AECD respectively. A point F with the stated property exists only if ω1

and ω2 are also the incircles of the quadrilaterals ABCF and BCDF .

D

C

E

B

O1

O2

AF1F2O

Let the tangents from B to ω2 and from C to ω1 (other than BC) meet AD at F1 and F2

respectively. We need to prove that F1 = F2 if and only if AB ‖ CD.

Lemma. The circles ω1 and ω2 with centers O1 and O2 are inscribed in an angle with vertex O.
The points P, S on one side of the angle and Q,R on the other side are such that ω1 is the
incircle of the triangle PQO, and ω2 is the excircle of the triangle RSO opposite to O. Denote
p = OO1 · OO2. Then exactly one of the following relations holds:

OP ·OR < p < OQ · OS, OP · OR > p > OQ · OS, OP · OR = p = OQ · OS.

Proof. Denote ∠OPO1 = u, ∠OQO1 = v, ∠OO2R = x, ∠OO2S = y, ∠POQ = 2ϕ. Because
PO1, QO1, RO2, SO2 are internal or external bisectors in the triangles PQO and RSO, we have

u+ v = x+ y (= 90◦ − ϕ). (1)

R

S

O1O2

x
y

Pu

v Q

O ϕ
ϕ

By the law of sines
OP

OO1
=

sin(u+ ϕ)

sin u
and

OO2

OR
=

sin(x+ ϕ)

sin x
.

Therefore, since x, u and ϕ are acute,

OP ·OR ≥ p⇔
OP

OO1

≥
OO2

OR
⇔ sin x sin(u+ ϕ) ≥ sin u sin(x+ ϕ)⇔ sin(x− u) ≥ 0⇔ x ≥ u.

Thus OP · OR ≥ p is equivalent to x ≥ u, with OP · OR = p if and only if x = u.
Analogously, p ≥ OQ · OS is equivalent to v ≥ y, with p = OQ · OS if and only if v = y.

On the other hand x ≥ u and v ≥ y are equivalent by (1), with x = u if and only if v = y. The
conclusion of the lemma follows from here. �
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Going back to the problem, apply the lemma to the quadruples {B,E,D, F1}, {A,B,C,D}
and {A,E,C, F2}. Assuming OE · OF1 > p, we obtain

OE · OF1 > p ⇒ OB · OD < p ⇒ OA ·OC > p ⇒ OE · OF2 < p.

In other words, OE · OF1 > p implies

OB · OD < p < OA · OC and OE · OF1 > p > OE ·OF2.

Similarly, OE · OF1 < p implies

OB · OD > p > OA · OC and OE · OF1 < p < OE ·OF2.

In these cases F1 6= F2 and OB · OD 6= OA · OC, so the lines AB and CD are not parallel.
There remains the case OE · OF1 = p. Here the lemma leads to OB · OD = p = OA · OC

and OE ·OF1 = p = OE · OF2. Therefore F1 = F2 and AB ‖ CD.

Comment. The conclusion is also true if BC and AD are parallel. One can prove a limit case of
the lemma for the configuration shown in the figure below, where r1 and r2 are parallel rays starting
at O′ and O′′, with O′O′′ ⊥ r1, r2 and O the midpoint of O′O′′. Two circles with centers O1 and O2

are inscribed in the strip between r1 and r2. The lines PQ and RS are tangent to the circles, with
P, S on r1, and Q,R on r2, so that O,O1 are on the same side of PQ and O,O2 are on different sides
of RS. Denote s = OO1 +OO2. Then exactly one of the following relations holds:

O′P +O′′R < s < O′′Q+O′S, O′P +O′′R > s > O′′Q+O′S, O′P +O′′R = s = O′′Q+O′S.

O2

R

S

O1

Q

P
r1

r2

O

O′

O′′

Once this is established, the proof of the original statement for BC ‖ AD is analogous to the one
in the intersecting case. One replaces products by sums of relevant segments.
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G8. Let ABC be a triangle with circumcircle ω and ℓ a line without common points with ω.
Denote by P the foot of the perpendicular from the center of ω to ℓ. The side-lines BC,CA,AB
intersect ℓ at the points X, Y, Z different from P . Prove that the circumcircles of the triangles
AXP,BY P and CZP have a common point different from P or are mutually tangent at P .

Solution 1. Let ωA, ωB, ωC and ω be the circumcircles of triangles AXP,BY P,CZP and ABC
respectively. The strategy of the proof is to construct a point Q with the same power with
respect to the four circles. Then each of P and Q has the same power with respect to ωA, ωB, ωC

and hence the three circles are coaxial. In other words they have another common point P ′ or
the three of them are tangent at P .

We first give a description of the point Q. Let A′ 6= A be the second intersection of ω
and ωA; define B

′ and C ′ analogously. We claim that AA′, BB′ and CC ′ have a common point.
Once this claim is established, the point just constructed will be on the radical axes of the
three pairs of circles {ω, ωA}, {ω, ωB}, {ω, ωC}. Hence it will have the same power with respect
to ω, ωA, ωB, ωC.

ℓ

ωA

ωC
ω

ωB

X Y ZP

A

B′

Q
O

C ′

B

A′C

Z ′ Y ′X ′

P ′

We proceed to prove that AA′, BB′ and CC ′ intersect at one point. Let r be the circumra-
dius of triangle ABC. Define the points X ′, Y ′, Z ′ as the intersections of AA′, BB′, CC ′ with ℓ.
Observe that X ′, Y ′, Z ′ do exist. If AA′ is parallel to ℓ then ωA is tangent to ℓ; hence X = P
which is a contradiction. Similarly, BB′ and CC ′ are not parallel to ℓ.

From the powers of the point X ′ with respect to the circles ωA and ω we get

X ′P · (X ′P + PX) = X ′P ·X ′X = X ′A′ ·X ′A = X ′O2 − r2,

hence
X ′P · PX = X ′O2 − r2 −X ′P 2 = OP 2 − r2.

We argue analogously for the points Y ′ and Z ′, obtaining

X ′P · PX = Y ′P · PY = Z ′P · PZ = OP 2 − r2 = k2. (1)

In these computations all segments are regarded as directed segments. We keep the same
convention for the sequel.

We prove that the lines AA′, BB′, CC ′ intersect at one point by Ceva’s theorem. To avoid
distracting remarks we interpret everything projectively, i. e. whenever two lines are parallel
they meet at a point on the line at infinity.
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Let U, V,W be the intersections of AA′, BB′, CC ′ with BC,CA,AB respectively. The idea
is that although it is difficult to calculate the ratio BU

CU
, it is easier to deal with the cross-ratio

BU
CU

/BX
CX

because we can send it to the line ℓ. With this in mind we apply Menelaus’ theorem
to the triangle ABC and obtain BX

CX
· CY
AY
· AZ
BZ

= 1. Hence Ceva’s ratio can be expressed as

BU

CU
·
CV

AV
·
AW

BW
=

BU

CU
/
BX

CX
·
CV

AV
/
CY

AY
·
AW

BW
/
AZ

BZ
.

ℓ

ω

X Y P

A

V
Q

W

U
B

C

Z ′ ZX ′ Y ′

Project the line BC to ℓ from A. The cross-ratio between BC and UX equals the cross-ratio
between ZY and X ′X . Repeating the same argument with the lines CA and AB gives

BU

CU
·
CV

AV
·
AW

BW
=

ZX ′

Y X ′
/
ZX

YX
·
XY ′

ZY ′
/
XY

ZY
·
Y Z ′

XZ ′
/
Y Z

XZ

and hence
BU

CU
·
CV

AV
·
AW

BW
= (−1) ·

ZX ′

Y X ′
·
XY ′

ZY ′
·
Y Z ′

XZ ′
.

The equations (1) reduce the problem to a straightforward computation on the line ℓ.
For instance, the transformation t 7→ −k2/t preserves cross-ratio and interchanges the points
X, Y, Z with the points X ′, Y ′, Z ′. Then

BU

CU
·
CV

AV
·
AW

BW
= (−1) ·

ZX ′

Y X ′
/
ZZ ′

Y Z ′
·
XY ′

ZY ′
/
XZ ′

ZZ ′
= −1.

We proved that Ceva’s ratio equals −1, so AA′, BB′, CC ′ intersect at one point Q.

Comment 1. There is a nice projective argument to prove that AX ′, BY ′, CZ ′ intersect at one point.
Suppose that ℓ and ω intersect at a pair of complex conjugate points D and E. Consider a projective
transformation that takes D and E to [i; 1, 0] and [−i, 1, 0]. Then ℓ is the line at infinity, and ω is
a conic through the special points [i; 1, 0] and [−i, 1, 0], hence it is a circle. So one can assume that
AX,BY,CZ are parallel to BC,CA,AB. The involution on ℓ taking X,Y,Z to X ′, Y ′, Z ′ and leaving
D,E fixed is the involution changing each direction to its perpendicular one. Hence AX,BY,CZ are
also perpendicular to AX ′, BY ′, CZ ′.

It follows from the above that AX ′, BY ′, CZ ′ intersect at the orthocenter of triangle ABC.

Comment 2. The restriction that the line ℓ does not intersect the circumcricle ω is unnecessary.
The proof above works in general. In case ℓ intersects ω at D and E point P is the midpoint of DE,
and some equations can be interpreted differently. For instance

X ′P ·X ′X = X ′A′ ·X ′A = X ′D ·X ′E,

and hence the pairs X ′X and DE are harmonic conjugates. This means that X ′, Y ′, Z ′ are the
harmonic conjugates of X,Y,Z with respect to the segment DE.
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Solution 2. First we prove that there is an inversion in space that takes ℓ and ω to parallel
circles on a sphere. Let QR be the diameter of ω whose extension beyond Q passes through P .
Let Π be the plane carrying our objects. In space, choose a point O such that the line QO is
perpendicular to Π and ∠POR = 90◦, and apply an inversion with pole O (the radius of the
inversion does not matter). For any object T denote by T ′ the image of T under this inversion.

The inversion takes the plane Π to a sphere Π′. The lines in Π are taken to circles through O,
and the circles in Π also are taken to circles on Π′.

O

ℓ

P RQ

Q′

R′

ω

ℓ′

Π

P ′

Π
′

ω′

Since the line ℓ and the circle ω are perpendicular to the plane OPQ, the circles ℓ′ and ω′

also are perpendicular to this plane. Hence, the planes of the circles ℓ′ and ω′ are parallel.

Now consider the circles A′X ′P ′, B′Y ′P ′ and C ′Z ′P ′. We want to prove that either they
have a common point (on Π′), different from P ′, or they are tangent to each other.

H

C ′

O

B1

X ′

A′

W

Y ′

P ′

Z ′

Π
′

ℓ′

ω′

A1

C1

B′

The point X ′ is the second intersection of the circles B′C ′O and ℓ′, other than O. Hence,
the lines OX ′ and B′C ′ are coplanar. Moreover, they lie in the parallel planes of ℓ′ and ω′.
Therefore, OX ′ and B′C ′ are parallel. Analogously, OY ′ and OZ ′ are parallel to A′C ′ and A′B′.

Let A1 be the second intersection of the circles A′X ′P ′ and ω′, other than A′. The segments
A′A1 and P ′X ′ are coplanar, and therefore parallel. Now we know that B′C ′ and A′A1 are
parallel to OX ′ and X ′P ′ respectively, but these two segments are perpendicular because OP ′

is a diameter in ℓ′. We found that A′A1 and B′C ′ are perpendicular, hence A′A1 is the altitude
in the triangle A′B′C ′, starting from A.

Analogously, let B1 and C1 be the second intersections of ω′ with the circles B′P ′Y ′

and C ′P ′Z ′, other than B′ and C ′ respectively. Then B′B1 and C ′C1 are the other two al-
titudes in the triangle A′B′C ′.
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Let H be the orthocenter of the triangle A′B′C ′. Let W be the second intersection of the
line P ′H with the sphere Π′, other than P ′. The point W lies on the sphere Π′, in the plane
of the circle A′P ′X ′, so W lies on the circle A′P ′X ′. Similarly, W lies on the circles B′P ′Y ′

and C ′P ′Z ′ as well; indeed W is the second common point of the three circles.
If the line P ′H is tangent to the sphere then W coincides with P ′, and P ′H is the common

tangent of the three circles.



42

Number Theory

N1. Call admissible a set A of integers that has the following property:

If x, y ∈ A (possibly x = y) then x2 + kxy + y2 ∈ A for every integer k.

Determine all pairsm,n of nonzero integers such that the only admissible set containing bothm
and n is the set of all integers.

Solution. A pair of integers m,n fulfills the condition if and only if gcd(m,n) = 1. Suppose
that gcd(m,n) = d > 1. The set

A = {. . . ,−2d,−d, 0, d, 2d, . . .}

is admissible, because if d divides x and y then it divides x2 + kxy + y2 for every integer k.
Also m,n ∈ A and A 6= Z.

Now let gcd(m,n) = 1, and let A be an admissible set containing m and n. We use the
following observations to prove that A = Z:

(i) kx2 ∈ A for every x ∈ A and every integer k.

(ii) (x+ y)2 ∈ A for all x, y ∈ A.

To justify (i) let y = x in the definition of an admissible set; to justify (ii) let k = 2.
Since gcd(m,n) = 1, we also have gcd(m2, n2) = 1. Hence one can find integers a, b such

that am2 + bn2 = 1. It follows from (i) that am2 ∈ A and bn2 ∈ A. Now we deduce from (ii)
that 1 = (am2 + bn2)2 ∈ A. But if 1 ∈ A then (i) implies k ∈ A for every integer k.
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N2. Find all triples (x, y, z) of positive integers such that x ≤ y ≤ z and

x3(y3 + z3) = 2012(xyz + 2).

Solution. First note that x divides 2012 ·2 = 23 ·503. If 503 | x then the right-hand side of the
equation is divisible by 5033, and it follows that 5032 | xyz + 2. This is false as 503 | x. Hence
x = 2m with m ∈ {0, 1, 2, 3}. If m ≥ 2 then 26 | 2012(xyz + 2). However the highest powers
of 2 dividing 2012 and xyz + 2 = 2myz + 2 are 22 and 21 respectively. So x = 1 or x = 2,
yielding the two equations

y3 + z3 = 2012(yz + 2), and y3 + z3 = 503(yz + 1).

In both cases the prime 503 = 3 · 167 + 2 divides y3 + z3. We claim that 503 | y + z. This
is clear if 503 | y, so let 503 ∤ y and 503 ∤ z. Then y502 ≡ z502 (mod 503) by Fermat’s little
theorem. On the other hand y3 ≡ −z3 (mod 503) implies y3·167 ≡ −z3·167 (mod 503), i. e.
y501 ≡ −z501 (mod 503). It follows that y ≡ −z (mod 503) as claimed.

Therefore y + z = 503k with k ≥ 1. In view of y3 + z3 = (y + z)
(
(y − z)2 + yz

)
the two

equations take the form

k(y − z)2 + (k − 4)yz = 8, (1)

k(y − z)2 + (k − 1)yz = 1. (2)

In (1) we have (k − 4)yz ≤ 8, which implies k ≤ 4. Indeed if k > 4 then 1 ≤ (k − 4)yz ≤ 8,
so that y ≤ 8 and z ≤ 8. This is impossible as y + z = 503k ≥ 503. Note next that y3 + z3

is even in the first equation. Hence y + z = 503k is even too, meaning that k is even. Thus
k = 2 or k = 4. Clearly (1) has no integer solutions for k = 4. If k = 2 then (1) takes the form
(y + z)2 − 5yz = 4. Since y + z = 503k = 503 · 2, this leads to 5yz = 5032 · 22 − 4. However
5032 · 22 − 4 is not a multiple of 5. Therefore (1) has no integer solutions.

Equation (2) implies 0 ≤ (k − 1)yz ≤ 1, so that k = 1 or k = 2. Also 0 ≤ k(y − z)2 ≤ 1,
hence k = 2 only if y = z. However then y = z = 1, which is false in view of y + z ≥ 503.
Therefore k = 1 and (2) takes the form (y − z)2 = 1, yielding z − y = |y − z| = 1. Combined
with k = 1 and y + z = 503k, this leads to y = 251, z = 252.

In summary the triple (2, 251, 252) is the only solution.
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N3. Determine all integers m ≥ 2 such that every n with m
3
≤ n ≤ m

2
divides the binomial

coefficient
(

n
m−2n

)
.

Solution. The integers in question are all prime numbers.
First we check that all primes satisfy the condition, and even a stronger one. Namely, if p

is a prime then every n with 1 ≤ n ≤ p
2
divides

(
n

p−2n

)
. This is true for p = 2 where n = 1 is

the only possibility. For an odd prime p take n ∈ [1, p
2
] and consider the following identity of

binomial coefficients:

(p− 2n) ·

(
n

p− 2n

)
= n ·

(
n− 1

p− 2n− 1

)
.

Since p ≥ 2n and p is odd, all factors are non-zero. If d = gcd(p − 2n, n) then d divides p,
but d ≤ n < p and hence d = 1. It follows that p− 2n and n are relatively prime, and so the
factor n in the right-hand side divides the binomial coefficient

(
n

p−2n

)
.

Next we show that no composite number m has the stated property. Consider two cases.

• If m = 2k with k > 1, pick n = k. Then m
3
≤ n ≤ m

2
but

(
n

m−2n

)
=

(
k
0

)
= 1 is not divisible

by k > 1.

• If m is odd then there exist an odd prime p and an integer k ≥ 1 with m = p(2k + 1).
Pick n = pk, then m

3
≤ n ≤ m

2
by k ≥ 1. However

1

n

(
n

m− 2n

)
=

1

pk

(
pk

p

)
=

(pk − 1)(pk − 2) · · · (pk − (p− 1))

p!

is not an integer, because p divides the denominator but not the numerator.
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N4. An integer a is called friendly if the equation (m2 + n)(n2 + m) = a(m − n)3 has a
solution over the positive integers.

a) Prove that there are at least 500 friendly integers in the set {1, 2, . . . , 2012}.

b) Decide whether a = 2 is friendly.

Solution. a) Every a of the form a = 4k − 3 with k ≥ 2 is friendly. Indeed the numbers
m = 2k − 1 > 0 and n = k − 1 > 0 satisfy the given equation with a = 4k − 3:

(m2 + n)(n2 +m) =
(
(2k − 1)2 + (k − 1)

)(
(k − 1)2 + (2k − 1)

)
= (4k − 3)k3 = a(m− n)3.

Hence 5, 9, . . . , 2009 are friendly and so {1, 2, . . . , 2012} contains at least 502 friendly numbers.

b) We show that a = 2 is not friendly. Consider the equation with a = 2 and rewrite its
left-hand side as a difference of squares:

1

4

(
(m2 + n+ n2 +m)2 − (m2 + n− n2 −m)2

)
= 2(m− n)3.

Since m2 + n− n2 −m = (m− n)(m+ n− 1), we can further reformulate the equation as

(m2 + n+ n2 +m)2 = (m− n)2
(
8(m− n) + (m+ n− 1)2

)
.

It follows that 8(m− n) + (m + n− 1)2 is a perfect square. Clearly m > n, hence there is an
integer s ≥ 1 such that

(m+ n− 1 + 2s)2 = 8(m− n) + (m+ n− 1)2.

Subtracting the squares gives s(m + n − 1 + s) = 2(m − n). Since m + n − 1 + s > m − n,
we conclude that s < 2. Therefore the only possibility is s = 1 and m = 3n. However then
the left-hand side of the given equation (with a = 2) is greater than m3 = 27n3, whereas its
right-hand side equals 16n3. The contradiction proves that a = 2 is not friendly.

Comment. A computer search shows that there are 561 friendly numbers in {1, 2, . . . , 2012}.
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N5. For a nonnegative integer n define rad(n) = 1 if n = 0 or n = 1, and rad(n) = p1p2 · · · pk
where p1 < p2 < · · · < pk are all prime factors of n. Find all polynomials f(x) with nonnegative
integer coefficients such that rad(f(n)) divides rad(f(nrad(n))) for every nonnegative integer n.

Solution 1. We are going to prove that f(x) = axm for some nonnegative integers a and
m. If f(x) is the zero polynomial we are done, so assume that f(x) has at least one positive
coefficient. In particular f(1) > 0.

Let p be a prime number. The condition is that f(n) ≡ 0 (mod p) implies

f(nrad(n)) ≡ 0 (mod p). (1)

Since rad(nrad(n)k) = rad(n) for all k, repeated applications of the preceding implication show
that if p divides f(n) then

f(nrad(n)k) ≡ 0 (mod p) for all k.

The idea is to construct a prime p and a positive integer n such that p− 1 divides n and p
divides f(n). In this case, for k large enough p − 1 divides rad(n)k. Hence if (p, n) = 1 then
nrad(n)k ≡ 1 (mod p) by Fermat’s little theorem, so that

f(1) ≡ f(nrad(n)k) ≡ 0 (mod p). (2)

Suppose that f(x) = g(x)xm with g(0) 6= 0. Let t be a positive integer, p any prime factor
of g(−t) and n = (p−1)t. So p−1 divides n and f(n) = f((p− 1)t) ≡ f(−t) ≡ 0 (mod p), hence
either (p, n) > 1 or (2) holds. If (p, (p−1)t) > 1 then p divides t and g(0) ≡ g(−t) ≡ 0 (mod p),
meaning that p divides g(0).

In conclusion we proved that each prime factor of g(−t) divides g(0)f(1) 6= 0, and thus the
set of prime factors of g(−t) when t ranges through the positive integers is finite. This is known
to imply that g(x) is a constant polynomial, and so f(x) = axm.

Solution 2. Let f(x) be a polynomial with integer coefficients (not necessarily nonnegative)
such that rad(f(n)) divides rad(f(nrad(n))) for any nonnegative integer n. We give a complete
description of all polynomials with this property. More precisely, we claim that if f(x) is such
a polynomial and ξ is a root of f(x) then so is ξd for every positive integer d.

Therefore each root of f(x) is zero or a root of unity. In particular, if a root of unity ξ is
a root of f(x) then 1 = ξd is a root too (for some positive integer d). In the original problem
f(x) has nonnegative coefficients. Then either f(x) is the zero polynomial or f(1) > 0 and
ξ = 0 is the only possible root. In either case f(x) = axm with a and m nonnegative integers.

To prove the claim let ξ be a root of f(x), and let g(x) be an irreducible factor of f(x) such
that g(ξ) = 0. If 0 or 1 are roots of g(x) then either ξ = 0 or ξ = 1 (because g(x) is irreducible)
and we are done. So assume that g(0), g(1) 6= 0. By decomposing d as a product of prime
numbers, it is enough to consider the case d = p prime. We argue for p = 2. Since rad(2k) = 2
for every k, we have

rad(f(2k)) | rad(f(22k)).

Now we prove that g(x) divides f(x2). Suppose that this is not the case. Then, since g(x)
is irreducible, there are integer-coefficient polynomials a(x), b(x) and an integer N such that

a(x)g(x) + b(x)f(x2) = N. (3)

Each prime factor p of g(2k) divides f(2k), so by rad(f(2k))|rad(f(22k)) it also divides f(22k).
From the equation above with x = 2k it follows that p divides N .
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In summary, each prime divisor of g(2k) divides N , for all k ≥ 0. Let p1, . . . , pn be the odd
primes dividing N , and suppose that

g(1) = 2αpα1

1 · · · p
αn

n .

If k is divisible by ϕ(pα1+1
1 · · · pαn+1

n ) then

2k ≡ 1 (mod pα1+1
1 · · · pαn+1

n ),

yielding
g(2k) ≡ g(1) (mod pα1+1

1 · · · pαn+1
n ).

It follows that for each i the maximal power of pi dividing g(2
k) and g(1) is the same, namely pαi

i .
On the other hand, for large enough k, the maximal power of 2 dividing g(2k) and g(0) 6= 0
is the same. From the above, for k divisible by ϕ(pα1+1

1 · · · pαn+1
n ) and large enough, we obtain

that g(2k) divides g(0) · g(1). This is impossible because g(0), g(1) 6= 0 are fixed and g(2k) is
arbitrarily large.

In conclusion, g(x) divides f(x2). Recall that ξ is a root of f(x) such that g(ξ) = 0; then
f(ξ2) = 0, i. e. ξ2 is a root of f(x).

Likewise if ξ is a root of f(x) and p an arbitrary prime then ξp is a root too. The argument
is completely analogous, in the proof above just replace 2 by p and “odd prime” by “prime
different from p.”

Comment. The claim in the second solution can be proved by varying n (mod p) in (1). For instance,
we obtain

f(nrad(n+pk)) ≡ 0 (mod p)

for every positive integer k. One can prove that if (n, p) = 1 then rad(n+pk) runs through all residue
classes r (mod p − 1) with (r, p − 1) squarefree. Hence if f(n) ≡ 0 (mod p) then f(nr) ≡ 0 (mod p)
for all integers r. This implies the claim by an argument leading to the identity (3).
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N6. Let x and y be positive integers. If x2n − 1 is divisible by 2ny + 1 for every positive
integer n, prove that x = 1.

Solution. First we prove the following fact: For every positive integer y there exist infinitely
many primes p ≡ 3 (mod 4) such that p divides some number of the form 2ny + 1.

Clearly it is enough to consider the case y odd. Let

2y + 1 = pe11 · · · p
er
r

be the prime factorization of 2y + 1. Suppose on the contrary that there are finitely many
primes pr+1, . . . , pr+s ≡ 3 (mod 4) that divide some number of the form 2ny + 1 but do not
divide 2y + 1.

We want to find an n such that peii ||2
ny+1 for 1 ≤ i ≤ r and pi ∤ 2ny+1 for r+1 ≤ i ≤ r+s.

For this it suffices to take

n = 1 + ϕ(pe1+1
1 · · · per+1

r p1r+1 · · · p
1
r+s),

because then
2ny + 1 ≡ 2y + 1 (mod pe1+1

1 · · · per+1
r p1r+1 · · · p

1
r+s).

The last congruence means that pe11 , . . . , perr divide exactly 2ny + 1 and no prime pr+1, . . . , pr+s

divides 2ny + 1. It follows that the prime factorization of 2ny + 1 consists of the prime powers
pe11 , . . . , perr and powers of primes ≡ 1 (mod 4). Because y is odd, we obtain

2ny + 1 ≡ pe11 · · · p
er
r ≡ 2y + 1 ≡ 3 (mod 4).

This is a contradiction since n > 1, and so 2ny + 1 ≡ 1 (mod 4).
Now we proceed to the problem. If p is a prime divisor of 2ny + 1 the problem statement

implies that xd ≡ 1 (mod p) for d = 2n. By Fermat’s little theorem the same congruence
holds for d = p − 1, so it must also hold for d = (2n, p − 1). For p ≡ 3 (mod 4) we have
(2n, p− 1) = 2, therefore in this case x2 ≡ 1 (mod p).

In summary, we proved that every prime p ≡ 3 (mod 4) that divides some number of the
form 2ny + 1 also divides x2 − 1. This is possible only if x = 1, otherwise by the above x2 − 1
would be a positive integer with infinitely many prime factors.

Comment. For each x and each odd prime p the maximal power of p dividing x2
n

− 1 for some n is
bounded and hence the same must be true for the numbers 2ny + 1. We infer that p2 divides 2p−1− 1
for each prime divisor p of 2ny+1. However trying to reach a contradiction with this conclusion alone
seems hopeless, since it is not even known if there are infinitely many primes p without this property.
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N7. Find all n ∈ N for which there exist nonnegative integers a1, a2, . . . , an such that

1

2a1
+

1

2a2
+ · · ·+

1

2an
=

1

3a1
+

2

3a2
+ · · ·+

n

3an
= 1.

Solution. Such numbers a1, a2, . . . , an exist if and only if n ≡ 1 (mod 4) or n ≡ 2 (mod 4).
Let

∑n
k=1

k
3ak

= 1 with a1, a2, . . . , an nonnegative integers. Then 1·x1+2·x2+· · ·+n·xn = 3a

with x1, . . . , xn powers of 3 and a ≥ 0. The right-hand side is odd, and the left-hand side has
the same parity as 1+2+ · · ·+n. Hence the latter sum is odd, which implies n ≡ 1, 2 (mod 4).
Now we prove the converse.

Call feasible a sequence b1, b2, . . . , bn if there are nonnegative integers a1, a2, . . . , an such that

1

2a1
+

1

2a2
+ · · ·+

1

2an
=

b1
3a1

+
b2
3a2

+ · · ·+
bn
3an

= 1.

Let bk be a term of a feasible sequence b1, b2, . . . , bn with exponents a1, a2, . . . , an like above,
and let u, v be nonnegative integers with sum 3bk. Observe that

1

2ak+1
+

1

2ak+1
=

1

2ak
and

u

3ak+1
+

v

3ak+1
=

bk
3ak

.

It follows that the sequence b1, . . . , bk−1, u, v, bk+1, . . . , bn is feasible. The exponents ai are the
same for the unchanged terms bi, i 6= k; the new terms u, v have exponents ak + 1.

We state the conclusion in reverse. If two terms u, v of a sequence are replaced by one
term u+v

3
and the obtained sequence is feasible, then the original sequence is feasible too.

Denote by αn the sequence 1, 2, . . . , n. To show that αn is feasible for n ≡ 1, 2 (mod 4), we
transform it by n − 1 replacements {u, v} 7→ u+v

3
to the one-term sequence α1. The latter is

feasible, with a1 = 0. Note that if m and 2m are terms of a sequence then {m, 2m} 7→ m, so
2m can be ignored if necessary.

Let n ≥ 16. We prove that αn can be reduced to αn−12 by 12 operations. Write n = 12k+ r
where k ≥ 1 and 0 ≤ r ≤ 11. If 0 ≤ r ≤ 5 then the last 12 terms of αn can be partitioned into
2 singletons {12k − 6}, {12k} and the following 5 pairs:

{12k − 6− i, 12k − 6 + i}, i = 1, . . . , 5− r; {12k − j, 12k + j}, j = 1, . . . , r.

(There is only one kind of pairs if r ∈ {0, 5}.) One can ignore 12k − 6 and 12k since αn

contains 6k − 3 and 6k. Furthermore the 5 operations {12k − 6− i, 12k − 6 + i} 7→ 8k − 4 and
{12k − j, 12k + j} 7→ 8k remove the 10 terms in the pairs and bring in 5 new terms equal
to 8k − 4 or 8k. All of these can be ignored too as 4k − 2 and 4k are still present in the
sequence. Indeed 4k ≤ n− 12 is equivalent to 8k ≥ 12− r, which is true for r ∈ {4, 5}. And if
r ∈ {0, 1, 2, 3} then n ≥ 16 implies k ≥ 2, so 8k ≥ 12− r also holds. Thus αn reduces to αn−12.

The case 6 ≤ r ≤ 11 is analogous. Consider the singletons {12k}, {12k+6} and the 5 pairs

{12k − i, 12k + i}, i = 1, . . . , 11− r; {12k + 6− j, 12k + 6 + j}, j = 1, . . . , r − 6.

Ignore the singletons like before, then remove the pairs via operations {12k − i, 12k + i} 7→ 8k
and {12k + 6− j, 12k + 6 + j} 7→ 8k + 4. The 5 newly-appeared terms 8k and 8k + 4 can be
ignored too since 4k + 2 ≤ n− 12 (this follows from k ≥ 1 and r ≥ 6). We obtain αn−12 again.

The problem reduces to 2 ≤ n ≤ 15. In fact n ∈ {2, 5, 6, 9, 10, 13, 14} by n ≡ 1, 2 (mod 4).
The cases n = 2, 6, 10, 14 reduce to n = 1, 5, 9, 13 respectively because the last even term of αn

can be ignored. For n = 5 apply {4, 5} 7→ 3, then {3, 3} 7→ 2, then ignore the 2 occurrences
of 2. For n = 9 ignore 6 first, then apply {5, 7} 7→ 4, {4, 8} 7→ 4, {3, 9} 7→ 4. Now ignore
the 3 occurrences of 4, then ignore 2. Finally n = 13 reduces to n = 10 by {11, 13} 7→ 8 and
ignoring 8 and 12. The proof is complete.
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N8. Prove that for every prime p > 100 and every integer r there exist two integers a and b
such that p divides a2 + b5 − r.

Solution 1. Throughout the solution, all congruence relations are meant modulo p.

Fix p, and let P = {0, 1, . . . , p− 1} be the set of residue classes modulo p. For every r ∈ P,
let Sr =

{
(a, b) ∈ P × P : a2 + b5 ≡ r

}
, and let sr = |Sr|. Our aim is to prove sr > 0 for

all r ∈ P .
We will use the well-known fact that for every residue class r ∈ P and every positive

integer k, there are at most k values x ∈ P such that xk ≡ r.

Lemma. Let N be the number of quadruples (a, b, c, d) ∈ P4 for which a2 + b5 ≡ c2 + d5. Then

N =
∑

r∈P

s2r (a)

and

N ≤ p(p2 + 4p− 4). (b)

Proof. (a) For each residue class r there exist exactly sr pairs (a, b) with a2 + b5 ≡ r and sr
pairs (c, d) with c2 + d5 ≡ r. So there are s2r quadruples with a2 + b5 ≡ c2 + d5 ≡ r. Taking the
sum over all r ∈ P, the statement follows.

(b) Choose an arbitrary pair (b, d) ∈ P and look for the possible values of a, c.

1. Suppose that b5 ≡ d5, and let k be the number of such pairs (b, d). The value b can be
chosen in p different ways. For b ≡ 0 only d = 0 has this property; for the nonzero values of b
there are at most 5 possible values for d. So we have k ≤ 1 + 5(p− 1) = 5p− 4.

The values a and c must satisfy a2 ≡ c2, so a ≡ ±c, and there are exactly 2p − 1 such
pairs (a, c).

2. Now suppose b5 6≡ d5. In this case a and c must be distinct. By (a− c)(a+ c) = d5 − b5,
the value of a − c uniquely determines a + c and thus a and c as well. Hence, there are p− 1
suitable pairs (a, c).

Thus, for each of the k pairs (b, d) with b5 ≡ d5 there are 2p− 1 pairs (a, c), and for each of
the other p2 − k pairs (b, d) there are p− 1 pairs (a, c). Hence,

N = k(2p− 1) + (p2 − k)(p− 1) = p2(p− 1) + kp ≤ p2(p− 1) + (5p− 4)p = p(p2 + 4p− 4). �

To prove the statement of the problem, suppose that Sr = ∅ for some r ∈ P; obviously
r 6≡ 0. Let T =

{
x10 : x ∈ P \ {0}

}
be the set of nonzero 10th powers modulo p. Since each

residue class is the 10th power of at most 10 elements in P, we have |T | ≥ p−1
10
≥ 4 by p > 100.

For every t ∈ T , we have Str = ∅. Indeed, if (x, y) ∈ Str and t ≡ z10 then

(z−5x)2 + (z−2y)5 ≡ t−1(x2 + y5) ≡ r,

so (z−5x, z−2y) ∈ Sr. So, there are at least p−1
10
≥ 4 empty sets among S1, . . . , Sp−1, and there

are at most p − 4 nonzero values among s0, s2, . . . , sp−1. Then by the AM-QM inequality we
obtain

N =
∑

r∈P\rT

s2r ≥
1

p− 4


 ∑

r∈P\rT

sr




2

=
|P × P|2

p− 4
=

p4

p− 4
> p(p2 + 4p− 4),

which is impossible by the lemma.
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Solution 2. If 5 ∤ p− 1, then all modulo p residue classes are complete fifth powers and the
statement is trivial. So assume that p = 10k + 1 where k ≥ 10. Let g be a primitive root
modulo p.

We will use the following facts:

(F1) If some residue class x is not quadratic then x(p−1)/2 ≡ −1 (mod p).

(F2) For every integer d, as a simple corollary of the summation formula for geometric pro-
gressions,

2k−1∑

i=0

g5di ≡

{
2k if 2k

∣∣ d
0 if 2k 6 | d

(mod p).

Suppose that, contrary to the statement, some modulo p residue class r cannot be expressed
as a2+b5. Of course r 6≡ 0 (mod p). By (F1) we have (r−b5)(p−1)/2 = (r−b5)5k ≡ −1 (mod p)
for all residue classes b.

For t = 1, 2 . . . , k − 1 consider the sums

S(t) =
2k−1∑

i=0

(
r − g5i

)5k
g5ti.

By the indirect assumption and (F2),

S(t) =
2k−1∑

i=0

(
r − (gi)5

)5k
g5ti ≡

2k−1∑

i=0

(−1)g5ti ≡ −
2k−1∑

i=0

g5ti ≡ 0 (mod p)

because 2k cannot divide t.
On the other hand, by the binomial theorem,

S(t) =

2k−1∑

i=0

(

5k
∑

j=0

(

5k

j

)

r5k−j
(

− g5i
)j

)

g5ti =

5k
∑

j=0

(−1)j
(

5k

j

)

r5k−j

(

2k−1
∑

i=0

g5(j+t)i

)

≡

≡
5k
∑

j=0

(−1)j
(

5k

j

)

r5k−j

{

2k if 2k
∣

∣ j + t

0 if 2k 6 | j + t
(mod p).

Since 1 ≤ j + t < 6k, the number 2k divides j + t only for j = 2k − t and j = 4k − t. Hence,

0 ≡ S(t) ≡ (−1)t
((

5k

2k − t

)

r3k+t +

(

5k

4k − t

)

rk+t

)

· 2k (mod p),

(

5k

2k − t

)

r2k +

(

5k

4k − t

)

≡ 0 (mod p).

Taking this for t = 1, 2 and eliminating r, we get

0 ≡

(

5k

2k − 2

)((

5k

2k − 1

)

r2k +

(

5k

4k − 1

))

−

(

5k

2k − 1

)((

5k

2k − 2

)

r2k +

(

5k

4k − 2

))

=

(

5k

2k − 2

)(

5k

4k − 1

)

−

(

5k

2k − 1

)(

5k

4k − 2

)

=
(5k)!2

(2k − 1)!(3k + 2)!(4k − 1)!(k + 2)!

(

(2k − 1)(k + 2)− (3k + 2)(4k − 1)
)

=
−(5k)!2 · 2k(5k + 1)

(2k − 1)!(3k + 2)!(4k − 1)!(k + 2)!
(mod p).

But in the last expression none of the numbers is divisible by p = 10k + 1, a contradiction.
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Comment 1. The argument in the second solution is valid whenever k ≥ 3, that is for all primes
p = 10k + 1 except p = 11. This is an exceptional case when the statement is not true; r = 7 cannot
be expressed as desired.

Comment 2. The statement is true in a more general setting: for every positive integer n, for all
sufficiently large p, each residue class modulo p can be expressed as a2 + bn. Choosing t = 3 would
allow using the Cauchy-Davenport theorem (together with some analysis on the case of equality).

In the literature more general results are known. For instance, the statement easily follows from
the Hasse-Weil bound.



Shortlisted Problems with Solutions

54th International Mathematical Olympiad

Santa Marta, Colombia 2013



Note of Confidentiality

The Shortlisted Problems should be kept

strictly confidential until IMO 2014.

Contributing Countries

The Organizing Committee and the Problem Selection Committee of IMO 2013 thank the following
50 countries for contributing 149 problem proposals.

Argentina, Armenia, Australia, Austria, Belgium, Belarus, Brazil, Bulgaria,

Croatia, Cyprus, Czech Republic, Denmark, El Salvador, Estonia, Finland,
France, Georgia, Germany, Greece, Hungary, India, Indonesia, Iran, Ireland,

Israel, Italy, Japan, Latvia, Lithuania, Luxembourg, Malaysia, Mexico,
Netherlands, Nicaragua, Pakistan, Panama, Poland, Romania, Russia,
Saudi Arabia, Serbia, Slovenia, Sweden, Switzerland, Tajikistan, Thailand,

Turkey, U.S.A., Ukraine, United Kingdom

Problem Selection Committee

Federico Ardila (chairman)
Ilya I. Bogdanov
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Problems

Algebra

A1. Let n be a positive integer and let a1, . . . , an´1 be arbitrary real numbers. Define the
sequences u0, . . . , un and v0, . . . , vn inductively by u0 “ u1 “ v0 “ v1 “ 1, and

uk`1 “ uk ` akuk´1, vk`1 “ vk ` an´kvk´1 for k “ 1, . . . , n´ 1.

Prove that un “ vn.

(France)

A2. Prove that in any set of 2000 distinct real numbers there exist two pairs a ą b and c ą d

with a ‰ c or b ‰ d, such that
ˇ

ˇ

ˇ

ˇ

a´ b
c´ d ´ 1

ˇ

ˇ

ˇ

ˇ

ă 1

100000
.

(Lithuania)

A3. Let Qą0 be the set of positive rational numbers. Let f : Qą0 Ñ R be a function satisfying
the conditions

fpxqfpyq ě fpxyq and fpx` yq ě fpxq ` fpyq
for all x, y P Qą0. Given that fpaq “ a for some rational a ą 1, prove that fpxq “ x for all
x P Qą0.

(Bulgaria)

A4. Let n be a positive integer, and consider a sequence a1, a2, . . . , an of positive integers.
Extend it periodically to an infinite sequence a1, a2, . . . by defining an`i “ ai for all i ě 1. If

a1 ď a2 ď ¨ ¨ ¨ ď an ď a1 ` n
and

aai ď n` i´ 1 for i “ 1, 2, . . . , n,

prove that
a1 ` ¨ ¨ ¨ ` an ď n2.

(Germany)

A5. Let Zě0 be the set of all nonnegative integers. Find all the functions f : Zě0 Ñ Zě0
satisfying the relation

fpfpfpnqqq “ fpn` 1q ` 1

for all n P Zě0.
(Serbia)

A6. Let m ‰ 0 be an integer. Find all polynomials P pxq with real coefficients such that

px3 ´mx2 ` 1qP px` 1q ` px3 `mx2 ` 1qP px´ 1q “ 2px3 ´mx` 1qP pxq
for all real numbers x.

(Serbia)



4 IMO 2013 Colombia

Combinatorics

C1. Let n be a positive integer. Find the smallest integer k with the following property: Given
any real numbers a1, . . . , ad such that a1 ` a2 ` ¨ ¨ ¨ ` ad “ n and 0 ď ai ď 1 for i “ 1, 2, . . . , d, it
is possible to partition these numbers into k groups (some of which may be empty) such that the
sum of the numbers in each group is at most 1.

(Poland)

C2. In the plane, 2013 red points and 2014 blue points are marked so that no three of the
marked points are collinear. One needs to draw k lines not passing through the marked points and
dividing the plane into several regions. The goal is to do it in such a way that no region contains
points of both colors.

Find the minimal value of k such that the goal is attainable for every possible configuration of
4027 points.

(Australia)

C3. A crazy physicist discovered a new kind of particle which he called an imon, after some of
them mysteriously appeared in his lab. Some pairs of imons in the lab can be entangled, and each
imon can participate in many entanglement relations. The physicist has found a way to perform
the following two kinds of operations with these particles, one operation at a time.

piq If some imon is entangled with an odd number of other imons in the lab, then the physicist
can destroy it.

piiq At any moment, he may double the whole family of imons in his lab by creating a copy I 1
of each imon I. During this procedure, the two copies I 1 and J 1 become entangled if and only if
the original imons I and J are entangled, and each copy I 1 becomes entangled with its original
imon I; no other entanglements occur or disappear at this moment.

Prove that the physicist may apply a sequence of such operations resulting in a family of imons,
no two of which are entangled.

(Japan)

C4. Let n be a positive integer, and let A be a subset of t1, . . . , nu. An A-partition of n into k
parts is a representation of n as a sum n “ a1 ` ¨ ¨ ¨ ` ak, where the parts a1, . . . , ak belong to A
and are not necessarily distinct. The number of different parts in such a partition is the number
of (distinct) elements in the set ta1, a2, . . . , aku.

We say that an A-partition of n into k parts is optimal if there is no A-partition of n into r
parts with r ă k. Prove that any optimal A-partition of n contains at most 3

?
6n different parts.

(Germany)

C5. Let r be a positive integer, and let a0, a1, . . . be an infinite sequence of real numbers.
Assume that for all nonnegative integers m and s there exists a positive integer n P rm` 1, m` rs
such that

am ` am`1 ` ¨ ¨ ¨ ` am`s “ an ` an`1 ` ¨ ¨ ¨ ` an`s.

Prove that the sequence is periodic, i. e. there exists some p ě 1 such that an`p “ an for all n ě 0.

(India)
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C6. In some country several pairs of cities are connected by direct two-way flights. It is possible
to go from any city to any other by a sequence of flights. The distance between two cities is defined
to be the least possible number of flights required to go from one of them to the other. It is known
that for any city there are at most 100 cities at distance exactly three from it. Prove that there is
no city such that more than 2550 other cities have distance exactly four from it.

(Russia)

C7. Let n ě 2 be an integer. Consider all circular arrangements of the numbers 0, 1, . . . , n; the
n ` 1 rotations of an arrangement are considered to be equal. A circular arrangement is called
beautiful if, for any four distinct numbers 0 ď a, b, c, d ď n with a ` c “ b ` d, the chord joining
numbers a and c does not intersect the chord joining numbers b and d.

Let M be the number of beautiful arrangements of 0, 1, . . . , n. Let N be the number of pairs
px, yq of positive integers such that x` y ď n and gcdpx, yq “ 1. Prove that

M “ N ` 1.

(Russia)

C8. Players A and B play a paintful game on the real line. Player A has a pot of paint with
four units of black ink. A quantity p of this ink suffices to blacken a (closed) real interval of length
p. In every round, player A picks some positive integer m and provides 1{2m units of ink from the
pot. Player B then picks an integer k and blackens the interval from k{2m to pk ` 1q{2m (some
parts of this interval may have been blackened before). The goal of player A is to reach a situation
where the pot is empty and the interval r0, 1s is not completely blackened.

Decide whether there exists a strategy for player A to win in a finite number of moves.

(Austria)
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Geometry

G1. Let ABC be an acute-angled triangle with orthocenter H , and let W be a point on
side BC. Denote by M and N the feet of the altitudes from B and C, respectively. Denote
by ω1 the circumcircle of BWN , and let X be the point on ω1 which is diametrically opposite
to W . Analogously, denote by ω2 the circumcircle of CWM , and let Y be the point on ω2 which
is diametrically opposite to W . Prove that X , Y and H are collinear.

(Thaliand)

G2. Let ω be the circumcircle of a triangle ABC. Denote by M and N the midpoints of the
sides AB and AC, respectively, and denote by T the midpoint of the arc BC of ω not containing A.
The circumcircles of the triangles AMT and ANT intersect the perpendicular bisectors of AC
and AB at points X and Y , respectively; assume that X and Y lie inside the triangle ABC. The
lines MN and XY intersect at K. Prove that KA “ KT .

(Iran)

G3. In a triangle ABC, let D and E be the feet of the angle bisectors of angles A and B,
respectively. A rhombus is inscribed into the quadrilateral AEDB (all vertices of the rhombus
lie on different sides of AEDB). Let ϕ be the non-obtuse angle of the rhombus. Prove that
ϕ ď maxt=BAC,=ABCu.

(Serbia)

G4. Let ABC be a triangle with =B ą =C. Let P and Q be two different points on line AC
such that =PBA “ =QBA “ =ACB and A is located between P and C. Suppose that there
exists an interior point D of segment BQ for which PD “ PB. Let the ray AD intersect the circle
ABC at R ‰ A. Prove that QB “ QR.

(Georgia)

G5. Let ABCDEF be a convex hexagon with AB “ DE, BC “ EF , CD “ FA, and
=A ´=D “ =C ´=F “ =E ´=B. Prove that the diagonals AD,BE, and CF are concurrent.

(Ukraine)

G6. Let the excircle of the triangle ABC lying opposite to A touch its side BC at the point A1.
Define the points B1 and C1 analogously. Suppose that the circumcentre of the triangle A1B1C1

lies on the circumcircle of the triangle ABC. Prove that the triangle ABC is right-angled.

(Russia)
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Number Theory

N1. Let Zą0 be the set of positive integers. Find all functions f : Zą0 Ñ Zą0 such that

m2 ` fpnq | mfpmq ` n
for all positive integers m and n.

(Malaysia)

N2. Prove that for any pair of positive integers k and n there exist k positive integers
m1, m2, . . . , mk such that

1` 2k ´ 1

n
“

ˆ

1` 1

m1

˙ˆ

1` 1

m2

˙

¨ ¨ ¨
ˆ

1` 1

mk

˙

.

(Japan)

N3. Prove that there exist infinitely many positive integers n such that the largest prime divisor
of n4 ` n2 ` 1 is equal to the largest prime divisor of pn` 1q4 ` pn` 1q2 ` 1.

(Belgium)

N4. Determine whether there exists an infinite sequence of nonzero digits a1, a2, a3, . . . and a
positive integer N such that for every integer k ą N , the number akak´1 . . . a1 is a perfect square.

(Iran)

N5. Fix an integer k ě 2. Two players, called Ana and Banana, play the following game of
numbers: Initially, some integer n ě k gets written on the blackboard. Then they take moves
in turn, with Ana beginning. A player making a move erases the number m just written on the
blackboard and replaces it by some number m1 with k ď m1 ă m that is coprime to m. The first
player who cannot move anymore loses.

An integer n ě k is called good if Banana has a winning strategy when the initial number is n,
and bad otherwise.

Consider two integers n, n1 ě k with the property that each prime number p ď k divides n if
and only if it divides n1. Prove that either both n and n1 are good or both are bad.

(Italy)

N6. Determine all functions f : Q ÝÑ Z satisfying

f

ˆ

fpxq ` a
b

˙

“ f
´x` a

b

¯

for all x P Q, a P Z, and b P Zą0. (Here, Zą0 denotes the set of positive integers.)
(Israel)

N7. Let ν be an irrational positive number, and let m be a positive integer. A pair pa, bq of
positive integers is called good if

arbνs ´ btaνu “ m.

A good pair pa, bq is called excellent if neither of the pairs pa´b, bq and pa, b´aq is good. (As usual,
by txu and rxs we denote the integer numbers such that x´ 1 ă txu ď x and x ď rxs ă x` 1.)

Prove that the number of excellent pairs is equal to the sum of the positive divisors of m.

(U.S.A.)
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Solutions

Algebra

A1. Let n be a positive integer and let a1, . . . , an´1 be arbitrary real numbers. Define the
sequences u0, . . . , un and v0, . . . , vn inductively by u0 “ u1 “ v0 “ v1 “ 1, and

uk`1 “ uk ` akuk´1, vk`1 “ vk ` an´kvk´1 for k “ 1, . . . , n´ 1.

Prove that un “ vn.

(France)

Solution 1. We prove by induction on k that

uk “
ÿ

0ăi1ă...ăităk,
ij`1´ijě2

ai1 . . . ait . p1q

Note that we have one trivial summand equal to 1 (which corresponds to t “ 0 and the empty
sequence, whose product is 1).

For k “ 0, 1 the sum on the right-hand side only contains the empty product, so (1) holds due
to u0 “ u1 “ 1. For k ě 1, assuming the result is true for 0, 1, . . . , k, we have

uk`1 “
ÿ

0ăi1ă...ăităk,
ij`1´ijě2

ai1 . . . ait `
ÿ

0ăi1ă...ăităk´1,
ij`1´ijě2

ai1 . . . ait ¨ ak

“
ÿ

0ăi1ă...ăităk`1,
ij`1´ijě2,
kRti1,...,itu

ai1 . . . ait `
ÿ

0ăi1ă...ăităk`1,
ij`1´ijě2,
kPti1,...,itu

ai1 . . . ait

“
ÿ

0ăi1ă...ăităk`1,
ij`1´ijě2

ai1 . . . ait ,

as required.
Applying (1) to the sequence b1, . . . , bn given by bk “ an´k for 1 ď k ď n, we get

vk “
ÿ

0ăi1ă...ăităk,
ij`1´ijě2

bi1 . . . bit “
ÿ

nąi1ą...ąitąn´k,
ij´ij`1ě2

ai1 . . . ait . p2q

For k “ n the expressions (1) and (2) coincide, so indeed un “ vn.

Solution 2. Define recursively a sequence of multivariate polynomials by

P0 “ P1 “ 1, Pk`1px1, . . . , xkq “ Pkpx1, . . . , xk´1q ` xkPk´1px1, . . . , xk´2q,

so Pn is a polynomial in n´ 1 variables for each n ě 1. Two easy inductive arguments show that

un “ Pnpa1, . . . , an´1q, vn “ Pnpan´1, . . . , a1q,
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so we need to prove Pnpx1, . . . , xn´1q “ Pnpxn´1, . . . , x1q for every positive integer n. The cases
n “ 1, 2 are trivial, and the cases n “ 3, 4 follow from P3px, yq “ 1 ` x ` y and P4px, y, zq “
1` x` y ` z ` xz.

Now we proceed by induction, assuming that n ě 5 and the claim hold for all smaller cases.
Using F pa, bq as an abbreviation for P|a´b|`1pxa, . . . , xbq (where the indices a, . . . , b can be either
in increasing or decreasing order),

F pn, 1q “ F pn, 2q ` x1F pn, 3q “ F p2, nq ` x1F p3, nq
“ pF p2, n´ 1q ` xnF p2, n´ 2qq ` x1pF p3, n´ 1q ` xnF p3, n´ 2qq
“ pF pn´ 1, 2q ` x1F pn´ 1, 3qq ` xnpF pn´ 2, 2q ` x1F pn´ 2, 3qq
“ F pn´ 1, 1q ` xnF pn´ 2, 1q “ F p1, n´ 1q ` xnF p1, n´ 2q
“ F p1, nq,

as we wished to show.

Solution 3. Using matrix notation, we can rewrite the recurrence relation as
ˆ

uk`1

uk`1 ´ uk

˙

“
ˆ

uk ` akuk´1
akuk´1

˙

“
ˆ

1` ak ´ak
ak ´ak

˙ˆ

uk

uk ´ uk´1

˙

for 1 ď k ď n´ 1, and similarly

pvk`1; vk ´ vk`1q “
´

vk ` an´kvk´1;´an´kvk´1
¯

“ pvk; vk´1 ´ vkq
ˆ

1` an´k ´an´k
an´k ´an´k

˙

for 1 ď k ď n´ 1. Hence, introducing the 2ˆ 2 matrices Ak “
ˆ

1` ak ´ak
ak ´ak

˙

we have

ˆ

uk`1

uk`1 ´ uk

˙

“ Ak

ˆ

uk

uk ´ uk´1

˙

and pvk`1; vk ´ vk`1q “ pvk; vk´1 ´ vkqAn´k.

for 1 ď k ď n´ 1. Since
`

u1

u1´u0

˘

“
`

1

0

˘

and pv1; v0 ´ v1q “ p1; 0q, we get
ˆ

un

un ´ un´1

˙

“ An´1An´2 ¨ ¨ ¨A1 ¨
ˆ

1

0

˙

and pvn; vn´1 ´ vnq “ p1; 0q ¨An´1An´2 ¨ ¨ ¨A1.

It follows that

punq “ p1; 0q
ˆ

un

un ´ un´1

˙

“ p1; 0q ¨An´1An´2 ¨ ¨ ¨A1 ¨
ˆ

1

0

˙

“ pvn; vn´1 ´ vnq
ˆ

1

0

˙

“ pvnq.

Comment 1. These sequences are related to the Fibonacci sequence; when a1 “ ¨ ¨ ¨ “ an´1 “ 1, we
have uk “ vk “ Fk`1, the pk ` 1qst Fibonacci number. Also, for every positive integer k, the polynomial
Pkpx1, . . . , xk´1q from Solution 2 is the sum of Fk`1 monomials.

Comment 2. One may notice that the condition is equivalent to

uk`1

uk
“ 1` ak

1` ak´1

1` . . .` a2

1` a1

and
vk`1

vk
“ 1` an´k

1` an´k`1

1` . . .` an´2

1` an´1
so the problem claims that the corresponding continued fractions for un{un´1 and vn{vn´1 have the same
numerator.
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Comment 3. An alternative variant of the problem is the following.

Let n be a positive integer and let a1, . . . , an´1 be arbitrary real numbers. Define the sequences
u0, . . . , un and v0, . . . , vn inductively by u0 “ v0 “ 0, u1 “ v1 “ 1, and

uk`1 “ akuk ` uk´1, vk`1 “ an´kvk ` vk´1 for k “ 1, . . . , n´ 1.

Prove that un “ vn.

All three solutions above can be reformulated to prove this statement; one may prove

un “ vn “
ÿ

0“i0ăi1ă...ăit“n,
ij`1´ij is odd

ai1 . . . ait´1
for n ą 0

or observe that
ˆ

uk`1

uk

˙

“
ˆ

ak 1
1 0

˙ˆ

uk

uk´1

˙

and pvk`1; vkq “ pvk; vk´1q
ˆ

ak 1
1 0

˙

.

Here we have
uk`1

uk
“ ak `

1

ak´1 `
1

ak´2 ` . . .`
1

a1

“ rak; ak´1, . . . , a1s

and
vk`1

vk
“ an´k `

1

an´k`1 `
1

an´k`2 ` . . . `
1

an´1

“ ran´k; an´k`1, . . . , an´1s,

so this alternative statement is equivalent to the known fact that the continued fractions ran´1; an´2, . . . , a1s
and ra1; a2, . . . , an´1s have the same numerator.
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A2. Prove that in any set of 2000 distinct real numbers there exist two pairs a ą b and c ą d

with a ‰ c or b ‰ d, such that
ˇ

ˇ

ˇ

ˇ

a´ b
c´ d ´ 1

ˇ

ˇ

ˇ

ˇ

ă 1

100000
.

(Lithuania)

Solution. For any set S of n “ 2000 distinct real numbers, let D1 ď D2 ď ¨ ¨ ¨ ď Dm be the
distances between them, displayed with their multiplicities. Here m “ npn ´ 1q{2. By rescaling
the numbers, we may assume that the smallest distance D1 between two elements of S is D1 “ 1.
Let D1 “ 1 “ y ´ x for x, y P S. Evidently Dm “ v ´ u is the difference between the largest
element v and the smallest element u of S.

If Di`1{Di ă 1` 10´5 for some i “ 1, 2, . . . , m´ 1 then the required inequality holds, because
0 ď Di`1{Di ´ 1 ă 10´5. Otherwise, the reverse inequality

Di`1

Di

ě 1` 1

105

holds for each i “ 1, 2, . . . , m´ 1, and therefore

v ´ u “ Dm “
Dm

D1

“ Dm

Dm´1
¨ ¨ ¨ D3

D2

¨ D2

D1

ě
ˆ

1` 1

105

˙m´1

.

From m´ 1 “ npn´ 1q{2´ 1 “ 1000 ¨ 1999´ 1 ą 19 ¨ 105, together with the fact that for all n ě 1,
`

1` 1

n

˘n ě 1`
`

n

1

˘

¨ 1

n
“ 2, we get

ˆ

1` 1

105

˙19¨105

“
˜

ˆ

1` 1

105

˙105
¸19

ě 219 “ 29 ¨ 210 ą 500 ¨ 1000 ą 2 ¨ 105,

and so v ´ u “ Dm ą 2 ¨ 105.
Since the distance of x to at least one of the numbers u, v is at least pu´ vq{2 ą 105, we have

|x´ z| ą 105.

for some z P tu, vu. Since y ´ x “ 1, we have either z ą y ą x (if z “ v) or y ą x ą z (if z “ u).
If z ą y ą x, selecting a “ z, b “ y, c “ z and d “ x (so that b ‰ d), we obtain

ˇ

ˇ

ˇ

ˇ

a´ b
c´ d ´ 1

ˇ

ˇ

ˇ

ˇ

“
ˇ

ˇ

ˇ

ˇ

z ´ y
z ´ x ´ 1

ˇ

ˇ

ˇ

ˇ

“
ˇ

ˇ

ˇ

ˇ

x´ y
z ´ x

ˇ

ˇ

ˇ

ˇ

“ 1

z ´ x ă 10´5.

Otherwise, if y ą x ą z, we may choose a “ y, b “ z, c “ x and d “ z (so that a ‰ c), and obtain
ˇ

ˇ

ˇ

ˇ

a´ b
c´ d ´ 1

ˇ

ˇ

ˇ

ˇ

“
ˇ

ˇ

ˇ

ˇ

y ´ z
x´ z ´ 1

ˇ

ˇ

ˇ

ˇ

“
ˇ

ˇ

ˇ

ˇ

y ´ x
x´ z

ˇ

ˇ

ˇ

ˇ

“ 1

x´ z ă 10´5.

The desired result follows.

Comment. As the solution shows, the numbers 2000 and 1

100000
appearing in the statement of the problem

may be replaced by any n P Zą0 and δ ą 0 satisfying

δp1 ` δqnpn´1q{2´1 ą 2.
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A3. Let Qą0 be the set of positive rational numbers. Let f : Qą0 Ñ R be a function satisfying
the conditions

fpxqfpyq ě fpxyq, (1)

fpx` yq ě fpxq ` fpyq (2)

for all x, y P Qą0. Given that fpaq “ a for some rational a ą 1, prove that fpxq “ x for all
x P Qą0.

(Bulgaria)

Solution. Denote by Zą0 the set of positive integers.
Plugging x “ 1, y “ a into (1) we get fp1q ě 1. Next, by an easy induction on n we get

from (2) that
fpnxq ě nfpxq for all n P Zą0 and x P Qą0. (3)

In particular, we have
fpnq ě nfp1q ě n for all n P Zą0. (4)

From (1) again we have fpm{nqfpnq ě fpmq, so fpqq ą 0 for all q P Qą0.
Now, (2) implies that f is strictly increasing; this fact together with (4) yields

fpxq ě fptxuq ě txu ą x´ 1 for all x ě 1.

By an easy induction we get from (1) that fpxqn ě fpxnq, so

fpxqn ě fpxnq ą xn ´ 1 ùñ fpxq ě n
?
xn ´ 1 for all x ą 1 and n P Zą0.

This yields
fpxq ě x for every x ą 1. (5)

(Indeed, if x ą y ą 1 then xn ´ yn “ px´ yqpxn´1 ` xn´2y ` ¨ ¨ ¨ ` ynq ą npx´ yq, so for a large n
we have xn ´ 1 ą yn and thus fpxq ą y.)

Now, (1) and (5) give an “ fpaqn ě fpanq ě an, so fpanq “ an. Now, for x ą 1 let us choose
n P Zą0 such that an ´ x ą 1. Then by (2) and (5) we get

an “ fpanq ě fpxq ` fpan ´ xq ě x` pan ´ xq “ an

and therefore fpxq “ x for x ą 1. Finally, for every x P Qą0 and every n P Zą0, from (1) and (3)
we get

nfpxq “ fpnqfpxq ě fpnxq ě nfpxq,
which gives fpnxq “ nfpxq. Therefore fpm{nq “ fpmq{n “ m{n for all m,n P Zą0.

Comment. The condition fpaq “ a ą 1 is essential. Indeed, for b ě 1 the function fpxq “ bx2 satisfies (1)
and (2) for all x, y P Qą0, and it has a unique fixed point 1{b ď 1.
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A4. Let n be a positive integer, and consider a sequence a1, a2, . . . , an of positive integers.
Extend it periodically to an infinite sequence a1, a2, . . . by defining an`i “ ai for all i ě 1. If

a1 ď a2 ď ¨ ¨ ¨ ď an ď a1 ` n (1)

and

aai ď n` i´ 1 for i “ 1, 2, . . . , n, (2)

prove that

a1 ` ¨ ¨ ¨ ` an ď n2.

(Germany)

Solution 1. First, we claim that

ai ď n` i´ 1 for i “ 1, 2, . . . , n. (3)

Assume contrariwise that i is the smallest counterexample. From an ě an´1 ě ¨ ¨ ¨ ě ai ě n ` i

and aai ď n` i´ 1, taking into account the periodicity of our sequence, it follows that

ai cannot be congruent to i, i` 1, . . . , n´ 1, or n pmod nq. (4)

Thus our assumption that ai ě n ` i implies the stronger statement that ai ě 2n ` 1, which by
a1 ` n ě an ě ai gives a1 ě n ` 1. The minimality of i then yields i “ 1, and (4) becomes
contradictory. This establishes our first claim.

In particular we now know that a1 ď n. If an ď n, then a1 ď ¨ ¨ ¨ ď ¨ ¨ ¨ an ď n and the desired
inequality holds trivially. Otherwise, consider the number t with 1 ď t ď n´ 1 such that

a1 ď a2 ď . . . ď at ď n ă at`1 ď . . . ď an. (5)

Since 1 ď a1 ď n and aa1 ď n by (2), we have a1 ď t and hence an ď n ` t. Therefore if for each
positive integer i we let bi be the number of indices j P tt` 1, . . . , nu satisfying aj ě n` i, we have

b1 ě b2 ě . . . ě bt ě bt`1 “ 0.

Next we claim that ai ` bi ď n for 1 ď i ď t. Indeed, by n ` i ´ 1 ě aai and ai ď n, each j
with aj ě n` i (thus aj ą aai) belongs to tai ` 1, . . . , nu, and for this reason bi ď n ´ ai.

It follows from the definition of the bis and (5) that

at`1 ` . . .` an ď npn´ tq ` b1 ` . . .` bt.

Adding a1 ` . . .` at to both sides and using that ai ` bi ď n for 1 ď i ď t, we get

a1 ` a2 ` ¨ ¨ ¨ ` an ď npn´ tq ` nt “ n2

as we wished to prove.
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Solution 2. In the first quadrant of an infinite grid, consider the increasing “staircase” obtained
by shading in dark the bottom ai cells of the ith column for 1 ď i ď n. We will prove that there
are at most n2 dark cells.

To do it, consider the n ˆ n square S in the first quadrant with a vertex at the origin. Also
consider the nˆn square directly to the left of S. Starting from its lower left corner, shade in light
the leftmost aj cells of the jth row for 1 ď j ď n. Equivalently, the light shading is obtained by
reflecting the dark shading across the line x “ y and translating it n units to the left. The figure
below illustrates this construction for the sequence 6, 6, 6, 7, 7, 7, 8, 12, 12, 14.

i

ai

n+ i− 1

aai

We claim that there is no cell in S which is both dark and light. Assume, contrariwise, that
there is such a cell in column i. Consider the highest dark cell in column i which is inside S. Since
it is above a light cell and inside S, it must be light as well. There are two cases:

Case 1. ai ď n

If ai ď n then this dark and light cell is pi, aiq, as highlighted in the figure. However, this is the
pn ` iq-th cell in row ai, and we only shaded aai ă n` i light cells in that row, a contradiction.

Case 2. ai ě n` 1

If ai ě n ` 1, this dark and light cell is pi, nq. This is the pn ` iq-th cell in row n and we shaded
an ď a1 ` n light cells in this row, so we must have i ď a1. But a1 ď aa1 ď n by (1) and (2), so
i ď a1 implies ai ď aa1 ď n, contradicting our assumption.

We conclude that there are no cells in S which are both dark and light. It follows that the
number of shaded cells in S is at most n2.

Finally, observe that if we had a light cell to the right of S, then by symmetry we would have
a dark cell above S, and then the cell pn, nq would be dark and light. It follows that the number
of light cells in S equals the number of dark cells outside of S, and therefore the number of shaded
cells in S equals a1 ` ¨ ¨ ¨ ` an. The desired result follows.

Solution 3. As in Solution 1, we first establish that ai ď n ` i ´ 1 for 1 ď i ď n. Now define
ci “ maxpai, iq for 1 ď i ď n and extend the sequence c1, c2, . . . periodically modulo n. We claim
that this sequence also satisfies the conditions of the problem.

For 1 ď i ă j ď n we have ai ď aj and i ă j, so ci ď cj . Also an ď a1` n and n ă 1` n imply
cn ď c1` n. Finally, the definitions imply that cci P taai , ai, ai ´ n, iu so cci ď n` i´ 1 by (2) and
(3). This establishes (1) and (2) for c1, c2, . . ..
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Our new sequence has the additional property that

ci ě i for i “ 1, 2, . . . , n, (6)

which allows us to construct the following visualization: Consider n equally spaced points on a
circle, sequentially labelled 1, 2, . . . , n pmod nq, so point k is also labelled n` k. We draw arrows
from vertex i to vertices i ` 1, . . . , ci for 1 ď i ď n, keeping in mind that ci ě i by (6). Since
ci ď n ` i´ 1 by (3), no arrow will be drawn twice, and there is no arrow from a vertex to itself.
The total number of arrows is

number of arrows “
n
ÿ

i“1

pci ´ iq “
n
ÿ

i“1

ci ´
ˆ

n ` 1

2

˙

Now we show that we never draw both arrows i Ñ j and j Ñ i for 1 ď i ă j ď n. Assume
contrariwise. This means, respectively, that

i ă j ď ci and j ă n ` i ď cj .

We have n ` i ď cj ď c1 ` n by (1), so i ď c1. Since c1 ď n by (3), this implies that ci ď cc1 ď n

using (1) and (3). But then, using (1) again, j ď ci ď n implies cj ď cci, which combined with
n ` i ď cj gives us that n` i ď cci. This contradicts (2).

This means that the number of arrows is at most
`

n

2

˘

, which implies that

n
ÿ

i“1

ci ď
ˆ

n

2

˙

`
ˆ

n` 1

2

˙

“ n2.

Recalling that ai ď ci for 1 ď i ď n, the desired inequality follows.

Comment 1. We sketch an alternative proof by induction. Begin by verifying the initial case n “ 1 and
the simple cases when a1 “ 1, a1 “ n, or an ď n. Then, as in Solution 1, consider the index t such that
a1 ď ¨ ¨ ¨ ď at ď n ă at`1 ď ¨ ¨ ¨ ď an. Observe again that a1 ď t. Define the sequence d1, . . . , dn´1 by

di “
#

ai`1 ´ 1 if i ď t´ 1

ai`1 ´ 2 if i ě t

and extend it periodically modulo n´ 1. One may verify that this sequence also satisfies the hypotheses
of the problem. The induction hypothesis then gives d1 ` ¨ ¨ ¨ ` dn´1 ď pn´ 1q2, which implies that

n
ÿ

i“1

ai “ a1 `
t
ÿ

i“2

pdi´1 ` 1q `
n
ÿ

i“t`1

pdi´1 ` 2q ď t` pt´ 1q ` 2pn´ tq ` pn´ 1q2 “ n2.

Comment 2. One unusual feature of this problem is that there are many different sequences for which
equality holds. The discovery of such optimal sequences is not difficult, and it is useful in guiding the
steps of a proof.

In fact, Solution 2 gives a complete description of the optimal sequences. Start with any lattice path
P from the lower left to the upper right corner of the nˆ n square S using only steps up and right, such
that the total number of steps along the left and top edges of S is at least n. Shade the cells of S below
P dark, and the cells of S above P light. Now reflect the light shape across the line x “ y and shift it
up n units, and shade it dark. As Solution 2 shows, the dark region will then correspond to an optimal
sequence, and every optimal sequence arises in this way.
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A5. Let Zě0 be the set of all nonnegative integers. Find all the functions f : Zě0 Ñ Zě0
satisfying the relation

fpfpfpnqqq “ fpn` 1q ` 1 p˚q
for all n P Zě0.

(Serbia)

Answer. There are two such functions: fpnq “ n` 1 for all n P Zě0, and

fpnq “

$

’

&

’

%

n ` 1, n ” 0 pmod 4q or n ” 2 pmod 4q,
n ` 5, n ” 1 pmod 4q,
n ´ 3, n ” 3 pmod 4q

for all n P Zě0. (1)

Throughout all the solutions, we write hkpxq to abbreviate the kth iteration of function h, so h0 is
the identity function, and hkpxq “ hp. . . h

loomoon

k times

pxq . . . qq for k ě 1.

Solution 1. To start, we get from p˚q that

f 4pnq “ fpf 3pnqq “ f
`

fpn` 1q ` 1
˘

and f 4pn ` 1q “ f 3pfpn` 1qq “ f
`

fpn` 1q ` 1
˘

` 1,

thus
f 4pnq ` 1 “ f 4pn ` 1q. (2)

I. Let us denote by Ri the range of f
i; note that R0 “ Zě0 since f

0 is the identity function.
Obviously, R0 Ě R1 Ě . . . . Next, from (2) we get that if a P R4 then also a` 1 P R4. This implies
that Zě0zR4 — and hence Zě0zR1 — is finite. In particular, R1 is unbounded.

Assume that fpmq “ fpnq for some distinct m and n. Then from p˚q we obtain fpm ` 1q “
fpn ` 1q; by an easy induction we then get that fpm ` cq “ fpn ` cq for every c ě 0. So the
function fpkq is periodic with period |m´ n| for k ě m, and thus R1 should be bounded, which is
false. So, f is injective.

II. Denote now Si “ Ri´1zRi; all these sets are finite for i ď 4. On the other hand, by the
injectivity we have n P Si ðñ fpnq P Si`1. By the injectivity again, f implements a bijection
between Si and Si`1, thus |S1| “ |S2| “ . . . ; denote this common cardinality by k. If 0 P R3 then
0 “ fpfpfpnqqq for some n, thus from p˚q we get fpn ` 1q “ ´1 which is impossible. Therefore
0 P R0zR3 “ S1 Y S2 Y S3, thus k ě 1.

Next, let us describe the elements b of R0zR3 “ S1YS2YS3. We claim that each such element
satisfies at least one of three conditions piq b “ 0, piiq b “ fp0q` 1, and piiiq b´ 1 P S1. Otherwise
b´1 P Zě0, and there exists some n ą 0 such that fpnq “ b´1; but then f 3pn´1q “ fpnq`1 “ b,
so b P R3.

This yields
3k “ |S1 Y S2 Y S3| ď 1` 1` |S1| “ k ` 2,

or k ď 1. Therefore k “ 1, and the inequality above comes to equality. So we have S1 “ tau,
S2 “ tfpaqu, and S3 “ tf 2paqu for some a P Zě0, and each one of the three options piq, piiq,
and piiiq should be realized exactly once, which means that

ta, fpaq, f 2paqu “ t0, a` 1, fp0q ` 1u. (3)
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III. From (3), we get a` 1 P tfpaq, f 2paqu (the case a` 1 “ a is impossible). If a` 1 “ f 2paq then
we have fpa` 1q “ f 3paq “ fpa` 1q ` 1 which is absurd. Therefore

fpaq “ a` 1. (4)

Next, again from (3) we have 0 P ta, f 2paqu. Let us consider these two cases separately.
Case 1. Assume that a “ 0, then fp0q “ fpaq “ a ` 1 “ 1. Also from (3) we get fp1q “ f 2paq “
fp0q ` 1 “ 2. Now, let us show that fpnq “ n ` 1 by induction on n; the base cases n ď 1 are
established. Next, if n ě 2 then the induction hypothesis implies

n` 1 “ fpn´ 1q ` 1 “ f 3pn´ 2q “ f 2pn ´ 1q “ fpnq,

establishing the step. In this case we have obtained the first of two answers; checking that is
satisfies p˚q is straightforward.
Case 2. Assume now that f 2paq “ 0; then by (3) we get a “ fp0q ` 1. By (4) we get fpa ` 1q “
f 2paq “ 0, then fp0q “ f 3paq “ fpa` 1q ` 1 “ 1, hence a “ fp0q ` 1 “ 2 and fp2q “ 3 by (4). To
summarize,

fp0q “ 1, fp2q “ 3, fp3q “ 0.

Now let us prove by induction on m that (1) holds for all n “ 4k, 4k`2, 4k`3 with k ď m and
for all n “ 4k ` 1 with k ă m. The base case m “ 0 is established above. For the step, assume
that m ě 1. From p˚q we get f 3p4m´ 3q “ fp4m´ 2q ` 1 “ 4m. Next, by (2) we have

fp4mq “ f 4p4m´ 3q “ f 4p4m´ 4q ` 1 “ f 3p4m´ 3q ` 1 “ 4m` 1.

Then by the induction hypothesis together with p˚q we successively obtain

fp4m´ 3q “ f 3p4m´ 1q “ fp4mq ` 1 “ 4m` 2,

fp4m` 2q “ f 3p4m´ 4q “ fp4m´ 3q ` 1 “ 4m` 3,

fp4m` 3q “ f 3p4m´ 3q “ fp4m´ 2q ` 1 “ 4m,

thus finishing the induction step.

Finally, it is straightforward to check that the constructed function works:

f 3p4kq “ 4k ` 7 “ fp4k ` 1q ` 1, f 3p4k ` 1q “ 4k ` 4 “ fp4k ` 2q ` 1,

f 3p4k ` 2q “ 4k ` 1 “ fp4k ` 3q ` 1, f 3p4k ` 3q “ 4k ` 6 “ fp4k ` 4q ` 1.

Solution 2. I. For convenience, let us introduce the function gpnq “ fpnq ` 1. Substituting fpnq
instead of n into p˚q we obtain

f 4pnq “ f
`

fpnq ` 1
˘

` 1, or f 4pnq “ g2pnq. (5)

Applying f to both parts of p˚q and using (5) we get

f 4pnq ` 1 “ f
`

fpn` 1q ` 1
˘

` 1 “ f 4pn` 1q. (6)

Thus, if g2p0q “ f 4p0q “ c then an easy induction on n shows that

g2pnq “ f 4pnq “ n ` c, n P Zě0. (7)
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This relation implies that both f and g are injective: if, say, fpmq “ fpnq then m ` c “
f 4pmq “ f 4pnq “ n ` c. Next, since gpnq ě 1 for every n, we have c “ g2p0q ě 1. Thus from (7)
again we obtain fpnq ‰ n and gpnq ‰ n for all n P Zě0.
II. Next, application of f and g to (7) yields

fpn` cq “ f 5pnq “ f 4pfpnqq “ fpnq ` c and gpn` cq “ g3pnq “ gpnq ` c. (8)

In particular, this means that if m ” n pmod cq then fpmq ” fpnq pmod cq. Conversely, if
fpmq ” fpnq pmod cq then we get m` c “ f 4pmq ” f 4pnq “ n ` c pmod cq. Thus,

m ” n pmod cq ðñ fpmq ” fpnq pmod cq ðñ gpmq ” gpnq pmod cq. (9)

Now, let us introduce the function δpnq “ fpnq ´ n “ gpnq ´ n´ 1. Set

S “
c´1
ÿ

n“0

δpnq.

Using (8), we get that for every complete residue system n1, . . . , nc modulo c we also have

S “
c
ÿ

i“1

δpniq.

By (9), we get that tfkpnq : n “ 0, . . . , c ´ 1u and tgkpnq : n “ 0, . . . , c ´ 1u are complete residue
systems modulo c for all k. Thus we have

c2 “
c´1
ÿ

n“0

`

f 4pnq ´ n
˘

“
3
ÿ

k“0

c´1
ÿ

n“0

`

fk`1pnq ´ fkpnq
˘

“
3
ÿ

k“0

c´1
ÿ

n“0

δpfkpnqq “ 4S

and similarly

c2 “
c´1
ÿ

n“0

`

g2pnq ´ n
˘

“
1
ÿ

k“0

c´1
ÿ

n“0

`

gk`1pnq ´ gkpnq
˘

“
1
ÿ

k“0

c´1
ÿ

n“0

`

δpgkpnqq ` 1
˘

“ 2S ` 2c.

Therefore c2 “ 4S “ 2 ¨ 2S “ 2pc2 ´ 2cq, or c2 “ 4c. Since c ‰ 0, we get c “ 4. Thus, in view of
(8) it is sufficient to determine the values of f on the numbers 0, 1, 2, 3.

III. Let d “ gp0q ě 1. Then gpdq “ g2p0q “ 0 ` c “ 4. Now, if d ě 4, then we would
have gpd ´ 4q “ gpdq ´ 4 “ 0 which is impossible. Thus d P t1, 2, 3u. If d “ 1 then we have
fp0q “ gp0q ´ 1 “ 0 which is impossible since fpnq ‰ n for all n. If d “ 3 then gp3q “ g2p0q “ 4
and hence fp3q “ 3 which is also impossible. Thus gp0q “ 2 and hence gp2q “ g2p0q “ 4.

Next, if gp1q “ 1 ` 4k for some integer k, then 5 “ g2p1q “ gp1 ` 4kq “ gp1q ` 4k “ 1 ` 8k
which is impossible. Thus, since tgpnq : n “ 0, 1, 2, 3u is a complete residue system modulo 4, we
get gp1q “ 3` 4k and hence gp3q “ g2p1q ´ 4k “ 5´ 4k, leading to k “ 0 or k “ 1. So, we obtain
iether

fp0q “ 1, fp1q “ 2, fp2q “ 3, fp3q “ 4, or fp0q “ 1, fp1q “ 6, fp2q “ 3, fp3q “ 0,

thus arriving to the two functions listed in the answer.

Finally, one can check that these two function work as in Solution 1. One may simplify the
checking by noticing that (8) allows us to reduce it to n “ 0, 1, 2, 3.
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A6. Let m ‰ 0 be an integer. Find all polynomials P pxq with real coefficients such that

px3 ´mx2 ` 1qP px` 1q ` px3 `mx2 ` 1qP px´ 1q “ 2px3 ´mx` 1qP pxq (1)

for all real numbers x.

(Serbia)

Answer. P pxq “ tx for any real number t.

Solution. Let P pxq “ anx
n ` ¨ ¨ ¨ ` a0x0 with an ‰ 0. Comparing the coefficients of xn`1 on both

sides gives anpn´ 2mqpn´ 1q “ 0, so n “ 1 or n “ 2m.
If n “ 1, one easily verifies that P pxq “ x is a solution, while P pxq “ 1 is not. Since the given

condition is linear in P , this means that the linear solutions are precisely P pxq “ tx for t P R.
Now assume that n “ 2m. The polynomial xP px ` 1q ´ px ` 1qP pxq “ pn ´ 1qanxn ` ¨ ¨ ¨

has degree n, and therefore it has at least one (possibly complex) root r. If r R t0,´1u, define
k “ P prq{r “ P pr ` 1q{pr ` 1q. If r “ 0, let k “ P p1q. If r “ ´1, let k “ ´P p´1q. We now
consider the polynomial Spxq “ P pxq ´ kx. It also satisfies (1) because P pxq and kx satisfy it.
Additionally, it has the useful property that r and r ` 1 are roots.

Let Apxq “ x3 ´mx2 ` 1 and Bpxq “ x3 `mx2 ` 1. Plugging in x “ s into (1) implies that:

If s´ 1 and s are roots of S and s is not a root of A, then s` 1 is a root of S.

If s and s` 1 are roots of S and s is not a root of B, then s´ 1 is a root of S.

Let a ě 0 and b ě 1 be such that r ´ a, r ´ a` 1, . . . , r, r ` 1, . . . , r ` b´ 1, r ` b are roots of S,
while r ´ a ´ 1 and r ` b ` 1 are not. The two statements above imply that r ´ a is a root of B
and r ` b is a root of A.

Since r ´ a is a root of Bpxq and of Apx ` a ` bq, it is also a root of their greatest common
divisor Cpxq as integer polynomials. If Cpxq was a non-trivial divisor of Bpxq, then B would have
a rational root α. Since the first and last coefficients of B are 1, α can only be 1 or ´1; but
Bp´1q “ m ą 0 and Bp1q “ m` 2 ą 0 since n “ 2m.

Therefore Bpxq “ Apx` a` bq. Writing c “ a` b ě 1 we compute

0 “ Apx` cq ´Bpxq “ p3c´ 2mqx2 ` cp3c´ 2mqx` c2pc´mq.

Then we must have 3c´ 2m “ c ´m “ 0, which gives m “ 0, a contradiction. We conclude that
fpxq “ tx is the only solution.

Solution 2. Multiplying (1) by x, we rewrite it as

xpx3 ´mx2 ` 1qP px` 1q ` xpx3 `mx2 ` 1qP px´ 1q “ rpx` 1q ` px´ 1qs px3 ´mx` 1qP pxq.

After regrouping, it becomes

px3 ´mx2 ` 1qQpxq “ px3 `mx2 ` 1qQpx´ 1q, (2)

where Qpxq “ xP px ` 1q ´ px ` 1qP pxq. If degP ě 2 then degQ “ deg P , so Qpxq has a finite
multiset of complex roots, which we denote RQ. Each root is taken with its multiplicity. Then the
multiset of complex roots of Qpx´ 1q is RQ ` 1 “ tz ` 1 : z P RQu.
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Let tx1, x2, x3u and ty1, y2, y3u be the multisets of roots of the polynomials Apxq “ x3´mx2`1
and Bpxq “ x3 `mx2 ` 1, respectively. From (2) we get the equality of multisets

tx1, x2, x3u YRQ “ ty1, y2, y3u Y pRQ ` 1q.

For every r P RQ, since r ` 1 is in the set of the right hand side, we must have r ` 1 P RQ or
r ` 1 “ xi for some i. Similarly, since r is in the set of the left hand side, either r ´ 1 P RQ or
r “ yi for some i. This implies that, possibly after relabelling y1, y2, y3, all the roots of (2) may
be partitioned into three chains of the form tyi, yi ` 1, . . . , yi ` ki “ xiu for i “ 1, 2, 3 and some
integers k1, k2, k3 ě 0.

Now we analyze the roots of the polynomial Aapxq “ x3`ax2`1. Using calculus or elementary
methods, we find that the local extrema of Aapxq occur at x “ 0 and x “ ´2a{3; their values are
Aap0q “ 1 ą 0 and Aap´2a{3q “ 1` 4a3{27, which is positive for integers a ě ´1 and negative for
integers a ď ´2. So when a P Z, Aa has three real roots if a ď ´2 and one if a ě ´1.

Now, since yi ´ xi P Z for i “ 1, 2, 3, the cubics Am and A´m must have the same number of
real roots. The previous analysis then implies that m “ 1 or m “ ´1. Therefore the real root α of
A1pxq “ x3`x2` 1 and the real root β of A´1pxq “ x3´x2` 1 must differ by an integer. But this
is impossible, because A1

`

´3

2

˘

“ ´1

8
and A1p´1q “ 1 so ´1.5 ă α ă ´1, while A´1p´1q “ ´1

and A´1
`

´1

2

˘

“ 5

8
, so ´1 ă β ă ´0.5.

It follows that deg P ď 1. Then, as shown in Solution 1, we conclude that the solutions are
P pxq “ tx for all real numbers t.
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Combinatorics

C1. Let n be a positive integer. Find the smallest integer k with the following property: Given
any real numbers a1, . . . , ad such that a1 ` a2 ` ¨ ¨ ¨ ` ad “ n and 0 ď ai ď 1 for i “ 1, 2, . . . , d, it
is possible to partition these numbers into k groups (some of which may be empty) such that the
sum of the numbers in each group is at most 1.

(Poland)

Answer. k “ 2n´ 1.

Solution 1. If d “ 2n´ 1 and a1 “ ¨ ¨ ¨ “ a2n´1 “ n{p2n´ 1q, then each group in such a partition
can contain at most one number, since 2n{p2n´ 1q ą 1. Therefore k ě 2n´ 1. It remains to show
that a suitable partition into 2n´ 1 groups always exists.

We proceed by induction on d. For d ď 2n ´ 1 the result is trivial. If d ě 2n, then since

pa1 ` a2q ` . . .` pa2n´1 ` a2nq ď n

we may find two numbers ai, ai`1 such that ai ` ai`1 ď 1. We “merge” these two numbers into
one new number ai ` ai`1. By the induction hypothesis, a suitable partition exists for the d ´ 1
numbers a1, . . . , ai´1, ai ` ai`1, ai`2, . . . , ad. This induces a suitable partition for a1, . . . , ad.

Solution 2. We will show that it is even possible to split the sequence a1, . . . , ad into 2n ´ 1
contiguous groups so that the sum of the numbers in each groups does not exceed 1. Consider a
segment S of length n, and partition it into segments S1, . . . , Sd of lengths a1, . . . , ad, respectively,
as shown below. Consider a second partition of S into n equal parts by n´ 1 “empty dots”.

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

Assume that the n´ 1 empty dots are in segments Si1, . . . , Sin´1
. (If a dot is on the boundary

of two segments, we choose the right segment). These n ´ 1 segments are distinct because they
have length at most 1. Consider the partition:

ta1, . . . , ai1´1u, tai1u, tai1`1, . . . , ai2´1u, tai2u, . . . tain´1
u, tain´1`1, . . . , adu.

In the example above, this partition is ta1, a2u, ta3u, ta4, a5u, ta6u,H, ta7u, ta8, a9, a10u. We claim
that in this partition, the sum of the numbers in this group is at most 1.

For the sets taitu this is obvious since ait ď 1. For the sets tait ` 1, . . . , ait`1´1u this follows
from the fact that the corresponding segments lie between two neighboring empty dots, or between
an endpoint of S and its nearest empty dot. Therefore the sum of their lengths cannot exceed 1.

Solution 3. First put all numbers greater than 1

2
in their own groups. Then, form the remaining

groups as follows: For each group, add new ais one at a time until their sum exceeds 1

2
. Since the

last summand is at most 1

2
, this group has sum at most 1. Continue this procedure until we have

used all the ais. Notice that the last group may have sum less than 1

2
. If the sum of the numbers

in the last two groups is less than or equal to 1, we merge them into one group. In the end we are
left with m groups. If m “ 1 we are done. Otherwise the first m´ 2 have sums greater than 1

2
and

the last two have total sum greater than 1. Therefore n ą pm´ 2q{2` 1 so m ď 2n´ 1 as desired.
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Comment 1. The original proposal asked for the minimal value of k when n “ 2.

Comment 2. More generally, one may ask the same question for real numbers between 0 and 1 whose
sum is a real number r. In this case the smallest value of k is k “ r2rs´ 1, as Solution 3 shows.

Solutions 1 and 2 lead to the slightly weaker bound k ď 2rrs´ 1. This is actually the optimal bound
for partitions into consecutive groups, which are the ones contemplated in these two solutions. To see
this, assume that r is not an integer and let c “ pr ` 1´ rrsq{p1` rrsq. One easily checks that 0 ă c ă 1

2

and rrsp2cq ` prrs´ 1qp1´ cq “ r, so the sequence

2c, 1´ c, 2c, 1´ c, . . . , 1´ c, 2c

of 2rrs ´ 1 numbers satisfies the given conditions. For this sequence, the only suitable partition into
consecutive groups is the trivial partition, which requires 2rrs´ 1 groups.
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C2. In the plane, 2013 red points and 2014 blue points are marked so that no three of the
marked points are collinear. One needs to draw k lines not passing through the marked points and
dividing the plane into several regions. The goal is to do it in such a way that no region contains
points of both colors.

Find the minimal value of k such that the goal is attainable for every possible configuration of
4027 points.

(Australia)

Answer. k “ 2013.

Solution 1. Firstly, let us present an example showing that k ě 2013. Mark 2013 red and 2013
blue points on some circle alternately, and mark one more blue point somewhere in the plane. The
circle is thus split into 4026 arcs, each arc having endpoints of different colors. Thus, if the goal is
reached, then each arc should intersect some of the drawn lines. Since any line contains at most
two points of the circle, one needs at least 4026{2 “ 2013 lines.

It remains to prove that one can reach the goal using 2013 lines. First of all, let us mention
that for every two points A and B having the same color, one can draw two lines separating these
points from all other ones. Namely, it suffices to take two lines parallel to AB and lying on different
sides of AB sufficiently close to it: the only two points between these lines will be A and B.

Now, let P be the convex hull of all marked points. Two cases are possible.

Case 1. Assume that P has a red vertex A. Then one may draw a line separating A from all the
other points, pair up the other 2012 red points into 1006 pairs, and separate each pair from the
other points by two lines. Thus, 2013 lines will be used.

Case 2. Assume now that all the vertices of P are blue. Consider any two consecutive vertices
of P , say A and B. One may separate these two points from the others by a line parallel to AB.
Then, as in the previous case, one pairs up all the other 2012 blue points into 1006 pairs, and
separates each pair from the other points by two lines. Again, 2013 lines will be used.

Comment 1. Instead of considering the convex hull, one may simply take a line containing two marked
points A and B such that all the other marked points are on one side of this line. If one of A and B is
red, then one may act as in Case 1; otherwise both are blue, and one may act as in Case 2.

Solution 2. Let us present a different proof of the fact that k “ 2013 suffices. In fact, we will
prove a more general statement:

If n points in the plane, no three of which are collinear, are colored in red and blue arbitrarily,
then it suffices to draw tn{2u lines to reach the goal.

We proceed by induction on n. If n ď 2 then the statement is obvious. Now assume that n ě 3,
and consider a line ℓ containing two marked points A and B such that all the other marked points
are on one side of ℓ; for instance, any line containing a side of the convex hull works.

Remove for a moment the points A and B. By the induction hypothesis, for the remaining
configuration it suffices to draw tn{2u´ 1 lines to reach the goal. Now return the points A and B
back. Three cases are possible.

Case 1. If A and B have the same color, then one may draw a line parallel to ℓ and separating A
and B from the other points. Obviously, the obtained configuration of tn{2u lines works.

Case 2. If A and B have different colors, but they are separated by some drawn line, then again
the same line parallel to ℓ works.
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Case 3. Finally, assume that A and B have different colors and lie in one of the regions defined by
the drawn lines. By the induction assumption, this region contains no other points of one of the
colors — without loss of generality, the only blue point it contains is A. Then it suffices to draw
a line separating A from all other points.

Thus the step of the induction is proved.

Comment 2. One may ask a more general question, replacing the numbers 2013 and 2014 by any
positive integers m and n, say with m ď n. Denote the answer for this problem by fpm,nq.

One may show along the lines of Solution 1 that m ď fpm,nq ď m ` 1; moreover, if m is even then
fpm,nq “ m. On the other hand, for every odd m there exists an N such that fpm,nq “ m for all
m ď n ď N , and fpm,nq “ m` 1 for all n ą N .
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C3. A crazy physicist discovered a new kind of particle which he called an imon, after some of
them mysteriously appeared in his lab. Some pairs of imons in the lab can be entangled, and each
imon can participate in many entanglement relations. The physicist has found a way to perform
the following two kinds of operations with these particles, one operation at a time.

piq If some imon is entangled with an odd number of other imons in the lab, then the physicist
can destroy it.

piiq At any moment, he may double the whole family of imons in his lab by creating a copy I 1
of each imon I. During this procedure, the two copies I 1 and J 1 become entangled if and only if
the original imons I and J are entangled, and each copy I 1 becomes entangled with its original
imon I; no other entanglements occur or disappear at this moment.

Prove that the physicist may apply a sequence of such operations resulting in a family of imons,
no two of which are entangled.

(Japan)

Solution 1. Let us consider a graph with the imons as vertices, and two imons being connected
if and only if they are entangled. Recall that a proper coloring of a graph G is a coloring of its
vertices in several colors so that every two connected vertices have different colors.

Lemma. Assume that a graph G admits a proper coloring in n colors (n ą 1). Then one may
perform a sequence of operations resulting in a graph which admits a proper coloring in n ´ 1
colors.

Proof. Let us apply repeatedly operation piq to any appropriate vertices while it is possible. Since
the number of vertices decreases, this process finally results in a graph where all the degrees are
even. Surely this graph also admits a proper coloring in n colors 1, . . . , n; let us fix this coloring.

Now apply the operation piiq to this graph. A proper coloring of the resulting graph in n

colors still exists: one may preserve the colors of the original vertices and color the vertex I 1 in
a color k ` 1 pmod nq if the vertex I has color k. Then two connected original vertices still have
different colors, and so do their two connected copies. On the other hand, the vertices I and I 1

have different colors since n ą 1.
All the degrees of the vertices in the resulting graph are odd, so one may apply operation piq

to delete consecutively all the vertices of color n one by one; no two of them are connected by
an edge, so their degrees do not change during the process. Thus, we obtain a graph admitting a
proper coloring in n ´ 1 colors, as required. The lemma is proved. l

Now, assume that a graph G has n vertices; then it admits a proper coloring in n colors.
Applying repeatedly the lemma we finally obtain a graph admitting a proper coloring in one color,
that is — a graph with no edges, as required.

Solution 2. Again, we will use the graph language.

I. We start with the following observation.

Lemma. Assume that a graph G contains an isolated vertex A, and a graph G˝ is obtained from G

by deleting this vertex. Then, if one can apply a sequence of operations which makes a graph with
no edges from G˝, then such a sequence also exists for G.

Proof. Consider any operation applicable to G˝ resulting in a graph G˝
1
; then there exists a sequence

of operations applicable to G and resulting in a graph G1 differing from G˝
1
by an addition of an

isolated vertex A. Indeed, if this operation is of type piq, then one may simply repeat it in G.
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Otherwise, the operation is of type piiq, and one may apply it to G and then delete the vertex A1

(it will have degree 1).
Thus one may change the process for G˝ into a corresponding process for G step by step. l

In view of this lemma, if at some moment a graph contains some isolated vertex, then we may
simply delete it; let us call this operation piiiq.
II. Let V “ tA0

1
, . . . , A0

nu be the vertices of the initial graph. Let us describe which graphs can
appear during our operations. Assume that operation piiq was applied m times. If these were
the only operations applied, then the resulting graph Gm

n has the set of vertices which can be
enumerated as

V m
n “ tAj

i : 1 ď i ď n, 0 ď j ď 2m ´ 1u,
where A0

i is the common “ancestor” of all the vertices A
j
i , and the binary expansion of j (adjoined

with some zeroes at the left to have m digits) “keeps the history” of this vertex: the dth digit from
the right is 0 if at the dth doubling the ancestor of Aj

i was in the original part, and this digit is 1
if it was in the copy.

Next, the two vertices Aj
i and A

ℓ
k in G

m
n are connected with an edge exactly if either (1) j “ ℓ

and there was an edge between A0

i and A
0

k (so these vertices appeared at the same application of
operation piiq); or (2) i “ k and the binary expansions of j and ℓ differ in exactly one digit (so
their ancestors became connected as a copy and the original vertex at some application of piiq).

Now, if some operations piq were applied during the process, then simply some vertices in Gm
n

disappeared. So, in any case the resulting graph is some induced subgraph of Gm
n .

III. Finally, we will show that from each (not necessarily induced) subgraph of Gm
n one can obtain

a graph with no vertices by applying operations piq, piiq and piiiq. We proceed by induction on n;
the base case n “ 0 is trivial.

For the induction step, let us show how to apply several operations so as to obtain a graph
containing no vertices of the form Aj

n for j P Z. We will do this in three steps.

Step 1. We apply repeatedly operation piq to any appropriate vertices while it is possible. In the
resulting graph, all vertices have even degrees.

Step 2. Apply operation piiq obtaining a subgraph of Gm`1
n with all degrees being odd. In this

graph, we delete one by one all the vertices Aj
n where the sum of the binary digits of j is even; it

is possible since there are no edges between such vertices, so all their degrees remain odd. After
that, we delete all isolated vertices.

Step 3. Finally, consider any remaining vertex Aj
n (then the sum of digits of j is odd). If its

degree is odd, then we simply delete it. Otherwise, since Aj
n is not isolated, we consider any vertex

adjacent to it. It has the form A
j
k for some k ă n (otherwise it would have the form Aℓ

n, where ℓ
has an even digit sum; but any such vertex has already been deleted at Step 2). No neighbor of Aj

k

was deleted at Steps 2 and 3, so it has an odd degree. Then we successively delete Aj
k and A

j
n.

Notice that this deletion does not affect the applicability of this step to other vertices, since
no two vertices Aj

i and A
ℓ
k for different j, ℓ with odd digit sum are connected with an edge. Thus

we will delete all the remaining vertices of the form Aj
n, obtaining a subgraph of Gm`1

n´1 . The
application of the induction hypothesis finishes the proof.

Comment. In fact, the graph Gm
n is a Cartesian product of G and the graph of an m-dimensional

hypercube.
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C4. Let n be a positive integer, and let A be a subset of t1, . . . , nu. An A-partition of n into k
parts is a representation of n as a sum n “ a1 ` ¨ ¨ ¨ ` ak, where the parts a1, . . . , ak belong to A
and are not necessarily distinct. The number of different parts in such a partition is the number
of (distinct) elements in the set ta1, a2, . . . , aku.

We say that an A-partition of n into k parts is optimal if there is no A-partition of n into r
parts with r ă k. Prove that any optimal A-partition of n contains at most 3

?
6n different parts.

(Germany)

Solution 1. If there are no A-partitions of n, the result is vacuously true. Otherwise, let kmin

be the minimum number of parts in an A-partition of n, and let n “ a1 ` ¨ ¨ ¨ ` akmin
be an

optimal partition. Denote by s the number of different parts in this partition, so we can write
S “ ta1, . . . , akmin

u “ tb1, . . . , bsu for some pairwise different numbers b1 ă ¨ ¨ ¨ ă bs in A.
If s ą 3

?
6n, we will prove that there exist subsets X and Y of S such that |X| ă |Y | and

ř

xPX x “
ř

yPY y. Then, deleting the elements of Y from our partition and adding the elements of
X to it, we obtain an A-partition of n into less than kmin parts, which is the desired contradiction.

For each positive integer k ď s, we consider the k-element subset

Sk
1,0 :“ tb1, . . . , bku

as well as the following k-element subsets Sk
i,j of S:

Sk
i,j :“

 

b1, . . . , bk´i, bk´i`j`1, bs´i`2, . . . , bs
(

, i “ 1, . . . , k, j “ 1, . . . , s´ k.
Pictorially, if we represent the elements of S by a sequence of dots in increasing order, and represent
a subset of S by shading in the appropriate dots, we have:

Sk
i,j “ ‚ ‚ ‚ ‚ ‚ ‚ ‚looooomooooon

k´i

˝ ˝ ˝ ˝ ˝
looomooon

j

‚ ˝ ˝ ˝ ˝ ˝ ˝ ˝
looooomooooon

s´k´j

‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚
looooooomooooooon

i´1

Denote by Σk
i,j the sum of elements in Sk

i,j. Clearly, Σ
k
1,0 is the minimum sum of a k-element

subset of S. Next, for all appropriate indices i and j we have

Σk
i,j “ Σk

i,j`1 ` bk´i`j`1 ´ bk´i`j`2 ă Σk
i,j`1 and Σk

i,s´k “ Σk
i`1,1 ` bk´i ´ bk´i`1 ă Σk

i`1,1.

Therefore

1 ď Σk
1,0 ă Σk

1,1 ă Σk
1,2 ă ¨ ¨ ¨ ă Σk

1,s´k ă Σk
2,1 ă ¨ ¨ ¨ ă Σk

2,s´k ă Σk
3,1 ă ¨ ¨ ¨ ă Σk

k,s´k ď n.

To see this in the picture, we start with the k leftmost points marked. At each step, we look for
the rightmost point which can move to the right, and move it one unit to the right. We continue
until the k rightmost points are marked. As we do this, the corresponding sums clearly increase.

For each k we have found kps´ kq ` 1 different integers of the form Σk
i,j between 1 and n. As

we vary k, the total number of integers we are considering is
s
ÿ

k“1

`

kps´ kq ` 1
˘

“ s ¨ sps` 1q
2

´ sps` 1qp2s` 1q
6

` s “ sps2 ` 5q
6

ą s3

6
ą n.

Since they are between 1 and n, at least two of these integers are equal. Consequently, there exist
1 ď k ă k1 ď s and X “ Sk

i,j as well as Y “ Sk1

i1,j1 such that
ÿ

xPX

x “
ÿ

yPY

y, but |X| “ k ă k1 “ |Y |,

as required. The result follows.
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Solution 2. Assume, to the contrary, that the statement is false, and choose the minimum
number n for which it fails. So there exists a set A Ď t1, . . . , nu together with an optimal A-
partition n “ a1 ` ¨ ¨ ¨ ` akmin

of n refuting our statement, where, of course, kmin is the minimum
number of parts in an A-partition of n. Again, we define S “ ta1, . . . , akmin

u “ tb1, . . . , bsu with
b1 ă ¨ ¨ ¨ ă bs; by our assumption we have s ą 3

?
6n ą 1. Without loss of generality we assume

that akmin
“ bs. Let us distinguish two cases.

Case 1. bs ě sps´1q
2

` 1.
Consider the partition n ´ bs “ a1 ` ¨ ¨ ¨ ` akmin´1, which is clearly a minimum A-partition

of n´ bs with at least s´ 1 ě 1 different parts. Now, from n ă s3

6
we obtain

n´ bs ď n´ sps´ 1q
2

´ 1 ă s3

6
´ sps´ 1q

2
´ 1 ă ps´ 1q3

6
,

so s´ 1 ą 3

a

6pn´ bsq, which contradicts the choice of n.
Case 2. bs ď sps´1q

2
.

Set b0 “ 0, Σ0,0 “ 0, and Σi,j “ b1`¨ ¨ ¨`bi´1`bj for 1 ď i ď j ă s. There are sps´1q
2
`1 ą bs such

sums; so at least two of them, say Σi,j and Σi1,j1, are congruent modulo bs (where pi, jq ‰ pi1, j1q).
This means that Σi,j ´ Σi1,j1 “ rbs for some integer r. Notice that for i ď j ă k ă s we have

0 ă Σi,k ´ Σi,j “ bk ´ bj ă bs,

so the indices i and i1 are distinct, and we may assume that i ą i1. Next, we observe that
Σi,j ´ Σi1,j1 “ pbi1 ´ bj1q ` bj ` bi1`1 ` ¨ ¨ ¨ ` bi´1 and bi1 ď bj1 imply

´bs ă ´bj1 ă Σi,j ´ Σi1,j1 ă pi´ i1qbs,

so 0 ď r ď i´ i1 ´ 1.
Thus, we may remove the i terms of Σi,j in our A-partition, and replace them by the i1 terms

of Σi1,j1 and r terms equal to bs, for a total of r ` i1 ă i terms. The result is an A-partition of n
into a smaller number of parts, a contradiction.

Comment. The original proposal also contained a second part, showing that the estimate appearing in
the problem has the correct order of magnitude:

For every positive integer n, there exist a set A and an optimal A-partition of n that contains t 3
?
2nu

different parts.

The Problem Selection Committee removed this statement from the problem, since it seems to be less
suitable for the competiton; but for completeness we provide an outline of its proof here.

Let k “ t 3
?
2nu ´ 1. The statement is trivial for n ă 4, so we assume n ě 4 and hence k ě 1. Let

h “ tn´1
k

u. Notice that h ě n
k
´ 1.

Now let A “ t1, . . . , hu, and set a1 “ h, a2 “ h´1, . . . , ak “ h´k`1, and ak`1 “ n´pa1`¨ ¨ ¨`akq.
It is not difficult to prove that ak ą ak`1 ě 1, which shows that

n “ a1 ` . . .` ak`1

is an A-partition of n into k`1 different parts. Since kh ă n, any A-partition of n has at least k`1 parts.
Therefore our A-partition is optimal, and it has t 3

?
2nu distinct parts, as desired.
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C5. Let r be a positive integer, and let a0, a1, . . . be an infinite sequence of real numbers.
Assume that for all nonnegative integers m and s there exists a positive integer n P rm` 1, m` rs
such that

am ` am`1 ` ¨ ¨ ¨ ` am`s “ an ` an`1 ` ¨ ¨ ¨ ` an`s.
Prove that the sequence is periodic, i. e. there exists some p ě 1 such that an`p “ an for all n ě 0.

(India)

Solution. For every indices m ď n we will denote Spm,nq “ am ` am`1 ` ¨ ¨ ¨ ` an´1; thus
Spn, nq “ 0. Let us start with the following lemma.

Lemma. Let b0, b1, . . . be an infinite sequence. Assume that for every nonnegative integer m there
exists a nonnegative integer n P rm ` 1, m ` rs such that bm “ bn. Then for every indices k ď ℓ

there exists an index t P rℓ, ℓ ` r ´ 1s such that bt “ bk. Moreover, there are at most r distinct
numbers among the terms of pbiq.
Proof. To prove the first claim, let us notice that there exists an infinite sequence of indices
k1 “ k, k2, k3, . . . such that bk1 “ bk2 “ ¨ ¨ ¨ “ bk and ki ă ki`1 ď ki` r for all i ě 1. This sequence
is unbounded from above, thus it hits each segment of the form rℓ, ℓ`r´1s with ℓ ě k, as required.

To prove the second claim, assume, to the contrary, that there exist r ` 1 distinct numbers
bi1 , . . . , bir`1

. Let us apply the first claim to k “ i1, . . . , ir`1 and ℓ “ maxti1, . . . , ir`1u; we obtain
that for every j P t1, . . . , r` 1u there exists tj P rs, s` r´ 1s such that btj “ bij . Thus the segment
rs, s` r ´ 1s should contain r ` 1 distinct integers, which is absurd. l

Setting s “ 0 in the problem condition, we see that the sequence paiq satisfies the condi-
tion of the lemma, thus it attains at most r distinct values. Denote by Ai the ordered r-tuple
pai, . . . , ai`r´1q; then among Ai’s there are at most r

r distinct tuples, so for every k ě 0 two of the
tuples Ak, Ak`1, . . . , Ak`rr are identical. This means that there exists a positive integer p ď rr such
that the equality Ad “ Ad`p holds infinitely many times. Let D be the set of indices d satisfying
this relation.

Now we claim that D coincides with the set of all nonnegative integers. Since D is unbounded,
it suffices to show that d P D whenever d ` 1 P D. For that, denote bk “ Spk, p ` kq. The
sequence b0, b1, . . . satisfies the lemma conditions, so there exists an index t P rd ` 1, d ` rs such
that Spt, t ` pq “ Spd, d ` pq. This last relation rewrites as Spd, tq “ Spd ` p, t ` pq. Since
Ad`1 “ Ad`p`1, we have Spd` 1, tq “ Spd` p` 1, t` pq, therefore we obtain

ad “ Spd, tq ´ Spd` 1, tq “ Spd` p, t` pq ´ Spd` p` 1, t` pq “ ad`p

and thus Ad “ Ad`p, as required.

Finally, we get Ad “ Ad`p for all d, so in particular ad “ ad`p for all d, QED.

Comment 1. In the present proof, the upper bound for the minimal period length is rr. This bound is
not sharp; for instance, one may improve it to pr ´ 1qr for r ě 3..

On the other hand, this minimal length may happen to be greater than r. For instance, it is easy to
check that the sequence with period p3,´3, 3,´3, 3,´1,´1,´1q satisfies the problem condition for r “ 7.

Comment 2. The conclusion remains true even if the problem condition only holds for every s ě N for
some positive integer N . To show that, one can act as follows. Firstly, the sums of the form Spi, i `Nq
attain at most r values, as well as the sums of the form Spi, i`N`1q. Thus the terms ai “ Spi, i `N ` 1q´
Spi` 1, i `N ` 1q attain at most r2 distinct values. Then, among the tuples Ak, Ak`N , . . . , Ak`r2rN two
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are identical, so for some p ď r2r the set D “ td : Ad “ Ad`Npu is infinite. The further arguments apply
almost literally, with p being replaced by Np.

After having proved that such a sequence is also necessarily periodic, one may reduce the bound for
the minimal period length to rr — essentially by verifying that the sequence satisfies the original version
of the condition.
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C6. In some country several pairs of cities are connected by direct two-way flights. It is possible
to go from any city to any other by a sequence of flights. The distance between two cities is defined
to be the least possible number of flights required to go from one of them to the other. It is known
that for any city there are at most 100 cities at distance exactly three from it. Prove that there is
no city such that more than 2550 other cities have distance exactly four from it.

(Russia)

Solution. Let us denote by dpa, bq the distance between the cities a and b, and by

Sipaq “ tc : dpa, cq “ iu

the set of cities at distance exactly i from city a.
Assume that for some city x the set D “ S4pxq has size at least 2551. Let A “ S1pxq. A

subset A1 of A is said to be substantial, if every city in D can be reached from x with four flights
while passing through some member of A1; in other terms, every city in D has distance 3 from
some member of A1, or D Ď Ť

aPA1 S3paq. For instance, A itself is substantial. Now let us fix some
substantial subset A˚ of A having the minimal cardinality m “ |A˚|.

Since

mp101´mq ď 50 ¨ 51 “ 2550,

there has to be a city a P A˚ such that |S3paq X D| ě 102 ´ m. As |S3paq| ď 100, we obtain
that S3paq may contain at most 100 ´ p102 ´ mq “ m ´ 2 cities c with dpc, xq ď 3. Let us
denote by T “ tc P S3paq : dpx, cq ď 3u the set of all such cities, so |T | ď m ´ 2. Now, to get a
contradiction, we will construct m´ 1 distinct elements in T , corresponding to m´ 1 elements of
the set Aa “ A˚ztau.

Firstly, due to the minimality of A˚, for each y P Aa there exists some city dy P D which can
only be reached with four flights from x by passing through y. So, there is a way to get from x to
dy along x–y–by–cy–dy for some cities by and cy; notice that dpx, byq “ 2 and dpx, cyq “ 3 since this
path has the minimal possible length.

Now we claim that all 2pm ´ 1q cities of the form by, cy with y P Aa are distinct. Indeed,
no by may coincide with any cz since their distances from x are different. On the other hand, if
one had by “ bz for y ‰ z, then there would exist a path of length 4 from x to dz via y, namely
x–y–bz–cz–dz; this is impossible by the choice of dz. Similarly, cy ‰ cz for y ‰ z.

So, it suffices to prove that for every y P Aa, one of the cities by and cy has distance 3
from a (and thus belongs to T ). For that, notice that dpa, yq ď 2 due to the path a–x–y, while
dpa, dyq ě dpx, dyq ´ dpx, aq “ 3. Moreover, dpa, dyq ‰ 3 by the choice of dy; thus dpa, dyq ą 3.
Finally, in the sequence dpa, yq, dpa, byq, dpa, cyq, dpa, dyq the neighboring terms differ by at most 1,
the first term is less than 3, and the last one is greater than 3; thus there exists one which is equal
to 3, as required.

Comment 1. The upper bound 2550 is sharp. This can be seen by means of various examples; one of
them is the “Roman Empire”: it has one capital, called “Rome”, that is connected to 51 semicapitals by
internally disjoint paths of length 3. Moreover, each of these semicapitals is connected to 50 rural cities
by direct flights.

Comment 2. Observe that, under the conditions of the problem, there exists no bound for the size
of S1pxq or S2pxq.
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Comment 3. The numbers 100 and 2550 appearing in the statement of the problem may be replaced

by n and
Y

pn`1q2

4

]

for any positive integer n. Still more generally, one can also replace the pair p3, 4q of
distances under consideration by any pair pr, sq of positive integers satisfying r ă s ď 3

2
r.

To adapt the above proof to this situation, one takes A “ Ss´rpxq and defines the concept of substan-
tiality as before. Then one takes A˚ to be a minimal substantial subset of A, and for each y P A˚ one
fixes an element dy P Sspxq which is only reachable from x by a path of length s by passing through y.
As before, it suffices to show that for distinct a, y P A˚ and a path y “ y0 ´ y1 ´ . . . ´ yr “ dy, at least
one of the cities y0, . . . , yr´1 has distance r from a. This can be done as above; the relation s ď 3

2
r is

used here to show that dpa, y0q ď r.

Moreover, the estimate
Y

pn`1q2

4

]

is also sharp for every positive integer n and every positive integers

r, s with r ă s ď 3

2
r. This may be shown by an example similar to that in the previous comment.
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C7. Let n ě 2 be an integer. Consider all circular arrangements of the numbers 0, 1, . . . , n; the
n ` 1 rotations of an arrangement are considered to be equal. A circular arrangement is called
beautiful if, for any four distinct numbers 0 ď a, b, c, d ď n with a ` c “ b ` d, the chord joining
numbers a and c does not intersect the chord joining numbers b and d.

Let M be the number of beautiful arrangements of 0, 1, . . . , n. Let N be the number of pairs
px, yq of positive integers such that x` y ď n and gcdpx, yq “ 1. Prove that

M “ N ` 1.

(Russia)

Solution 1. Given a circular arrangement of r0, ns “ t0, 1, . . . , nu, we define a k-chord to be
a (possibly degenerate) chord whose (possibly equal) endpoints add up to k. We say that three
chords of a circle are aligned if one of them separates the other two. Say that m ě 3 chords
are aligned if any three of them are aligned. For instance, in Figure 1, A, B, and C are aligned,
while B, C, and D are not.

A

B

C

D

AB

C

D

E

0 n
u v

t
n− t

Figure 1 Figure 2

Claim. In a beautiful arrangement, the k–chords are aligned for any integer k.

Proof. We proceed by induction. For n ď 3 the statement is trivial. Now let n ě 4, and proceed
by contradiction. Consider a beautiful arrangement S where the three k–chords A, B, C are not
aligned. If n is not among the endpoints of A, B, and C, then by deleting n from S we obtain
a beautiful arrangement Sztnu of r0, n ´ 1s, where A, B, and C are aligned by the induction
hypothesis. Similarly, if 0 is not among these endpoints, then deleting 0 and decreasing all the
numbers by 1 gives a beautiful arrangement Szt0u where A, B, and C are aligned. Therefore
both 0 and n are among the endpoints of these segments. If x and y are their respective partners,
we have n ě 0` x “ k “ n ` y ě n. Thus 0 and n are the endpoints of one of the chords; say it
is C.

Let D be the chord formed by the numbers u and v which are adjacent to 0 and n and on the
same side of C as A and B, as shown in Figure 2. Set t “ u` v. If we had t “ n, the n–chords A,
B, and D would not be aligned in the beautiful arrangement Szt0, nu, contradicting the induction
hypothesis. If t ă n, then the t-chord from 0 to t cannot intersect D, so the chord C separates t
and D. The chord E from t to n´ t does not intersect C, so t and n´ t are on the same side of C.
But then the chords A, B, and E are not aligned in Szt0, nu, a contradiction. Finally, the case
t ą n is equivalent to the case t ă n via the beauty-preserving relabelling x ÞÑ n´x for 0 ď x ď n,
which sends t-chords to p2n ´ tq–chords. This proves the Claim.

Having established the Claim, we prove the desired result by induction. The case n “ 2 is
trivial. Now assume that n ě 3. Let S be a beautiful arrangement of r0, ns and delete n to obtain
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the beautiful arrangement T of r0, n´ 1s. The n–chords of T are aligned, and they contain every
point except 0. Say T is of Type 1 if 0 lies between two of these n–chords, and it is of Type 2
otherwise; i.e., if 0 is aligned with these n–chords. We will show that each Type 1 arrangement
of r0, n´ 1s arises from a unique arrangement of r0, ns, and each Type 2 arrangement of r0, n´ 1s
arises from exactly two beautiful arrangements of r0, ns.

If T is of Type 1, let 0 lie between chords A and B. Since the chord from 0 to n must be
aligned with A and B in S, n must be on the other arc between A and B. Therefore S can be
recovered uniquely from T . In the other direction, if T is of Type 1 and we insert n as above,
then we claim the resulting arrangement S is beautiful. For 0 ă k ă n, the k–chords of S are also
k–chords of T , so they are aligned. Finally, for n ă k ă 2n, notice that the n–chords of S are
parallel by construction, so there is an antisymmetry axis ℓ such that x is symmetric to n´x with
respect to ℓ for all x. If we had two k–chords which intersect, then their reflections across ℓ would
be two p2n ´ kq-chords which intersect, where 0 ă 2n´ k ă n, a contradiction.

If T is of Type 2, there are two possible positions for n in S, on either side of 0. As above, we
check that both positions lead to beautiful arrangements of r0, ns.

Hence if we letMn be the number of beautiful arrangements of r0, ns, and let Ln be the number
of beautiful arrangements of r0, n´ 1s of Type 2, we have

Mn “ pMn´1 ´ Ln´1q ` 2Ln´1 “Mn´1 ` Ln´1.

It then remains to show that Ln´1 is the number of pairs px, yq of positive integers with x` y “ n

and gcdpx, yq “ 1. Since n ě 3, this number equals ϕpnq “ #tx : 1 ď x ď n, gcdpx, nq “ 1u.
To prove this, consider a Type 2 beautiful arrangement of r0, n ´ 1s. Label the positions

0, . . . , n ´ 1 pmod nq clockwise around the circle, so that number 0 is in position 0. Let fpiq be
the number in position i; note that f is a permutation of r0, n ´ 1s. Let a be the position such
that fpaq “ n´ 1.

Since the n–chords are aligned with 0, and every point is in an n–chord, these chords are all
parallel and

fpiq ` fp´iq “ n for all i.

Similarly, since the pn´ 1q–chords are aligned and every point is in an pn´ 1q–chord, these chords
are also parallel and

fpiq ` fpa´ iq “ n ´ 1 for all i.

Therefore fpa´ iq “ fp´iq ´ 1 for all i; and since fp0q “ 0, we get

fp´akq “ k for all k. (1)

Recall that this is an equality modulo n. Since f is a permutation, we must have pa, nq “ 1. Hence
Ln´1 ď ϕpnq.

To prove equality, it remains to observe that the labeling (1) is beautiful. To see this, consider
four numbers w, x, y, z on the circle with w ` y “ x ` z. Their positions around the circle satisfy
p´awq ` p´ayq “ p´axq ` p´azq, which means that the chord from w to y and the chord from
x to z are parallel. Thus (1) is beautiful, and by construction it has Type 2. The desired result
follows.
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Solution 2. Notice that there are exactly N irreducible fractions f1 ă ¨ ¨ ¨ ă fN in p0, 1q whose
denominator is at most n, since the pair px, yq with x ` y ď n and px, yq “ 1 corresponds to the
fraction x{px` yq. Write fi “ ai

bi
for 1 ď i ď N .

We begin by constructing N ` 1 beautiful arrangements. Take any α P p0, 1q which is not one
of the above N fractions. Consider a circle of perimeter 1. Successively mark points 0, 1, 2, . . . , n
where 0 is arbitrary, and the clockwise distance from i to i`1 is α. The point k will be at clockwise
distance tkαu from 0, where tru denotes the fractional part of r. Call such a circular arrangement
cyclic and denote it by Apαq. If the clockwise order of the points is the same in Apα1q and Apα2q,
we regard them as the same circular arrangement. Figure 3 shows the cyclic arrangement Ap3{5`ǫq
of r0, 13s where ǫ ą 0 is very small.
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Figure 3

If 0 ď a, b, c, d ď n satisfy a` c “ b` d, then aα ` cα “ bα ` dα, so the chord from a to c is
parallel to the chord from b to d in Apαq. Hence in a cyclic arrangement all k—chords are parallel.
In particular every cyclic arrangement is beautiful.

Next we show that there are exactly N ` 1 distinct cyclic arrangements. To see this, let us
see how Apαq changes as we increase α from 0 to 1. The order of points p and q changes precisely
when we cross a value α “ f such that tpfu “ tqfu; this can only happen if f is one of the N
fractions f1, . . . , fN . Therefore there are at most N ` 1 different cyclic arrangements.

To show they are all distinct, recall that fi “ ai{bi and let ǫ ą 0 be a very small number. In

the arrangement Apfi ` ǫq, point k lands at kai pmod biq
bi

` kǫ. Therefore the points are grouped

into bi clusters next to the points 0,
1

bi
, . . . , bi´1

bi
of the circle. The cluster following k

bi
contains the

numbers congruent to ka´1i modulo bi, listed clockwise in increasing order. It follows that the first
number after 0 in Apfi` ǫq is bi, and the first number after 0 which is less than bi is a´1i pmod biq,
which uniquely determines ai. In this way we can recover fi from the cyclic arrangement. Note
also that Apfi ` ǫq is not the trivial arrangement where we list 0, 1, . . . , n in order clockwise. It
follows that the N ` 1 cyclic arrangements Apǫq, Apf1 ` ǫq, . . . , ApfN ` ǫq are distinct.

Let us record an observation which will be useful later:

if fi ă α ă fi`1 then 0 is immediately after bi`1 and before bi in Apαq. (2)

Indeed, we already observed that bi is the first number after 0 in Apfi ` ǫq “ Apαq. Similarly we
see that bi`1 is the last number before 0 in Apfi`1 ´ ǫq “ Apαq.
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Finally, we show that any beautiful arrangement of r0, ns is cyclic by induction on n. For n ď 2
the result is clear. Now assume that all beautiful arrangements of r0, n´1s are cyclic, and consider
a beautiful arrangement A of r0, ns. The subarrangement An´1 “ Aztnu of r0, n´ 1s obtained by
deleting n is cyclic; say An´1 “ An´1pαq.

Let α be between the consecutive fractions p1
q1
ă p2

q2
among the irreducible fractions of de-

nominator at most n ´ 1. There is at most one fraction i
n
in pp1

q1
, p2
q2
q, since i

n
ă i

n´1
ď i`1

n
for

0 ă i ď n´ 1.

Case 1. There is no fraction with denominator n between p1
q1
and p2

q2
.

In this case the only cyclic arrangement extending An´1pαq is Anpαq. We know that A and
Anpαq can only differ in the position of n. Assume n is immediately after x and before y in Anpαq.
Since the neighbors of 0 are q1 and q2 by (2), we have x, y ě 1.

x

n

y x− 1

n− 1

y − 1

Figure 4

In Anpαq the chord from n´1 to x is parallel and adjacent to the chord from n to x´1, so n´1
is between x ´ 1 and x in clockwise order, as shown in Figure 4. Similarly, n ´ 1 is between y

and y ´ 1. Therefore x, y, x ´ 1, n ´ 1, and y ´ 1 occur in this order in Anpαq and hence in A
(possibly with y “ x´ 1 or x “ y ´ 1).

Now, A may only differ from Anpαq in the location of n. In A, since the chord from n ´ 1
to x and the chord from n to x ´ 1 do not intersect, n is between x and n ´ 1. Similarly, n is
between n ´ 1 and y. Then n must be between x and y and A “ Anpαq. Therefore A is cyclic as
desired.

Case 2. There is exactly one i with p1
q1
ă i

n
ă p2

q2
.

In this case there exist two cyclic arrangements Anpα1q and Anpα2q of the numbers 0, . . . , n
extending An´1pαq, where p1

q1
ă α1 ă i

n
and i

n
ă α2 ă p2

q2
. In An´1pαq, 0 is the only number

between q2 and q1 by (2). For the same reason, n is between q2 and 0 in Anpα1q, and between 0
and q1 in Anpα2q.

Letting x “ q2 and y “ q1, the argument of Case 1 tells us that n must be between x and y
in A. Therefore A must equal Anpα1q or Anpα2q, and therefore it is cyclic.

This concludes the proof that every beautiful arrangement is cyclic. It follows that there are
exactly N ` 1 beautiful arrangements of r0, ns as we wished to show.
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C8. Players A and B play a paintful game on the real line. Player A has a pot of paint with
four units of black ink. A quantity p of this ink suffices to blacken a (closed) real interval of length
p. In every round, player A picks some positive integer m and provides 1{2m units of ink from the
pot. Player B then picks an integer k and blackens the interval from k{2m to pk ` 1q{2m (some
parts of this interval may have been blackened before). The goal of player A is to reach a situation
where the pot is empty and the interval r0, 1s is not completely blackened.

Decide whether there exists a strategy for player A to win in a finite number of moves.

(Austria)

Answer. No. Such a strategy for player A does not exist.

Solution. We will present a strategy for player B that guarantees that the interval r0, 1s is com-
pletely blackened, once the paint pot has become empty.

At the beginning of round r, let xr denote the largest real number for which the interval
between 0 and xr has already been blackened; for completeness we define x1 “ 0. Let m be the
integer picked by player A in this round; we define an integer yr by

yr

2m
ď xr ă

yr ` 1

2m
.

Note that Ir
0
“ ryr{2m, pyr ` 1q{2ms is the leftmost interval that may be painted in round r and

that still contains some uncolored point.
Player B now looks at the next interval Ir

1
“ rpyr ` 1q{2m, pyr ` 2q{2ms. If Ir

1
still contains an

uncolored point, then player B blackens the interval Ir
1
; otherwise he blackens the interval Ir

0
. We

make the convention that, at the beginning of the game, the interval r1, 2s is already blackened;
thus, if yr ` 1 “ 2m, then B blackens Ir

0
.

Our aim is to estimate the amount of ink used after each round. Firstly, we will prove by
induction that, if before rth round the segment r0, 1s is not completely colored, then, before this
move,

piq the amount of ink used for the segment r0, xrs is at most 3xr; and
piiq for every m, B has blackened at most one interval of length 1{2m to the right of xr.

Obviously, these conditions are satisfied for r “ 0. Now assume that they were satisfied before
the rth move, and consider the situation after this move; let m be the number A has picked at
this move.

If B has blackened the interval Ir
1
at this move, then xr`1 “ xr, and piq holds by the induction

hypothesis. Next, had B blackened before the rth move any interval of length 1{2m to the right
of xr, this interval would necessarily coincide with I

r
1
. By our strategy, this cannot happen. So,

condition piiq also remains valid.
Assume now that B has blackened the interval Ir

0
at the rth move, but the interval r0, 1s still

contains uncolored parts (which means that Ir
1
is contained in r0, 1s). Then condition piiq clearly

remains true, and we need to check piq only. In our case, the intervals Ir
0
and Ir

1
are completely

colored after the rth move, so xr`1 either reaches the right endpoint of I1 or moves even further
to the right. So, xr`1 “ xr ` α for some α ą 1{2m.

Next, any interval blackened by B before the rth move which intersects pxr, xr`1q should be
contained in rxr, xr`1s; by piiq, all such intervals have different lengths not exceeding 1{2m, so
the total amount of ink used for them is less than 2{2m. Thus, the amount of ink used for the
segment r0, xr`1s does not exceed the sum of 2{2m, 3xr (used for r0, xrs), and 1{2m used for the
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segment Ir
0
. In total it gives at most 3pxr ` 1{2mq ă 3pxr ` αq “ 3xr`1. Thus condition piq is also

verified in this case. The claim is proved.

Finally, we can perform the desired estimation. Consider any situation in the game, say after the
pr´1qst move; assume that the segment r0, 1s is not completely black. By piiq, in the segment rxr, 1s
player B has colored several segments of different lengths; all these lengths are negative powers
of 2 not exceeding 1´ xr; thus the total amount of ink used for this interval is at most 2p1´ xrq.
Using piq, we obtain that the total amount of ink used is at most 3xr ` 2p1 ´ xrq ă 3. Thus the
pot is not empty, and therefore A never wins.

Comment 1. Notice that this strategy works even if the pot contains initially only 3 units of ink.

Comment 2. There exist other strategies for B allowing him to prevent emptying the pot before the
whole interval is colored. On the other hand, let us mention some idea which does not work.

Player B could try a strategy in which the set of blackened points in each round is an interval of
the type r0, xs. Such a strategy cannot work (even if there is more ink available). Indeed, under the
assumption that B uses such a strategy, let us prove by induction on s the following statement:

For any positive integer s, player A has a strategy picking only positive integers m ď s in which,
if player B ever paints a point x ě 1 ´ 1{2s then after some move, exactly the interval r0, 1 ´ 1{2ss is
blackened, and the amount of ink used up to this moment is at least s{2.

For the base case s “ 1, player A just picks m “ 1 in the first round. If for some positive integer k
player A has such a strategy, for s` 1 he can first rescale his strategy to the interval r0, 1{2s (sending in
each round half of the amount of ink he would give by the original strategy). Thus, after some round, the
interval r0, 1{2 ´ 1{2s`1s becomes blackened, and the amount of ink used is at least s{4. Now player A
picks m “ 1{2, and player B spends 1{2 unit of ink to blacken the interval r0, 1{2s. After that, player A
again rescales his strategy to the interval r1{2, 1s, and player B spends at least s{4 units of ink to blacken
the interval r1{2, 1 ´ 1{2s`1s, so he spends in total at least s{4` 1{2` s{4 “ ps ` 1q{2 units of ink.

Comment 3. In order to avoid finiteness issues, the statement could be replaced by the following one:

Players A and B play a paintful game on the real numbers. Player A has a paint pot with
four units of black ink. A quantity p of this ink suffices to blacken a (closed) real interval of
length p. In the beginning of the game, player A chooses (and announces) a positive integer
N . In every round, player A picks some positive integer m ď N and provides 1{2m units
of ink from the pot. The player B picks an integer k and blackens the interval from k{2m
to pk ` 1q{2m (some parts of this interval may happen to be blackened before). The goal of
player A is to reach a situation where the pot is empty and the interval r0, 1s is not completely
blackened.

Decide whether there exists a strategy for player A to win.

However, the Problem Selection Committee believes that this version may turn out to be harder than the
original one.
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Geometry

G1. Let ABC be an acute-angled triangle with orthocenter H , and let W be a point on
side BC. Denote by M and N the feet of the altitudes from B and C, respectively. Denote
by ω1 the circumcircle of BWN , and let X be the point on ω1 which is diametrically opposite
to W . Analogously, denote by ω2 the circumcircle of CWM , and let Y be the point on ω2 which
is diametrically opposite to W . Prove that X , Y and H are collinear.

(Thaliand)

Solution. Let L be the foot of the altitude from A, and let Z be the second intersection point of
circles ω1 and ω2, other than W . We show that X , Y , Z and H lie on the same line.

Due to =BNC “ =BMC “ 90˝, the points B, C, N and M are concyclic; denote their circle
by ω3. Observe that the line WZ is the radical axis of ω1 and ω2; similarly, BN is the radical axis
of ω1 and ω3, and CM is the radical axis of ω2 and ω3. Hence A “ BN XCM is the radical center
of the three circles, and therefore WZ passes through A.

SinceWX andWY are diameters in ω1 and ω2, respectively, we have =WZX “ =WZY “ 90˝,
so the points X and Y lie on the line through Z, perpendicular to WZ.
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The quadrilateral BLHN is cyclic, because it has two opposite right angles. From the power
of A with respect to the circles ω1 and BLHN we find AL ¨AH “ AB ¨AN “ AW ¨AZ. If H lies
on the line AW then this implies H “ Z immediately. Otherwise, by AZ

AH
“ AL

AW
the triangles AHZ

and AWL are similar. Then =HZA “ =WLA “ 90˝, so the point H also lies on the line XY Z.

Comment. The original proposal also included a second statement:

Let P be the point on ω1 such that WP is parallel to CN , and let Q be the point on ω2 such
that WQ is parallel to BM . Prove that P , Q and H are collinear if and only if BW “ CW

or AW K BC.

The Problem Selection Committee considered the first part more suitable for the competition.
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G2. Let ω be the circumcircle of a triangle ABC. Denote by M and N the midpoints of the
sides AB and AC, respectively, and denote by T the midpoint of the arc BC of ω not containing A.
The circumcircles of the triangles AMT and ANT intersect the perpendicular bisectors of AC
and AB at points X and Y , respectively; assume that X and Y lie inside the triangle ABC. The
lines MN and XY intersect at K. Prove that KA “ KT .

(Iran)

Solution 1. Let O be the center of ω, thus O “MY XNX . Let ℓ be the perpendicular bisector
of AT (it also passes through O). Denote by r the operation of reflection about ℓ. Since AT is the
angle bisector of =BAC, the line rpABq is parallel to AC. Since OM K AB and ON K AC, this
means that the line rpOMq is parallel to the line ON and passes through O, so rpOMq “ ON .
Finally, the circumcircle γ of the triangle AMT is symmetric about ℓ, so rpγq “ γ. Thus the
point M maps to the common point of ON with the arc AMT of γ — that is, rpMq “ X.

Similarly, rpNq “ Y . Thus, we get rpMNq “ XY , and the common point K of MN nd XY
lies on ℓ. This means exactly that KA “ KT .
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Solution 2. Let L be the second common point of the line AC with the circumcircle γ of
the triangle AMT . From the cyclic quadrilaterals ABTC and AMTL we get =BTC “ 180˝ ´
=BAC “ =MTL, which implies =BTM “ =CTL. Since AT is an angle bisector in these
quadrilaterals, we have BT “ TC and MT “ TL. Thus the triangles BTM and CTL are
congruent, so CL “ BM “ AM .

Let X 1 be the common point of the line NX with the external bisector of =BAC; notice
that it lies outside the triangle ABC. Then we have =TAX 1 “ 90˝ and X 1A “ X 1C, so we
get =X 1AM “ 90˝ ` =BAC{2 “ 180˝ ´ =X 1AC “ 180˝ ´ =X 1CA “ =X 1CL. Thus the
triangles X 1AM and X 1CL are congruent, and therefore

=MX 1L “ =AX 1C ` p=CX 1L´=AX 1Mq “ =AX 1C “ 180˝ ´ 2=X 1AC “ =BAC “ =MAL.

This means that X 1 lies on γ.
Thus we have =TXN “ =TXX 1 “ =TAX 1 “ 90˝, so TX ‖ AC. Then =XTA “ =TAC “

=TAM , so the cyclic quadrilateral MATX is an isosceles trapezoid. Similarly, NATY is an
isosceles trapezoid, so again the lines MN and XY are the reflections of each other about the
perpendicular bisector of AT . Thus K belongs to this perpendicular bisector.
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Comment. There are several different ways of showing that the points X and M are symmetrical with
respect to ℓ. For instance, one can show that the quadrilaterals AMON and TXOY are congruent. We
chose Solution 1 as a simple way of doing it. On the other hand, Solution 2 shows some other interesting
properties of the configuration.

Let us define Y 1, analogously to X 1, as the common point of MY and the external bisector of =BAC.
One may easily see that in general the lines MN and X 1Y 1 (which is the external bisector of =BAC)
do not intersect on the perpendicular bisector of AT . Thus, any solution should involve some argument
using the choice of the intersection points X and Y .
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G3. In a triangle ABC, let D and E be the feet of the angle bisectors of angles A and B,
respectively. A rhombus is inscribed into the quadrilateral AEDB (all vertices of the rhombus
lie on different sides of AEDB). Let ϕ be the non-obtuse angle of the rhombus. Prove that
ϕ ď maxt=BAC,=ABCu.

(Serbia)

Solution 1. Let K, L, M , and N be the vertices of the rhombus lying on the sides AE, ED, DB,
and BA, respectively. Denote by dpX, Y Zq the distance from a point X to a line Y Z. Since D
and E are the feet of the bisectors, we have dpD,ABq “ dpD,ACq, dpE,ABq “ dpE,BCq, and
dpD,BCq “ dpE,ACq “ 0, which implies

dpD,ACq ` dpD,BCq “ dpD,ABq and dpE,ACq ` dpE,BCq “ dpE,ABq.

Since L lies on the segment DE and the relation dpX,ACq ` dpX,BCq “ dpX,ABq is linear in X
inside the triangle, these two relations imply

dpL,ACq ` dpL,BCq “ dpL,ABq. (1)

Denote the angles as in the figure below, and denote a “ KL. Then we have dpL,ACq “ a sinµ
and dpL,BCq “ a sin ν. Since KLMN is a parallelogram lying on one side of AB, we get

dpL,ABq “ dpL,ABq ` dpN,ABq “ dpK,ABq ` dpM,ABq “ apsin δ ` sin εq.

Thus the condition (1) reads
sin µ` sin ν “ sin δ ` sin ε. (2)
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If one of the angles α and β is non-acute, then the desired inequality is trivial. So we assume
that α, β ă π{2. It suffices to show then that ψ “ =NKL ď maxtα, βu.

Assume, to the contrary, that ψ ą maxtα, βu. Since µ ` ψ “ =CKN “ α ` δ, by our
assumption we obtain µ “ pα ´ ψq ` δ ă δ. Similarly, ν ă ε. Next, since KN ‖ ML, we have
β “ δ ` ν, so δ ă β ă π{2. Similarly, ε ă π{2. Finally, by µ ă δ ă π{2 and ν ă ε ă π{2, we
obtain

sin µ ă sin δ and sin ν ă sin ε.

This contradicts (2).

Comment. One can see that the equality is achieved if α “ β for every rhombus inscribed into the
quadrilateral AEDB.
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G4. Let ABC be a triangle with =B ą =C. Let P and Q be two different points on line AC
such that =PBA “ =QBA “ =ACB and A is located between P and C. Suppose that there
exists an interior point D of segment BQ for which PD “ PB. Let the ray AD intersect the circle
ABC at R ‰ A. Prove that QB “ QR.

(Georgia)

Solution 1. Denote by ω the circumcircle of the triangle ABC, and let =ACB “ γ. Note
that the condition γ ă =CBA implies γ ă 90˝. Since =PBA “ γ, the line PB is tangent
to ω, so PA ¨ PC “ PB2 “ PD2. By PA

PD
“ PD

PC
the triangles PAD and PDC are similar, and

=ADP “ =DCP .
Next, since =ABQ “ =ACB, the triangles ABC and AQB are also similar. Then =AQB “

=ABC “ =ARC, which means that the points D, R, C, and Q are concyclic. Therefore =DRQ “
=DCQ “ =ADP .
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B

CP Q
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D

ω

Figure 1

Now from =ARB “ =ACB “ γ and =PDB “ =PBD “ 2γ we get

=QBR “ =ADB ´=ARB “ =ADP `=PDB ´=ARB “ =DRQ ` γ “ =QRB,

so the triangle QRB is isosceles, which yields QB “ QR.

Solution 2. Again, denote by ω the circumcircle of the triangle ABC. Denote =ACB “ γ. Since
=PBA “ γ, the line PB is tangent to ω.

Let E be the second intersection point of BQ with ω. If V 1 is any point on the ray CE

beyond E, then =BEV 1 “ 180˝ ´ =BEC “ 180˝ ´ =BAC “ =PAB; together with =ABQ “
=PBA this shows firstly, that the rays BA and CE intersect at some point V , and secondly
that the triangle V EB is similar to the triangle PAB. Thus we have =BV E “ =BPA. Next,
=AEV “ =BEV ´ γ “ =PAB ´ =ABQ “ =AQB; so the triangles PBQ and V AE are also
similar.

Let PH be an altitude in the isosceles triangle PBD; thenBH “ HD. LetG be the intersection
point of PH and AB. By the symmetry with respect to PH , we have =BDG “ =DBG “ γ “
=BEA; thus DG ‖ AE and hence BG

GA
“ BD

DE
. Thus the points G and D correspond to each other

in the similar triangles PAB and V EB, so =DV B “ =GPB “ 90˝ ´ =PBQ “ 90˝ ´ =V AE.
Thus V D K AE.
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Let T be the common point of V D and AE, and let DS be an altitude in the triangle BDR.
The points S and T are the feet of corresponding altitudes in the similar triangles ADE and BDR,
so BS

SR
“ AT

TE
. On the other hand, the points T and H are feet of corresponding altitudes in the

similar triangles V AE and PBQ, so AT
TE

“ BH
HQ

. Thus BS
SR
“ AT

TE
“ BH

HQ
, and the triangles BHS

and BQR are similar.
Finally, SH is a median in the right-angled triangle SBD; so BH “ HS, and hence BQ “ QR.
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Figure 2

Solution 3. Denote by ω and O the circumcircle of the triangle ABC and its center, respectively.
From the condition =PBA “ =BCA we know that BP is tangent to ω.

Let E be the second point of intersection of ω and BD. Due to the isosceles triangle BDP ,
the tangent of ω at E is parallel to DP and consequently it intersects BP at some point L. Of
course, PD ‖ LE. Let M be the midpoint of BE, and let H be the midpoint of BR. Notice that
=AEB “ =ACB “ =ABQ “ =ABE, so A lies on the perpendicular bisector of BE; thus the
points L, A, M , and O are collinear. Let ω1 be the circle with diameter BO. Let Q

1 “ HOXBE;
since HO is the perpendicular bisector of BR, the statement of the problem is equivalent to
Q1 “ Q.

Consider the following sequence of projections (see Fig. 3).

1. Project the line BE to the line LB through the center A. (This maps Q to P .)
2. Project the line LB to BE in parallel direction with LE. (P ÞÑ D.)
3. Project the line BE to the circle ω through its point A. (D ÞÑ R.)
4. Scale ω by the ratio 1

2
from the point B to the circle ω1. (R ÞÑ H .)

5. Project ω1 to the line BE through its point O. (H ÞÑ Q1.)

We prove that the composition of these transforms, which maps the line BE to itself, is the
identity. To achieve this, it suffices to show three fixed points. An obvious fixed point is B which
is fixed by all the transformations above. Another fixed point is M , its path being M ÞÑ L ÞÑ
E ÞÑ E ÞÑM ÞÑM .
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In order to show a third fixed point, draw a line parallel with LE through A; let that line

intersect BE, LB and ω at X , Y and Z ‰ A, respectively (see Fig. 4). We show that X is a
fixed point. The images of X at the first three transformations are X ÞÑ Y ÞÑ X ÞÑ Z. From
=XBZ “ =EAZ “ =AEL “ =LBA “ =BZX we can see that the triangle XBZ is isosceles.
Let U be the midpoint of BZ; then the last two transformations do Z ÞÑ U ÞÑ X , and the point X
is fixed.

Comment. Verifying that the point E is fixed seems more natural at first, but it appears to be less
straightforward. Here we outline a possible proof.

Let the images of E at the first three transforms above be F , G and I. After comparing the angles
depicted in Fig. 5 (noticing that the quadrilateral AFBG is cyclic) we can observe that the tangent LE
of ω is parallel to BI. Then, similarly to the above reasons, the point E is also fixed.
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ω
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P
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L
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Figure 5
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G5. Let ABCDEF be a convex hexagon with AB “ DE, BC “ EF , CD “ FA, and
=A ´=D “ =C ´=F “ =E ´=B. Prove that the diagonals AD,BE, and CF are concurrent.

(Ukraine)

In all three solutions, we denote θ “ =A´=D “ =C ´=F “ =E ´=B and assume without loss
of generality that θ ě 0.

Solution 1. Let x “ AB “ DE, y “ CD “ FA, z “ EF “ BC. Consider the points P, Q,
and R such that the quadrilaterals CDEP , EFAQ, and ABCR are parallelograms. We compute

=PEQ “ =FEQ `=DEP ´=E “ p180˝ ´=F q ` p180˝ ´=Dq ´=E

“ 360˝ ´=D ´=E ´=F “ 1

2

`

=A`=B `=C ´=D ´=E ´=F
˘

“ θ{2.

Similarly, =QAR “ =RCP “ θ{2.

D
E

F

A

B

CP

Q

R

x

z

y

x
z

y

If θ “ 0, since △RCP is isosceles, R “ P . Therefore AB ‖ RC “ PC ‖ ED, so ABDE is a
parallelogram. Similarly, BCEF and CDFA are parallelograms. It follows that AD, BE and CF
meet at their common midpoint.

Now assume θ ą 0. Since △PEQ, △QAR, and △RCP are isosceles and have the same angle
at the apex, we have △PEQ „ △QAR „ △RCP with ratios of similarity y : z : x. Thus

△PQR is similar to the triangle with sidelengths y, z, and x. (1)

Next, notice that
RQ

QP
“ z

y
“ RA

AF

and, using directed angles between rays,

>pRQ,QP q “ >pRQ,QEq `>pQE,QP q
“ >pRQ,QEq `>pRA,RQq “ >pRA,QEq “ >pRA,AF q.

Thus △PQR „ △FAR. Since FA “ y and AR “ z, (1) then implies that FR “ x. Similarly
FP “ x. Therefore CRFP is a rhombus.

We conclude that CF is the perpendicular bisector of PR. Similarly, BE is the perpendicular
bisector of PQ and AD is the perpendicular bisector of QR. It follows that AD, BE, and CF are
concurrent at the circumcenter of PQR.
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Solution 2. Let X “ CD X EF , Y “ EF X AB, Z “ AB X CD, X 1 “ FA X BC, Y 1 “
BC X DE, and Z 1 “ DE X FA. From =A ` =B ` =C “ 360˝ ` θ{2 we get =A ` =B ą 180˝

and =B `=C ą 180˝, so Z and X 1 are respectively on the opposite sides of BC and AB from the
hexagon. Similar conclusions hold for X, Y , Y 1, and Z 1. Then

=Y ZX “ =B `=C ´ 180˝ “ =E `=F ´ 180˝ “ =Y 1Z 1X 1,

and similarly =ZXY “ =Z 1X 1Y 1 and =XY Z “ =X 1Y 1Z 1, so △XY Z „ △X 1Y 1Z 1. Thus there is
a rotation R which sends △XY Z to a triangle with sides parallel to △X 1Y 1Z 1. Since AB “ DE

we have R
`ÝÝÑ
AB

˘

“ ÝÝÑDE. Similarly, R
`ÝÝÑ
CD

˘

“ ÝÝÑFA and R
`ÝÝÑ
EF

˘

“ ÝÝÑBC. Therefore
ÝÑ
0 “ ÝÝÑAB `ÝÝÑBC `ÝÝÑCD `ÝÝÑDE `ÝÝÑEF `ÝÝÑFA “

`ÝÝÑ
AB `ÝÝÑCD `ÝÝÑEF

˘

`R
`ÝÝÑ
AB `ÝÝÑCD `ÝÝÑEF

˘

.

If R is a rotation by 180˝, then any two opposite sides of our hexagon are equal and parallel,
so the three diagonals meet at their common midpoint. Otherwise, we must have

ÝÝÑ
AB `ÝÝÑCD `ÝÝÑEF “ ÝÑ0 ,

or else we would have two vectors with different directions whose sum is
ÝÑ
0 .

T

D

E
F

A

B

C

Z

X
Y

Z ′

X ′

Y ′

O3

O1

O2

N

LM
O

This allows us to consider a triangle LMN with
ÝÝÑ
LM “ ÝÝÑEF , ÝÝÑMN “ ÝÝÑAB, and ÝÝÑNL “ ÝÝÑCD. Let O

be the circumcenter of △LMN and consider the points O1, O2, O3 such that △AO1B, △CO2D,
and △EO3F are translations of △MON , △NOL, and △LOM , respectively. Since FO3 and AO1

are translations of MO, quadrilateral AFO3O1 is a parallelogram and O3O1 “ FA “ CD “ NL.
Similarly, O1O2 “ LM and O2O3 “ MN . Therefore △O1O2O3 – △LMN . Moreover, by means
of the rotation R one may check that these triangles have the same orientation.

Let T be the circumcenter of △O1O2O3. We claim that AD, BE, and CF meet at T . Let
us show that C, T , and F are collinear. Notice that CO2 “ O2T “ TO3 “ O3F since they are
all equal to the circumradius of △LMN . Therefore △TO3F and △CO2T are isosceles. Using
directed angles between rays again, we get

>pTF, TO3q “ >pFO3, FT q and >pTO2, TCq “ >pCT,CO2q. (2)

Also, T and O are the circumcenters of the congruent triangles △O1O2O3 and △LMN so we have
>pTO3, TO2q “ >pON,OMq. Since CO2 and FO3 are translations of NO and MO respectively,
this implies

>pTO3, TO2q “ >pCO2, FO3q. (3)
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Adding the three equations in (2) and (3) gives

>pTF, TCq “ >pCT, FT q “ ´>pTF, TCq
which implies that T is on CF . Analogous arguments show that it is on AD and BE also. The
desired result follows.

Solution 3. Place the hexagon on the complex plane, with A at the origin and vertices labelled
clockwise. Now A, B, C, D, E, F represent the corresponding complex numbers. Also consider
the complex numbers a, b, c, a1, b1, c1 given by B ´ A “ a, D ´ C “ b, F ´ E “ c, E ´D “ a1,
A ´ F “ b1, and C ´B “ c1. Let k “ |a|{|b|. From a{b1 “ ´kei=A and a1{b “ ´kei=D we get that
pa1{aqpb1{bq “ e´iθ and similarly pb1{bqpc1{cq “ e´iθ and pc1{cqpa1{aq “ e´iθ. It follows that a1 “ ar,
b1 “ br, and c1 “ cr for a complex number r with |r| “ 1, as shown below.

WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW

DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD

EF

A

B

C

a+ b+ cr = c(r − 1)

−br − c−br

0

a

a+ cr

c(r − 1)λ

a cr

b

ar
c

br

We have
0 “ a` cr ` b` ar ` c ` br “ pa` b` cqp1` rq.

If r “ ´1, then the hexagon is centrally symmetric and its diagonals intersect at its center of
symmetry. Otherwise

a` b` c “ 0.

Therefore

A “ 0, B “ a, C “ a` cr, D “ cpr ´ 1q, E “ ´br ´ c, F “ ´br.
Now consider a point W on AD given by the complex number cpr´ 1qλ, where λ is a real number
with 0 ă λ ă 1. Since D ‰ A, we have r ‰ 1, so we can define s “ 1{pr ´ 1q. From rr “ |r|2 “ 1
we get

1` s “ r

r ´ 1
“ r

r ´ rr “
1

1´ r “ ´s.
Now,

W is on BE ðñ cpr ´ 1qλ´ a ‖ a´ p´br ´ cq “ bpr ´ 1q ðñ cλ´ as ‖ b
ðñ ´aλ´ bλ ´ as ‖ b ðñ apλ ` sq ‖ b.

One easily checks that r ‰ ˘1 implies that λ` s ‰ 0 since s is not real. On the other hand,

W on CF ðñ cpr ´ 1qλ` br ‖ ´br ´ pa` crq “ apr ´ 1q ðñ cλ` bp1` sq ‖ a
ðñ ´aλ´ bλ ´ bs ‖ a ðñ bpλ` sq ‖ a ðñ b ‖ apλ` sq,

where in the last step we use that pλ` sqpλ` sq “ |λ` s|2 P Rą0. We conclude that AD XBE “
CF XBE, and the desired result follows.
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G6. Let the excircle of the triangle ABC lying opposite to A touch its side BC at the point A1.
Define the points B1 and C1 analogously. Suppose that the circumcentre of the triangle A1B1C1

lies on the circumcircle of the triangle ABC. Prove that the triangle ABC is right-angled.

(Russia)

Solution 1. Denote the circumcircles of the triangles ABC and A1B1C1 by Ω and Γ, respectively.
Denote the midpoint of the arc CB of Ω containing A by A0, and define B0 as well as C0 analogously.
By our hypothesis the centre Q of Γ lies on Ω.

Lemma. One has A0B1 “ A0C1. Moreover, the points A, A0, B1, and C1 are concyclic. Finally,
the points A and A0 lie on the same side of B1C1. Similar statements hold for B and C.

Proof. Let us consider the case A “ A0 first. Then the triangle ABC is isosceles at A, which
implies AB1 “ AC1 while the remaining assertions of the Lemma are obvious. So let us suppose
A ‰ A0 from now on.

By the definition of A0, we have A0B “ A0C. It is also well known and easy to show that BC1 “
CB1. Next, we have =C1BA0 “ =ABA0 “ =ACA0 “ =B1CA0. Hence the triangles A0BC1

and A0CB1 are congruent. This implies A0C1 “ A0B1, establishing the first part of the Lemma.
It also follows that =A0C1A “ =A0B1A, as these are exterior angles at the corresponding vertices
C1 and B1 of the congruent triangles A0BC1 and A0CB1. For that reason the points A, A0, B1,
and C1 are indeed the vertices of some cyclic quadrilateral two opposite sides of which are AA0

and B1C1. l

Now we turn to the solution. Evidently the points A1, B1, and C1 lie interior to some semicircle
arc of Γ, so the triangle A1B1C1 is obtuse-angled. Without loss of generality, we will assume that
its angle at B1 is obtuse. Thus Q and B1 lie on different sides of A1C1; obviously, the same holds
for the points B and B1. So, the points Q and B are on the same side of A1C1.

Notice that the perpendicular bisector of A1C1 intersects Ω at two points lying on different
sides of A1C1. By the first statement from the Lemma, both points B0 and Q are among these
points of intersection; since they share the same side of A1C1, they coincide (see Figure 1).
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B
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Now, by the first part of the Lemma again, the lines QA0 and QC0 are the perpendicular
bisectors of B1C1 and A1B1, respectively. Thus

=C1B0A1 “ =C1B0B1 `=B1B0A1 “ 2=A0B0B1 ` 2=B1B0C0 “ 2=A0B0C0 “ 180˝ ´=ABC,

recalling that A0 and C0 are the midpoints of the arcs CB and BA, respectively.
On the other hand, by the second part of the Lemma we have

=C1B0A1 “ =C1BA1 “ =ABC.

From the last two equalities, we get =ABC “ 90˝, whereby the problem is solved.

Solution 2. Let Q again denote the centre of the circumcircle of the triangle A1B1C1, that lies
on the circumcircle Ω of the triangle ABC. We first consider the case where Q coincides with one
of the vertices of ABC, say Q “ B. Then BC1 “ BA1 and consequently the triangle ABC is
isosceles at B. Moreover we have BC1 “ B1C in any triangle, and hence BB1 “ BC1 “ B1C;
similarly, BB1 “ B1A. It follows that B1 is the centre of Ω and that the triangle ABC has a right
angle at B.

So from now on we may suppose Q R tA,B,Cu. We start with the following well known fact.

Lemma. Let XY Z and X 1Y 1Z 1 be two triangles with XY “ X 1Y 1 and Y Z “ Y 1Z 1.

piq If XZ ‰ X 1Z 1 and =Y ZX “ =Y 1Z 1X 1, then =ZXY `=Z 1X 1Y 1 “ 180˝.

piiq If =Y ZX `=X 1Z 1Y 1 “ 180˝, then =ZXY “ =Y 1X 1Z 1.

Proof. For both parts, we may move the triangle XY Z through the plane until Y “ Y 1 and Z “ Z 1.
Possibly after reflecting one of the two triangles about Y Z, we may also suppose that X and X 1

lie on the same side of Y Z if we are in case piq and on different sides if we are in case piiq. In both
cases, the points X, Z, and X 1 are collinear due to the angle condition (see Fig. 2). Moreover we
have X ‰ X 1, because in case piq we assumed XZ ‰ X 1Z 1 and in case piiq these points even lie
on different sides of Y Z. Thus the triangle XX 1Y is isosceles at Y . The claim now follows by
considering the equal angles at its base. l

X X ′

Y = Y ′

Z = Z ′
X X ′

Y = Y ′

Z = Z ′

Figure 2(i) Figure 2(ii)

Relabeling the vertices of the triangle ABC if necessary we may suppose that Q lies in the
interior of the arc AB of Ω not containing C. We will sometimes use tacitly that the six trian-
gles QBA1, QA1C, QCB1, QB1A, QC1A, and QBC1 have the same orientation.

As Q cannot be the circumcentre of the triangle ABC, it is impossible that QA “ QB “ QC

and thus we may also suppose that QC ‰ QB. Now the above Lemma piq is applicable to the
triangles QB1C and QC1B, since QB1 “ QC1 and B1C “ C1B, while =B1CQ “ =C1BQ holds
as both angles appear over the same side of the chord QA in Ω (see Fig. 3). So we get

=CQB1 `=BQC1 “ 180˝. (1)
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We claim that QC “ QA. To see this, let us assume for the sake of a contradiction that
QC ‰ QA. Then arguing similarly as before but now with the triangles QA1C and QC1A we get

=A1QC `=C1QA “ 180˝.

Adding this equation to (1), we get =A1QB1`=BQA “ 360˝, which is absurd as both summands
lie in the interval p0˝, 180˝q.

This proves QC “ QA; so the triangles QA1C and QC1A are congruent their sides being equal,
which in turn yields

=A1QC “ =C1QA. (2)

Finally our Lemma piiq is applicable to the trianglesQA1B andQB1A. Indeed we have QA1 “ QB1

and A1B “ B1A as usual, and the angle condition =A1BQ ` =QAB1 “ 180˝ holds as A and B
lie on different sides of the chord QC in Ω. Consequently we have

=BQA1 “ =B1QA. (3)

From (1) and (3) we get

p=B1QC `=B1QAq ` p=C1QB ´=BQA1q “ 180˝,

i.e. =CQA `=A1QC1 “ 180˝. In light of (2) this may be rewritten as 2=CQA “ 180˝ and as Q
lies on Ω this implies that the triangle ABC has a right angle at B.
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Figure 3

Comment 1. One may also check that Q is in the interior of Ω if and only if the triangle ABC is
acute-angled.

Comment 2. The original proposal asked to prove the converse statement as well: if the triangle ABC
is right-angled, then the point Q lies on its circumcircle. The Problem Selection Committee thinks that
the above simplified version is more suitable for the competition.
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Number Theory

N1. Let Zą0 be the set of positive integers. Find all functions f : Zą0 Ñ Zą0 such that

m2 ` fpnq | mfpmq ` n

for all positive integers m and n.

(Malaysia)

Answer. fpnq “ n.

Solution 1. Setting m “ n “ 2 tells us that 4`fp2q | 2fp2q`2. Since 2fp2q`2 ă 2p4`fp2qq, we
must have 2fp2q` 2 “ 4` fp2q, so fp2q “ 2. Plugging in m “ 2 then tells us that 4` fpnq | 4`n,
which implies that fpnq ď n for all n.

Setting m “ n gives n2 ` fpnq | nfpnq ` n, so nfpnq ` n ě n2 ` fpnq which we rewrite as
pn ´ 1qpfpnq ´ nq ě 0. Therefore fpnq ě n for all n ě 2. This is trivially true for n “ 1 also.

It follows that fpnq “ n for all n. This function obviously satisfies the desired property.

Solution 2. Setting m “ fpnq we get fpnqpfpnq`1q | fpnqfpfpnqq`n. This implies that fpnq | n
for all n.

Now let m be any positive integer, and let p ą 2m2 be a prime number. Note that p ą mfpmq
also. Plugging in n “ p´mfpmq we learn thatm2`fpnq divides p. Since m2`fpnq cannot equal 1,
it must equal p. Therefore p´m2 “ fpnq | n “ p´mfpmq. But p´mfpmq ă p ă 2pp´m2q, so
we must have p´mfpmq “ p´m2, i.e., fpmq “ m.

Solution 3. Plugging m “ 1 we obtain 1` fpnq ď fp1q`n, so fpnq ď n` c for the constant c “
fp1q´1. Assume that fpnq ‰ n for some fixed n. When m is large enough (e.g. m ě maxpn, c`1q)
we have

mfpmq ` n ď mpm` cq ` n ď 2m2 ă 2pm2 ` fpnqq,
so we must have mfpmq ` n “ m2 ` fpnq. This implies that

0 ‰ fpnq ´ n “ mpfpmq ´mq,

which is impossible for m ą |fpnq ´ n|. It follows that f is the identity function.
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N2. Prove that for any pair of positive integers k and n there exist k positive integers
m1, m2, . . . , mk such that

1` 2k ´ 1

n
“
ˆ

1` 1

m1

˙ˆ

1` 1

m2

˙

¨ ¨ ¨
ˆ

1` 1

mk

˙

.

(Japan)

Solution 1. We proceed by induction on k. For k “ 1 the statement is trivial. Assuming we
have proved it for k “ j ´ 1, we now prove it for k “ j.

Case 1. n “ 2t ´ 1 for some positive integer t.

Observe that

1` 2j ´ 1

2t´ 1
“ 2pt` 2j´1 ´ 1q

2t
¨ 2t

2t´ 1
“
ˆ

1` 2j´1 ´ 1

t

˙ˆ

1` 1

2t´ 1

˙

.

By the induction hypothesis we can find m1, . . . , mj´1 such that

1` 2j´1 ´ 1

t
“
ˆ

1` 1

m1

˙ˆ

1` 1

m2

˙

¨ ¨ ¨
ˆ

1` 1

mj´1

˙

,

so setting mj “ 2t´ 1 gives the desired expression.

Case 2. n “ 2t for some positive integer t.

Now we have

1` 2j ´ 1

2t
“ 2t` 2j ´ 1

2t` 2j ´ 2
¨ 2t` 2j ´ 2

2t
“
ˆ

1` 1

2t` 2j ´ 2

˙ˆ

1` 2j´1 ´ 1

t

˙

,

noting that 2t` 2j ´ 2 ą 0. Again, we use that

1` 2j´1 ´ 1

t
“
ˆ

1` 1

m1

˙ˆ

1` 1

m2

˙

¨ ¨ ¨
ˆ

1` 1

mj´1

˙

.

Setting mj “ 2t ` 2j ´ 2 then gives the desired expression.

Solution 2. Consider the base 2 expansions of the residues of n´ 1 and ´n modulo 2k:

n´ 1 ” 2a1 ` 2a2 ` ¨ ¨ ¨ ` 2ar pmod 2kq where 0 ď a1 ă a2 ă . . . ă ar ď k ´ 1,

´n ” 2b1 ` 2b2 ` ¨ ¨ ¨ ` 2bs pmod 2kq where 0 ď b1 ă b2 ă . . . ă bs ď k ´ 1.

Since ´1 ” 20` 21` ¨ ¨ ¨` 2k´1 pmod 2kq, we have ta1, . . . , aruY tb1 . . . , bsu “ t0, 1, . . . , k´ 1u and
r ` s “ k. Write

Sp “ 2ap ` 2ap`1 ` ¨ ¨ ¨ ` 2ar for 1 ď p ď r,

Tq “ 2b1 ` 2b2 ` ¨ ¨ ¨ ` 2bq for 1 ď q ď s.
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Also set Sr`1 “ T0 “ 0. Notice that S1 ` Ts “ 2k ´ 1 and n` Ts ” 0 pmod 2kq. We have

1` 2k ´ 1

n
“ n ` S1 ` Ts

n
“ n ` S1 ` Ts

n` Ts
¨ n ` Ts

n

“
r
ź

p“1

n ` Sp ` Ts
n ` Sp`1 ` Ts

¨
s
ź

q“1

n` Tq
n` Tq´1

“
r
ź

p“1

ˆ

1` 2ap

n ` Sp`1 ` Ts

˙

¨
s
ź

q“1

ˆ

1` 2bq

n ` Tq´1

˙

,

so if we define

mp “
n` Sp`1 ` Ts

2ap
for 1 ď p ď r and mr`q “

n ` Tq´1
2bq

for 1 ď q ď s,

the desired equality holds. It remains to check that every mi is an integer. For 1 ď p ď r we have

n` Sp`1 ` Ts ” n ` Ts ” 0 pmod 2apq

and for 1 ď q ď r we have
n ` Tq´1 ” n ` Ts ” 0 pmod 2bqq.

The desired result follows.
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N3. Prove that there exist infinitely many positive integers n such that the largest prime divisor
of n4 ` n2 ` 1 is equal to the largest prime divisor of pn` 1q4 ` pn` 1q2 ` 1.

(Belgium)

Solution. Let pn be the largest prime divisor of n
4`n2` 1 and let qn be the largest prime divisor

of n2 ` n ` 1. Then pn “ qn2 , and from

n4 ` n2 ` 1 “ pn2 ` 1q2 ´ n2 “ pn2 ´ n` 1qpn2 ` n` 1q “ ppn´ 1q2 ` pn´ 1q ` 1qpn2 ` n` 1q

it follows that pn “ maxtqn, qn´1u for n ě 2. Keeping in mind that n2 ´ n` 1 is odd, we have

gcdpn2 ` n` 1, n2 ´ n` 1q “ gcdp2n, n2 ´ n` 1q “ gcdpn, n2 ´ n` 1q “ 1.

Therefore qn ‰ qn´1.

To prove the result, it suffices to show that the set

S “ tn P Zě2 | qn ą qn´1 and qn ą qn`1u

is infinite, since for each n P S one has

pn “ maxtqn, qn´1u “ qn “ maxtqn, qn`1u “ pn`1.

Suppose on the contrary that S is finite. Since q2 “ 7 ă 13 “ q3 and q3 “ 13 ą 7 “ q4, the set S
is non-empty. Since it is finite, we can consider its largest element, say m.

Note that it is impossible that qm ą qm`1 ą qm`2 ą . . . because all these numbers are positive
integers, so there exists a k ě m such that qk ă qk`1 (recall that qk ‰ qk`1). Next observe that it
is impossible to have qk ă qk`1 ă qk`2 ă . . . , because qpk`1q2 “ pk`1 “ maxtqk, qk`1u “ qk`1, so
let us take the smallest ℓ ě k ` 1 such that qℓ ą qℓ`1. By the minimality of ℓ we have qℓ´1 ă qℓ,
so ℓ P S. Since ℓ ě k ` 1 ą k ě m, this contradicts the maximality of m, and hence S is indeed
infinite.

Comment. Once the factorization of n4 ` n2 ` 1 is found and the set S is introduced, the problem is
mainly about ruling out the case that

qk ă qk`1 ă qk`2 ă . . . (1)

might hold for some k P Zą0. In the above solution, this is done by observing qpk`1q2 “ maxpqk, qk`1q.
Alternatively one may notice that (1) implies that qj`2 ´ qj ě 6 for j ě k ` 1, since every prime greater
than 3 is congruent to ´1 or 1 modulo 6. Then there is some integer C ě 0 such that qn ě 3n ´ C for
all n ě k.

Now let the integer t be sufficiently large (e.g. t “ maxtk ` 1, C ` 3u) and set p “ qt´1 ě 2t. Then
p | pt ´ 1q2 ` pt ´ 1q ` 1 implies that p | pp ´ tq2 ` pp ´ tq ` 1, so p and qp´t are prime divisors of
pp´ tq2 ` pp´ tq ` 1. But p´ t ą t´ 1 ě k, so qp´t ą qt´1 “ p and p ¨ qp´t ą p2 ą pp´ tq2 ` pp´ tq ` 1,
a contradiction.
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N4. Determine whether there exists an infinite sequence of nonzero digits a1, a2, a3, . . . and a
positive integer N such that for every integer k ą N , the number akak´1 . . . a1 is a perfect square.

(Iran)

Answer. No.

Solution. Assume that a1, a2, a3, . . . is such a sequence. For each positive integer k, let yk “
akak´1 . . . a1. By the assumption, for each k ą N there exists a positive integer xk such that
yk “ x2k.

I. For every n, let 5γn be the greatest power of 5 dividing xn. Let us show first that 2γn ě n for
every positive integer n ą N .

Assume, to the contrary, that there exists a positive integer n ą N such that 2γn ă n, which
yields

yn`1 “ an`1an . . . a1 “ 10nan`1 ` anan´1 . . . a1 “ 10nan`1 ` yn “ 52γn
´

2n5n´2γnan`1 `
yn

52γn

¯

.

Since 5 {| yn{52γn , we obtain γn`1 “ γn ă n ă n ` 1. By the same arguments we obtain that
γn “ γn`1 “ γn`2 “ . . . . Denote this common value by γ.

Now, for each k ě n we have

pxk`1 ´ xkqpxk`1 ` xkq “ x2k`1 ´ x2k “ yk`1 ´ yk “ ak`1 ¨ 10k.

One of the numbers xk`1´xk and xk`1`xk is not divisible by 5γ`1 since otherwise one would have
5γ`1 |

`

pxk`1´xkq`pxk`1`xkq
˘

“ 2xk`1. On the other hand, we have 5
k | pxk`1´xkqpxk`1`xkq,

so 5k´γ divides one of these two factors. Thus we get

5k´γ ď maxtxk`1 ´ xk, xk`1 ` xku ă 2xk`1 “ 2
?
yk`1 ă 2 ¨ 10pk`1q{2,

which implies 52k ă 4 ¨ 52γ ¨ 10k`1, or p5{2qk ă 40 ¨ 52γ. The last inequality is clearly false for
sufficiently large values of k. This contradiction shows that 2γn ě n for all n ą N .

II. Consider now any integer k ą maxtN{2, 2u. Since 2γ2k`1 ě 2k ` 1 and 2γ2k`2 ě 2k ` 2,
we have γ2k`1 ě k ` 1 and γ2k`2 ě k ` 1. So, from y2k`2 “ a2k`2 ¨ 102k`1 ` y2k`1 we obtain
52k`2 | y2k`2 ´ y2k`1 “ a2k`2 ¨ 102k`1 and thus 5 | a2k`2, which implies a2k`2 “ 5. Therefore,

px2k`2 ´ x2k`1qpx2k`2 ` x2k`1q “ x2
2k`2 ´ x22k`1 “ y2k`2 ´ y2k`1 “ 5 ¨ 102k`1 “ 22k`1 ¨ 52k`2.

Setting Ak “ x2k`2{5k`1 and Bk “ x2k`1{5k`1, which are integers, we obtain

pAk ´BkqpAk `Bkq “ 22k`1. (1)

Both Ak and Bk are odd, since otherwise y2k`2 or y2k`1 would be a multiple of 10 which is false
by a1 ‰ 0; so one of the numbers Ak ´Bk and Ak `Bk is not divisible by 4. Therefore (1) yields
Ak ´Bk “ 2 and Ak `Bk “ 22k, hence Ak “ 22k´1 ` 1 and thus

x2k`2 “ 5k`1Ak “ 10k`1 ¨ 2k´2 ` 5k`1 ą 10k`1,

since k ě 2. This implies that y2k`2 ą 102k`2 which contradicts the fact that y2k`2 contains 2k` 2
digits. The desired result follows.
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Solution 2. Again, we assume that a sequence a1, a2, a3, . . . satisfies the problem conditions,
introduce the numbers xk and yk as in the previous solution, and notice that

yk`1 ´ yk “ pxk`1 ´ xkqpxk`1 ` xkq “ 10kak`1 (2)

for all k ą N . Consider any such k. Since a1 ‰ 0, the numbers xk and xk`1 are not multiples of 10,
and therefore the numbers pk “ xk`1 ´ xk and qk “ xk`1 ` xk cannot be simultaneously multiples
of 20, and hence one of them is not divisible either by 4 or by 5. In view of (2), this means that
the other one is divisible by either 5k or by 2k´1. Notice also that pk and qk have the same parity,
so both are even.

On the other hand, we have x2k`1 “ x2k ` 10kak`1 ě x2k ` 10k ą 2x2k, so xk`1{xk ą
?
2, which

implies that

1 ă qk

pk
“ 1` 2

xk`1{xk ´ 1
ă 1` 2?

2´ 1
ă 6. (3)

Thus, if one of the numbers pk and qk is divisible by 5
k, then we have

10k`1 ą 10kak`1 “ pkqk ě
p5kq2
6

and hence p5{2qk ă 60 which is false for sufficiently large k. So, assuming that k is large, we get
that 2k´1 divides one of the numbers pk and qk. Hence

tpk, qku “ t2k´1 ¨ 5rkbk, 2 ¨ 5k´rkcku with nonnegative integers bk, ck, rk such that bkck “ ak`1.

Moreover, from (3) we get

6 ą 2k´1 ¨ 5rkbk
2 ¨ 5k´rkck

ě 1

36
¨
ˆ

2

5

˙k

¨ 52rk and 6 ą 2 ¨ 5k´rkck
2k´1 ¨ 5rkbk

ě 4

9
¨
ˆ

5

2

˙k

¨ 5´2rk ,

so
αk ` c1 ă rk ă αk ` c2 for α “ 1

2
log

5

`

5

2

˘

ă 1 and some constants c2 ą c1. (4)

Consequently, for C “ c2 ´ c1 ` 1´ α ą 0 we have

pk ` 1q ´ rk`1 ď k ´ rk ` C. (5)

Next, we will use the following easy lemma.

Lemma. Let s be a positive integer. Then 5s`2
s ” 5s pmod 10sq.

Proof. Euler’s theorem gives 52
s ” 1 pmod 2sq, so 5s`2s ´ 5s “ 5sp52s ´ 1q is divisible by 2s and 5s.

Now, for every large k we have

xk`1 “
pk ` qk

2
“ 5rk ¨ 2k´2bk ` 5k´rkck ” 5k´rkck pmod 10rkq (6)

since rk ď k ´ 2 by (4); hence yk`1 ” 52pk´rkqc2k pmod 10rkq. Let us consider some large integer s,
and choose the minimal k such that 2pk´rkq ě s`2s; it exists by (4). Set d “ 2pk´ rkq´ps`2sq.
By (4) we have 2s ă 2pk ´ rkq ă

`

2

α
´ 2

˘

rk ´ 2c1
α
; if s is large this implies rk ą s, so (6) also holds

modulo 10s. Then (6) and the lemma give

yk`1 ” 52pk´rkqc2k “ 5s`2
s ¨ 5dc2k ” 5s ¨ 5dc2k pmod 10sq. (7)

By (5) and the minimality of k we have d ď 2C, so 5dc2k ď 52C ¨ 81 “ D. Using 54 ă 103 we obtain

5s ¨ 5dc2k ă 103s{4D ă 10s´1

for sufficiently large s. This, together with (7), shows that the sth digit from the right in yk`1,
which is as, is zero. This contradicts the problem condition.
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N5. Fix an integer k ě 2. Two players, called Ana and Banana, play the following game of
numbers: Initially, some integer n ě k gets written on the blackboard. Then they take moves
in turn, with Ana beginning. A player making a move erases the number m just written on the
blackboard and replaces it by some number m1 with k ď m1 ă m that is coprime to m. The first
player who cannot move anymore loses.

An integer n ě k is called good if Banana has a winning strategy when the initial number is n,
and bad otherwise.

Consider two integers n, n1 ě k with the property that each prime number p ď k divides n if
and only if it divides n1. Prove that either both n and n1 are good or both are bad.

(Italy)

Solution 1. Let us first observe that the number appearing on the blackboard decreases after
every move; so the game necessarily ends after at most n steps, and consequently there always has
to be some player possessing a winning strategy. So if some n ě k is bad, then Ana has a winning
strategy in the game with starting number n.

More precisely, if n ě k is such that there is a good integer m with n ą m ě k and
gcdpm,nq “ 1, then n itself is bad, for Ana has the following winning strategy in the game with
initial number n: She proceeds by first playing m and then using Banana’s strategy for the game
with starting number m.

Otherwise, if some integer n ě k has the property that every integer m with n ą m ě k and
gcdpm,nq “ 1 is bad, then n is good. Indeed, if Ana can make a first move at all in the game with
initial number n, then she leaves it in a position where the first player has a winning strategy, so
that Banana can defeat her.

In particular, this implies that any two good numbers have a non–trivial common divisor. Also,
k itself is good.

For brevity, we say that n ÝÑ x is a move if n and x are two coprime integers with n ą x ě k.

Claim 1. If n is good and n1 is a multiple of n, then n1 is also good.

Proof. If n1 were bad, there would have to be some move n1 ÝÑ x, where x is good. As n1 is a
multiple of n this implies that the two good numbers n and x are coprime, which is absurd. l

Claim 2. If r and s denote two positive integers for which rs ě k is bad, then r2s is also bad.

Proof. Since rs is bad, there is a move rs ÝÑ x for some good x. Evidently x is coprime to r2s as
well, and hence the move r2s ÝÑ x shows that r2s is indeed bad. l

Claim 3. If p ą k is prime and n ě k is bad, then np is also bad.

Proof. Otherwise we choose a counterexample with n being as small as possible. In particular, np
is good. Since n is bad, there is a move n ÝÑ x for some good x. Now np ÝÑ x cannot be a
valid move, which tells us that x has to be divisible by p. So we can write x “ pry, where r and y
denote some positive integers, the latter of which is not divisible by p.

Note that y “ 1 is impossible, for then we would have x “ pr and the move x ÝÑ k would
establish that x is bad. In view of this, there is a least power yα of y that is at least as large
as k. Since the numbers np and yα are coprime and the former is good, the latter has to be
bad. Moreover, the minimality of α implies yα ă ky ă py “ x

pr´1 ă n
pr´1 . So p

r´1 ¨ yα ă n and

consequently all the numbers yα, pyα, . . . , pr ¨ yα “ pppr´1 ¨ yαq are bad due to the minimal choice
of n. But now by Claim 1 the divisor x of pr ¨ yα cannot be good, whereby we have reached a
contradiction that proves Claim 3. l
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We now deduce the statement of the problem from these three claims. To this end, we call two
integers a, b ě k similar if they are divisible by the same prime numbers not exceeding k. We are
to prove that if a and b are similar, then either both of them are good or both are bad. As in this
case the product ab is similar to both a and b, it suffices to show the following: if c ě k is similar
to some of its multiples d, then either both c and d are good or both are bad.

Assuming that this is not true in general, we choose a counterexample pc0, d0q with d0 being
as small as possible. By Claim 1, c0 is bad whilst d0 is good. Plainly d0 is strictly greater than c0
and hence the quotient d0

c0
has some prime factor p. Clearly p divides d0. If p ď k, then p

divides c0 as well due to the similarity, and hence d0 is actually divisible by p
2. So d0

p
is good by

the contrapositive of Claim 2. Since c0 | d0
p
, the pair pc0, d0p q contradicts the supposed minimality

of d0. This proves p ą k, but now we get the same contradiction using Claim 3 instead of Claim 2.
Thereby the problem is solved.

Solution 2. We use the same analysis of the game of numbers as in the first five paragraphs of
the first solution. Let us call a prime number p small in case p ď k and big otherwise. We again
call two integers similar if their sets of small prime factors coincide.

Claim 4. For each integer b ě k having some small prime factor, there exists an integer x
similar to it with b ě x ě k and having no big prime factors.

Proof. Unless b has a big prime factor we may simply choose x “ b. Now let p and q denote a
small and a big prime factor of b, respectively. Let a be the product of all small prime factors
of b. Further define n to be the least non–negative integer for which the number x “ pna is at
least as large as k. It suffices to show that b ą x. This is clear in case n “ 0, so let us assume
n ą 0 from now on. Then we have x ă pk due to the minimality of n, p ď a because p divides a
by construction, and k ă q. Therefore x ă aq and, as the right hand side is a product of distinct
prime factors of b, this implies indeed x ă b. l

Let us now assume that there is a pair pa, bq of similar numbers such that a is bad and b is
good. Take such a pair with maxpa, bq being as small as possible. Since a is bad, there exists a
move a ÝÑ r for some good r. Since the numbers k and r are both good, they have a common
prime factor, which necessarily has to be small. Thus Claim 4 is applicable to r, which yields
an integer r1 similar to r containing small prime factors only and satisfying r ě r1 ě k. Since
maxpr, r1q “ r ă a ď maxpa, bq the number r1 is also good. Now let p denote a common prime
factor of the good numbers r1 and b. By our construction of r1, this prime is small and due to
the similarities it consequently divides a and r, contrary to a ÝÑ r being a move. Thereby the
problem is solved.

Comment 1. Having reached Claim 4 of Solution 2, there are various other ways to proceed. For
instance, one may directly obtain the following fact, which seems to be interesting in its own right:

Claim 5. Any two good numbers have a common small prime factor.

Proof. Otherwise there exists a pair pb, b1q of good numbers with b1 ě b ě k all of whose common prime
factors are big. Choose such a pair with b1 being as small as possible. Since b and k are both good, there
has to be a common prime factor p of b and k. Evidently p is small and thus it cannot divide b1, which in
turn tells us b1 ą b. Applying Claim 4 to b we get an integer x with b ě x ě k that is similar to b and has
no big prime divisors at all. By our assumption, b1 and x are coprime, and as b1 is good this implies that
x is bad. Consequently there has to be some move x ÝÑ b˚ such that b˚ is good. But now all the small
prime factors of b also appear in x and thus they cannot divide b˚. Therefore the pair pb˚, bq contradicts
the supposed minimality of b1. l
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From that point, it is easy to complete the solution: assume that there are two similar integers a and b
such that a is bad and b is good. Since a is bad, there is a move a ÝÑ b1 for some good b1. By Claim 5,
there is a small prime p dividing b and b1. Due to the similarity of a and b, the prime p has to divide a
as well, but this contradicts the fact that a ÝÑ b1 is a valid move. Thereby the problem is solved.

Comment 2. There are infinitely many good numbers, e.g. all multiples of k. The increasing sequence
b0, b1, . . . , of all good numbers may be constructed recursively as follows:

‚ Start with b0 “ k.

‚ If bn has just been defined for some n ě 0, then bn`1 is the smallest number b ą bn that is coprime
to none of b0, . . . , bn.

This construction can be used to determine the set of good numbers for any specific k as explained in the
next comment. It is already clear that if k “ pα is a prime power, then a number b ě k is good if and
only if it is divisible by p.

Comment 3. Let P ą 1 denote the product of all small prime numbers. Then any two integers a, b ě k

that are congruent modulo P are similar. Thus the infinite word Wk “ pXk,Xk`1, . . .q defined by

Xi “
#

A if i is bad

B if i is good

for all i ě k is periodic and the length of its period divides P . As the prime power example shows, the
true period can sometimes be much smaller than P . On the other hand, there are cases where the period
is rather large; e.g., if k “ 15, the sequence of good numbers begins with 15, 18, 20, 24, 30, 36, 40, 42, 45
and the period of W15 is 30.

Comment 4. The original proposal contained two questions about the game of numbers, namely paq to
show that if two numbers have the same prime factors then either both are good or both are bad, and pbq
to show that the word Wk introduced in the previous comment is indeed periodic. The Problem Selection
Committee thinks that the above version of the problem is somewhat easier, even though it demands to
prove a stronger result.
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N6. Determine all functions f : Q ÝÑ Z satisfying

f

ˆ

fpxq ` a
b

˙

“ f
´x` a

b

¯

(1)

for all x P Q, a P Z, and b P Zą0. (Here, Zą0 denotes the set of positive integers.)
(Israel)

Answer. There are three kinds of such functions, which are: all constant functions, the floor
function, and the ceiling function.

Solution 1. I. We start by verifying that these functions do indeed satisfy (1). This is clear for
all constant functions. Now consider any triple px, a, bq P Qˆ Zˆ Zą0 and set

q “
Yx` a

b

]

.

This means that q is an integer and bq ď x` a ă bpq ` 1q. It follows that bq ď txu ` a ă bpq ` 1q
holds as well, and thus we have

Z

txu ` a
b

^

“
Yx` a

b

]

,

meaning that the floor function does indeed satisfy (1). One can check similarly that the ceiling
function has the same property.

II. Let us now suppose conversely that the function f : Q ÝÑ Z satisfies (1) for all px, a, bq P
QˆZˆZą0. According to the behaviour of the restriction of f to the integers we distinguish two
cases.

Case 1: There is some m P Z such that fpmq ‰ m.

Write fpmq “ C and let η P t´1,`1u and b denote the sign and absolute value of fpmq ´ m,
respectively. Given any integer r, we may plug the triple pm, rb ´ C, bq into (1), thus getting
fprq “ fpr´ ηq. Starting with m and using induction in both directions, we deduce from this that
the equation fprq “ C holds for all integers r. Now any rational number y can be written in the
form y “ p

q
with pp, qq P ZˆZą0, and substituting pC´p, p´C, qq into (1) we get fpyq “ fp0q “ C.

Thus f is the constant function whose value is always C.

Case 2: One has fpmq “ m for all integers m.

Note that now the special case b “ 1 of (1) takes a particularly simple form, namely

fpxq ` a “ fpx` aq for all px, aq P Qˆ Z. (2)

Defining f
`

1

2

˘

“ ω we proceed in three steps.

Step A. We show that ω P t0, 1u.
If ω ď 0, we may plug

`

1

2
,´ω, 1´ 2ω

˘

into (1), obtaining 0 “ fp0q “ f
`

1

2

˘

“ ω. In the contrary
case ω ě 1 we argue similarly using the triple

`

1

2
, ω ´ 1, 2ω ´ 1

˘

.

Step B. We show that fpxq “ ω for all rational numbers x with 0 ă x ă 1.

Assume that this fails and pick some rational number a
b
P p0, 1q with minimal b such that fpa

b
q ‰ ω.

Obviously, gcdpa, bq “ 1 and b ě 2. If b is even, then a has to be odd and we can substitute
`

1

2
, a´1

2
, b
2

˘

into (1), which yields

f

ˆ

ω ` pa´ 1q{2
b{2

˙

“ f
´a

b

¯

‰ ω. (3)
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Recall that 0 ď pa ´ 1q{2 ă b{2. Thus, in both cases ω “ 0 and ω “ 1, the left-hand part of (3)
equals ω either by the minimality of b, or by fpωq “ ω. A contradiction.

Thus b has to be odd, so b “ 2k ` 1 for some k ě 1. Applying (1) to
`

1

2
, k, b

˘

we get

f

ˆ

ω ` k
b

˙

“ f

ˆ

1

2

˙

“ ω. (4)

Since a and b are coprime, there exist integers r P t1, 2, . . . , bu and m such that ra´mb “ k ` ω.
Note that we actually have 1 ď r ă b, since the right hand side is not a multiple of b. If m
is negative, then we have ra ´ mb ą b ě k ` ω, which is absurd. Similarly, m ě r leads to
ra´mb ă br ´ br “ 0, which is likewise impossible; so we must have 0 ď m ď r ´ 1.

We finally substitute
`

k`ω
b
, m, r

˘

into (1) and use (4) to learn

f
´ω `m

r

¯

“ f
´a

b

¯

‰ ω.

But as above one may see that the left hand side has to equal ω due to the minimality of b. This
contradiction concludes our step B.

Step C. Now notice that if ω “ 0, then fpxq “ txu holds for all rational x with 0 ď x ă 1 and
hence by (2) this even holds for all rational numbers x. Similarly, if ω “ 1, then fpxq “ rxs holds
for all x P Q. Thereby the problem is solved.

Comment 1. An alternative treatment of Steps B and C from the second case, due to the proposer,
proceeds as follows. Let square brackets indicate the floor function in case ω “ 0 and the ceiling function
if ω “ 1. We are to prove that fpxq “ rxs holds for all x P Q, and because of Step A and (2) we already
know this in case 2x P Z. Applying (1) to p2x, 0, 2q we get

fpxq “ f

ˆ

fp2xq
2

˙

,

and by the previous observation this yields

fpxq “
„

fp2xq
2



for all x P Q. (5)

An easy induction now shows

fpxq “
„

fp2nxq
2n



for all px, nq P Qˆ Zą0. (6)

Now suppose first that x is not an integer but can be written in the form p
q
with p P Z and q P Zą0 both

being odd. Let d denote the multiplicative order of 2 modulo q and let m be any large integer. Plugging
n “ dm into (6) and using (2) we get

fpxq “
„

fp2dmxq
2dm



“
„

fpxq ` p2dm ´ 1qx
2dm



“
„

x` fpxq ´ x
2dm



.

Since x is not an integer, the square bracket function is continuous at x; hence as m tends to infinity the
above fomula gives fpxq “ rxs. To complete the argument we just need to observe that if some y P Q

satisfies fpyq “ rys, then (5) yields f
`

y
2

˘

“ f
´

rys
2

¯

“
”

rys
2

ı

“
“

y
2

‰

.
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Solution 2. Here we just give another argument for the second case of the above solution. Again
we use equation (2). It follows that the set S of all zeros of f contains for each x P Q exactly one
term from the infinite sequence . . . , x´ 2, x´ 1, x, x` 1, x` 2, . . . .

Next we claim that

if pp, qq P Zˆ Zą0 and
p

q
P S, then p

q`1
P S holds as well. (7)

To see this we just plug
`

p

q
, p, q ` 1

˘

into (1), thus getting f
`

p

q`1

˘

“ f
`

p

q

˘

“ 0.

From this we get that

if x, y P Q, x ą y ą 0, and x P S, then y P S. (8)

Indeed, if we write x “ p

q
and y “ r

s
with p, q, r, s P Zą0, then ps ą qr and (7) tells us

0 “ f

ˆ

p

q

˙

“ f

ˆ

pr

qr

˙

“ f

ˆ

pr

qr ` 1

˙

“ . . . “ f

ˆ

pr

ps

˙

“ f

ˆ

r

s

˙

.

Essentially the same argument also establishes that

if x, y P Q, x ă y ă 0, and x P S, then y P S. (9)

From (8) and (9) we get 0 P S Ď p´1,`1q and hence the real number α “ suppSq exists and
satisfies 0 ď α ď 1.

Let us assume that we actually had 0 ă α ă 1. Note that fpxq “ 0 if x P p0, αq X Q by (8),
and fpxq “ 1 if x P pα, 1q XQ by (9) and (2). Let K denote the unique positive integer satisfying
Kα ă 1 ď pK ` 1qα. The first of these two inequalities entails α ă 1`α

K`1
, and thus there is a

rational number x P
`

α, 1`α
K`1

˘

. Setting y “ pK ` 1qx´ 1 and substituting py, 1, K ` 1q into (1) we
learn

f

ˆ

fpyq ` 1

K ` 1

˙

“ f

ˆ

y ` 1

K ` 1

˙

“ fpxq.

Since α ă x ă 1 and 0 ă y ă α, this simplifies to

f

ˆ

1

K ` 1

˙

“ 1.

But, as 0 ă 1

K`1
ď α, this is only possible if α “ 1

K`1
and fpαq “ 1. From this, however, we get

the contradiction

0 “ f

ˆ

1

pK ` 1q2
˙

“ f

ˆ

α ` 0

K ` 1

˙

“ f

ˆ

fpαq ` 0

K ` 1

˙

“ fpαq “ 1.

Thus our assumption 0 ă α ă 1 has turned out to be wrong and it follows that α P t0, 1u. If
α “ 0, then we have S Ď p´1, 0s, whence S “ p´1, 0s XQ, which in turn yields fpxq “ rxs for all
x P Q due to (2). Similarly, α “ 1 entails S “ r0, 1q X Q and fpxq “ txu for all x P Q. Thereby
the solution is complete.
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Comment 2. It seems that all solutions to this problems involve some case distinction separating the
constant solutions from the unbounded ones, though the “descriptions” of the cases may be different
depending on the work that has been done at the beginning of the solution. For instance, these two cases
can also be “f is periodic on the integers” and “f is not periodic on the integers”. The case leading to
the unbounded solutions appears to be the harder one.

In most approaches, the cases leading to the two functions x ÞÝÑ txu and x ÞÝÑ rxs can easily be
treated parallelly, but sometimes it may be useful to know that there is some symmetry in the problem
interchanging these two functions. Namely, if a function f : Q ÝÑ Z satisfies (1), then so does the
function g : Q ÝÑ Z defined by gpxq “ ´fp´xq for all x P Q. For that reason, we could have restricted
our attention to the case ω “ 0 in the first solution and, once α P t0, 1u had been obtained, to the case
α “ 0 in the second solution.
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N7. Let ν be an irrational positive number, and let m be a positive integer. A pair pa, bq of
positive integers is called good if

arbνs ´ btaνu “ m. p˚q
A good pair pa, bq is called excellent if neither of the pairs pa´b, bq and pa, b´aq is good. (As usual,
by txu and rxs we denote the integer numbers such that x´ 1 ă txu ď x and x ď rxs ă x` 1.)

Prove that the number of excellent pairs is equal to the sum of the positive divisors of m.

(U.S.A.)

Solution. For positive integers a and b, let us denote

fpa, bq “ arbνs ´ btaνu.

We will deal with various values of m; thus it is convenient to say that a pair pa, bq is m-good or
m-excellent if the corresponding conditions are satisfied.

To start, let us investigate how the values fpa ` b, bq and fpa, b ` aq are related to fpa, bq. If
taνu ` tbνu ă 1, then we have tpa` bqνu “ taνu ` tbνu and rpa ` bqνs “ raνs ` rbνs ´ 1, so

fpa` b, bq “ pa` bqrbνs ´ bptaνu ` tbνuq “ fpa, bq ` bprbνs ´ tbνuq “ fpa, bq ` b

and

fpa, b` aq “ aprbνs ` raνs ´ 1q ´ pb` aqtaνu “ fpa, bq ` apraνs ´ 1´ taνuq “ fpa, bq.

Similarly, if taνu ` tbνu ě 1 then one obtains

fpa` b, bq “ fpa, bq and fpa, b` aq “ fpa, bq ` a.

So, in both cases one of the numbers fpa` b, aq and fpa, b` aq is equal to fpa, bq while the other
is greater than fpa, bq by one of a and b. Thus, exactly one of the pairs pa` b, bq and pa, b` aq is
excellent (for an appropriate value of m).

Now let us say that the pairs pa ` b, bq and pa, b ` aq are the children of the pair pa, bq, while
this pair is their parent. Next, if a pair pc, dq can be obtained from pa, bq by several passings from a
parent to a child, we will say that pc, dq is a descendant of pa, bq, while pa, bq is an ancestor of pc, dq
(a pair is neither an ancestor nor a descendant of itself). Thus each pair pa, bq has two children,
it has a unique parent if a ‰ b, and no parents otherwise. Therefore, each pair of distinct positive
integers has a unique ancestor of the form pa, aq; our aim is now to find how many m-excellent
descendants each such pair has.

Notice now that if a pair pa, bq is m-excellent then minta, bu ď m. Indeed, if a “ b then
fpa, aq “ a “ m, so the statement is valid. Otherwise, the pair pa, bq is a child of some pair pa1, b1q. If
b “ b1 and a “ a1`b1, then we should have m “ fpa, bq “ fpa1, b1q`b1, so b “ b1 “ m´fpa1, b1q ă m.
Similarly, if a “ a1 and b “ b1 ` a1 then a ă m.

Let us consider the set Sm of all pairs pa, bq such that fpa, bq ď m and minta, bu ď m. Then
all the ancestors of the elements in Sm are again in Sm, and each element in Sm either is of the
form pa, aq with a ď m, or has a unique ancestor of this form. From the arguments above we see
that all m-excellent pairs lie in Sm.

We claim now that the set Sm is finite. Indeed, assume, for instance, that it contains infinitely
many pairs pc, dq with d ą 2m. Such a pair is necessarily a child of pc, d´cq, and thus a descendant
of some pair pc, d1q with m ă d1 ď 2m. Therefore, one of the pairs pa, bq P Sm with m ă b ď 2m
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has infinitely many descendants in Sm, and all these descendants have the form pa, b` kaq with k
a positive integer. Since fpa, b` kaq does not decrease as k grows, it becomes constant for k ě k0,
where k0 is some positive integer. This means that taνu ` tpb` kaqνu ă 1 for all k ě k0. But this
yields 1 ą tpb` kaqνu “ tpb` k0aqνu ` pk ´ k0qtaνu for all k ą k0, which is absurd.

Similarly, one can prove that Sm contains finitely many pairs pc, dq with c ą 2m, thus finitely
many elements at all.

We are now prepared for proving the following crucial lemma.

Lemma. Consider any pair pa, bq with fpa, bq ‰ m. Then the number gpa, bq of its m-excellent
descendants is equal to the number hpa, bq of ways to represent the number t “ m ´ fpa, bq as
t “ ka` ℓb with k and ℓ being some nonnegative integers.
Proof. We proceed by induction on the number N of descendants of pa, bq in Sm. If N “ 0 then
clearly gpa, bq “ 0. Assume that hpa, bq ą 0; without loss of generality, we have a ď b. Then,
clearly, m´ fpa, bq ě a, so fpa, b` aq ď fpa, bq ` a ď m and a ď m, hence pa, b` aq P Sm which
is impossible. Thus in the base case we have gpa, bq “ hpa, bq “ 0, as desired.

Now let N ą 0. Assume that fpa` b, bq “ fpa, bq ` b and fpa, b` aq “ fpa, bq (the other case
is similar). If fpa, bq ` b ‰ m, then by the induction hypothesis we have

gpa, bq “ gpa` b, bq ` gpa, b` aq “ hpa` b, bq ` hpa, b` aq.

Notice that both pairs pa` b, bq and pa, b` aq are descendants of pa, bq and thus each of them has
strictly less descendants in Sm than pa, bq does.

Next, each one of the hpa` b, bq representations of m´ fpa` b, bq “ m´ b´ fpa, bq as the sum
k1pa ` bq ` ℓ1b provides the representation m ´ fpa, bq “ ka ` ℓb with k “ k1 ă k1 ` ℓ1 ` 1 “ ℓ.
Similarly, each one of the hpa, b` aq representations of m ´ fpa, b ` aq “ m ´ fpa, bq as the sum
k1a ` ℓ1pb ` aq provides the representation m ´ fpa, bq “ ka ` ℓb with k “ k1 ` ℓ1 ě ℓ1 “ ℓ. This
correspondence is obviously bijective, so

hpa, bq “ hpa ` b, bq ` hpa, b` aq “ gpa, bq,

as required.

Finally, if fpa, bq`b “ m then pa`b, bq ism-excellent, so gpa, bq “ 1`gpa, b`aq “ 1`hpa, b`aq
by the induction hypothesis. On the other hand, the number m´ fpa, bq “ b has a representation
0 ¨ a ` 1 ¨ b and sometimes one more representation as ka ` 0 ¨ b; this last representation exists
simultaneously with the representation m´fpa, b`aq “ ka`0 ¨ pb`aq, so hpa, bq “ 1`hpa, b`aq
as well. Thus in this case the step is also proved. l

Now it is easy to finish the solution. There exists a unique m-excellent pair of the form pa, aq,
and each other m-excellent pair pa, bq has a unique ancestor of the form px, xq with x ă m. By the
lemma, for every x ă m the number of its m-excellent descendants is hpx, xq, which is the number
of ways to represent m ´ fpx, xq “ m ´ x as kx ` ℓx (with nonnegative integer k and ℓ). This
number is 0 if x {| m, and m{x otherwise. So the total number of excellent pairs is

1`
ÿ

x|m, xăm

m

x
“ 1`

ÿ

d|m, dą1

d “
ÿ

d|m

d,

as required.
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Comment. Let us present a sketch of an outline of a different solution. The plan is to check that the
number of excellent pairs does not depend on the (irrational) number ν, and to find this number for some
appropriate value of ν. For that, we first introduce some geometrical language. We deal only with the
excellent pairs pa, bq with a ‰ b.

Part I. Given an irrational positive ν, for every positive integer n we introduce two integral points Fνpnq “
pn, tnνuq and Cνpnq “ pn, rnνsq on the coordinate plane Oxy. Then p˚q reads as rOFνpaqCνpbqs “ m{2;
here r¨s stands for the signed area. Next, we rewrite in these terms the condition on a pair pa, bq to be
excellent. Let ℓν , ℓ

`
ν , and ℓ

´
ν be the lines determined by the equations y “ νx, y “ νx`1, and y “ νx´1,

respectively.

a). Firstly, we deal with all excellent pairs pa, bq with a ă b. Given some value of a, all the points C such
that rOFνpaqCs “ m{2 lie on some line fνpaq; if there exist any good pairs pa, bq at all, this line has to
contain at least one integral point, which happens exactly when gcdpa, taνuq | m.

Let Pνpaq be the point of intersection of ℓ`ν and fνpaq, and let pνpaq be its abscissa; notice that pνpaq
is irrational if it is nonzero. Now, if pa, bq is good, then the point Cνpbq lies on fνpaq, which means that
the point of fνpaq with abscissa b lies between ℓν and ℓ`ν and is integral. If in addition the pair pa, b´ aq
is not good, then the point of fνpaq with abscissa b ´ a lies above ℓ`ν (see Fig. 1). Thus, the pair pa, bq
with b ą a is excellent exactly when pνpaq lies between b´ a and b, and the point of fνpaq with abscissa b
is integral (which means that this point is Cνpbq).

Notice now that, if pνpaq ą a, then the number of excellent pairs of the form pa, bq (with b ą a) is
gcdpa, taνuq.
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Figure 1 Figure 2

b). Analogously, considering the pairs pa, bq with a ą b, we fix the value of b, introduce the line cνpbq
containing all the points F with rOFCνpbqs “ m{2, assume that this line contains an integral point
(which means gcdpb, rbνsq | m), and denote the common point of cνpbq and ℓ´ν by Qνpbq, its abscissa
being qνpbq. Similarly to the previous case, we obtain that the pair pa, bq is excellent exactly when qνpaq
lies between a´ b and a, and the point of cνpbq with abscissa a is integral (see Fig. 2). Again, if qνpbq ą b,
then the number of excellent pairs of the form pa, bq (with a ą b) is gcdpb, rbνsq.
Part II, sketchy. Having obtained such a description, one may check how the number of excellent pairs
changes as ν grows. (Having done that, one may find this number for one appropriate value of ν; for
instance, it is relatively easy to make this calculation for ν P

`

1, 1 ` 1

m

˘

.)

Consider, for the initial value of ν, some excellent pair pa, tq with a ą t. As ν grows, this pair
eventually stops being excellent; this happens when the point Qνptq passes through Fνpaq. At the same
moment, the pair pa` t, tq becomes excellent instead.

This process halts when the point Qνptq eventually disappears, i.e. when ν passes through the ratio
of the coordinates of the point T “ Cνptq. Hence, the point T afterwards is regarded as Fνptq. Thus, all
the old excellent pairs of the form pa, tq with a ą t disappear; on the other hand, the same number of
excellent pairs with the first element being t just appear.
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Similarly, if some pair pt, bq with t ă b is initially ν-excellent, then at some moment it stops being
excellent when Pνptq passes through Cνpbq; at the same moment, the pair pt, b´tq becomes excellent. This
process eventually stops when b´ t ă t. At this moment, again the second element of the pair becomes
fixed, and the first one starts to increase.

These ideas can be made precise enough to show that the number of excellent pairs remains unchanged,
as required.

We should warn the reader that the rigorous elaboration of Part II is technically quite involved, mostly
by the reason that the set of moments when the collection of excellent pairs changes is infinite. Especially
much care should be applied to the limit points of this set, which are exactly the points when the line ℓν
passes through some point of the form Cνpbq.

The same ideas may be explained in an algebraic language instead of a geometrical one; the same
technicalities remain in this way as well.


